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Abstract

The scientific article reviews some properties of the low-energy effective actions for gauged su-
pergravity models. We summarize the current state of knowledge regarding gravity theories with
minimal supersymmetry. We provide an elegant extension of the theory and give a deffinitions
of the anomalies in gauged supergravity. The difference between the covariant and consistent
anomalies is carefully explained in terms of their different origins. The gauge structure of anoma-
lies and the related supersymmetry currents is analyzed in detail. The results are extended to
determine the structure of gravitational and mixed anomalies in supergravity. The deep relation
between anomalies and inconsistency is emphasized in this research. The conditions for anomaly
cancellation in these supergravity theories typically constitute determined types of equations.



1 Introduction

Supersymmetric theories are highly symmetric and magnificent beautiful. These symmetries ex-
change fermions with bosons, either in flat space supersymmetry or in curved space supergravity.
Supergravity is a field theory, at present the most promising candidate for quantum gravity that
combines the principles of supersymmetry and general relativity. Supergravity describes general
relativity in the language of quantum field theory. The theory of supergravity suggested a novel
approach to unification. In the quest for a unified description of gravity and matter interactions,
several higher dimensional theories have been proposed. The gauged supergravity provides an
interesting theoretical framework to the physics beyond the standard model. Gauged supergravi-
ties, where the global isometries of the matter lagrangian are promoted to local symmetries, have
been widely explored and by now almost all allowed models for diverse spacetime dimensions. The
geometry of curved superspace is shown to allow the existence of a large family of supermultiplets
that can be used to describe supersymmetric matter, including vector, tensor and hypermulti-
plets. The main theories of interest in this publication are four and six-dimensional supergravities
with a minimal amount of supersymmetry and all possible anomaly-free models. In the first part
of our work we use the symplectic structure of four-dimensional minimal supergravities to study
the possibility of gauged axionic shift symmetries. This leads to the introduction of generalized
Chern-Simons terms, and a Green-Schwarz cancellation mechanism for gauge anomalies. Simi-
larly, we study the possibility of adding higher order derivative corrections to the two-derivative
action, leading to a cancellation of the mixed gauge-gravitational anomalies. Our models consti-
tute the supersymmetric framework for string compactifications with axionic shift symmetries,
generalized Chern-Simons terms and quantum anomalies. We discuss the presence of gauge and
gravitational anomalies in theories with N = 1 local supersymmetry and a conventional gauging.
We present a Green-Schwarz mechanism that involves Peccei-Quinn terms, generalized Chern-
Simons terms, higher order derivative corrections and appropriate gauge transformations of the
scalar fields. We discuss the mutual consistency conditions for all these ingredients, such that the
theory is anomaly-free. In this paper we construct the complete coupling of (1,0) supergravity
to all possible (1,0) multiplets, generalizing the results in order to include hypermultiplets, and
extending the results to all orders in the fermi fields, while taking into account the anomalous
couplings. We show that the inclusion of charged hypermultiplets gives additional terms in the
supersymmetry anomaly. As was the case without hypermultiplets, the resulting theory is deter-
mined up to a quartic coupling for the gauginos, and correspondingly the supersymmetry algebra
contains an extension that guarantees the consistency of the construction. We will consider the
case in which the scalars in the hypermultiplets parametrize the coset, and we will describe the
gauging of the full compact subgroup of the isometry group. Other cases, in which the scalars
parametrize more general quaternionic symmetric spaces or are charged with respect to differ-
ent subgroups of the isometry group, can be straightforwardly obtained from our results. We
construct the complete coupling of (1, 0) supergravity in six dimensions to tensor multiplets,
extending previous results to all orders in the fermi fields. We then add couplings to vector
multiplets, as dictated by the generalized Green-Schwarz mechanism. The resulting theory em-
bodies factorized gauge and supersymmetry anomalies, to be disposed of by fermion loops, and is
determined by corresponding Wess-Zumino consistency conditions, aside from a quartic coupling
for the gaugini. In addition, we show how to revert to a supersymmetric formulation in terms of
covariant field equations that embody corresponding covariant anomalies. The subsequent work
of some authors has developed the consistent formulation, but one can actually revert to a covari-
ant formulation, at the price of having non-integrable field equations. The relation between the
two sets of equations is one more instance of the link between covariant and consistent anomalies
in field theory. This is a remarkable laboratory for current algebra, where one can play explicitly
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with anomalous symmetries and their consequences. The supersymmetry algebra contains a cor-
responding extension that plays a crucial role for the consistency of the construction. Whereas
gauge and supersymmetry anomalies occur in theories with global or local supersymmetry, mixed
anomalies are specific for gauged supergravities. They manifest themselves as a non-invariance
of the effective action under local Lorentz transformations. Mixed anomaly usually refers to a
mixture of a gauge and gravitational anomaly. These structures appear in gauge current anoma-
lies and lead to inconsistency unless cancelled. It is common practice to attempt to cancel them
by adding new fermions to the model. We have found new anomaly structures which involve
scalar fields, and these can require new independent cancellation conditions. We find an intricate
interplay between the gaugings and certain quantum aspects of the theory. More precisely, we
obtain the general cancellation conditions for quantum anomalies, using a Green-Schwarz mech-
anism. We identify a number of models which obey all known low-energy consistency conditions,
but which have no known string theory realization. Many of these models contain novel matter
representations, suggesting possible new superstring theory constructions. We hope that the
variety of new apparently consistent supergravity models identified in the advanced research will
stimulate some further understanding of new superstring realizations or will help to generate new
constraints on quantum theories of gravity.

2 Kinetic Action of Supergravity

In generic low energy effective field theories, gauge fields appear with non-minmal kinetic terms in
which the field strengths may multiply scalar field dependent coefficients. An important example
of such dependence is provided by non-minimal kinetic terms for gauge fields

e−1L1 = −1
4

Re fABFAµνFµν B + 1
4
i Im fABFAµνF̃µν B , (1)

where the gauge kinetic function fAB(z) is a nontrivial function of the scalar fields, zi, which, in
N = 1 supersymmetry, has to be holomorphic. The second term in (1) is often referred to as
the Peccei-Quinn term. Under gauge transformation with gauge parameter ΛA(x), some of the
zi transform nontrivially, this may induce a corresponding gauge transformation of fAB(z). If
this transformation is of the form of a symmetric product of two adjoint representations of the
gauge group,

δ(Λ)fAB = ΛCδCfAB , δCfAB = fCA
DfBD + fCB

DfAD , (2)

with fCA
B the structure constants of the gauge group, the kinetic term (1) is obviously gauge

invariant. This is what was assumed in the action of general matter-coupled supergravity. If one
takes into account also other terms in the (quantum) effective action, however, a more general
transformation rule for fAB(z) may be allowed:

δCfAB = iCAB,C + fCA
DfBD + fCB

DfAD . (3)

Here, CAB,C is a constant real tensor symmetric in the first two indices, which we will recognize
as a natural generalization in the context of symplectic duality transformations.

If CAB,C is non-zero, this leads to a non-gauge invariance of the Peccei-Quinn term in L1:

δ(Λ)e−1L1 = 1
4
iCAB,CΛCFAµνF̃µν B . (4)

For rigid parameters, ΛA = const., this is just a total derivative, but for local gauge parameters,
ΛA(x), it is obviously not. If (1) is part of a supersymmetric action, the gauge non-invariance
(64) also induces a non-invariance of the action under supersymmetry.
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The vector multiplet in the N = 1 superspace formulation is described by a real superfield.
The latter has many more components than the physical fields describing an on-shell vector
multiplet, which consists of one vector field and one fermion. The advantage of this redundancy
is that one can easily construct manifestly supersymmetric actions as integrals over full or chiral
superspace. As an example consider the expression

Sf =

∫
d4xd2θ fAB(X)WA

αW
B
β ε

αβ + c.c. (5)

Here, WA
α = 1

4
D̄2DαV

A, or a generalization thereof for the non-Abelian case, where V A is the
real superfield describing the vector multiplets labelled by an index A. The fAB are arbitrary
holomorphic functions of a set of chiral superfields denoted by X.

The integrand of (5) is itself a chiral superfield. As we integrate over a chiral superspace, the
Lagrangian transforms into a total derivative under supersymmetry. Formally, this conclusion
holds independently of the gauge symmetry properties of the functions fAB(X). For the action
(5) to be gauge invariant, we should have the condition

δCfAB − fCADfDB − fADfCBD = 0 , (6)

where δC denotes the gauge transformation under the gauge symmetry related to the vector
multiplet denoted by the index C.

Due to the large number of fields in the superspace formulation, the gauge parameters are
not just real numbers, but are themselves full chiral superfields. To describe the physical theory,
one wants to get rid of these extra gauge transformations and thereby also of many spurious
components of the vector superfields. This is done by going to the so-called Wess-Zumino gauge,
in which these extra gauge transformations are fixed and many spurious components of the
real superfields are eliminated. Unfortunately, the Wess-Zumino gauge also breaks the manifest
supersymmetry of the superspace formalism. However, a combination of this original supersym-
metry and the gauge symmetries survives and becomes the preserved supersymmetry after the
gauge fixing. The law that gives the preserved supersymmetry as a combination of these differ-
ent symmetries is called decomposition law. Notice, however, that this preservation requires the
gauge invariance of the original action (5). Thus, though (5) was invariant under the superspace
supersymmetry for any choice of fAB, we now need (6) for this action to be invariant under
supersymmetry after the Wess-Zumino gauge.

This important consequence of the Wess-Zumino gauge can also be understood from the
supersymmetry algebra. The superspace operator Qα satisfies the anticommutation relation{

Qα, Q
†
α̇

}
= σµαα̇∂µ . (7)

This equation shows no mixing between supersymmetry and gauge symmetries. However, after
the Wess-Zumino gauge the right-hand side is changed to{

Qα, Q
†
α̇

}
= σµαα̇Dµ = σµαα̇

(
∂µ −WA

µ δA
)
, (8)

where δA denotes the gauge transformation. Equation (8) implies that if an action is invariant
under supersymmetry, it should also be gauge invariant.

As mentioned before, the preservation of the Wess-Zumino gauges implies that the effective
supersymmetry transformations are different from the ones in the original superspace formulation.
The resulting supersymmetry transformations of a chiral multiplet are

δ(ε)zi = ε̄Lχ
i
L ,

δ(ε)χiL = 1
2
γµεRDµzi + 1

2
hiεL ,

δ(ε)hi = ε̄RDχiL + ε̄Rλ
A
RδAz

i , (9)
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where we have denoted the scalar fields of the chiral multiplets as zi, the left-chiral components
of the corresponding fermions as χiL and the auxiliary fields as hi, while λA is the gaugino of the
vector multiplet V A. These transformations are valid for any chiral multiplet, in particular, they
can be applied to the full integrand of (5) itself.

Compared to the standard superspace transformations, there are two modifications in (9).
The first modification is that the derivatives of zi and χiL are covariantized with respect to gauge
transformations. This covariant derivative acts on the chiral fermions χiL as

DµχiL = ∂µχ
i
L −WA

µ δAχ
i
L . (10)

Here, the gauge variation of the chiral fermions, δAχ
i
L, can be expressed in terms of the gauge

variation, δAz
i, of the scalar fields, using the fact that supersymmetry and gauge transformations

commute,
δ(ε)δAz

i = δAδ(ε)z
i = δAε̄Lχ

i
L = ε̄LδAχ

i
L . (11)

This leads to

δAχ
i =

∂δAz
i

∂zj
χj . (12)

The second modification is the additional last term in the transformation of the auxiliary
fields hi. The origin of this term lies in the contribution of the decomposition law for one of the
gauge symmetries contained in the chiral superfield of transformations Λ, after the Wess-Zumino
gauge is fixed.

To avoid the above-mentioned subtleties associated with the Wess-Zumino gauge, we will use
component field expressions in the remainder of this text. Therefore, we reconsider the action
(5) and in particular its integrand. The components of this composite chiral multiplet are

z(fW 2) = −1
2
fABλ̄

A
Lλ

B
L ,

χL(fW 2) = 1
2
fAB

(
1
2
γµνFAµν − iDA

)
λBL − 1

2
∂ifABχ

i
Lλ̄

A
Lλ

B
L ,

h(fW 2) = fAB
(
−λ̄ALDλBR − 1

2
F−Aµν Fµν−B + 1

2
DADB

)
(13)

+∂ifABχ
i
L

(
−1

2
γµνFAµν + iDA

)
λBL − 1

2
∂ifABh

iλ̄ALλ
B
L + 1

2
∂2
ijfABχ̄

i
Lχ

j
Lλ̄

A
Lλ

B
L ,

where we used the notation ∂i = ∂
∂zi

. The superspace integral in (5) means that the real part of
h(fW 2) is (proportional to) the Lagrangian:

Sf =

∫
d4x Reh(fW 2) . (14)

From (14) and (14), we read off the kinetic terms of Sf :

Sf,kin =

∫
d4x
[
− 1

4
Re fABFAµνFµνB − 1

2
Re fABλ̄

ADλB

+ 1
4
i Im fABFAµνF̃µνB + 1

4
i(Dµ Im fAB)λ̄Aγ5γµλB

]
. (15)

We have used a partial integration to shift the derivative from the gaugini to (Im fAB) and
rearranged the structure constants in the last term, so as to obtain a “covariant” derivative
acting on (Im fAB). More precisely, we define

DµfAB = ∂µfAB − 2WC
µ fC(A

DfB)D . (16)

In the case that the gauge kinetic matrix transforms without a shift, as in (6), the derivative
defined in (16) is fully gauge covariant. The full covariant derivative has instead the new form

D̂µfAB ≡ ∂µfAB −WC
µ δCfAB = DµfAB − iWC

µ CAB,C . (17)
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The last term in (15) is therefore not gauge covariant for non-vanishing CAB,C . Hence, in presence

of the new term in the transformation of fAB we replace the action Sf with Ŝf , in which we use

the full covariant derivative, D̂µ, instead of Dµ. More precisely, we define

Ŝf = Sf + Sextra , Sextra =

∫
d4x

(
−1

4
iWC

µ CAB,C λ̄
Aγ5γ

µλB
)
. (18)

Note that we did not use any superspace expression to derive Sextra but simply added Sextra

by hand in order to fully covariantize the last term of (15). As we will further discuss in the
next section, Sextra can in fact only be partially understood from superspace expressions, which
motivates our procedure to introduce it here by hand. We should also stress that the covarianti-
zation with Sextra does not yet mean that the entire action Ŝf is now fully gauge invariant. We
would finally like to emphasize that, in the context of N = 1 supersymmetry, there is a priori no
further restriction on the symmetry of CAB,C apart from its symmetry in the first two indices.
This, however, is different in extended supersymmetry, as is most easily demonstrated for N = 2
supersymmetry, where the gauge kinetic matrix depends on the complex scalars XA of the vector
multiplets. These transform themselves in the adjoint representation, which implies

δ(Λ)fAB(X) = XEΛCfEC
D∂DfAB(X) . (19)

Hence, this gives

iCAB,C = XEfEC
D∂DfAB(X)− fCADfBD − fCBDfAD , (20)

which leads to CAB,CX
AXBXC = 0. As the scalars XA are independent in rigid supersymmetry,

this implies that C(AB,C) = 0.
The action Sf is gauge invariant before the modification of the transformation of fAB. In the

presence of the CAB,C terms, the action Ŝf is not gauge invariant. However, the non-invariance

comes only from one term. Indeed, terms in Ŝf that are proportional to derivatives of fAB do not
feel the constant shift δCfAB = iCAB,C + . . .. They are therefore automatically gauge invariant.
Also, the full covariant derivative (17) has no gauge transformation proportional to CAB,C , and
also Re fAB is invariant. Hence, the gauge non-invariance originates only from the third term in
(15). We are thus left with

δ(Λ)Ŝf = 1
4
iCAB,C

∫
d4xΛCFAµνF̃µν B . (21)

This expression vanishes for constant Λ, but it spoils the local gauge invariance.
We started to construct Sf as a superspace integral, and as such it would automatically be

supersymmetric. However, we saw that when fAB transforms with a shift as in (??), the gauge
symmetry is broken, which is then communicated to the supersymmetry transformations by the
Wess-Zumino gauge fixing. The CAB,C tensors then express the non-invariance of Sf under both
gauge transformations and supersymmetry.

To determine these supersymmetry transformations, we consider the last line of (9) for
{zi, χi, hi} replaced by {z(fW 2), χ(fW 2), h(fW 2)} and find

δ(ε)Sf =

∫
d4xRe

[
ε̄R∂χL(fW 2)− ε̄RγµWA

µ δAχL(fW 2) + ε̄Rλ
A
RδAz(fW 2)

]
. (22)

The first term in the transformation of h(fW 2) is the one that was already present in the super-
space supersymmetry before going to Wess-Zumino gauge. It is a total derivative, as we would
expect from the superspace rules. The other two terms are due to the mixing of supersymmetry
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with gauge symmetries. They vanish if z(fW 2) is invariant under the gauge symmetry, as this
implies by (11) that χ(fW 2) is also gauge invariant.

Using (14) and (??), however, one sees that z(fW 2) is not gauge invariant, and (22) becomes,
using also (12),

δ(ε)Sf =

∫
d4xRe

{
iCAB,C

[
− ε̄RγµWC

µ

(
1
4
γρσFAρσ − 1

2
iDA

)
λBL − 1

2
ε̄Rλ

C
Rλ̄

A
Lλ

B
L

]}
. (23)

Note that this expression contains only fields of the vector multiplets and none of the chiral
multiplets. It remains to determine the contribution of Sextra to the supersymmetry variation,
which turns out to be

δ(ε)Sextra =

∫
d4xRe iCAB,C

[
− 1

2
WC
µ λ̄

B
Lγ

µ
(

1
2
γνρFAνρ − iDA

)
εR − ε̄RλBRλ̄CLλAL

]
. (24)

By combining this with (23), we obtain, after some reordering,

δ(ε)Ŝf =

∫
d4xRe

(
1
2
CAB,Cε

µνρσWC
µ FAνρε̄RγσλBL − 3

2
iC(AB,C)ε̄Rλ

C
Rλ̄

A
Lλ

B
L

)
. (25)

We describe how the addition of GCS terms and quantum anomalies can cancel the left-over
gauge and supersymmetry non-invariances of equations (21) and (25).

3 Chern-Simons Action of Supergravity

Due to the gauged shift symmetry of fAB, terms proportional to CAB,C remain in the gauge and

supersymmetry variation of the action Ŝf . To re-establish the gauge symmetry and supersym-
metry invariance, we need two ingredients: GCS terms and quantum anomalies. They are of the
form

SCS =

∫
d4x 1

2
C

(CS)
AB,Cε

µνρσ
(

1
3
WC
µ W

A
ν F

B
ρσ + 1

4
fDE

AWD
µ W

E
ν W

C
ρ W

B
σ

)
. (26)

The GCS terms are proportional to a tensor C
(CS)
AB,C that is symmetric in (A,B). Note that a

completely symmetric part in C
(CS)
AB,C would drop out of SCS and we can therefore restrict C

(CS)
AB,C

to be a tensor of mixed symmetry structure

C
(CS)
(AB,C) = 0 . (27)

A priori, the constants C
(CS)
AB,C need not be the same as the CAB,C introduced in the previous

section. For N = 2 supergravity one needs them to be the same, but we will, for N = 1,
establish another relation between both, which follows from supersymmetry and gauge invariance
requirements.

The GCS terms can be obtained from a superfield expression

S ′CS = C
(CS)
AB,C

∫
d4x d4θ

[
−2

3
V CΩAB(V ) +

(
fDE

BV CDαV AD̄2
(
DαV DV E

)
+ c.c.

)]
,

ΩAB = DαV (AWB)
α + D̄α̇V (AW̄ α̇B) + V (ADαWB)

α . (28)

The full non-Abelian superspace expression (28) is valid only in the Wess-Zumino gauge,
where it reduces to the bosonic component expression (26) plus a fermionic term

S ′CS = SCS + (S ′CS)ferm , (S ′CS)ferm =

∫
d4x

(
−1

4
iC

(CS)
AB,CW

C
µ λ̄

Aγ5γ
µλB

)
, (29)

7



where we used the restriction C
(CS)
(AB,C) = 0 from (27).

Note that the fermionic term in (29) is of a form similar to Sextra in (18). More precisely,

in (29) the fermions appear with the tensor C
(CS)
AB,C , which has a mixed symmetry, (27). Sextra

in (18), on the other hand, is proportional to the tensor C
(s)
AB,C + C

(m)
AB,C . From this we see

that if we identify C
(m)
AB,C = C

(CS)
AB,C , as we will do later, we can absorb the mixed part of Sextra

into the superspace expression S ′CS. This is, however, not possible for the symmetric part of

Sextra proportional to C
(s)
AB,C , which cannot be obtained in any obvious way from a superspace

expression. As we need this symmetric part later, it is more convenient to keep the full Sextra,
as we did in section ??, as a part of Ŝf , and not include (S ′CS)ferm here. Thus, we will further
work with the purely bosonic SCS and omit the fermionic term that is included in the superspace
expression (28). We will show in the remainder of this subsection that for semisimple algebras
the GCS terms do not bring anything new, at least in the classical theory. By this we mean they
can be replaced by a redefinition of the kinetic matrix fAB. This argument is not essential for
the main result of this paper and the reader can thus skip this part. It shows, however, that the
main application of GCS terms is for non-semisimple gauge algebras.

We start with the result
C

(CS)
AB,C = 2fC(A

DZB)D , (30)

for a constant real symmetric matrix ZAB, the action SCS can be reabsorbed in the original action
Sf using

f ′AB = fAB + iZAB . (31)

In fact, one easily checks that with the substitution (30) in (??), the C-terms are absorbed by
the redefinition (31). The equation (30) can be written as

C
(CS)
AB,C = TC,AB

DEZDE , TC,AB
DE ≡ 2fC(A

(Dδ
E)
B) . (32)

In the case that the algebra is semisimple, one can always construct a ZAB such that this equation
is valid for any C

(CS)
AB,C :

ZAB = C2(T )−1
AB

CDTE,CD
GHgEFC

(CS)
GH,F , (33)

where gAB and C2(T )−1 are the inverses of

gAB = fAC
DfBD

C , C2(T )CD
EF = gABTA,CD

GHTB,GH
EF . (34)

These inverses exist for semisimple groups. To show that (33) leads to (32) one needs (??), which
leads to

gHDTH ·
(

1
2
C

(CS)
C fDE

C + T[D · C(CS)
E]

)
= 0 , (35)

where we have dropped doublet symmetric indices using the notation · for contractions of such
double indices. This further implies

gABTE · TB · C(CS)
A = C2(T ) · C(CS)

E , (36)

with which the mentioned conclusions can easily be obtained.
The GCS term SCS is not gauge invariant. Even the superspace expression S ′CS is not gauge

invariant, not even in the Abelian case. We expect that S ′CS is not supersymmetric in the Wess-
Zumino gauge, despite the fact that it is a superspace integral. This is highlighted, in particular,
by the second term in (28), which involves the structure constants. Its component expression
simply gives the non-Abelian W ∧W ∧W ∧W correction in (26), which, as a purely bosonic
object, cannot be supersymmetric by itself.
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For the gauge variation of SCS, one obtains

δ(Λ)SCS =

∫
d4x
[
− 1

4
iC

(CS)
AB,CΛCFA

µνF̃
µνB

∫
d4x
[
− 1

8
ΛC
(

2C
(CS)
AB,DfCE

B − C(CS)
DA,BfCE

B

+C
(CS)
BE,DfCA

B − C(CS)
BD,CfAE

B (37)∫
d4x
[
− 1

8
iΛC
(

+ C
(CS)
BC,DfAE

B + C
(CS)
AB,CfDE

B + 1
2
C

(CS)
AC,BfDE

B
)
εµνρσFA

µνW
D
ρ W

E
σ∫

d4x
[
− 1

8
ΛC
(
C

(CS)
BG,FfCA

B + C
(CS)
AG,BfCF

B + C
(CS)
AB,FfCG

B
)
fDE

AεµνρσWD
µ W

E
ν W

F
ρ W

G
σ

]
,

where we used the Jacobi identity and the property C
(CS)
(AB,C) = 0.

A careful calculation finally shows that the supersymmetry variation of SCS is

δ(ε)SCS = −1
2

∫
d4x εµνρσ Re

[
C

(CS)
AB,CW

C
µ F

A
νρ + C

(CS)
A[B,CfDE]

AWE
µ W

C
ν W

D
ρ

]
ε̄Lγσλ

B
R . (38)

4 The General Gauged Supergravity Model

The supersymmetric σ-model coupled to supergravity includes the gravitino and various coupling
terms. The action is

S[eiµ, Aaµ, z
α, zb̄, ψα,b̄ , λa,Ψµ] =

∫
d4x det(eiµ)LSG , (39)

with Lagrangian density
LSG = Lb + Lf + Lint + quartic terms (40)

with

Lb =
1

2
R− 1

4
FµνF

µν − 1

2
DaDa−Gαβ̄Dµz

αDµzβ̄ , (41)

Lf =
1

2
Ψ̄µγ

µνρDνΨρ +
1

2
λ̄aγµDµλa+Gαb̄ψ̄

b̄γµDµLψ
α ,

Lint =
1√
2
Gαβ̄

[
Dµz

β̄Ψ̄νγ
µγνLψα +Dµz

αψ̄β̄RγνγµΨν

]
+

1

2
DaΨ̄µγ

µγ5λa+ FaρσΨ̄µγ
ρσγµλa+

√
2Gαβ̄

[
Xaβ̄λ̄aLψα +Xaαψ̄β̄Rλa

]
.

We omit the complicated set of four-fermion terms but our argument includes their effects. We
assume there is no superpotential and minimal gauge kinetic functions to simplify the discussion.
The gravitino covariant derivative is defined as

DµΨν =
(
∇µ +

1

2
iBµγ5

)
Ψν =

(
∂µ +

1

4
ωµijγ

ij +
1

2
iBµγ5

)
Ψν , (42)

in which ∇µ includes the spin connection. Covariant derivatives of the matter fields were given
previously in the current literature. One must replace ∂µ −→ ∇µ and we note that the composite
Kähler connection couples to all fermions.

The model has a global U(1)R axial symmetry with transformations

δLψα = iαLψα , δλa = iαγ5λa , δΨµ = iαγ5Ψµ (43)
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and Noether current

Nµ = − i
2

[
2Gb̄

αb̄γ
µLψα + λ̄aγµγ5λa+ Ψ̄ργ

ρµνγ5Ψν

]
. (44)

It is an R-symmetry since zα is neutral while Lψα, Lλa, and LΨµ have charges −1,+1,+1,
respectively. The U(1)R symmetry is effectively gauged by Bµ. There is also a gauge symmetry
with parameters θa(x) with δAaµ = Dµθ

a. For the gauge variation of other fields we use the
notation δ = θaδa. We then have

δazα = Xaα , δazb̄ = Xab̄ ,

δaLψα = XaαβLψ
β − i

2
Im(Fa)Lψα , δab̄R = Xab̄R +

i

2
Im(Fa)b̄R ,

δbλa = −fabcλc − i

2
Im(Fb)γ5λ

a , δaΨµ = − i

2
Im(Fa)γ5Ψµ . (45)

Holomorphic Killing vectors Xaα(z), Xab̄(z̄) and the holomorphic function F a(z) induced by a
gauge transformation of the Kähler potential. The gauge invariance of the theory is expressed
by the identity

giδLSG = 0 = θa(x)
[
−Dν

δLSG

δAaν
+Xaα

δLSG

δzα
+Xab̄

δLSG

δzb̄
(46)

+δab̄R
δLSG

δb̄
+
δLSG

δψα
δaLψα + δaλ̄b

δLSG

δλ̄b
+ δaΨ̄ρ

δLSG

δΨ̄ρ

]
which is the same applied to the general supergravity Lagrangian. The gauge field equation of
the model reads

DµFa
µν = Jaν ≡ −

δ(L+ 1
4
F b
µνF

bµν)

δAaν
= Jaνb + Jaνf + jaν + 1

2
DaN ν + Jaνint . (47)

with Jab and Jaf defined in (??), jaν = 1
2
fabcλ̄bγνλc and

Jaνint = −δLint

δAaν
=

1√
2
Gαb̄

[
Xab̄Ψ̄ργ

νγρLψα +Xaαb̄RγργνΨρ

]
+ 2Dµ(Ψ̄ργ

µνγρλa) . (48)

To derive the consistency condition we now follow the same strategy as above. Assuming that
the gauge variation of the action from varying bosons vanishes by the scalar equations of motion,
the consistency condition arises from the fermion variations. The supergravity generalization of
the expressions obtained earlier for only gauginos and for only chiral fermions turns out to be

0 = 〈∇νJa
ν〉 = iY aαb̄〈∇ν(

b̄γνLψα)〉+∇µja
µ + 1

2
Im(Fa)〈∇νN

ν〉 , (49)

in which the ∇ν derivative carries appropriate space-time, target space and gauge connections,
and 〈...〉 again indicates just the anomalous divergences of the currents. Comparing with (47),
we have dropped the divergence of Jaνint. As we argue in the appendix, this does not affect the
anomaly. The condition (49) is the central result of our analysis.

The proper Kähler anomaly, proportional to Im(F a), is the third term of (49). The anomaly
has contributions from gauginos, from chiral fermions, and from the gravitino. The gravitino
gauge anomaly is times that of a gaugino, but coupled only through the Kähler connection in
(42). We obtain

〈∇νN
ν〉gauge =

1

32π2
εµνρσ

[
C2(G)FaµνFaρσ +

nλ + 3

4
BµνBµν + Cµνρσ

]
. (50)
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To write the contribution of the chiral fermions we first define the target space curvature tensor
pulled back to spacetime. Using this we form

Cµνρσ = Σα
µνβΣβ

ρσα + FaµνFbρσXa
α
βXb

β
α −

1

4
nψBµνBρσ

−iFaµνBρσXa
α
α − 2FaµνΣ

β
ρσαXa

α
β + iΣα

µναBρσ . (51)

The anomaly of the gaugino current jaµ in the second term of (49) is identical to the truncated
model. The contribution of the chiral fermions to the first term in (49) is

Y aαb̄〈∇ν(
b̄γνLψα)〉gauge =

i

32π2
εµνρσGβδ̄Y aαδ̄

[
Σα
µνγΣ

γ
ρσβ + FbµνFcρσXb

α
γXc

γ
β (52)

−1

4
BµνBρσδ

α
β − iF bµνBρσXb

α
β + iΣα

µνβBρσ − Fbµν
(

Σα
ρσγXb

γ
β + Σγ

ρσβXb
α
γ

)]
.

In the case of a flat target space = Cnψ and a linear realization of gauge symmetry, the Killing
vector derivative reduces to constants, Xaα

β = Xaα
β → T aαβ, a matrix generator of the gauge

group G. In this case the second term of (52) reduces to the conventional cubic gauge anomaly
of the chiral fermions.

The gravitational anomaly is more conventional. The contribution of the gravitino to the
anomaly of the Noether current is −21 times that of a gaugino. The gaugino current jaµ itself
has no gravitational anomaly. The complete result is given by

〈∇νN
ν〉grav = − 1

768π2
(nλ − 21− nψ) εµνρσRµνξτRρσ

ξτ ,

Y aαb̄〈∇ν(
b̄γνLψα)〉grav = − i

768π2
Y aαb̄G

αb̄ εµνρσRµνξτRρσ
ξτ . (53)

One can see that the gauge anomaly is very complicated. As a general observation, it is not
possible to cancel the coefficient nλ + 3− nψ of BµνBρσ in (50) and (51) for the gauge anomaly
and the gravitational anomaly in (53) at the same time by adjusting nλ and nψ.

If Im(F a) = 0, then the ∂νN
ν anomaly is absent. However, there are still several new terms

involving Bµν which can affect the consistency of the model. Anomaly cancellation will be studied
with emphasis on the case of a flat target space.

The full Lagrangian of the model is a special case of (40) and rather simple. It reads

LT =
1

2
R− 1

4
FµνF

µν −GSS̄DµSD
µS̄ − 1

2
D2

+
1

2
εµνρσΨ̄µγνDρΨσ +

1

2
λ̄γµDµλ+GSS̄ψ̄γ

µDµLψ

+
1√
2
GSS̄

[
DµS̄Ψ̄νγ

µγνLψ +DµSψ̄Rγ
νγµΨν

]
+

1

2
DΨ̄µγ

µγ5λ+ FρσΨ̄µγ
ρσγµλ+

√
2GSS̄

[
X S̄λ̄Lψ +XSψ̄Rλ

]
, (54)

where

DµΨν =
(
∇µ +

1

2
iBµγ5

)
Ψν ,

Dµλ =
(
∇µ +

1

2
iBµγ5

)
λ ,

DµLψ =
(
∇µ + ΓSSSDµS +

1

2
iBµ

)
Lψ . (55)

11



The composite Kähler connection is

Bµ =
1

2i

(
K,S DµS −K,S̄ DµS̄

)
= − 1

S + S̄
(∂µh− eAµ) . (56)

It is gauge invariant in this model because the Kähler potential is invariant and Im(F ) = ξ =
0. One can now directly obtain the equations of motions for Aµ and h (without going through
those of S and S̄ first), which are

∇µF
µν + 2eGSS̄(∂νh− eAν) = eJν ,

2∇µ

(
GSS̄(∂µh− eAµ)

)
= ∇µJ

µ , (57)

where

Jµ = −δ(Lf + Lint)

δAµ
. (58)

Applying 1
e
∇ν one finds an expression which vanishes completely when the scalar equation

of motion is used. Thus there is no inconsistency in this model. This agrees with the general
consistency condition, because we have a gauged shift symmetry with constant Killing vectors
and Bµ is gauge invariant. Therefore the fermions are invariant under the gauge transformation
and all terms cancel when the scalar equations of motion are used. Hence no inconsistency can
arise.

5 Generalized Chern-Simons Terms with Covariant and

Consistent Anomalies in D = 4 Supergravity

The gauge anomalies manifest themselves as a non-invariance of the effective action under gauge
transformations. We will concentrate on anomalous gauge symmetries, which are more prob-
lematic. Since gauge symmetries are needed to decouple the unphysical states of the theory, a
violation of these symmetries renders the theory inconsistent. In a generic low energy effective
field theory, the kinetic and the theta angle terms of vector fields, Aµ

Λ, appear with scalar field
dependent coefficients,

Lg.k. =
1

4
eIΛΣ(z, z̄)FµνΛFµνΣ − 1

8
RΛΣ(z, z̄)εµνρσFµνΛFρσΣ . (59)

FµνΛ ≡ 2∂[µAν]
Λ + XΣΩ

ΛAµ
ΣAν

Ω denotes the non-Abelian field strengths with XΣΩ
Λ = X[ΣΩ]

Λ

being the structure constants of the gauge group. We use the metric signature (− + ++) and
work with real ε0123 = 1. As usual, e denotes the vierbein determinant. The second term in (59)
is often referred to as the Peccei-Quinn term, and the functions IΛΣ(z, z̄) and RΛΣ(z, z̄) depend
nontrivially on the scalar fields, zi, of the theory. One can combine these functions to a complex
function

NΛΣ(z, z̄) = RΛΣ(z, z̄) + iIΛΣ(z, z̄). (60)

In a supersymmetric context, NΛΣ(z, z̄) has to satisfy certain conditions, depending on the
amount of supersymmetry. In N = 1 global and local supersymmetry, which will be the subject
of the remainder of this section, NΛΣ = NΛΣ(z̄) simply has to be antiholomorphic in the complex
scalars of the chiral multiplets.

If, under a gauge transformation with gauge parameter ΛΩ(x), acting on the field strengths as
δ(Λ)FΛ

µν = ΛΞFΩ
µνXΩΞ

Λ, some of the zi transform nontrivially, this may induce a corresponding
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gauge transformation of NΛΣ(z̄). In case this transformation is of the form of a symmetric
product of two adjoint representations of the gauge group,

δ(Λ)NΛΣ = ΛΩδΩNΛΣ , δΩNΛΣ = XΩΛ
ΓNΣΓ +XΩΣ

ΓNΛΓ , (61)

the kinetic term (59) is obviously gauge invariant. This is what was assumed in the action of
general matter-coupled supergravity.

If, one takes into account also other terms in the quantum effective action, a more general
transformation rule for NΛΣ(z̄) may be allowed

δΩNΛΣ = −XΩΛΣ +XΩΛ
ΓNΣΓ +XΩΣ

ΓNΛΓ . (62)

Here, XΩΛΣ is a constant real tensor symmetric in the last two indices, which can be recognized
as a natural generalization in the context of symplectic duality transformations. Closure of the
gauge algebra requires the constraint

XΩΛΣXΓΞ
Ω + 2XΣ[Ξ

ΩXΓ]ΛΩ + 2XΛ[Ξ
ΩXΓ]ΣΩ = 0 . (63)

If XΩΛΣ is non-zero, this leads to a non-gauge invariance of the Peccei-Quinn term in Lg.k.:

δ(Λ)Lg.k. =
1

8
εµνρσXΩΛΣΛΩFµνΛFρσΣ . (64)

In order to understand how this broken invariance can be restored, it is convenient to split
the coefficients XΩΛΣ into a sum,

XΩΛΣ = X
(s)
ΩΛΣ +X

(m)
ΩΛΣ , X

(s)
ΩΛΣ = X(ΩΛΣ) , X

(m)
(ΩΛΣ) = 0 , (65)

where X
(s)
ΩΛΣ is completely symmetric, and X

(m)
ΩΛΣ denotes the part of mixed symmetry. Terms

of the form (64) may then in principle be cancelled by the following two mechanisms, or a
combination thereof:

1. As was first realized in a similar context in N = 2 supergravity, the gauge variation due to
a non-vanishing mixed part, X

(m)
ΩΛΣ 6= 0, may be cancelled by adding a generalized Chern-

Simons term (GCS term) that contains a cubic and a quartic part in the vector fields,

LGCS =
1

3
X

(CS)
ΩΛΣ ε

µνρσ

(
Aµ

ΩAν
Λ∂ρA

Σ
σ +

3

8
XΓΞ

ΣAµ
ΩAν

ΛAρ
ΓAσ

Ξ

)
. (66)

This term depends on a constant tensor X
(CS)
ΩΛΣ, which has the same mixed symmetry struc-

ture as X
(m)
ΩΛΣ. The cancellation occurs provided the tensors X

(m)
ΩΛΣ and X

(CS)
ΩΛΣ are, in fact,

the same.

2. If the chiral fermion spectrum is anomalous under the gauge group, the anomalous triangle
diagrams lead to a non-gauge invariance of the quantum effective action Γ for the gauge
symmetry: δ(Λ)Γ =

∫
d4xΛΛAΛ of the form

AΛ = −1

4
εµνρσ

[
2dΩΣΛ∂µAν

Σ +

(
dΩΣΓXΛΞ

Σ +
3

2
dΩΣΛXΓΞ

Σ

)
Aµ

ΓAν
Ξ

]
∂ρAσ

Ω , (67)

with a symmetric tensor dΩΛΣ. If

X
(s)
ΩΛΣ = dΩΛΣ , (68)

this quantum anomaly cancels the symmetric part of (64). This is the Green-Schwarz
mechanism.
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It was studied to what extent a general gauge theory of the above type with gauged axionic
shift symmetries, GCS terms and quantum gauge anomalies can be compatible with N = 1
supersymmetry. The results can be summarized as follows: if one takes as starting point the
matter-coupled supergravity Lagrangian, an axionic shift symmetry with XΛΣΩ 6= 0 satisfying
the closure condition (63) can be gauged in a way consistent with N = 1 supersymmetry if

1. a GCS term (66) with X
(CS)
ΩΛΣ = X

(m)
ΩΛΣ is added,

2. an additional term bilinear in the gaugini, λΣ(x), and linear in the vector fields is added:

Lextra = −1

4
iAµ

ΩXΩΛΣλ̄
Λγ5γ

µλΣ, (69)

3. the fermions in the chiral multiplets give rise to quantum anomalies with dΩΛΣ = X
(s)
ΩΛΣ.

The consistent gauge anomaly, AΛ is of the form (121). These quantum anomalies precisely
cancel the classical gauge and supersymmetry variation of the new Lagrangian Lold+LGCS+
Lextra, where Lold denotes the original Lagrangian.

5.1 Gauge Transformations

The violation of the Jacobi identity is the prize one has to pay for the symplectically covariant
treatment in which both electric and magnetic vector potentials appear at the same time. In
order to compensate for this violation ande in addition to the usual non-Abelian transformation
∂µΛM +X[PQ]

MAµ
PΛQ and extends the gauge transformation of the vector potentials to

δAµ
M = DµΛM −X(NP )

MΞµ
NP , DµΛM = ∂µΛM +XPQ

MAµ
PΛQ , (70)

where we introduced the covariant derivative DµΛM , and new vector-like gauge parameters Ξµ
NP ,

symmetric in the upper indices. The extra terms X(PQ)
MAµ

PΛQ and the Ξ-transformations
contained in (70) allow one to gauge away the vector fields that correspond to the directions
in which the Jacobi identity is violated. The covariant ansatz makes use of the fact that the
non-covariant terms appear projected with the tensor ZM

PQ and defines the full covariant field
strengths as

HM
µν = FMµν + gZM

PQB
PQ
µν , (71)

upon the introduction of two-form tensor fields of the type BMN
µν = B

(MN)
[µν] . The non-covariant

terms can then be absorbed by postulating the corresponding transformation laws for the two-
form fields. The full covariant field strength (71) no longer satisfies the standard Bianchi identies,
but rather its deformed version

D[µHM
νρ] =

1

3
gZM

PQHPQ
µνρ , (72)

where HPQ
µνρ denotes the covariant field strength of the two-forms. The combined transformation

ΞMN
µ = Dµ ξ

MN , ΛM = gZM
PQ ξ

PQ , (73)

Explicitly, the new field strength HM
µν transforms covariantly under the combined set of gauge

transformations

δAMµ = DµΛM − g ZM
PQ ΞPQ

µ ,

δBMN
µν = 2D[µΞMN

ν] − 2Λ(MHN)
µν + 2A

(M
[µ δA

N)
ν] , (74)
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where ΞMN
µ labels the tensor gauge transformations associated with the two-forms. The two-

forms BMN
µν introduced in (71) cannot simply be added to the fields of the theory, as the number

of degrees of freedom is in general carefully balanced by supersymmetry. Rather, these must be
the two-forms that are already present in the ungauged supergravity. They thus can be labeled
by indices in the adjoint representation of the global symmetry group G. In other words, out of
the two-forms BMN

µν in the symmetric tensor product

(Rv ⊗Rv)sym = Radj ⊕ . . . , (75)

only those transforming in the adjoint representation Radj are involved in the gauging. This is
precisely in accordance with the fact that two-forms in four dimensions are dual to the scalar
field isometries as a consequence of the on-shell duality and thus transform in the adjoint repre-
sentation of G. Their precise representation can be inferred from inspection of the tensor ZM

PQ

under which they appear.
It is important to notice that the modified gauge transformations still close on the gauge

fields and thus form a Lie algebra. Indeed, if we split (70) into two parts,

δAµ
M = δ(Λ)Aµ

M + δ(Ξ)Aµ
M , (76)

the commutation relations are

[δ(Λ1), δ(Λ2)]Aµ
M = δ(Λ)Aµ

M + δ(Ξ)Aµ
M ,

[δ(Λ), δ(Ξ)]Aµ
M = [δ(Ξ1), δ(Ξ2)]Aµ

M = 0 , (77)

with
ΛM = X[NP ]

MΛN
1 ΛP

2 , Ξµ
PN = Λ

(P
1 DµΛ

N)
2 − Λ

(P
2 DµΛ

N)
1 . (78)

In this case the usual properties of the field strength

FµνM = 2∂[µAν]
M + X[PQ]

MAµ
PAν

Q (79)

are changed. In particular, it will no longer fulfill the Bianchi identity, which now must be
replaced by

D[µFνρ]
M = X(NP )

MA[µ
NFνρ]

P − 1

3
X(PN)

MX[QR]
P A[µ

NAν
QAρ]

R . (80)

Furthermore, FµνM does not transform covariantly under a gauge transformation (70). Instead,
we have

δFµνM = 2D[µδAν]
M − 2X(PQ)

MA[µ
P δAν]

Q

= XNQ
M FµνNΛQ − 2X(NP )

MD[µΞν]
NP − 2X(PQ)

MA[µ
P δAν]

Q , (81)

where the covariant derivative is

X(NP )
MDµΞν

NP = ∂µ
(
X(NP )

MΞν
NP
)

+ Aµ
RXRQ

MX(NP )
QΞν

NP ,

DµΞν
NP = ∂µΞν

NP +XQR
PAµ

QΞν
NR +XQR

NAµ
QΞν

PR . (82)

Therefore, if we want to deform the original Lagrangian (59) and accommodate electric and
magnetic gauge fields, FµνM cannot be used to construct gauge-covariant kinetic terms. For
this reason, the authors introduced tensor fields Bµν α to be described by Bµν

MN , symmetric in
(MN), and with them modified field strengths

Hµν
M = FµνM +X(NP )

MBµν
NP . (83)
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We will consider gauge transformations of the antisymmetric tensors of the form

δBµν
NP = 2D[µΞν]

NP + 2A[µ
(NδAν]

P ) + ∆Bµν
NP , (84)

where ∆Bµν
NP depends on the gauge parameter ΛQ, but we do not fix it further at this point.

Together with (81), this then implies

δHµν
M = XNQ

MΛQHµν
N +X(NP )

M∆Bµν
NP . (85)

5.1.1 The Kinetic Lagrangian

The first step towards a gauge invariant action is to replace FµνΛ in Lg.k. by Hµν
Λ, which then

yields the new kinetic Lagrangian

Lg.k. = 1
4
eIΛΣHµν

ΛHµνΣ − 1
8
RΛΣε

µνρσHµν
ΛHρσ

Σ , (86)

where again IΛΣ and RΛΣ denote, respectively, ImNΛΣ and ReNΛΣ. Using

Gµν Λ ≡ εµνρσ
∂L

∂Hρσ
Λ

= RΛΓHµν
Γ +

1

2
eεµνρσ IΛΓHρσ Γ , (87)

the Lagrangian and its transformations can be written as

Lg.k. = −1
8
εµνρσHΛ

µνGρσΛ ,

δLg.k. = −1
4
εµνρσGµν ΛδHΛ

ρσ

+1
8
εµνρσΛQ

(
HΛ
µνXQΛΣHΣ

ρσ − 2HΛ
µνXQΛ

ΣGρσΣ − Gµν ΛXQ
ΛΣGρσΣ

)
, (88)

where, in the third line, we used the infinitesimal form of (??):

δ(Λ)NΛΣ = ΛM
[
−XMΛΣ + 2XM(Λ

ΓNΣ)Γ +NΛΓXM
ΓΞNΞΣ

]
. (89)

When we introduce
GµνM =

(
GµνΛ , GµνΛ

)
with GµνΛ ≡ Hµν

Λ , (90)

we can rewrite the second line of (88) in a covariant expression, and when we also use (85) we
get

δLg.k. = εµνρσ
[
−1

4
Gµν Λ

(
ΛQXPQ

ΛHρσ
P +X(NP )

Λ∆Bρσ
NP
)

+1
8
GµνMGρσNΛQXQM

RΩNR

]
. (91)

Clearly, the newly proposed form for Lg.k. in (86) is still not gauge invariant. This should not come
as a surprise because (89) contains a constant shift, which requires the addition of extra terms
to the Lagrangian. Also the last term on the right hand side of (89) gives extra contributions
that are quadratic in the kinetic function. In the next steps we will see that besides GCS terms,
also terms linear and quadratic in the tensor field are required to restore gauge invariance. We
start with the discussion of the latter terms.

5.2 Topological Terms for the B-field and a New Constraint

The second step towards gauge invariance is made by adding topological terms linear and
quadratic in the tensor field Bµν

NP to the gauge kinetic term (86), namely

Ltop,B = 1
4
εµνρσX(NP )

ΛBµν
NP
(
FρσΛ + 1

2
X(RS)Λ Bρσ

RS
)
. (92)
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Note that for pure electric gaugings X(NP )
Λ = 0. Therefore, in this case this term vanishes,

implying that the tensor fields decouple.
We recall that, up to now, only the closure constraint has been used. We are now going to

impose one new constraint
X(NP )

MΩMQX(RS)
Q = 0 . (93)

The constraint thus says that

X(NP )
ΛX(RS)Λ = X(NP )ΛX(RS)

Λ . (94)

A consequence of this constraint that we will use below follows from the first of (??) and (??):

X(PQ)
RDMNR = 0 . (95)

The variation of Ltop,B is

δLtop,B = 1
4
εµνρσX(NP )

Λ
[
HµνΛ δBρσ

NP +Bρσ
NP δFµνΛ

]
(96)

= 1
4
εµνρσX(NP )

Λ
[
HµνΛ δBρσ

NP + 2Bρσ
NP
(
DµδAνΛ −X(RS)ΛA

R
µ δA

S
ν

)]
.

5.3 Generalized Chern-Simons Terms

We introduce a generalized Chern-Simons term of the form

LGCS = εµνρσAµ
MAν

N

(
1

3
XMN Λ ∂ρAσ

Λ +
1

6
XMN

Λ∂ρAσΛ +
1

8
XMN ΛXPQ

ΛAρ
PAσ

Q

)
. (97)

Modulo total derivatives one can write its variation as

δLGCS = εµνρσ
[

1
2
FµνΛDρδAσΛ − 1

2
FµνΛX(NP )

ΛAρ
NδAσ

P

−DMNPAµ
MδAν

N
(
∂ρAσ

P + 3
8
XRS

PAρ
RAσ

S
)]
. (98)

These variations can be combined with (96) to

δ (Ltop,B + LGCS) = εµνρσ
[

1
2
Hµν

ΛDρδAσΛ + 1
4
HµνΛX(NP )

Λ
(
δBρσ

NP − 2Aρ
NδAσ

P
)

−DMNPAµ
MδAν

N
(
∂ρAσ

P + 3
8
XRS

PAρ
RAσ

S
)]
. (99)

5.4 Variation of the total action

We are now ready to discuss the symmetry variation of the total Lagrangian

LVT = Lg.k. + Ltop,B + LGCS , (100)

built from (86), (92) and (97). We first check the invariance of (100) with respect to the Ξ-
transformations. We see directly from (91) that the gauge-kinetic terms are invariant. The
second line of (99) also clearly vanishes inserting (70) and using (95). This leaves us with the
first line of (99), which, using (84) and (70), can be written in a symplectically covariant form

δΞLVT = −1
2
εµνρσHµν

MX(NP )
QΩMQDρΞσ

NP . (101)

The B-terms in H, see (83), are proportional to X(RS)
M and thus give a vanishing contribution

due to our new constraint (93). For the F terms we can perform an integration by parts and
then (80) gives again only terms proportional to X(RS)

M leading to the same conclusion. We
therefore find that the Ξ-variation of the total action vanishes.
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We can thus further restrict to the ΛM gauge transformations. According to (81), the DρδAσΛ-
term in (99) can then be replaced by 1

2
ΛQXNQΛHρσ

N , which can then be combined with the first
term of (91) to form a symplectically covariant expression (the first term on the right hand side
of (103) below). Adding also the remaining terms of (99) and (91), one obtains, using (84),

δLVT = εµνρσ
[

1
4
GµνMΛQXNQ

RΩMRHρσ
N + 1

8
GµνMGρσNΛQXQM

RΩNR (102)

+1
4
(H− G)µν ΛX(NP )

Λ∆Bρσ
NP −DMNPAµ

MDνΛN
(
∂ρAσ

P + 3
8
XRS

PAρ
RAσ

S
)]
.

We observe that if the H in the first line was a G, would allow one to write the first line as
an expression proportional to DMNP . This leads to the first line in (104) below. The second
observation is that the identity (H− G)Λ = 0 allows one to rewrite the second line of (103) in a
symplectically covariant way, so that, altogether, we have

δLVT = εµνρσ
[

1
4
GµνMΛQXNQ

RΩMR(H− G)ρσ
N + 3

8
GµνMGρσNΛQDQMN (103)

−1
4
(H− G)µν

MΩMRX(NP )
R∆Bρσ

NP −DMNPAµ
MDνΛN

(
∂ρAσ

P + 3
8
XRS

PAρ
RAσ

S
)]
.

By choosing
∆Bρσ

NP = −ΛNGρσP − ΛPGρσN , (104)

the result (104) becomes

δLVT = εµνρσ
[

3
8
ΛQDMNQ

(
2GµνM(H− G)ρσ

N + GµνMGρσN
)

−DMNPAµ
MDνΛN

(
∂ρAσ

P + 3
8
XRS

PAρ
RAσ

S
)]
, (105)

which is then proportional to DMNP , and hence zero when the original representation constraint
is imposed.

6 The Covariant Anomaly

The superfield version of the covariant anomaly is straightforward,

AG ∝
∫
d4x d2θ tr iΛWαWα + h.c. (106)

where Wα denotes the non-abelian superfield vector field strength and Λ is a chiral superfield.
Supersymmetric expressions for the difference between the consistent and covariant anomaly for
a simple gauge group are complicated.

The covariant (left-)chiral anomaly is

AG = (Dµj
µ)a =

i

32π2
εµνρσ tr

[
T aVµνVρσ

]
=

i

8π2
εµνρσ tr

[
T a∂µ

(
Vν∂ρVσ +

2

3
VνVρVσ

)]
, (107)

with Vµν = ∂µVν − ∂νVµ + [Vµ, Vν ].
Our goal is to generalize this for theories with quantum anomalies. These anomalies depend

only on the gauge vectors. The field strengths G, (87), also depend on the matrix N which itself
generically depends on scalar fields. Therefore, we want to consider modified transformations of
the antisymmetric tensors such that G does not appear in the final result.

To achieve this, we would like to replace (104) by a transformation such that

X(NP )
R∆Bρσ

NP = −2X(NP )
RΛNGρσP + 3

2
ΩRMDMNQΛQ(H− G)ρσ

N . (108)

Indeed, inserting this in (104) would lead to

δLVT = εµνρσ
[

3
8
ΛQDMNQFµνMFρσN −DMNPAµ

MDνΛN
(
∂ρAσ

P + 3
8
XRS

PAρ
RAσ

S
)]
, (109)
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where we have used (95) to delete contributions coming from the Bµν
NP term in Hµν

M .
The first term on the right hand side of (108) would follow from (104), but the second

term cannot in general be obtained from assigning transformations to Bρσ
NP . Indeed, self-

consistency of (108) requires that the second term on the right hand side be proportional to
X(NP )

R, which imposes a further constraint on DMNP . We will see how we can nevertheless justify
the transformation law (108) by introducing other antisymmetric tensors. For the moment, we
just accept (108) and explore its consequences.

Expanding (109) using (??) and (70) and using a partial integration, (109) can be rewritten
as

δLVT = −AM , (110)

which describes the quantum gauge anomalies due to anomalous chiral fermions

δ(Λ)Γ[A] =

∫
d4xΛMAM , (111)

where the covariant anomaly is

AM = −1

2
εµνρσΛPDMNP∂µAν

M∂ρAσ
N

−1

4
εµνρσΛP

(
DMNRX[PS]

N +
3

2
DMNPX[RS]

N
)
∂µAν

MAρ
RAσ

S . (112)

This expression formally looks like a symplectically covariant generalization of the electric con-
sistent anomaly (121). To prove (110), one uses (95) and the preservation of DMNP under gauge
transformations, which follows from preservation of X, see (??), and of Ω, see (??), and reads

XM(N
P DQR)P = 0 . (113)

For the terms quartic in the gauge fields, one needs the following consequence of (113):

(XRS
M XPQ

N DLMN)[RSPL] = −(XRS
M XPM

N DLQN +XRS
M XPL

N DQMN)[RSPL]

= −(XRS
M XPL

N DQMN)[RSPL] , (114)

where the final line uses (95).
Let us summarize the result of our calculation up to the present point. We have used the

action (100) and considered its transformations under (70) and (84), where ∆Bµν
NP was un-

determined. We used the closure constraint and one new constraint (93). We showed that the
choice (104) leads to invariance if DMNP vanishes, which is the representation constraint used in
the anomaly-free case. However, when we use instead the more general transformation (108) in
the case DMNP 6= 0, we obtain the non-vanishing classical variation (110). The corresponding
expression (112) formally looks very similar to a symplectically covariant generalization of the
electric consistent quantum anomaly.

7 The Consistent Anomaly

The physical information of a quantum field theory is contained in the Green’s functions, which
in turn are encoded in an appropriate generating functional. Treating the Yang-Mills fields Wµ

as external fields, the generating functional for proper vertices can be written as a path integral
over the other matter fields,

e−Γ[Wµ] =

∫
Dφ̄Dφe−S(Wµ,φ̄,φ) . (115)
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The gauge invariance,
δAΓ[Wµ] = 0 , (116)

of the effective action encodes the Ward identities and is crucial for the renormalizability of the
theory. Even if the classical action, S, is gauge invariant, a non-invariance of the path integral
measure may occur and violate (116), leading to a quantum anomaly. Even though the functional
Γ[Wµ] is in general neither a local nor a polynomial functional of the Wµ, the quantum anomaly,

δ(Λ)Γ[W ] = −
∫

d4xΛA

(
Dµ

δΓ[W ]

δWµ

)
A

≡
∫

d4xΛAAA , (117)

does have this property. More explicitly, for an arbitrary non-Abelian gauge group, the consistent
form of the anomaly AA is given by

AA ∼ εµνρσ Tr
(
TA∂µ

(
Wν∂ρWσ + 1

2
WνWρWσ

) )
, (118)

where Wµ = WA
µ TA, and TA denotes the generators in the representation space of the chiral

fermions. Similarly there are supersymmetry anomalies, such that the final non-invariance of the
one-loop effective action is

A = δΓ(W ) = δ(Λ)Γ[W ] + δ(ε)Γ[W ] =

∫
d4x

(
ΛAAA + ε̄Aε

)
. (119)

This anomaly should satisfy the Wess-Zumino consistency conditions, which are the statement
that these variations should satisfy the symmetry algebra. For the gauge anomalies these are

δ(Λ1)
(
ΛA

2AA
)
− δ(Λ2)

(
ΛA

1AA
)

= ΛB
1 ΛC

2 fBC
AAA . (120)

If the effective action is non-invariant under gauge transformations, then also its supersymmetry
transformation is non-vanishing. An anomalous spectrum of chiral fermions induces a gauge
non-invariance of the quantum effective action, where AC denotes the consistent anomaly

AC = − i
4

[
dABCF

B
µν +

(
dABDfCE

B + 3
2
dABCfDE

B
)
WD
µ W

E
ν

]
F̃ µνA , (121)

ε̄Aε = Re
[

3
2
idABC ε̄Rλ

C
Rλ̄

A
Lλ

B
L + idABCW

C
ν F̃

µνAε̄Lγµλ
B
R

+3
8
dABCfDE

AεµνρσWD
µ W

E
ν W

C
σ ε̄Lγρλ

B
R

]
. (122)

The form of the anomaly depends on the renormalization scheme, which we have chosen such that
the anomaly is proportional to dABC . Choosing a different scheme would change the coefficients
in the GCS term. Quantum anomalies can cancel the terms in the variation (64) that are

proportional to the symmetric part C
(s)
AB,C , provided we have dABC = C

(s)
AB,C . This is the Green-

Schwarz mechanism. Thus, putting everything together, if we have

CAB,C = dABC + C
(CS)
AB,C , (123)

the variation of the GCS term and the quantum anomaly together cancel the variation (64). The
coefficients dABC form a totally symmetric tensor that is not fixed by the consistency conditions.
Comparison with (118) implies that they are of the form

dABC ∼ Tr ({TA, TB}TC) . (124)

Consequently, the low-energy theory is determined by the Wess-Zumino consistency condi-
tions, rather than by the requirement of supersymmetry, and this procedure does not fix a quartic
coupling for the gauginos.
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We have shown how gauge invariance can be restored in the presence gauged axionic shift
symmetries in general N = 1 supersymmetric gauge theories. What we have not yet checked is
whether the new action Ŝf + SCS is also invariant under supersymmetry. A careful calculation
reveals

δ(ε)
(
Ŝf + SCS

)
=

∫
d4x Re

[
− 3

2
iC

(s)
AB,C ε̄Rλ

C
Rλ̄

A
Lλ

B
L

−iC
(s)
AB,CW

C
ν F̃

µνAε̄Lγµλ
B
R − 3

8
C

(s)
AB,CfDE

AεµνρσWD
µ W

E
ν W

C
σ ε̄Lγρλ

B
R

]
. (125)

This is not zero, and in fact, it should not be zero. The reason is that the above classical action
is not gauge invariant. As we are working in the Wess-Zumino gauge, this will also imply a
non-invariance under supersymmetry. Thus the classical gauge non-invariance triggers a classical
supersymmetry non-invariance. However, this is also true for the quantum gauge anomaly, it
also triggers a supersymmetry anomaly of the quantum effective action,

δ(ε)Γ[WA
µ ] =

∫
d4xε̄Aε . (126)

The supersymmetry anomaly has been calculated by Brandt, and it is precisely the negative of
equation (125),

δ(ε)
(
Ŝf + SCS

)
+

∫
d4xε̄Aε = 0 . (127)

Thus, the entire classical plus quantum theory is indeed supersymmetric.

8 Mixed Anomalies in Supergravity

Having established that the two forms of anomalies are not equivalent for a simple non-abelian
gauge group, we point out how one can interpolate between them for a mixed anomaly. Consider
a gauge group which is the product of a single U(1) factor and a simple non-abelian group G,
= G×U(1). Write the gauge field Vµ = AaµT

a+iQCµ, where the T a are anti-hermitian generators
of G and Q is the charge under U(1). We use F a

µν for the non-abelian field strength and Cµν for
the abelian field strength. Inserting Vµ = AaµT

a + iQCµ into the expression for the consistent
anomaly and covariant anomaly, we pick up terms which are purely abelian or purely non-abelian
anomalies as well as mixed anomalies. We write this

(Dµj
µ)a = Aa = Aanon−ab +Aamixed , (Dµj

µ)Q = AQ = AQabel +AQmixed , (128)

where jaµ = −δL/δAaµ = −iψ̄γµT aLψ and jQµ = −δL/δCµ = −iψ̄γµiQLψ are the non-abelian
and abelian currents. Below subscripts “cov” or “con” indicate whether a given term in the
anomalies is written in the covariant form (107) or the consistent form (??).

To be explicit, we list the mixed anomalies Aamixed and AQM in covariant and consistent form
respectively,

AQM G =
i

32π2
εµνρσ tr iQFµνFρσ =

i

8π2
εµνρσ tr

[
iQ∂µ

(
Aν ∂ρAσ +

2

3
AνAρAσ

)]
,

AQM C =
i

24π2
εµνρσ tr

[
iQ∂µ

(
Aν ∂ρAσ +

1

2
AνAρAσ

)]
,

AaM G =
i

16π2
εµνρσ tr

[
T aiQCµνFρσ

]
,

AaM C =
i

12π2
εµνρσ tr

[
T aiQ∂µ

(
Cν ∂ρAσ +

1

4
CνAρAσ

)]
. (129)
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There are two candidate polynomials in Cµ and Aµ from which finite local counter terms in
the Lagrangian can be constructed,

L1 = − i

12π2
εµνρσCµ tr

[
iQAν∂ρAσ

]
, L2 = − i

12π2
εµνρσCµ tr

[
iQAνAρAσ

]
. (130)

Their gauge variations under non-abelian gauge transformations ?? are

δθL1 = − i

12π2
εµνρσ tr

[
iQθ

(
∂µCν ∂ρAσ − 2∂µ(CνAρAσ)

)]
,

δθL2 = − i

4π2
εµνρσ tr

[
iQθ∂µ(CνAρAσ)

]
. (131)

One may add these counter terms with arbitrary coefficients to the Lagrangian. This would
modify the non-abelian current conservation law by terms proportional to (131). The unique
combination

Lct = L1 +
3

4
L2 (132)

precisely cancels the non-abelian mixed anomaly in the consistent form,

δθLct = − θaAaM C . (133)

Under abelian gauge variations
δΛCµ = ∂µΛ (134)

the counter term gives
δΛLct = −Λ

(
AQM C −A

Q
M G
)
, (135)

it rotates the consistent form of the abelian mixed anomaly into covariant form. This is essential
for the Green-Schwarz mechanism. The gauge variations (131) of the counter terms yield total
derivatives, but the covariant mixed anomaly AaM G given in (129) involves εµνρσ tr T aCµνFρσ
which is not a total derivative. Hence the non-abelian variations of the counter terms (131)
could never fully cancel Aamixed cov, it is therefore crucial to use Aamixed con.

9 The Anomalies in D = 6 Supergravity

We review some properties of the field equations of six-dimensional (1,0) supergravity coupled
to tensor and vector multiplets, and in particular their relation to covariant, consistent and
gravitational anomalies. We also describe a lagrangian formulation for this system, obtained
applying the Pasti-Sorokin-Tonin prescription. For completeness, we are also including some
new interesting results in identification of the supergravity anomalies.

Perturbative six-dimensional string vacua with minimal supersymmetry can arise for instance
as compactifications of the heterotic string on K3, or as parameter-space orbifolds of K3 reduc-
tions of the type-IIB string. While in the former case only a single tensor multiplet is present, in
the latter one obtains vacua with variable numbers of tensor multiplets, related by string dualities
to non-perturbative heterotic and M-theory vacua. In these models, the anomalous contribution
due to fermion loops is derived from the residual anomaly polynomial

crx c
s
y ηrs trxF

2 tryF
2 ,

where the c’s are a collection of constants (x and y run over the various semi-simple Lie factors
in the gauge group and over the Lorentz group) and η is the Minkowski metric for SO(1, nT ),
with nT the number of tensor multiplets. As a consequence, several antisymmetric tensors take
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part in a generalized Green-Schwarz mechanism. The corresponding Green-Schwarz term has
the form

Br cxr trxF
2

and, if one considers only gauge anomalies, contains only two derivatives, and thus belongs to
the low-energy effective action. Consequently, the resulting low-energy lagrangian has a gauge
anomaly, that the Wess-Zumino conditions relate to a supersymmetry anomaly.

The complete coupling of (1,0) six-dimensional supergravity to non-abelian vector and tensor
multiplets requiring the closure of the Wess-Zumino conditions, has revealed another related
aspect of these six-dimensional models: a quartic coupling for the gauginos is undetermined, and
the construction is consistent for any choice of this coupling. Correspondingly, the commutator of
two supersymmetry transformations on the gauginos contains an extension, that plays a crucial
role in ensuring that the Wess-Zumino consistency conditions close on-shell. The coupling of
(1,0) six-dimensional supergravity to non-abelian vectors and self-dual tensors reveals neatly the
realization of a peculiar aspect of the physics of branes: singularities in the gauge couplings
appear for particular values of the scalars in the tensor multiplets, and can be ascribed to a
phase transition in which a string becomes tensionless. In this model the divergence of the
energy-momentum tensor is non-vanishing, as is properly the case for a theory that has gauge
anomalies but no gravitational anomalies. The whole construction can also be repeated with the
inclusion of abelian vectors, that actually allow more general couplings, since in this case the
residual anomaly polynomial can have the more general form

PA = crab c
s
cd ηrsF

a ∧ F b ∧ F c ∧ F d , (136)

where the indices a, b, c, d run over the different U(1) gauge groups, and where the cr’s are
symmetric matrices that may not be simultaneously diagonalized. Notice that these low-energy
couplings are obtained by consistency once one includes the Green-Schwarz term in the low-energy
theory. The complete theory, supersymmetric and gauge-invariant, would also include additional
non-local couplings arising from fermion loops. This is exactly as in the ten-dimensional case,
what is peculiar of these six-dimensional models is that here the anomalous terms belong to the
low-energy effective action. In order to have an explicit realization of the low-energy dynamics of
six-dimensional string vacua, it is of interest to consider how the whole construction is modified
by the inclusion of hypermultiplets. The complete coupling to a single tensor multiplet and to
vector and charged hypermultiplets was obtained for the case in which no anomalies and no
singular couplings are present. More recently, an analysis of the case in which various tensor
multiplets are present without taking into account the anomalous terms. Still, this analysis
shows that, in correspondence to the phase transition, additional singular terms appear because
of the presence of charged hypermultiplets.

9.1 Supergravity in Six Dimensions Coupled to Tensor Multiplets

In formulating the low-energy couplings between tensor and vector multiplets, one has two natural
options. The first is related to covariant field equations and to the corresponding covariant
anomalies. It has the virtue of respecting gauge covariance and supersymmetry, but the resulting
field equations are not integrable. The second is related to consistent, and thus integrable field
equations. These may be derived from an action principle that satisfies Wess-Zumino consistency
conditions, and as a result embody a supersymmetry anomaly.

We describe minimal (1, 0) six-dimensional supergravity coupled to n tensor multiplets. Sim-
ple supersymmetry in six dimensions is generated by an Sp(2) doublet of chiral spinorial charges
Qa (a = 1, 2), obeying the symplectic Majorana condition

Qa = εabCQ̄T
b , (137)
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where εab is the Sp(2) antisymmetric invariant tensor. Since all fermi fields appear as Sp(2)
doublets, from now on we will mostly use Ψ to denote a doublet Ψa.

The theory includes the vielbein eµ
a, a left-handed gravitino Ψµ, (n+1) antisymmetric tensors

Br
µν (r = 0, ..., n) obeying (anti)self-duality conditions, n right-handed tensorini χm (m = 1, ..., n),

and n scalars. The scalars parameterize the coset space SO(1, n)/SO(n), and are thus associated
to the SO(1, n) matrix (r = 0, ...n)

V = (vrx
m
r , (138)

whose matrix elements satisfy the constraints

vrvr = 1 , vrvs − xmr xms = ηrs , vrxmr = 0 . (139)

Defining
Grs = vrvs + xmr x

m
s , (140)

the tensor (anti)self-duality conditions can be succinctly written

GrsH
sµνρ =

1

6e
εµνραβγHrαβγ , (141)

where Hr
µνρ = 3∂[µB

r
νρ]. These relations only hold to lowest order in the fermi fields, and imply

that vrH
r
µνρ is self dual, while the n tensors xmr H

r
µνρ are antiself dual, as one can see using (187).

The divergence of (141) yields the second-order tensor equation

Dµ(GrsH
sµνρ) = 0 (142)

while, to lowest order, the fermionic equations are

γµνρDνΨρ + vrH
rµνργνΨρ −

i

2
xmr H

rµνργνρχ
m +

i

2
xmr ∂νv

rγνγµχm = 0 (143)

and

γµDµχ
m − 1

12
vrH

rµνργµνρχ
m − i

2
xmr H

rµνργµνΨρ −
i

2
xmr ∂νv

rγµγνΨµ = 0 . (144)

Varying the fermi fields in them with the supersymmetry transformations

δeµ
a = −i(ε̄γaΨµ) , δBr

µν = ivr(Ψ̄[µγν]ε) +
1

2
xmr(χ̄mγµνε) ,

δvr = xmr (ε̄χm) , δΨµ = Dµε+
1

4
vrH

r
µνργ

νρε ,

δχm =
i

2
xmr ∂µv

rγµε+
i

12
xmr H

r
µνργ

µνρε , (145)

generates the bosonic equations, using also (141) and (142). Thus, the scalar field equation is

xmr Dµ(∂µvr) +
2

3
xmr vsH

r
αβγH

sαβγ = 0 , (146)

while the Einstein equation is

Rµν −
1

2
gµνR + ∂µv

r∂νvr −
1

2
gµν∂αv

r∂αvr −GrsH
r
µαβH

s
ν
αβ = 0 . (147)
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To this order, this amounts to a proof of supersymmetry, and it is also possible to show that
the commutator of two supersymmetry transformations on the bosonic fields closes on the local
symmetries

[δ1, δ2] = δgct(ξ
µ = −i(ε̄1γµε2)) + δtens(Λ

r
µ = −1

2
vrξµ − ξνBr

µν)

+δSO(n)(A
mn = ξµxmr(∂µx

n
r )) + δLorentz(Ω

ab = −ξµ(ωµab − vrHrµab)) . (148)

To this order, one can not see the local supersymmetry transformation in the gauge algebra, since
the expected parameter, ξµΨµ, is generated by bosonic variations. As usual, the spin connection
satisfies its equation of motion, that to lowest order in the fermi fields is

Dµeν
a −Dνeµ

a = 0 , (149)

and implies the absence of torsion.
Completing these equations will require terms cubic in the fermi fields in the fermionic equa-

tions, and terms quadratic in the fermi fields in their supersymmetry transformations. Super-
symmetry will then determine corresponding modifications of the bosonic equations, and the
(anti)self-duality conditions (141) will also be modified by terms quadratic in the fermi fields.
Supercovariance actually fixes all terms containing the gravitino in the first-order equations and
in the supersymmetry variations of fermi fields.

The supercovariant forms

ω̂µνρ = ω0
µνρ −

i

2
(Ψ̄µγνΨρ + Ψ̄νγρΨµ + Ψ̄νγµΨρ) , (150)

Ĥr
µνρ = Hr

µνρ −
1

2
xmr(χ̄mγµνΨρ + χ̄mγνρΨµ + χ̄mγρµΨν)−

i

2
vr(Ψ̄µγνΨρ + Ψ̄νγρΨµ + Ψ̄ργµΨν) ,

ˆ∂µvr = ∂µv
r − xmr(χ̄mΨµ) , (151)

where

ω0
µνρ =

1

2
eρa(∂µeν

a − ∂νeµa)−
1

2
eµa(∂νeρ

a − ∂ρeνa) +
1

2
eνa(∂ρeµ

a − ∂µeρa) (152)

is the standard spin connection in the absence of torsion, do not generate derivatives of the
parameter under supersymmetry. In the same spirit, one can consider the supercovariant trans-
formations

δΨµ = D̂µε+
1

4
vrĤ

r
µνργ

νρε , δχm =
i

2
xmr ( ˆ∂µvr)γ

µε+
i

12
xmr Ĥ

r
µνργ

µνρε . (153)

The tensorino transformation is complete, while the gravitino transformation could include ad-
ditional terms quadratic in the tensorini. On the other hand, one does not expect modifications
of the bosonic transformations in the complete theory.

The algebra (148) has been obtained varying only the fermi fields in the bosonic supersym-
metry transformations. The next step is to compute the commutator varying the bosonic fields
as well. There is no important novelty in the complete commutator on vr and on the vielbein
eµ
a. However, the local Lorentz parameter is modified and takes the form

Ωab = −ξµ(ω̂µ
ab − vrĤr

µ
ab) (154)

while, as anticipated, the supersymmetry parameter is

ζ = ξµΨµ . (155)
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These results are obtained using the torsion equation for ω̂,

D̂µeν
a − D̂νeµ

a = 2Saµν = −i(Ψ̄µγ
aΨν) . (156)

One can also compute the commutator on xmr and (187) determine its supersymmetry varia-
tion

δxmr = vr(ε̄χ
m) , (157)

and the resulting commutator includes a local SO(n) transformation of parameter

Amn = ξµxmr(∂µx
n
r ) + (χ̄mε2)(χ̄nε1)− (χ̄mε1)(χ̄nε2) . (158)

New results come from the complete commutator on Br
µν , where one needs to use the (anti)self-

duality conditions. Supercovariantization is at work here, since these conditions are first-order
equations, that become

GrsĤ
s
µνρ =

1

6e
εµνραβγĤ

αβγ
r . (159)

It is actually possible to alter these conditions demanding that the modified tensor

Ĥr
µνρ = Ĥr

µνρ + iαvr(χ̄mγµνρχ
m) (160)

satisfy (anti)self-duality conditions as in (159). Using (187), one can see that the new χ2 terms
contribute only to the self-duality condition, while the tensors xmr Ĥ

r
µνρ remain antiself dual with-

out extra χ2 terms. Consequently, since the commutator on Br
µν uses only the antiself-duality

conditions, the result does not contain terms proportional to α. The commutator on the tensor
fields generates all local symmetries in the proper form, aside from the extra terms

[δ1, δ2]extraB
r
µν =

1

2
vr(ε̄1χ

m)(χ̄mγµνε2)− 1

2
vr(ε̄2χ

m)(χ̄mγµνε1) , (161)

that may be canceled adding χ2 terms to the transformation of the gravitino. The most general
expression one can add is

δ′Ψµ = ia γµχ
m(ε̄χm) + ib γνχ

m(ε̄γµ
νχm) + ic γµνρχ

m(ε̄γνρχm) , (162)

with a, b and c real coefficients. The commutator on eµ
a now closes with a local Lorentz parameter

modified by the addition of

∆Ωab = −1

2
[(χ̄mε1)(ε̄2γ

abχm)− (χ̄mε2)(ε̄1γ
abχm)] , (163)

while the commutators on the scalar fields are not modified.
One can now start to compute the commutators on fermi fields, that as usual close only on

shell. We will actually use this result to derive the complete fermionic equations. Supercovariance
determines the field equation of the tensorini up to a term proportional to χ3. Closure of the
algebra fixes this additional term, and the end result is

γµD̂µχ
m − 1

12
vrĤ

r
µνργ

µνρχm − i

2
xmr Ĥ

rµνργµνΨρ −
i

2
xmr ( ˆ∂νvr)γ

µγνΨµ −
i

2
γαχn(χ̄nγαχ

m) = 0 .

The complete commutator of two supersymmetry transformations on the tensorini is then

[δ1, δ2]χm = δgct χ
m + δLorentz χ

m + δSO(n) χ
m + δsusy χ

m +
1

4
γαξα [eq. χm] . (164)
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A similar result can be obtained for the gravitino. In this case the complete equation,

γµνρD̂νΨρ +
1

4
vrĤ

r
ναβγ

µνργαβΨρ −
i

2
xmr Ĥ

rµνργνρχ
m +

i

2
xmr ( ˆ∂νvr)γ

νγµχm (165)

+
3i

2
γµαχm(χ̄mΨα)− i

4
γµαχm(χ̄mγαβΨβ) +

i

4
γαβχ

m(χ̄mγµαΨβ)− i

2
χm(χ̄mγµαΨα) = 0 ,

is fixed by supercovariance, and the commutator closes up to terms proportional to a particular
combination of (166) and its γ-trace. Moreover, a non-trivial symplectic structure makes its first
appearance in a commutator, so that the final result is

[δ1, δ2]Ψa
µ = δgctΨ

a
µ + δLorentzΨ

a
µ + δsusyΨ

a
µ +

3

8
ξαγα([eq. Ψµ]− 1

4
γµ[γ − trace])a

+
1

96
σib
aγαβγξiαβγ([eq. Ψµ]− 1

4
γµ[γ − trace])b , (166)

where
ξiαβγ = −i[ε̄1γαβγε2]i . (167)

Summarizing, from the algebra we have obtained the complete fermionic equations of (1, 0)
six-dimensional supergravity coupled to n tensor multiplets. In addition, the modified 3-form

Ĥr
µνρ = Ĥr

µνρ −
i

8
vr(χ̄mγµνρχ

m) (168)

satisfies the (anti)self-duality conditions

GrsĤs
µνρ =

1

6e
εµνραβγĤαβγ

r . (169)

We have also identified the complete supersymmetry transformations, that we collect here for
convenience:

δeµ
a = −i(ε̄γaΨµ) ,

δBr
µν = ivr(Ψ̄[µγν]ε) +

1

2
xmr(χ̄mγµνε) ,

δvr = xmr (χ̄mε) ,

δΨµ = D̂µε+
1

4
vrĤ

r
µνργ

νρε− 3i

8
γµχ

n(ε̄χn)− i

8
γνχn(ε̄γµνχ

n) +
i

16
γµνρχ

n(ε̄γνρχn) ,

δχm =
i

2
xmr ( ˆ∂αvr)γ

αε+
i

12
xmr Ĥ

r
αβγγ

αβγε . (170)

In order to obtain the bosonic equations, it is convenient to associate the fermionic equations
to the Lagrangian

e−1LF = − i
2

Ψ̄µγ
µνρDν [

1

2
(ω + ω̂)]Ψρ −

i

8
vr[H + Ĥ]rµνρ(Ψ̄µγνΨρ)

+
i

48
vr[H + Ĥ]rαβγ(Ψ̄µγ

µναβγΨν) +
i

2
χ̄mγµDµ(ω̂)χm − i

24
vrĤ

r
µνρ(χ̄

mγµνρχm)

+
1

4
xmr [∂νv

r + ˆ∂νvr](Ψ̄µγ
νγµχm)− 1

8
xmr [H + Ĥ]rµνρ(Ψ̄µγνρχ

m) (171)

+
1

24
xmr [H + Ĥ]rµνρ(Ψ̄αγαµνρχ

m) +
1

8
(χ̄mγµνρχm)(Ψ̄µγνΨρ)−

1

8
(χ̄mγαχn)(χ̄mγαχ

n) ,

where the spin connection is

ωµνρ = ω0
µνρ −

i

2
(Ψ̄µγνΨρ + Ψ̄νγρΨµ + Ψ̄νγµΨρ)−

i

4
(Ψ̄αγµνραβΨβ)− i

4
(χ̄mγµνρχ

m) (172)
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satisfies its equation of motion, and is thus kept fixed in all variations.
In order to derive the bosonic equations, one can add to (172)

e−1LB = −1

4
R +

1

12
GrsH

rµνρHs
µνρ −

1

4
∂µv

r∂µvr . (173)

One can then obtain from Lfer + Lbose the equations for the vielbein and the scalars, with the
prescription that the (anti)self-duality conditions be used only after varying. Actually, ignoring
momentarily (169) and varying Lfer +Lbose with respect to the antisymmetric tensor Br

µν yields
the second-order tensor equation, the divergence of (169),

Dµ(GrsĤ
sµνρ) =

1

2
Dµ[xmr (χ̄mγµνραΨα)]− i

4
Dµ[vr(Ψ̄αγ

αβµνρΨβ)] +
i

4
Dµ[vr(χ̄

mγµνρχm)] . (174)

In a similar fashion, the scalar equation is

xmr [
1

2
Dµ(∂µvr) +

1

3
vsH

rµνρHs
µνρ −

i

4
Hrµνρ(Ψ̄µγνΨρ) +

i

24
Hr
αβγ(Ψ̄µγ

µναβγΨν)

− i

24
Hr
µνρ(χ̄

nγµνρχn)− 1

2
Dν(x

n
r (Ψ̄µγ

νγµχn))] + vr[−
1

4
Hrµνρ(Ψ̄µγνρχ

m)

+
1

12
Hrµνρ(Ψ̄αγαµνρχ

m)] = 0 , (175)

while the Einstein equation is

1

2
eβa[R

αβ − 1

2
gαβR−GrsH

rανρHsβ
νρ +

1

6
gαβGrsH

r
µνρH

sµνρ

+∂αvr∂βvr −
1

2
gαβ∂µv

r∂µvr]−
i

2
eαa(Ψ̄µγ

µνρD̂νΨρ) +
i

2
(Ψ̄aγ

ανρD̂νΨρ)

+
i

2
(Ψ̄µγ

µαρD̂aΨρ) +
i

2
(Ψ̄µγ

µναD̂νΨa)−
i

4
eαavrĤ

r
µνρ(Ψ̄

µγνΨρ) +
i

4
vrĤ

r
µaρ(Ψ̄

µγαΨρ)

+
i

2
vrĤ

rανρ(Ψ̄aγνΨρ) +
i

2
vrĤ

r
aνρ(Ψ̄

αγνΨρ) +
i

24
eαavrĤ

r
βγδ(Ψ̄µγ

µνβγδΨν)

− i

12
vrĤ

r
βγδ(Ψ̄aγ

ανβγδΨν)−
i

8
vrĤ

r
aβγ(Ψ̄µγ

µναβγΨν) +
i

2
eαa(χ̄

mγµD̂µχ
m)

− i
2

(χ̄mγαD̂aχ
m)− i

24
eαavrĤ

r
µνρ(χ̄

mγµνρχm) +
i

8
vrĤ

r
aνρ(χ̄

mγανρχm)

+
1

2
eαax

m
r ( ˆ∂νvr)(Ψ̄µγ

νγµχm)− 1

2
xmr ( ˆ∂avr)(Ψ̄µγ

αγµχm)− 1

2
xmr ( ˆ∂νvr)(Ψ̄aγ

νγαχm)

−1

4
eαax

m
r Ĥ

r
µνρ(Ψ̄

µγνρχm) +
1

2
xmr Ĥ

r
µaρ(Ψ̄

µγαρχm) +
1

4
xmr Ĥ

rα
νρ(Ψ̄aγ

νρχm)

+
1

4
xmr Ĥ

r
aνρ(Ψ̄

αγνρχm) +
1

12
eαax

m
r Ĥ

r
µνρ(Ψ̄σγ

σµνρχm)− 1

12
xmr Ĥ

r
µνρ(Ψ̄aγ

αµνρχm)

−1

4
xmr Ĥ

r
aνρ(Ψ̄σγ

σανρχm) + (fermi)4 = 0 . (176)

For the sake of brevity, a number of quartic fermionic couplings, fully determined by the la-
grangian of (172) and (173), are not written explicitly. It then takes a direct, if somewhat
tedious, calculation to prove local supersymmetry, showing that

δS =

∫
d6x

(
δF δL

δF
+ δB δL

δB

)
= 0 , (177)

where F and B denote collectively the fermi and bose fields aside from the antisymmetric tensors.
We would like to stress that the equations for the fermi fields defined from the gauge algebra
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differ from the lagrangian equations by overall factors that may be simply identified. To see why
this works, consider a generic true supergravity theory with a collection of boson and fermion
fields B(x) and F (x) and transformation rules which involve arbitrary spinor parameters ε(x).
The action S[B,F ] is locally supersymmetric, which means that the supersymmetry variation

δS =

∫
d6x

(
δ

δB
δB +

δ

δF
δF

)
≡ 0 (178)

vanishes identically, for all configurations of B(x), F (x), ε(x). In particular, the terms of each
order in F vanish independently. To lowest order, with fermions more specifically described as
gravitinos ψµ(x) and Dirac spinors λ(x), the fermion transformations have the generic structure

(δB)0 = ε̄GF = ε̄ (Gµ ψµ + G ′B λ) (179)

(δF )0 =

{
(δψµ)0 = (Dµ + G ′′µB)ε

(δλ)0 = (Gµ ∂µB + G ′′′B)ε.
(180)

The G and G ′ are matrices of the Clifford algebra with the appropriate tensor structure.
The lowest order term in δS is linear in the fermions

(δS)lin =

∫
dDx

[
δ

δB
(ε̄GF ) +

δ

δF
(δF )0

]
≡ 0. (181)

The variation δ/δB is purely bosonic to this order, and δ/δF is linear in fermions. Note that
(δS)lin still vanishes for all configurations of B(x), F (x), ε(x). If ε is a Killing spinor, then, by
definition (δF )0 = 0, and linsu then reads

(δS)lin =

∫
dDx

δ

δB
(ε̄GF ) = 0. (182)

It vanishes for all configurations of B(x) which support Killing spinors and all fermion configu-
rations F (x). Thus the sum over all independent boson fields BI(x) vanishes locally∑

I

δ

δBI

(ε̄GF )I = 0. (183)

If the fermion variations (ε̄GF )I are independent, then each boson equation of motion δ/δBI = 0
is satisfied separately. In many cases the fermion variations are independent, in other cases one
must supplement the equations 183 with gauge field equations of motion. It is in this way that
a bosonic field configuration BI(x) which supports Killing spinors can give a solution of the
bosonic equations of motion of the theory. The first order equations which determine these BPS
configurations of BI(x) are the integrability conditions for the Killing spinor equations (δψµ)0 = 0
and (δλ)0 = 0.

9.2 Supersymmetry Algebra and Equations of Motion

We describe the full coupling of six-dimensional supergravity to vector, tensor and hypermulti-
plets. We first summarize the field content of the theory. The gravitational multiplet contains
the vielbein eµ

m, a 2-form and a left-handed gravitino ψAµ , the tensor multiplet contains a 2-
form, a scalar and a right-handed tensorino, the vector multiplet contains a vector Aµ and a
left-handed gaugino λA, and finally the hypermultiplet contains four scalars and a right-handed
hyperino. In the presence of nT tensor multiplets, the tensorinos are denoted by χMA where
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M = 1, ..., nT is an SO(nT ) index. The index A = 1, 2 is in the fundamental representation of
USp(2), and the gravitino, the tensorinos and the gauginos are USp(2) doublets satisfying the
symplectic-Majorana condition

ψA = εABCψ̄TB . (184)

The nT scalars in the tensor multiplets parametrize the coset SO(1, nT )/SO(nT ), while the
(nT + 1) 2-forms from the gravitational and tensor multiplets are collectively denoted by Br

µν ,
with r = 0, ..., nT in the fundamental representation of SO(1, nT ), and their field-strengths satisfy
(anti)self-duality conditions. The vector and the gaugino are in the adjoint representation of the
gauge group. Finally, taking into account nH hypermultiplets, the hyperinos are denoted by
Ψa, where a = 1, ..., 2nH is a USp(2nH) index, and the symplectic-Majorana condition for these
spinors is

Ψa = ΩabCΨ̄T
b , (185)

where Ωab is the antisymmetric invariant tensor of USp(2nH). The hyper-scalars φα, α =
1, ..., 4nH , are coordinates of a quaternionic manifold, that is a manifold whose holonomy group
is contained in USp(2)× USp(2nH).

If the quaternionic manifold parametrized by the hyper-scalars has isometries, these corre-
spond to global symmetries of the supergravity theory. Then the global symmetry group, or
a subgroup can be gauged. We will consider without loss of generality the case in which the
scalars parametrize the symmetric manifold USp(2, 2nH)/USp(2)× USp(2nH), whose isometry
group is USp(2, 2nH). We will then describe the gauging of the maximal compact subgroup
USp(2)×USp(2nH) of the isometry group. All the results can be naturally generalized to other
symmetric quaternionic spaces.

The scalars in the tensor multiplets can be described in terms of the SO(1, nT ) matrix

V =
(
vrx

M
r , (186)

whose elements satisfy the constraints

vrvr = 1 , vrvs − xMr xMs = ηrs , vrxMr = 0 . (187)

We will take vr and xMr , with the constraints of (187), as fundamental fields, so that the composite
SO(nT ) connection that appears in the covariant derivative of the tensorinos will be xNr ∂µx

Mr.
On the other hand, the notation in which the fundamental fields are the scalars Φᾱ (ᾱ = 1, ..., nT )
parametrizing the coset manifold, adds to the supersymmetry variation of the tensorinos χMA

the term
−δΦᾱAMN

ᾱ χNA , (188)

where AMN
ᾱ is the composite connection of SO(nT ). In this notation, the commutator of two

supersymmetry transformations on the tensorinos does not generate a local SO(nT ) transforma-
tion.

We now recall the notations used to describe the scalars in the hypermultiplets. We denote by
V aA
α (φ) the vielbein of the quaternionic manifold, where the index structure corresponds to the

requirement that the holomony be contained in USp(2)× USp(2nH). The internal USp(2) and
USp(2nH) connections are then denoted, respectively, by AAαB and Aaαb, that in our conventions
are anti-hermitian matrices. The index α = 1, ..., 4nH is a curved index on the quaternionic
manifold. The field-strengths of the connections are

FαβAB = ∂αAAβ B − ∂βAAαB + [Aα,Aβ]AB ,Fαβab = ∂αAaβb − ∂βAaαb + [Aα,Aβ]ab ,

where ∂α = ∂/∂φα. The request that the vielbein V aA
α (φ) be covariantly constant gives the

following relations

V α
aAV

β
bBgαβ = ΩabεAB , V

α
aAV

βbA + V β
aAV

αbA =
1

nH
gαβδab , V α

aAV
βaB + V β

aAV
αaB = gαβδAB ,
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where Ωab is the antisymmetric invariant tensor of USp(2nH). The field-strength of the USp(2)
connection AAαB is naturally constructed in terms of V aA

α by the relation:

FαβAB = VαaAV
a
β B + VαaBV

a
β A , (189)

and then the cyclic identity for the internal curvature tensor implies that the field-strength of
the USp(2nH) connection Aaαb has the form

Fαβab = VαaAVβb
A + VαbAVβa

A + ΩabcdV
dA
α V c

β A , (190)

where Ωabcd is totally symmetric in its indices.
Now, assuming that the scalars parametrize the coset manifold USp(2, 2nH)/USp(2)×USp(2nH),

we describe the gauging of the hypermultiplets under the group USp(2)×USp(2nH), that is the
maximal compact subgroup of the isometry group. We denote the gauge fields of this group by
Aiµ and AIµ, where i and I take values in the adjoint representation of USp(2) and USp(2nH),
and the corresponding field-strengths are

F i
µν = ∂µA

i
ν − ∂νAiµ + εijkAjµA

k
ν , F I

µν = ∂µA
I
ν − ∂νAIµ + f IJKAJµA

K
ν , (191)

where εijk and f IJK are the structure constants of USp(2) and USp(2nH). Under the gauge
transformations

δAiµ = DµΛi , δAIµ = DµΛI (192)

the scalars transform as
δφα = Λiξαi + ΛIξαI , (193)

where ξαi and ξαI are the Killing vectors corresponding to the USp(2) and USp(2nH) isometries.
The covariant derivative for the scalars is then

Dµφ
α = ∂µφ

α − Aiµξαi − AIµξαI . (194)

One can correspondingly define the covariant derivatives for the spinors in a natural way,
adding the composite connections Dµφ

αAα. For instance, the covariant derivative for the hyper-
inos Ψa will contain the connections Dµφ

αAaαb, while the covariant derivative for the gravitino
and the tensorinos will contain the connections Dµφ

αAAαB. The covariant derivatives for the
gauginos λiA, λIA are

Dµλ
iA = ∂µλ

iA +
1

4
ωµmnγ

mnλiA +Dµφ
αAAαBλiB + εijkAjµλ

kA ,

Dµλ
IA = ∂µλ

IA +
1

4
ωµmnγ

mnλIA +Dµφ
αAAαBλIB + f IJKAJµλ

KA . (195)

Notice that the gravitino, the tensorinos and the hyperinos are not coupled to the gauge vectors
through terms that do not contain the hyperscalars.

We now proceed to the construction of the model. We assume that the gauge group has
the form G =

∏
z Gz, with Gz semi-simple. The scalars in the hypermultiplets are charged with

respect to G1 = USp(2) and G2 = USp(2nH). The field-strengths of the 2-forms Br
µν are

Hr
µνρ = 3∂[µB

r
νρ] + crzωzµνρ , (196)

where crz are constants and ωz are the Chern-Simons 3-forms

ωz = trz(AdA+
2

3
A3) . (197)
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These 3-form field-strengths satisfy (anti)self-duality conditions, that to lowest order in the fermi
fields are

GrsH
sµνρ =

1

6e
εµνρσδτHrσδτ , (198)

where Grs = vrvs + xMr x
M
s . Gauge invariance of Hr requires that Br transform under vector

gauge transformations according to

δBr = −crztrz(ΛdA) . (199)

To lowest order in the fermi fields, we produce the construction adding the hypermultiplet
couplings. The equations for all fields, with the exception of the 2-forms, can be obtained from
the lagrangian

e−1L = −1

4
R +

1

12
GrsH

rµνρHs
µνρ −

1

4
∂µv

r∂µvr +
1

2
vrc

rztrz(FµνF
µν)

+
1

8e
εµνρσδτBr

µνc
z
rtrz(FρσFδτ ) +

1

2
gαβ(φ)Dµφ

αDµφβ +
1

4vrcr1
AAαBABβ Aξαiξβi

+
1

4vrcr2
AAαBABβ AξαIξβI −

i

2
(ψ̄µγ

µνρDνψρ)−
i

2
vrH

rµνρ(ψ̄µγνψρ) +
i

2
(χ̄MγµDµχ

M)

− i

24
vrH

r
µνρ(χ̄

MγµνρχM) +
1

2
xMr ∂νv

r(ψ̄µγ
νγµχM)− 1

2
xMr H

rµνρ(ψ̄µγνρχ
M)

+
i

2
(Ψ̄aγ

µDµΨa) +
i

24
vrH

r
µνρ(Ψ̄aγ

µνρΨa)− V aA
α Dνφ

α(ψ̄µAγ
νγµΨa)− ivrcrztrz(λ̄γµDµλ)

− i√
2
vrc

rztrz[Fνρ(ψ̄µγ
νργµλ)]− 1√

2
xMr c

rztrz[Fµν(χ̄
Mγµνλ)] +

i

12
czrH

r
µνρtrz(λ̄γ

µνρλ)

−
√

2V aA
α [ξαi(λ̄iAΨa) + ξαI(λ̄IAΨa)] +

i√
2
AAαB[ξαi(λ̄iAγ

µψBµ ) + ξαI(λ̄IAγ
µψBµ )]

+
1√
2
AAαB[

xMr c
r1

vscs1
ξαi(λ̄iAχ

MB) +
xMr c

r2

vscs2
ξαI(λ̄IAχ

MB)] , (200)

after imposing the (anti)self-duality conditions. With this prescription, its variation under the
supersymmetry transformations

δeµ
m = −i(ε̄γmψµ) ,

δBr
µν = ivr(ψ̄[µγν]ε) +

1

2
xMr(χ̄Mγµνε) + 2crztrz(A[µδAν]) ,

δvr = xMr (ε̄χM) , δxMr = vr(ε̄χ
M) ,

δφα = V α
aA(ε̄AΨa) ,

δAµ = − i√
2

(ε̄γµλ) ,

δψAµ = Dµε
A +

1

4
vrH

r
µνργ

νρεA ,

δχMA =
i

2
xMr ∂µv

rγµεA +
i

12
xMr H

r
µνργ

µνρεA ,

δΨa = iγµεAV
aA
α Dµφ

α ,

δλA = − 1

2
√

2
Fµνγ

µνεA (z 6= 1, 2) ,

δλiA = − 1

2
√

2
F i
µνγ

µνεA − 1√
2vrcr1

AAαBξαiεB

δλIA = − 1

2
√

2
F I
µνγ

µνεA − 1√
2vrcr2

AAαBξαIεB (201)
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gives the supersymmetry anomaly

Aε = −1

4
εµνρσδτczrc

rz′trz(δεAµAν)trz′(FρσFδτ )−
1

6
εµνρσδτczrc

rz′trz(δεAµFνρ)ω
z′

σδτ , (202)

related by the Wess-Zumino conditions to the consistent gauge anomaly

AΛ = −1

4
εµνρσδτczrc

rz′trz(Λ∂µAν)trz′(FρσFδτ ) . (203)

Notice the presence in the lagrangian of the scalar potential

V(φ) = − 1

4vrcr1
AAαBABβ Aξαiξβi −

1

4vrcr2
AAαBABβ AξαIξβI . (204)

As in rather more conventional gauged models, the potential contains interesting informations,
and it may be very instructive to study its extrema in special cases.

The complete supersymmetry transformations of the fermi fields are

δψAµ = Dµ(ω̂)εA +
1

4
vrĤ

r
µνργ

νρεA − 3i

8
γµχ

MA(ε̄χM)− i

8
γνχMA(ε̄γµνχ

M)

+
i

16
γµνρχ

MA(ε̄γνρχM) +
9i

8
vrc

rztrz[λ
A(ε̄γµλ)]− i

8
vrc

rztrz[γµνλ
A(ε̄γνλ)]

+
i

16
vrc

rztrz[γ
νρλA(ε̄γµνρλ)]− δφαAAαBψBµ ,

δχMA =
i

2
xMr ( ˆ∂µvr)γ

µεA +
i

12
xMr Ĥ

r
µνργ

µνρεA − 1

2
xMr c

rztrz[γµλ
A(ε̄γµλ)]− δφαAAαBχMB ,

δΨa = iγµεAV
aA
α

ˆDµφα − δφαAaαbΨb ,

δλA = − 1

2
√

2
F̂µνγ

µνεA − xMr c
rz

2vscsz
(χ̄Mλ)εA − xMr c

rz

4vscsz
(χ̄Mε)λA

+
xMr c

rz

8vscsz
(χ̄Mγµνε)γ

µνλA − δφαAAαBλB (z 6= 1, 2) ,

δλiA = − 1

2
√

2
F̂ i
µνγ

µνεA − xMr c
r1

2vscs1
(χ̄Mλi)εA − xMr c

r1

4vscs1
(χ̄Mε)λiA

+
xMr c

r1

8vscs1
(χ̄Mγµνε)γ

µνλiA − δφαAAαBλiB −
1√

2vrcr1
AAαBξαiεB ,

δλIA = − 1

2
√

2
F̂ I
µνγ

µνεA − xMr c
r2

2vscs2
(χ̄MλI)εA − xMr c

r2

4vscs2
(χ̄Mε)λIA

+
xMr c

r2

8vscs2
(χ̄Mγµνε)γ

µνλIA − δφαAAαBλIB −
1√

2vrcr2
AAαBξαIεB . (205)

We now want to extend the results to all orders in the fermi fields. First of all, we define the
supercovariant quantities

ω̂µνρ = ω0
µνρ −

i

2
(ψ̄µγνψρ + ψ̄νγρψµ + ψ̄νγµψρ) ,

Ĥr
µνρ = Hr

µνρ −
1

2
xMr(χ̄Mγµνψρ + χ̄Mγνρψµ + χ̄Mγρµψν)

− i
2
vr(ψ̄µγνψρ + ψ̄νγρψµ + ψ̄ργµψν) ,

ˆ∂µvr = ∂µv
r − xMr(χ̄Mψµ) , ˆDµφα = Dµφ

a − V α
aA(ψ̄AµΨa) ,

F̂µν = Fµν +
i√
2

(λ̄γµψν)−
i√
2

(λ̄γνψµ) , (206)
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and require that the transformation rules for the fermi fields be supercovariant. All fermionic
terms in the supersymmetry transformations of the fermi fields that are not determined by
supercovariance are then obtained requiring the closure of the supersymmetry algebra on bose
and fermi fields. Moreover, since the supersymmetry algebra on the fermi fields closes only on-
shell, in this way one can determine the complete fermionic field equations, and from these the
complete lagrangian, up to some subtleties related to the (anti)self-dual forms.

One can compute the commutators of two supersymmetry transformations on the bose fields
using these relations, and show that they generate the local symmetries:

[δ1, δ2] = δgct + δLorentz + δsusy + δtens + δgauge + δSO(n) , (207)

where the parameters of generic coordinate, local Lorentz, supersymmetry, tensor gauge, vector
gauge and composite SO(n) transformations are respectively

ξµ = −i(ε̄1γµε2) ,

Ωmn = −iξµ(ω̂µ
mn − vrĤr

µ
mn)− 1

2
[(χ̄Mε1)(ε̄2γ

mnχM)− (χ̄Mε2)(ε̄1γ
mnχM)]

−vrcrztrz[(ε̄1γmλ)(ε̄2γ
nλ)− (ε̄2γ

mλ)(ε̄1γ
nλ)] ,

ζA = ξµψAµ + V α
aCAAαBεB2 (ε̄C1 Ψa)− V α

aCAAαBεB1 (ε̄C2 Ψa) ,

Λr
µ = −1

2
vrξµ − ξνBr

µν ,

Λ = ξµAµ ,

AMN = ξµxMr(∂µx
N
r ) + (χ̄Mε2)(χ̄Nε1)− (χ̄Mε1)(χ̄Nε2) . (208)

In order to prove this result, one has to use the (anti)self-duality condition for the tensor fields,
that to all orders in the fermi fields is

GrsĤs
µνρ =

1

6e
εµνρσδτĤσδτ

r (209)

in terms of the 3-forms

Ĥr
µνρ = Ĥr

µνρ −
i

8
vr(χ̄Mγµνρχ

M) +
i

8
vr(Ψ̄aγµνρΨ

a)− i

4
crztrz(λ̄γµνρλ) . (210)

Requiring that the commutator of two supersymmetry transformations on the fermi fields close
on-shell then determines the complete fermi field equations. The equations obtained in this way
are

−iγµνρDν(ω̂)ψAρ −
i

4
vrĤ

r
νσδγ

µνργσδψAρ −
1

12
xMr Ĥ

rνρσγνρσγ
µχMA

+
1

2
xMr ( ˆ∂νvr)γ

νγµχMA +
3

2
γµνχMA(χ̄Mψν)−

1

4
γµνχMA(χ̄Mγνρψ

ρ)

+
1

4
γνρχ

MA(χ̄Mγµνψρ)− 1

2
χMA(χ̄Mγµνψν)− ivrcrz trz[−

1√
2
γνργµλAF̂νρ

+
3i

4
γµνρλA(ψ̄νγρλ)− i

2
γµλA(ψ̄νγ

νλ) +
i

2
γνλA(ψ̄νγ

µλ) +
i

4
γρλ

A(ψ̄νγ
µνρλ)]

− i
2
xMr c

rz trz[γνλ
A(χ̄Mγνγµλ)]− V aA

α
ˆDνφαγ

νγµΨa

+
i√
2
AaαBξαiγµλiB = 0 (211)
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for the gravitino,

iγµDµ(ω̂)χMA − i

12
vrĤ

r
µνργ

µνρχMA +
1

12
xMr Ĥ

r
µνργ

σγµνρψAσ +
1

2
xMr ( ˆ∂νvr)γ

µγνψAµ

+
1√
2
xMr c

rz trz(F̂µνγ
µνλA)− i

2
xMr c

rz trz[γ
µγνλA(ψ̄µγνλ)] +

1

2
γµχNA(χ̄Nγµχ

M)

−3

8
vrc

rz trz[(χ̄
Mγµνλ)γµνλA]− 1

4
vrc

rz trz[(χ̄
Mλ)λA]

−3

2

xMr c
rzxNs c

sz

vtctz
trz[(χ̄

Nλ)λA] +
1

4

xMr c
rzxNs c

sz

vtctz
trz[(χ̄

Nγµνλ)γµνλA]

− xMr c
r1

√
2vscs1

AAαBξαiλiB = 0 (212)

for the tensorinos, and

iγµDµ(ω̂)Ψa +
i

12
vrĤ

r
µνργ

µνρΨa + γµγνψµAV
aA
α

ˆDνφα −
1

48
vrc

rz trz(λ̄γµνρλ)γµνρΨa

+
1

12
ΩabcdγµΨb(Ψ̄cγµΨd) +

√
2V aA

α ξαiλiA = 0 (213)

for the hyperinos.

9.3 Wess-Zumino Consistency Conditions

In general, the Wess-Zumino consistency conditions follow from the requirement that the symme-
try algebra be realized on the effective action. For locally supersymmetric theories this implies

δΛ1AΛ2 − δΛ2AΛ1 = A[Λ1,Λ2] , δεAΛ = δΛAε , δε1Aε2 − δε2Aε1 = Aε̃ +AΛ̃ , (214)

where only gauge and supersymmetry anomalies are considered, and where ε̃ and Λ̃ are the
parameters of supersymmetry and gauge transformations determined by the supersymmetry al-
gebra.

The operator d̂ makes it possible to understand in a simple way why the Stora–Zumino descent
represents the most general non-trivial solution of the Wess–Zumino consistency condition (??).
For the case of gauge anomalies we are considering here, I(v) =

∫
tr(v a(A)), the latter reads

δv1

∫
tr(v2 a(A))− δv2

∫
tr(v1 a(A))−

∫
tr([v1, v2] a(A)) = 0 . (215)

The two transformations with parameters v1 and v2 can be incorporated into a family of trans-
formations parametrized by θ1 and θ2, with parameter v̂ = vαdθ

α. In this way, vα = g−1∂αg. At
θα = 0, g(x, 0) = 1 and therefore Ā(x, 0) = A(x) and F̄ (x, 0) = F (x). At that point, d̂ generates
ordinary gauge transformations on A and F , with d̂ = dθαδvα . The condition (215) can then be
multiplied by dθ1dθ2 and rewritten as∫

tr(v̂ d̂ a(A)) +

∫
tr(v̂2 a(A)) = 0 . (216)

In global supersymmetry the analysis is somewhat simpler, since the r.h.s. of the last of
(214) does not contain the (global) supersymmetry anomaly. Let us therefore begin by reviewing
the case of supersymmetric Yang-Mills theory in four dimensions. From the 6-form anomaly
polynomial

PA = I6 = trF 3 , (217)
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in the language of forms, one obtains the four-dimensional gauge anomaly

A(4)
Λ = tr[Λ(dA)2 +

ig

2
dΛA3] , (218)

and from (214) one can determine the form of the global supersymmetry anomaly. With the
classical lagrangian

LSYM = tr

[
−1

2
FµνF

µν + 2iλ̄γµDµλ

]
, (219)

and λ a right-handed Weyl spinor, the supersymmetry transformations are

δAµ =
i√
2

(ε̄γµλ− λ̄γµε) , δλ =
1

2
√

2
Fµνγ

µνε . (220)

The second of (214) (with Aε̃ absent in this global case), then determines the supersymmetry
anomaly up to terms cubic in λ,

A(4)
ε = tr[δεAA(dA) + δεA(dA)A− 3ig

2
δεAA

3] , (221)

and indeed
δε2A(4)

ε1
− δε1A(4)

ε2
= A(4)

Λ̃
+ 3tr[δε1Aδε2AF − δε2Aδε1AF ] . (222)

In order to compensate the second term in (222), one is to add to A(4)
ε the gauge-invariant term

∆A(4)
ε = − i

2
tr[δεAλ̄γ

(3)λ+ λ̄δεAγ
(3)λ] , (223)

so that A(4)
ε + ∆A(4)

ε is the proper global supersymmetry anomaly. Although the supersymmetry
algebra closes only on the field equation of λ, in four dimensions a simple dimensional counting
shows that (214) can not generate a term proportional to γµDµλ. Therefore, in this case the
Wess-Zumino consistency conditions close accidentally even off-shell.

9.4 Inclusion of Vector Multiplets

Up to now, we have always considered the case in which the gauge group is non-abelian. In
the abelian case, the couplings can actually have a more general form, since gauge invariance
allows non-diagonal kinetic and Chern-Simons terms, in which the constants crz are substituted
by generic symmetric matrices crIJ , with I, J running over the various U(1) factors. We now want
to generalize it to the case in which also charged hypermultiplets are present, and therefore we
will consider the gauging with respect to abelian subgroups of USp(2) × USp(2nH). There are
no subtleties when the symmetric matrices crIJ are diagonal, since in this situation the previous
results can be straightforwardly applied. We are thus interested in the case in which the crIJ can
not be simultaneously diagonalized. To this end, we will consider a model in which only these
abelian gauge groups are present.

We denote with AIµ, I = 1, ...,m, the set of abelian vectors, and the gauginos are correspond-
ingly denoted by λIA. We collect here only the final results, since the construction follows the
same lines as in the non-abelian case. All the field equations may then be derived from the
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lagrangian

e−1L = −1

4
R +

1

12
GrsH

rµνρHs
µνρ −

1

4
∂µv

r∂µvr −
1

4
vrc

rIJF I
µνF

Jµν

− 1

16e
εµνρσδτcIJr B

r
µνF

I
ρσF

J
δτ +

1

2
gαβ(φ)Dµφ

αDµφβ +
1

4
[(v · c)−1]IJAAαBABβ AξαIξβJ

− i
2

(ψ̄µγ
µνρDν [

1

2
(ω + ω̂)]ψρ)−

i

8
vr[H + Ĥ]rµνρ(ψ̄µγνψρ) +

i

48
vr[H + Ĥ]rρσδ(ψ̄µγ

µνρσδψν)

+
i

2
(χ̄MγµDµ(ω̂)χM)− i

24
vrĤ

r
µνρ(χ̄

MγµνρχM) +
1

4
xMr [∂νv

r + ˆ∂νvr](ψ̄µγ
νγµχM)

−1

8
xMr [H + Ĥ]rµνρ(ψ̄µγνρχ

M) +
1

24
xMr [H + Ĥ]rµνρ(ψ̄σγσµνρχ

M) +
i

2
(Ψ̄aγ

µDµ(ω̂)Ψa)

+
i

24
vrĤ

r
µνρ(Ψ̄aγ

µνρΨa)− 1

2
V aA
α [Dνφ

α + ˆDνφα](ψ̄µAγ
νγµΨa) +

i

2
vrc

rIJ(λ̄IγµDµ(ω̂)λJ)

+
i

24
xMr x

M
s Ĥ

r
µνρc

sIJ(λ̄IγµνρλJ) +
i

4
√

2
vrc

rIJ(F + F̂ )Iνρ(ψ̄µγ
νργµλJ)

+
1

2
√

2
xMr c

rIJ(χ̄MγµνλI)F̂ J
µν −

√
2V aA

α ξαI(λ̄IAΨa) +
i√
2
AAαBξαI(λ̄IAγµψBµ )

+
1√
2

[(v · c)−1(xM · c)]IJAAαBξαI(λ̄JAχMB) +
1

8
(χ̄MγµνρχM)(ψ̄µγνψρ)

−1

8
(χ̄MγµχN)(χ̄Mγµχ

N) +
1

8
(Ψ̄aγ

µνρΨa)(ψµγνψρ) +
1

48
Ωabcd(Ψ̄aγµΨb)(Ψ̄cγ

µΨd)

+
1

32
vrc

rIJ(λ̄Iγµνρλ
J)(χ̄MγµνρχM)− i

16
(χ̄Mγµνψρ)x

M
r c

rIJ(λ̄IγµνρλJ)

− i
4
xMr c

rIJ(χ̄MγµγνλI)(ψ̄µγνλ
J) +

1

8
(ψ̄µγνψρ)vrc

rIJ(λ̄IγµνρλJ)− 1

16
vrc

rIJ(χ̄MλI)(χ̄MλJ)

− 3

32
vrc

rIJ(χ̄Mγµνλ
I)(χ̄MγµνλJ) + [(xM · c)(v · c)−1(xN · c)]IJ [−1

4
(χ̄MλI)(χ̄NλJ)

+
1

16
(χ̄NγµνλI)(χ̄Mγµνλ

J)− 1

8
(χ̄NλI)(χ̄MλJ)] +

5

192
vrc

rIJ(λ̄Iγµνρλ
J)(Ψ̄aγ

µνρΨa)

−1

8
vrvsc

rIJcsKL(λ̄Iγµλ
K)(λ̄JγµλL) +

α

8
crIJcKLr (λ̄Iγµλ

K)(λ̄JγµλL)] . (224)

The variation of this lagrangian with respect to gauge transformations gives the abelian gauge
anomaly

AΛ = − 1

32
εµνρσδτcIJr c

rKLΛIF J
µνF

K
ρσF

L
δτ , (225)

Once again, in the case of the gauginos, aside from local symmetry transformations and
field equations, the commutator of two supersymmetry transformations generates the additional
two-cocycle

δ(α)λ
I = [(v · c)−1cr]

IJcrKL[−1

8
(ε̄1γµλ

K)(ε̄2γνλ
L)γµνλJ − α

4
(λ̄Jγµλ

K)(ε̄1γνλ
L)γµνε2

+
α

32
(λ̄Jγµνρλ

K)(ε̄1γ
ρλL)γµνε2 +

α

32
(λ̄Jγρλ

K)(ε̄1γ
µνρλL)γµνε2

+
1− α

8
(λ̄Jγµλ

K)(ε̄1γ
µλL)ε2 − (1↔ 2)

+
1− α

32
(ε̄1γ

µε2)(λ̄Kγµνρλ
L)γνρλJ ] . (226)

The tensionless string phase transition point in the moduli space of the scalars in the tensor
multiplets now would correspond to the vanishing of some of the eigenvalues of the matrix
(v · c)IJ .
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In the general case variation with respect to the supersymmetry transformations

δeµ
m = −i(ε̄γmψµ) ,

δBr
µν = ivr(ψ̄[µγν]ε) +

1

2
xMr(χ̄Mγµνε) + 2crIJAI[µδA

J
ν] ,

δvr = xMr (ε̄χM) , δxMr = vr(ε̄χ
M) ,

δφα = V α
aA(ε̄AΨa) , δAIµ = − i√
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(ε̄γµλ

I) ,

δψAµ = Dµ(ω̂)εA +
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4
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µνργ

νρεA − 3i
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γµχ

MA(ε̄χM)− i

8
γνχMA(ε̄γµνχ

M)

+
i
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J) +

i
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rIJγµνλ
IA(ε̄γνλJ)

− i

32
vrc

rIJγνρλIA(ε̄γµνρλ
J)− δφαAAαBψBµ ,

δχMA =
i

2
xMr ( ˆ∂µvr)γ

µεA +
i
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xMr Ĥ

r
µνργ

µνρεA +
1

4
xMr c

rIJγµλ
IA(ε̄γµλJ)− δφαAAαBχMB ,

δΨa = iγµεAV
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α

ˆDµφα − δφαAaαbΨb ,

δλIA = − 1

2
√

2
F̂ I
µνγ

µνεA + [(v · c)−1(xM · c)]IJ [−1

2
(χ̄MλJ)εA − 1

4
(χ̄Mε)λJA

+
1

8
(χ̄Mγµνε)γ

µνλJA]− δφαAAαBλIB −
1√
2

[(v · c)−1]IJAAαBξαJεB (227)

gives the supersymmetry anomaly

Aε = cIJr c
rKL{− 1
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εµνρσδτδεA

I
µA

J
νF
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ρσF

L
δτ −
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8
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I
µF

J
νρA

K
σ F

L
δτ +

ie

8
δεA
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+
ie
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ie
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I
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K)FLµν +
e

128
δεeµ

m(λ̄IγµνρλJ)(λ̄Kγmνρλ
L)

− e

8
√

2
δεA

I
µ(λ̄JγµγνγρλK)(λ̄Lγνψρ)}+ ecIJr [cr(v · c)−1(xM · c)]KL{− i

4
√

2
δεA

I
µ(λ̄JγµλK)(χ̄MλL)

+
i

16
√

2
δεA

I
µ(λ̄JγµγνρλL)(χ̄Mγνρλ

K)− i

8
√

2
δεA

I
µ(λ̄JγµλL)(χ̄MλK)}

−ie
4
cIJr [(v · c)−1cr]KLδεA

I
µAAαBξαK(λ̄LAγ

µλJB)

+
α

8
cIJr c

rKLδε[e(λ̄
Iγµλ

K)(λ̄JγµλL)] . (228)

All the observations made for the non-abelian case are naturally valid also here: the theory
is obtained by the requirement that the Wess-Zumino conditions close on-shell, and, as we have
already shown, it is determined up to an arbitrary quartic coupling for the gauginos. In the case
of a single vector multiplet, in which this quartic coupling vanishes, the two-cocycle of (226) is
still present, although it is properly independent of α.

9.5 Covariant Anomaly

It is well known that consistent and covariant gauge anomalies are related by the divergence of
a local functional. In six dimensions the residual covariant gauge anomaly is

AcovΛ =
1

2
εµναβγδcrzcz

′

r trz(ΛFµν) trz′(F
′
αβF

′
γδ) , (229)
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and is related to the consistent anomaly by a local counterterm,

AconsΛ + tr[ΛDµf
µ] = AcovΛ , (230)

where

fµ = czrc
rz′{−1

4
εµναβγδAν trz′(F

′
αβF

′
γδ)−

1

6
εµναβγδFνα ω

′
βγδ} . (231)

Comparing (231) with (??) one can see that, to lowest order in the Fermi fields,

Aε = tr(δεAµf
µ) , (232)

and this implies that the transition from consistent to covariant anomalies turns a model with
a supersymmetry anomaly into another. Indeed, six-dimensional supergravity coupled to vector
and tensor multiplets was originally formulated in this fashion to lowest order in the Fermi fields.
The resulting vector equation is not integrable. Moreover, the corresponding gauge anomaly
is not the gauge variation of a local functional and does not satisfy Wess-Zumino consistency
conditions.

This result can be generalized naturally, if somewhat tediously, to include terms of all orders
in the Fermi fields. The complete supersymmetry anomaly of (??) has the form

Aε = tr(δεAµf
µ) + δεeµ

agµa , (233)

where to lowest order fµ is defined in (231). Modifying the vector equation so that

Aµ(cov) ≡ J µ
(cov) =

δL
δAµ
− fµ , (234)

and similarly for the Einstein equation, the resulting theory is supersymmetric but no longer
integrable. The covariant vector field equation is

J µ
(cov) = 2Dν(vrF

µν)− 2GrsĤ
sµνρFνρ −

i

2
vr(ψ̄αγ

αβµνρψβ)Fνρ +
i

2
vr(χ̄

mγµνρχm)Fνρ

−xMr (ψ̄αγ
αµνρχM)Fνρ − ixMr xMs csz

′
trz′(λ̄

′γµνρλ′)Fνρ + i
√

2Dν [vr(ψ̄ργ
µνγρλ)]

+
√

2Dν [x
M
r (χ̄Mγµνλ)]− i

2
Fνρc

z′

r trz′(λ̄
′γµνρλ′)− i

2
cz

′

r trz′ [(λ̄γ
µνρλ′)F ′νρ]

−icz′r [(λ̄γνλ
′)F ′µν ] +

1

2
√

2
cz

′

r trz′ [(λ̄γ
µγνγρλ′)(λ̄′γνψρ)]

+
xMs c

sz′

vtctz
′ c

z′

r trz′ [
3i

2
√

2
(λ̄γµλ′)(λ̄′χM) +

i

4
√

2
(λ̄γµνρλ′)(λ̄′γνρχ

M)

+
i

2
√

2
(λ̄γνλ

′)(λ̄′γµνχM)] + cz
′

r trz′ [iαF̂νρ(λ̄
′γµνρλ′)− iα(λ̄γµνρλ′)F̂ ′νρ

+6iα(λ̄γνλ′)F̂ ′µν ] + cz
′

r

xMs c
sz′

vtctz
′ trz′ [iα

√
2(λ̄γµλ′)(λ̄′χM)− iα

2
√

2
(λ̄γνρχ

M)(λ̄′γµνρλ′)]

+cz
′

r

xMs c
sz

vtctz
trz′ [−

iα√
2

(λ̄γµλ′)(λ̄′χM) +
iα

2
√

2
(λ̄γµνρλ′)(λ̄′γνρχ

M)

− iα√
2

(λ̄γνλ
′)(λ̄′γµνχM)] = 0 , (235)

and completes the results to all orders in the Fermi fields. Analogous to the consistent anomaly
the covariant anomaly is defined by the covariant divergence of the covariant current

tr(ΛDµJ µ
(cov)) = −AcovΛ , (236)
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where AcovΛ contains higher-order Fermi terms

AcovΛ = crzcz
′

r trz,z′{
1

2
εµναβγδ(ΛFµν)(F

′
αβF

′
γδ) + ieΛFνρ(λ̄

′γµνρDµλ
′) +

ie

2
ΛDµ(λ̄γµνρλ′)F ′νρ

+ieΛDµ[(λ̄γνλ
′)F ′µν ]− e

2
√

2
ΛDµ[(λ̄γµγνγρλ′)(λ̄′γνψρ)]

+eΛDµ{
xMs c

sz′

vtctz
′ [− 3i

2
√

2
(λ̄γµλ′)(λ̄′χM)− i

4
√

2
(λ̄γµνρλ′)(λ̄′γνρχ

M)

− i

2
√

2
(λ̄γνλ

′)(λ̄′γµνχM)]}+ eΛDµ[−iαF̂νρ(λ̄′γµνρλ′) + iα(λ̄γµνρλ′)F̂ ′νρ

−6iα(λ̄γνλ′)F̂ ′µν ] + eΛDµ{
xMs c

sz′

vtctz
′ [−iα

√
2(λ̄γµλ′)(λ̄′χM) +

iα

2
√

2
(λ̄γνρχ

M)(λ̄′γµνρλ′)]}

+eΛDµ{
xMs c

sz

vtctz
[
iα√

2
(λ̄γµλ′)(λ̄′χM)− iα

2
√

2
(λ̄γµνρλ′)(λ̄′γνρχ

M)

+
iα√

2
(λ̄γνλ

′)(λ̄′γµνχM)]}} . (237)

9.6 Gravitational Anomaly

The gauge anomaly AΛ = δΛL naturally satisfies the condition

AΛ = −tr(ΛDµJµ) , (238)

where Jµ = 0 is the complete field equation of the vector field. One can similarly show that the
supersymmetry anomaly is related to the field equation of the gravitino, that we write succinctly
J µ = 0, according to

Aε = −(ε̄DµJ µ) . (239)

We would like to stress that the Noether identities (238) and (239) relate the anomalies to the
equations of the fields whose transformations contain derivatives. This observation has a natural
application to gravitational anomalies, that we would now like to elucidate. In fact, in analogy
with the previous cases one would expect that

Aξ = δξL = 2ξµDνT µν , (240)

where the variation of the metric under general coordinate transformations is

δgµν = −ξα∂αgµν − gαν∂µξα − gµα∂νξα . (241)

Thus, for models without gravitational anomalies one would expect that the divergence of the
energy-momentum tensor vanish. Actually, this is no longer true if other anomalies are present,
since all fields, not only the metric, have derivative variations under coordinate transformations.
For instance, in a theory with gauge and supersymmetry anomalies, the gravitational anomaly
is actually

Aξ = δξL = 2ξνDµT
µν + ξν tr(AνDµJ

µ) + ξν(ψ̄
νDµJ µ) . (242)

In particular, in our case we are not accounting for gravitational anomalies, that would result
in higher-derivative couplings, and indeed one can verify that the divergence of the energy-
momentum tensor does not vanish, but satisfies the relation

DµT
µν = −1

2
tr(AνDµJ

µ)− 1

2
(ψ̄νDµJ µ) . (243)
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Finally, one can study the divergence of the Rarita-Schwinger and Einstein equations in the
covariant model. To this end, let us begin by stating that the derivation of Noether identities for
a system of non-integrable equations does not present difficulties of principle, since these involve
only first variations. Indeed, the only difference with respect to the standard case of integrable
equations is that now δL is not an exact differential in field space. Still, all invariance principles
reflect themselves in linear dependencies of the field equations. Thus, for instance, with the
covariant equations obtained from the consistent ones by the redefinition of (234) and by

(eq. eµa)(cov) =
δL
δeµa

− gµa , (244)

the total δεL vanishes by construction. The usual procedure then proves that the divergence of
the Rarita-Schwinger equation vanishes for any value of the parameter α. On the other hand,
the divergence of the energy-momentum tensor presents some subtleties that we would now like
to describe. In particular, it vanishes to lowest order in the fermi couplings, while it gives a
covariant non-vanishing result if all fermion couplings are taken into account. The subtlety has
to do with the transformation of the vector under general coordinate transformations,

δξAµ = −ξα∂αAµ − ∂µξαAα , (245)

and with the corresponding full form of the identity of (242). Starting again from the consistent
equations, one finds

Aξ = δξL = 2ξνDµT
µν + ξνtr(A

νDµJ
µ) + ξνtr(F

µνJµ) + ξν(Ψ̄
νDµJ µ) . (246)

Reverting to the covariant form eliminates the divergence of the Rarita-Schwinger equation and
alters the vector equation, so that the third term has to be retained. The final result is then

DµT
µν
(cov) = −1

2
tr(AνDµJ

µ
(cov))−

1

2
tr(fµF

µν)− 1

2
tr(AνDµf

µ)− 1

2
eνaDµg

µ
a , (247)

and is nicely verified by our equations. In particular, this implies that, to lowest order in the
fermi couplings, the divergence of T µν(cov) vanishes.

10 PST Construction

We have reviewed a number of properties of six-dimensional (1, 0) supergravity coupled to vector
and tensor multiplets. We have always confined our attention to the field equations, thus evading
the traditional difficulties met with the action principles for (anti)self-dual tensor fields. We would
like to complete our discussion, presenting an action principle for the consistent field equations.
What follows is an application of a general method introduced by Pasti, Sorokin and Tonin (PST),
that have shown how to obtain Lorentz-covariant Lagrangians for (anti)self-dual tensors with a
single auxiliary field. Alternative constructions, some of which preceded the work of PST, need
an infinite number of auxiliary fields, and bear a closer relationship to the BRST formulation of
closed-string spectra. This method has already been applied to a number of systems, including
(1, 0) six-dimensional supergravity coupled to tensor multiplets and type IIB ten-dimensional
supergravity, whose local gravitational anomaly has been shown to reproduce the well-known
results of Alvarez-Gaumé and Witten.

Let us begin by considering a single 2-form with a self-dual field strength in six-dimensional
Minkowski space. The PST lagrangian

L =
1

12
HµνρH

µνρ − 1

4(∂Ξ)2
∂µΞH−µνρH

−σνρ∂σΞ , (248)
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where H = dB and H− = H − ∗H, is invariant under the gauge transformation δB = dΛ, as
well as under the additional gauge transformations

δB = (dΞ)Λ′ (249)

and

δΞ = Λ′′ , δBµν =
Λ′′

(∂Ξ)2
H−µνρ∂

ρΞ . (250)

The last two types of gauge transformations can be used to recover the usual field equation of a
self-dual 2-form. Indeed, the scalar equation results from the tensor equation contracted with

H−µνρ∂
ρΞ

(∂Ξ)2
, (251)

and consequently does not introduce any additional degrees of freedom. The invariance of (250)
can then be used to eliminate the scalar field. This field can not be set to zero, since this choice
would clearly make the Lagrangian of (249) inconsistent. With this condition, using (249) one
can see that the only solution of the tensor equation is precisely the self-duality condition for its
field strength.

We now want to apply this construction to six-dimensional supergravity coupled to vector
and tensor multiplets. The theory describes a single self-dual 2-form

Ĥµνρ = vrĤ
r
µνρ −

i

8
(χ̄mγµνρχ

m) (252)

and n antiself-dual 2-forms

ĤM
µνρ = xMr Ĥ

r
µνρ +

i

4
xMr c

rz trz(λ̄γµνρλ) . (253)

The complete Lagrangian is obtained adding the term

−1

4

∂µΞ∂σΞ

(∂Ξ)2
[Ĥ−µνρĤ−σ νρ + ĤM+

µνρ ĤM+
σ
νρ] (254)

It can be shown that the 3-form

K̂µνρ = Ĥµνρ − 3
∂[µΞ∂σΞ

(∂Ξ)2
Ĥ−νρ]σ (255)

is identically self-dual, while the 3-forms

K̂M
µνρ = ĤM

µνρ − 3
∂[µΞ∂σΞ

(∂Ξ)2
ĤM+
νρ]σ (256)

are identically antiself-dual. With these definitions, we can display rather simply the complete
supersymmetry transformations of the fields. Actually, only the transformations of the gravitino
and of the tensorinos are affected, and become

δψµ = D̂µε+
1

4
K̂µνργ

νρε+
i

32
(χ̄Mγµνρχ

M)γνρε− 3i

8
(ε̄χM)γµχ

M

− i
8

(ε̄γµνχ
M)γνχM +

i

16
(ε̄γνρχM)γµνρχ

M − 9i

8
vrc

rz trz[(ε̄γµλ)λ]

+
i

8
vrc

rz trz[(ε̄γ
νλ)γµνλ]− i

16
vrc

rz trz[(ε̄γµνρλ)γνρλ] ,

δχM =
i

2
xMr

ˆ∂µvrγ
µε+

i

12
K̂M
µνργ

µνρε+
1

2
xMr c

rz trz[(ε̄γµλ)γµλ] , (257)
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while the scalar field Ξ is invariant under supersymmetry. It can be shown that the complete
lagrangian transforms under supersymmetry as dictated by the Wess-Zumino consistency condi-
tions.

We now turn to describe the corresponding modifications of the supersymmetry algebra. In
addition to general coordinate, gauge and supersymmetry transformations, the commutator of
two supersymmetry transformations on Br

µν now generates two local PST transformations with
parameters

Λ′rµ =
∂σΞ

(∂Ξ)2
(vrĤ−σµρ − xMr ĤM+

σµρ )ξρ , Λ = ξµ∂µΞ . (258)

The transformation of (320) on the scalar field φ is opposite to its coordinate transformation,
and this gives an interpretation of the corresponding commutator

[δ1, δ2]Ξ = δgctΞ + δPSTΞ = 0 , (259)

that vanishes consistently with the invariance of Ξ under supersymmetry. Finally, the com-
mutator on the vielbein determines the parameter of the local Lorentz transformation, that is
now

Ωmn = −ξν(ωνmn − K̂νmn −
i

8
(χ̄Mγνmnχ

M)) +
1

2
(χ̄Mε1)(χ̄Mγmnε2)

−1

2
(χ̄Mε2)(χ̄Mγmnε1) + vrc

rz trz[(ε̄1γmλ)(ε̄2γnλ)− (ε̄2γmλ)(ε̄1γnλ)] . (260)

All other parameters remain unchanged while the algebra closes on-shell on the modified field
equations of the Fermi fields.

For completeness, we conclude by displaying the lagrangian of six-dimensional supergravity
coupled to vector and tensor multiplets with the inclusion of the PST term,

e−1L = −1

4
R +

1

12
GrsH

rµνρHs
µνρ −

1

4
∂µv

r∂µvr −
1

2
vrc
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− 1

8e
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r
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i

2
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2
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i

8
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+
i
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xMr [H + Ĥ]rµνρ(ψ̄µγνρχ

M)

+
1

24
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M) + ivrc
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i

2
√

2
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+
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µνρλ)
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rzcsz
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trz,z′ [(λ̄γµλ

′)(λ̄γµλ′)] +
α

2
crzcz

′

r trz,z′ [(λ̄γµλ
′)(λ̄γµλ′)]

−∂
µΞ∂σΞ

4(∂Ξ)2
[Ĥ−µνρĤ−σ νρ + ĤM+

µνρ ĤM+
σ
νρ] , (261)
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where α is the coefficient of the quartic coupling for the gauginos, and the corresponding super-
symmetry transformations

δeµ
m = −i(ε̄γmψµ) ,

δBr
µν = ivr(ψ̄[µγν]ε) +

1

2
xMr(χ̄Mγµνε)− 2crz trz(A[µδAν]) ,

δvr = xMr (χ̄Mε) ,

δAµ = − i√
2

(ε̄γµλ) ,

δψµ = D̂µε+
1

4
K̂µνργ

νρε+
i

32
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M)γνρε− 3i

8
(ε̄χM)γµχ

M

− i
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(ε̄γµνχ
M)γνχM +

i

16
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M − 9i

8
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rz trz[(ε̄γµλ)λ]

+
i

8
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rz trz[(ε̄γ
νλ)γµνλ]− i

16
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rz trz[(ε̄γµνρλ)γνρλ] ,

δχM =
i

2
xMr

ˆ∂µvrγ
µε+

i

12
K̂M
µνργ

µνρε+
1

2
xMr c

rz trz[(ε̄γµλ)γµλ] ,

δλ = − 1

2
√

2
F̂µνγ

µνε− 1

2

xMr c
rz

vscsz
(χ̄Mλ)ε− 1

4

xMr c
rz

vscsz
(χ̄Mε)λ

+
1

8

xMr c
rz

vscsz
(χ̄Mγµνε)γ

µνλ . (262)

We want now to apply to our case the general method introduced by Pasti, Sorokin and Tonin
for obtaining Lorentz-covariant lagrangians for (anti)self-dual tensors using a single auxiliary field.
Our theory describes a single self-dual 3-form

Ĥµνρ = vrĤ
r
µνρ −

i

8
(χ̄Mγµνρχ

M) +
i

8
(Ψ̄aγµνρΨ

a) (263)

and nT antiself-dual 3-forms

ĤM
µνρ = xMr Ĥ

r
µνρ −

i

4
xMr c

rztrz(λ̄γµνρλ) . (264)

The complete Lagrangian is obtained adding to (??) the term

−∂
µφ∂σφ

4(∂φ)2
[Ĥ−µνρĤ−σ νρ + ĤM+

µνρ ĤM+
σ
νρ] , (265)

where φ is an auxiliary field and H± = H ± ∗H. The resulting lagrangian is invariant under the
additional gauge transformations

δBr
µν = (∂µφ)Λr

ν − (∂νφ)Λr
µ (266)

and

δφ = Λ , δBr
µν =

Λ

(∂φ)2
[vrĤ−µνρ − xMrĤM+

µνρ ]∂ρφ , (267)

used to recover the usual field equations for (anti)self-dual forms. The 3-form

K̂µνρ = Ĥµνρ − 3
∂[µφ∂

σφ

(∂φ)2
Ĥ−νρ]σ (268)
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is identically self-dual, while the 3-forms

K̂M
µνρ = ĤM

µνρ − 3
∂[µφ∂

σφ

(∂φ)2
ĤM+
νρ]σ (269)

are identically antiself-dual. In order to obtain the complete supersymmetry transformations,
we have to substitute Ĥ with K̂ in the transformation of the gravitino and ĤM with K̂M in
the transformations of the tensorinos. Moreover, the auxiliary scalar is invariant under super-
symmetry. It can be shown that the complete lagrangian transforms under supersymmetry as
dictated by the Wess-Zumino consistency conditions. The commutator of two supersymmetry
transformations on Br

µν now generates the local PST transformations with parameters

Λrµ =
∂σφ

(∂φ)2
(vrĤ−σµν − xMr ĤM+

σµν )ξν , Λ = ξµ∂µφ , (270)

while in the parameter of the local Lorentz transformation the term Ĥ is replaced by K̂. All
other parameters remain unchanged.

It would be interesting to study in some detail the vacua of the lagrangian (??), analyzing the
extrema of the potential (204). As a simple example, consider the model without hypermultiplets,
in which one can gauge the global R-symmetry group USp(2) of the theory. Formally, the gauged
theory without hypermultiplets is obtained from the theory described previously putting nH = 0
and making the identification

AAαBξαi → −T iAB , (271)

where T i are the anti-hermitian generators of USp(2). This corresponds to the replacement of the
previous couplings between gauge fields and spinors, dressed by the scalars in the case nH 6= 0,
with ordinary minimal couplings

Dµφ
αAAαBεB → AAµBε

B . (272)

Implementing this identification gives in this case the positive-definite potential

V =
3

8vrcr1
(273)

for the scalars in the tensor multiplets. One would thus expect that in these models super-
symmetry be spontaneously broken. Notice that this potential diverges at the tensionless string
phase transition point. Similarly, one could try to study explicitly the behavior of the potential
in simple models containing charged hypermultiplets. Their dimensional reduction gives N = 2
supergravity coupled to vector and hypermultiplets in five dimensions, and in the context of
the AdS/CFT correspondence and its generalizations there is a renewed interest in studying the
explicit gauging of these five-dimensional models.

11 Geometric Couplings in Six-Dimensional Models

We construct the low-energy couplings for six-dimensional type-I models with brane supersym-
metry breaking. All the features of brane supersymmetry breaking are present in the T 4/Z2

orientifold, where a change of the orientifold projection leads to D9 branes and D̄5 branes. The
spectrum has (1, 0) supersymmetry in the closed and 9-9 sectors, while supersymmetry is bro-
ken in the 9-5̄ and 5̄-5̄ sectors. The gauge group is SO(16) × SO(16) on the D9 branes and
USp(16) × USp(16) on the D̄5 branes, if all the D̄5 branes are at a fixed point. One of the
peculiar features of low-energy effective actions for six-dimensional type-I models with minimal
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supersymmetry is the fact that they embody reducible gauge and supersymmetry anomalies, to
be canceled by fermion loops. Consequently, the Lagrangian is determined imposing the closure of
the Wess-Zumino consistency conditions, rather than by the requirement of supersymmetry. We
use the notations of the previous chapter, and we denote the vector multiplet from the 9-9 sector
as A

(9)
µ , λ(9)A Denoting with Φᾱ (ᾱ = 1, ..., nT ) the scalars in the tensor multiplets, parametrizing

the coset SO(1, nT )/SO(nT ), the vielbein V M
ᾱ of the internal manifold is related to vr and xMr

of (187) by
V M
ᾱ = vr∂ᾱx

M
r , (274)

where ∂ᾱ = ∂/∂Φᾱ. The metric of the internal manifold is gᾱβ̄ = V M
ᾱ V M

β̄
.

Denoting with A
(9)i
µ the gauge fields under which the hypermultiplets are charged. The index

i runs in the adjoint representation of the gauge group under the gauge transformations

δA(9)i
µ = DµΛ(9)i (275)

the scalars transform as
δφα = Λ(9)iξαi , (276)

where ξαi are the Killing vectors corresponding to the isometry that we are gauging. The covariant
derivative for the scalars is then

Dµφ
α = ∂µφ

α − A(9)i
µ ξαi . (277)

The covariant derivatives for the gauginos λ(9)iA are

Dµλ
(9)iA = ∂µλ

(9)iA +
1

4
ωµmnγ

mnλ(9)iA +Dµφ
αAAαBλ(9)iB + f ijkA(9)j

µ λ(9)kA , (278)

where f ijk are the structure constants of the group.
We use the method of Pasti, Sorokin and Tonin (PST) in order to write a covariant action

for fields that satisfy self-duality conditions. For a self-dual 3-form in six dimensions the PST
action

LPST =
1

12
HµνρH

µνρ − 1

4

∂µΞ∂σΞ

(∂Ξ)2
H−µνρH

−
σ
νρ , (279)

where H− = H − ∗H and Ξ is a scalar auxiliary field, is invariant under the standard gauge
transformations for a 2-form,

δB = dΛ, (280)

and under the additional PST gauge transformations

δBµν = (∂µΞ)Λν − (∂νΞ)Λµ (281)

and

δΞ = Λ , δBµν =
Λ

(∂Ξ)2
H−µνρ∂

ρΞ . (282)

We have a single self-dual 3-form and nT antiself-dual 3-forms. These forms are obtained dressing
with the scalars in the tensor multiplets the 3-forms

Hr = dBr − crzω(9)z , (283)

where the index z runs over the various semi-simple factors of the gauge group in the 9-9 sector,
ω is the Chern-Simons 3-form and the c’s are constants. We denote with z = 1 the group under
which the hypermultiplets are charged. More precisely, the combinations

Hµνρ = vrH
r
µνρ (284)
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and
HM
µνρ = xMr H

r
µνρ (285)

are respectively self-dual and antiself-dual, to lowest order in the Fermi fields, although in the
complete lagrangian these conditions are modified by the inclusion of fermionic bilinears. As in
ten dimensions, the gauge invariance of Hr in (283) implies that Br vary as

δBr = crz trz(Λ
(9)dA(9)) (286)

under gauge transformations.
To lowest order in the Fermi fields, the Lagrangian describing the coupling of the supergravity

multiplet to nT tensor multiplets, vector multiplets and nH hypermultiplets is

e−1LSUSY = −1

4
R +

1

12
GrsH

rµνρHs
µνρ +

1

4
gᾱβ̄∂µΦᾱ∂µΦβ̄ − 1

2
vrc

rz trz(F (9)
µν F (9)µν)

−∂
µΞ∂σΞ

4(∂Ξ)2
[H−µνρH−σ νρ +HM+

µνρHM+
σ
νρ]− 1

8e
εµνρσδτBr

µνc
z
r trz(F (9)

ρσ F
(9)
δτ )

+
1

2
gαβ(φ)Dµφ

αDµφβ +
1

4vrcr1
AAαBABβ Aξαiξβi −

i

2
(ψ̄µγ

µνρDνψρ)

− i
2
vrH

rµνρ(ψ̄µγνψρ) +
i

2
(χ̄MγµDµχ

M)− i

24
vrH

r
µνρ(χ̄

MγµνρχM)

+
1

2
xMr ∂νv

r(ψ̄µγ
νγµχM)− 1

2
xMr H

rµνρ(ψ̄µγνρχ
M) +

i

2
(Ψ̄aγ

µDµΨa)

+
i

24
vrH

r
µνρ(Ψ̄aγ

µνρΨa)− V aA
α Dνφ

α(ψ̄µAγ
νγµΨa) + ivrc

rz trz(λ̄
(9)γµDµλ

(9))

+
i√
2
vrc

rz trz[F (9)
νρ (ψ̄µγ

νργµλ(9))] +
1√
2
xMr c

rz trz[F (9)
µν (χ̄Mγµνλ(9))]

− i

12
czrH

r
µνρ trz(λ̄

(9)γµνρλ(9))−
√

2V aA
α ξαi(λ̄

(9)i
A Ψa)

+
i√
2
AAαBξαi(λ̄

(9)i
A γµψBµ ) +

1√
2
AAαB

xMr c
r1

vscs1
ξαi(λ̄

(9)i
A χMB) , (287)

where Grs = vrvs + xMr x
M
s , while

Hµνρ = vrH
r
µνρ −

3i

2
(ψ̄[µγνψρ])−

i

8
(χ̄Mγµνρχ

M) +
i

8
(Ψ̄aγµνρΨ

a) (288)

and

HM
µνρ = xMr H

r
µνρ +

3

2
(χ̄Mγ[µνψρ]) +

i

4
xMr c

rz trz(λ̄
(9)γµνρλ

(9)) (289)

satisfy on-shell self-duality and antiself-duality conditions, respectively. Finally, Ξ is the PST
auxiliary field.

Due to (286), the Wess-Zumino term B∧F ∧F is not gauge invariant, and thus the variation
of (287) under gauge transformations produces the consistent gauge anomaly

AΛ = −1

4
εµνρσδτczrc

rz′ trz(Λ
(9)∂µA

(9)
ν ) trz′(F

(9)
ρσ F

(9)
δτ ) , (290)

related by the Wess-Zumino conditions to the supersymmetry anomaly

Aε = εµνρσδτczrc
rz′ [−1

4
trz(δεA

(9)
µ A(9)

ν ) trz′(F
(9)
ρσ F

(9)
δτ )− 1

6
trz(δεA

(9)
µ F (9)

νρ )ω
(9)z′

σδτ ] , (291)
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that one can recover varying the Lagrangian of (287) under the supersymmetry transformations

δeµ
m = −i(ε̄γmψµ) ,

δBr
µν = ivr(ψ̄[µγν]ε) +

1

2
xMr(χ̄Mγµνε)− 2crz trz(A

(9)
[µ δA

(9)
ν] ) ,

δΦᾱ = V ᾱM(χ̄Mε) ,

δφα = V α
aA(ε̄AΨa) ,

δΞ = 0 ,

δA(9)
µ = − i√

2
(ε̄γµλ

(9)) ,

δψAµ = Dµε
A +

1

4
Kµνργ

νρεA ,

δχMA = − i
2
V M
ᾱ ∂µΦᾱγµεA +

i

12
KM
µνργ

µνρεA ,

δΨa = iγµεAV
aA
α Dµφ

α ,

δλ(9)A = − 1

2
√

2
F (9)
µν γ

µνεA (z 6= 1) ,

δλ(9)iA = − 1

2
√

2
F (9)i
µν γ

µνεA − 1√
2vrcr1

AAαBξαiεB (292)

where

Kµνρ = Hµνρ − 3
∂[µΞ∂σΞ

(∂Ξ)2
H−σνρ] , KM

µνρ = HM
µνρ − 3

∂[µΞ∂σΞ

(∂Ξ)2
HM+
σνρ] (293)

are identically self-dual and antiself-dual, respectively. In the complete theory, the anomalous
terms would be exactly canceled by the anomalous contributions of fermion loops.

Following the same reasoning as for the ten dimensional case, we can describe the couplings
to non-supersymmetric matter requiring that local supersymmetry be non-linearly realized on
the D̄5-branes, and requiring that the supersymmetry variation of the non-supersymmetric fields
be as in (??). The supersymmetry variation of the dressed scalars in the tensor multiplets is

Φ̂ᾱ = Φᾱ − V ᾱM(θ̄χM) +
i

24
V ᾱMxMr H

r
µνρ(θ̄γ

µνρθ) (294)

is a general coordinate transformation of parameter

ξµ = − i
2

(θ̄γµε) . (295)

This definition of Φ̂ then induces the corresponding dressing

v̂r = vr − xMr(θ̄χM)− i

24
Hr
µνρ(θ̄γ

µνρθ) , (296)

and, in a similar fashion, the supersymmetry transformation of

φ̂α = φα − V α
aA(θ̄AΨa)− i

2
VβaAV

αaB(θ̄AγµθB)Dµφ
β (297)

is again a coordinate transformation with the same parameter, together with an additional gauge
transformation of parameter

Λ(9) = ξµA(9)
µ . (298)
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Similarly, the supersymmetry variation of

êµ
m = eµ

m + i(θ̄γmψµ)− i

2
(θ̄γmDµθ)−

i

8
vrH

r
µνρ(θ̄γ

mνρθ) (299)

contains also an additional local Lorentz transformation of parameter

Λmn = −ξµ[ωµ
mn − vrHr

µ
mn] (300)

where ω denotes the spin connection. Since the scalars in the non-supersymmetric 9-5̄ sector are
charged with respect to the vectors in the 9-9 sector, we define also

Â(9)
µ = A(9)

µ +
i√
2

(θ̄γµλ
(9)) +

i

8
F (9)νρ(θ̄γµνρθ) (z 6= 1) ,

Â(9)i
µ = A(9)i

µ +
i√
2

(θ̄γµλ
(9)i) +

i

8
F (9)iνρ(θ̄γµνρθ) +

i

4vrcr1
AAαBξαi(θ̄AγµθB) , (301)

whose supersymmetry transformation is a general coordinate transformation of parameter as
in (295), aside from a gauge transformation of parameter as in (298). If one requires that the

supersymmetry variation of the vector A
(5)
µ from the non-supersymmetric 5̄-5̄ sector be

δA(5)
µ = F (5)

µν ξ
ν , (302)

namely a general coordinate transformation together with a gauge transformation of parameter

Λ(5) = ξµA(5)
µ , (303)

one obtains a supersymmetrization of the kinetic term for A
(5)
µ writing

−1

2
êv̂rcwr trw(F (5)

µν F (5)
ρσ )ĝµρĝνσ , (304)

where
ĝµν = êµ

mêνm , (305)

and the index w runs over the various semi-simple factors of the gauge group in the 5̄-5̄ sector.
In analogy with the ten-dimensional case, the uncanceled NS-NS tadpole translates, in the low-
energy theory, in the presence of a term

−Λêf(Φ̂ᾱ, φ̂α) , (306)

that depends on the scalars of the closed sector and contains the dilaton, that belongs to a
hypermultiplet in type-I vacua. Thus, supersymmetry breaking naturally corresponds in this
case also to a breaking of the isometries of the scalar manifolds.

Denoting with S the scalars in the 9-5̄ sector, charged with respect to the gauge fields in both
the 9-9 and 5̄-5̄ sectors, we define their covariant derivative as

D̂µS = ∂µS − iÂ(9)
µ S − iA(5)

µ S , (307)

so that the term
1

2
ê(D̂µS)†(D̂νS)ĝµν (308)

is supersymmetric, if again the supersymmetry transformation of S is a general coordinate
transformation, together with a gauge transformation of the right parameters. As in the ten-
dimensional case, if one considers terms up to quartic couplings in the fermionic fields, one
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does not have to supersymmetrize terms that are quadratic in the additional fermions from the
non-supersymmetric 5̄-5̄ and 9-5̄ sectors. Denoting with λ(5) these fermions, the coupling of
λ(5)2 to the 3-forms is not determined by supersymmetry, and can only be determined by string
considerations.

The inclusion of additional non-supersymmetric vectors modifies Hr, that now includes the
Chern-Simons 3-forms corresponding to these fields, so that (283) becomes

Hr = dBr − crzω(9)z − crwω(5)w . (309)

The gauge invariance of Hr then requires that

δBr = crw trw(Λ(5)dA(5)) (310)

under gauge transformations in the 5̄-5̄ sector. Consequently, the supersymmetry transformation
of Br is also modified, and becomes

δBr
µν = ivr(ψ̄[µγν]ε) +

1

2
xMr(χ̄Mγµνε)− 2crz trz(A

(9)
[µ δA

(9)
ν] )− 2crw trw(A

(5)
[µ δA

(5)
ν] ) . (311)

The complete reducible gauge anomaly

AΛ = −1
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εµνρσδτ{czrcrz
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ρσ F
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rw′
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ρσ F
(5)
δτ )} , (312)

related by the Wess-Zumino conditions to the supersymmetry anomaly

Aε = εµνρσδτ{czrcrz
′
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trz(δεA
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6
trz(δεA

(9)
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σδτ ]

+czrc
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(5)
δτ )− 1
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trw(δεA

(5)
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νρ )ω
(5)w′

σδτ ]} , (313)

is induced by the Wess-Zumino term

−1

8
εµνρσδτBr

µνc
w
r trw(F (5)

ρσ F
(5)
δτ ) . (314)

It should be noticed that, as in the case of linearly realized supersymmetry, (312) and (313)
satisfy the Wess-Zumino condition

δΛAε = δεAΛ , (315)

since the explicit form of the gauge field supersymmetry variation plays no role in its proof. We
expect that, to higher order in the fermions, the supersymmetry anomaly will be modified by
gauge-invariant terms. From the definition of Hr, one can deduce the Bianchi identities

∂[µH
r
νρσ] = −3

2
crz trz(F (9)

[µνF
(9)
ρσ])−

3

2
crw trw(F (5)

[µνF
(5)
ρσ]) . (316)

We now want to determine the terms proportional to F ∧ F containing the goldstino that
one has to add for the consistency of the model. Unlike the ten dimensional case, where duality
maps the 2-form theory with Chern-Simons couplings to the 6-form theory with Wess-Zumino
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couplings, in this case the low-energy effective action contains both Chern-Simons and Wess-
Zumino couplings. First of all, we observe that for the quantity

B̂r
µν = Br

µν − ivr(ψ̄[µγν]θ)−
1

2
xMr(χ̄Mγµνθ)−

2i√
2
crz trz[A

(9)
[µ (θ̄γν]λ

(9))]

+
i

8
(∂ρv

r)(θ̄γµν
ρθ) +

i

8
xMrHM

[µ
ρσ(θ̄γν]ρσθ) +

i

2
vr(θ̄γ[µDν]θ)

− i

4
crz trz[A

(9)
[µ F

(9)ρσ](θ̄γν]ρσθ)−
icr1

4vscs1
AAαBξαiA

(9)i
[µ (θ̄Aγν]θ

B) (317)

the supersymmetry variation is a general coordinate transformation of the correct parameter,
together with an additional tensor gauge transformation of parameter

Λr
µ = −1

2
vrξµ − ξνBr

µν , (318)

as well as PST gauge transformations of parameters

Λ(PST )r
µ =

∂σΞ

(∂Ξ)2
[vrvsH

s−
σµρ − xMrxMs H

s+
σµρ]ξ

ρ (319)

and
Λ(PST ) = ξµ∂µΞ (320)

and gauge transformations of the form (286) and (310) whose parameters are as in (298) and (303).
We should now consider all the terms proportional to F ∧F that arise, those directly introduced
by the inclusion of the Chern-Simons 3-form for the fields in the 5̄-5̄ sector, those originating
from the consequent modification of the Bianchi identities, and finally those introduced by the
variation of the Wess-Zumino term.

The end result is that the variation of all these contributions gives

δL = εµνρσδτ{− i
4
vr(ε̄γµψν) +

1

8
xMr (ε̄γµνχ

M)}crw trw(F (5)
ρσ F

(5)
δτ )

− 2vrc
rw trw(δA(5)

µ F (5)
νρ )Kµνρ − 2xMr c

rw trw(δA(5)
µ F (5)

νρ )KMµνρ . (321)

The first two terms are canceled by the goldstino variation in the additional couplings

L′ = εµνρσδτ{ i
4
vr(θ̄γµψν)−

1

8
xMr (θ̄γµνχ

M)}crw trw(F (5)
ρσ F

(5)
δτ ) , (322)

where, however, the variations of the gravitino and the tensorinos produce additional terms.
Some of these cancel the last two terms in (321), while the remaining ones are canceled by the
goldstino variation in

L′′ = εµνρσδτ{− i

32
∂ρvr(θ̄γµνρθ)−

i

8
vr(θ̄γµDνθ)−

i

32
xMr K

M
µ
αβ(θ̄γναβθ)}crw trw(F (5)

ρσ F
(5)
δτ ) . (323)

If one restricts the attention to terms up to quartic fermion couplings, no further contributions
are produced. We can thus conclude that the non-linear realization of supersymmetry is granted
by the inclusion of L′ and L′′ in the low-energy effective action. From (317) we also see that
these two contributions can be written in the compact form

L′ + L′′ = −1

4
εµνρσδτBrµνcwr trw(F (5)

ρσ F
(5)
δτ ) , (324)
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where

Brµν = −ivr(ψ̄[µγν]θ)−
1

2
xMr(χ̄Mγµνθ)−

2i√
2
crz trz[A

(9)
[µ (θ̄γν]λ

(9))]

+
i

8
(∂ρv

r)(θ̄γµν
ρθ) +
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xMrKM

[µ
ρσ(θ̄γν]ρσθ) +

i

2
vr(θ̄γ[µDν]θ) (325)

coincides with the counterterm of Br only if no 9-9 vectors are present.
To this end, observe that, if no 9-9 vectors are present, (324) is exactly twice the term that one

should add to (314) in order to geometrize the Wess-Zumino term, substituting B with B̂. This
means, roughly speaking, that half of the contribution in (324) comes from the Green-Schwarz
term, and half from the Chern-Simons couplings. This interpretation is in perfect agreement with
self-duality, and thus in six dimensions there is no duality transformation that can give a fully
geometric Lagrangian. If also 9-9 vectors are in the spectrum, no additional terms are produced
in the lagrangian, in agreement with the fact that the additional terms of B̂r in (317) are not
gauge invariant.

To resume, the Lagrangian for supergravity coupled to tensor multiplets, hypermultiplets and
non-supersymmetric vectors is

LSUGRA = LSUSY −
1

2
êv̂rcwr trw(F (5)

µν F (5)
ρσ )ĝµρĝνσ − Λêf(Φ̂ᾱ, φ̂α) +

1

2
ê(D̂µS)†(D̂νS)ĝµν
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w
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ρσ F
(5)
δτ ) . (326)

Since the supersymmetry transformation of other non-supersymmetric fermions is of higher order
in the Fermi fields, at this level we can always add them in the construction, while the couplings
that can not be determined by supersymmetry could in principle be determined by string inputs.

Finally, it is important to observe that without 9-9 vectors, although the Lagrangian (326)
is not completely geometric. Indeed, if one fixes the PST gauge in such a way that the 3-forms
satisfy the standard (anti)self-duality conditions, the equation for the vector fields, up to terms
quartic in the fermions, is

êDν [v̂
rcrwF (5)

ρσ ĝ
µρĝνσ] +

1

6
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νρ Ĥ
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trw′(F (5)
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δτ ) = 0 , (327)

where
Ĥr
µνρ = 3∂[µB̂

r
νρ] − crwω(5)w

µνρ , (328)

and this is nicely of geometric form. It should be noticed that no additional counterterms
containing the goldstino have to be added if also 9-9 vectors are present. In fact, all the terms
in B̂r induced by A(9) are not gauge invariant, and their inclusion in the lagrangian is forbidden
because it would modify the gauge anomaly. The resulting equation for A(5) is then
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ρσ ĝ
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where
H̃r
µνρ = 3∂[µB

r
νρ] + 3∂[µB
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νρ]

extra − crzω(9)z
µνρ − crwω(5)w

µνρ (330)
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is geometric up to gauge-invariant terms proportional to crz. The result is thus in agreement with
what expected by anomaly considerations. If gauge and supersymmetry anomalies are absent, the
A(5) equation is mapped into itself by supersymmetry: this is the very reason why this equation
is geometric. In the presence of gauge and supersymmetry anomalies, as long as 9-9 vectors are
absent, the equation for A(5) is still geometric, albeit not gauge invariant. The supersymmetry
anomaly, in this case, results from the gauge transformation contained in (302). When also 9-9
vectors are present, these arguments do not apply, and thus in (329) the geometric structure is
violated by terms proportional to crzcwr .

The consistent formulation described above can be reverted to a supersymmetric formulation
in terms of covariant non-integrable field equations, that embody the corresponding covariant
gauge anomaly

AcovΛ =
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′

r trz(Λ
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µν ) trz′(F (9)
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r trw(Λ(5)F (5)
µν ) trw′(F (5)

ρσ F
(5)
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given by the divergence of the covariant equation for A
(5)
µ ,

êDν [v̂
rcrwF (5)

ρσ ĝ
µρĝνσ] +

1

6
εµνραβγcrwF (5)

νρ H̃
r
αβγ = 0 , (332)

and the divergence of the covariant equation for A
(9)
µ . Without 9-9 vectors, (332) is both geometric

and gauge-covariant, while, if 9-9 vectors are present, the geometric structure is violated by
gauge-covariant terms proportional again to crzcwr .

12 Conclusion

The main purpose of this publication was to investigate the covariant, consistent and gravitational
anomalies in gauged supergravity. We have shown how general gauge theories with axionic shift
symmetries, generalized Chern-Simons terms and quantum anomalies can be formulated in a way
that is covariant with respect to electric-magnetic duality transformations. We performed our
analysis first in rigid supersymmetry. Using superconformal techniques, we could then show that
only one cancellation had to be checked to extend the results to supergravity. It turns out that
the Chern-Simons term does not need any gravitino corrections and can thus be added as such
to the matter-coupled supergravity actions. Our paper provides thus an extension to the general
framework of coupled chiral and vector multiplets in N = 1 supergravity. We have completed
the coupling of (1, 0) six-dimensional supergravity to tensor and vector multiplets. The coupling
to tensor multiplets is of a more conventional nature, and parallels similar constructions in other
supergravity models. Our work is here confined to the field equations, but a lagrangian formula-
tion of the (anti)self-dual two-forms is now possible, following the proposal of Pasti, Sorokin and
Tonin and indeed, results to this effect have been presented in a superspace formulation. The
Yang-Mills currents are not conserved, and the consistent residual gauge anomaly is accompanied
by a corresponding anomaly in the supersymmetry current. In completing these results to all
orders in the fermi fields, we have come to terms with another peculiar feature of anomalies,
neatly displayed by these field equations: anomalous divergences of gauge currents are typically
accompanied by corresponding anomalies in current commutators. We have shown that cancella-
tion of gravitational, gauge, and mixed anomalies gives a sufficient constraint on six-dimensional
supersymmetric theories of gravity with gauge and matter fields that in some cases all models
consistent with anomaly cancellation admit a realization through string theory. We have ruled
out a number of infinite families of models which satisfy anomaly factorization, so that the gap
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is rather small between the set of known 6D models satisfying anomaly cancellation and the set
of models realized through string compactification. We have conjectured that all consistent 6D
supergravity theories with Lagrangian descriptions can be realized in string theory, and that this
set of models can be identified from low-energy considerations. All N = (1, 0) supersymmetric
theories in 6D with one gravity and one tensor multiplet which are free of anomalies or other
quantum inconsistencies admit a string construction. It would also be interesting to formulate
the matter coupled anomaly-free supergravity theories in six dimensions such that the classically
gauge invariant and supersymmetric part of the action is identified and the anomaly corrections
are determined by means of the anomaly equations. We conduct a systematic search for anomaly-
free six-dimensional N = 1 chiral supergravity theories. In six dimensions, cancellation of gauge,
gravitational, and mixed anomalies strongly constrains the set of quantum field theories which
can be coupled consistently to gravity. Anomaly cancellation has turned out to be a crucial
guiding principle for the identification of consistent D = 6 theories for the same reason as in the
D = 10 case. The D = 6 anomaly cancellation conditions are weaker than those in D = 10, they
are still very stringent, especially in the case of gauged supergravity theories. To obtain the fully
consistent equations of motion at the quantum level one must also take into account the non-local
corrections to the one loop effective action. This raises the question of which equations of motion
are to be solved in search of special solutions of the theory. Constructing a consistent quantum
theory of gravity has proven to be substantially more difficult than identifying a quantum theory
describing the other forces in nature. Even if it is known that consistent superstring theories
can be formulated in six dimensions and that six-dimensional supergravity can arise as their
low-energy limit, this is not the only reason for investigating D = 6 supergravity. In fact, while
supergravities in D = 10 and D = 11 spacetime dimensions are of direct interest as backgrounds
for strings, membranes and M-theory, one frequently performs compactifications down to D =
6 to clarify relations among these theories, which are hidden in their ten or eleven-dimensional
formulations. Supergravity theories in diverse dimensions play nowadays an important role as
low-energy effective field theories of superstring and membrane theories. Supergravity theories
have been extensively studied in four dimensions, of course because of their direct physical rel-
evance, and in ten and eleven dimensions of their fundamental features. Explicit knowledge of
this set of theories gives us a powerful tool for exploring the connection between string theory
and low-energy physics. The anomalies are the key to a deeper research and understanding of
gauged supergravity. We hope to have conveyed the idea that anomalies play an important role
in supergravity and their cancellation has been and still is a valuable guide for constructing con-
sistent quantum supergravity theories. The treatment of anomalies makes fascinating contacts
with several branches of modern theoretical physics.
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