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Abstract

The scientific article reviews some properties of the low-energy effective actions for gauged su-
pergravity models. We summarize the current state of knowledge regarding gravity theories with
minimal supersymmetry. We provide an elegant extension of the theory and give a deffinitions
of the anomalies in gauged supergravity. The difference between the covariant and consistent
anomalies is carefully explained in terms of their different origins. The gauge structure of anoma-
lies and the related supersymmetry currents is analyzed in detail. The results are extended to
determine the structure of gravitational and mixed anomalies in supergravity. The deep relation
between anomalies and inconsistency is emphasized in this research. The conditions for anomaly
cancellation in these supergravity theories typically constitute determined types of equations.



1 Introduction

Supersymmetric theories are highly symmetric and magnificent beautiful. These symmetries ex-
change fermions with bosons, either in flat space supersymmetry or in curved space supergravity.
Supergravity is a field theory, at present the most promising candidate for quantum gravity that
combines the principles of supersymmetry and general relativity. Supergravity describes general
relativity in the language of quantum field theory. The theory of supergravity suggested a novel
approach to unification. In the quest for a unified description of gravity and matter interactions,
several higher dimensional theories have been proposed. The gauged supergravity provides an
interesting theoretical framework to the physics beyond the standard model. Gauged supergravi-
ties, where the global isometries of the matter lagrangian are promoted to local symmetries, have
been widely explored and by now almost all allowed models for diverse spacetime dimensions. The
geometry of curved superspace is shown to allow the existence of a large family of supermultiplets
that can be used to describe supersymmetric matter, including vector, tensor and hypermulti-
plets. The main theories of interest in this publication are four and six-dimensional supergravities
with a minimal amount of supersymmetry and all possible anomaly-free models. In the first part
of our work we use the symplectic structure of four-dimensional minimal supergravities to study
the possibility of gauged axionic shift symmetries. This leads to the introduction of generalized
Chern-Simons terms, and a Green-Schwarz cancellation mechanism for gauge anomalies. Simi-
larly, we study the possibility of adding higher order derivative corrections to the two-derivative
action, leading to a cancellation of the mixed gauge-gravitational anomalies. Our models consti-
tute the supersymmetric framework for string compactifications with axionic shift symmetries,
generalized Chern-Simons terms and quantum anomalies. We discuss the presence of gauge and
gravitational anomalies in theories with N = 1 local supersymmetry and a conventional gauging.
We present a Green-Schwarz mechanism that involves Peccei-Quinn terms, generalized Chern-
Simons terms, higher order derivative corrections and appropriate gauge transformations of the
scalar fields. We discuss the mutual consistency conditions for all these ingredients, such that the
theory is anomaly-free. In this paper we construct the complete coupling of (1,0) supergravity
to all possible (1,0) multiplets, generalizing the results in order to include hypermultiplets, and
extending the results to all orders in the fermi fields, while taking into account the anomalous
couplings. We show that the inclusion of charged hypermultiplets gives additional terms in the
supersymmetry anomaly. As was the case without hypermultiplets, the resulting theory is deter-
mined up to a quartic coupling for the gauginos, and correspondingly the supersymmetry algebra
contains an extension that guarantees the consistency of the construction. We will consider the
case in which the scalars in the hypermultiplets parametrize the coset, and we will describe the
gauging of the full compact subgroup of the isometry group. Other cases, in which the scalars
parametrize more general quaternionic symmetric spaces or are charged with respect to differ-
ent subgroups of the isometry group, can be straightforwardly obtained from our results. We
construct the complete coupling of (1, 0) supergravity in six dimensions to tensor multiplets,
extending previous results to all orders in the fermi fields. We then add couplings to vector
multiplets, as dictated by the generalized Green-Schwarz mechanism. The resulting theory em-
bodies factorized gauge and supersymmetry anomalies, to be disposed of by fermion loops, and is
determined by corresponding Wess-Zumino consistency conditions, aside from a quartic coupling
for the gaugini. In addition, we show how to revert to a supersymmetric formulation in terms of
covariant field equations that embody corresponding covariant anomalies. The subsequent work
of some authors has developed the consistent formulation, but one can actually revert to a covari-
ant formulation, at the price of having non-integrable field equations. The relation between the
two sets of equations is one more instance of the link between covariant and consistent anomalies
in field theory. This is a remarkable laboratory for current algebra, where one can play explicitly



with anomalous symmetries and their consequences. The supersymmetry algebra contains a cor-
responding extension that plays a crucial role for the consistency of the construction. Whereas
gauge and supersymmetry anomalies occur in theories with global or local supersymmetry, mixed
anomalies are specific for gauged supergravities. They manifest themselves as a non-invariance
of the effective action under local Lorentz transformations. Mixed anomaly usually refers to a
mixture of a gauge and gravitational anomaly. These structures appear in gauge current anoma-
lies and lead to inconsistency unless cancelled. It is common practice to attempt to cancel them
by adding new fermions to the model. We have found new anomaly structures which involve
scalar fields, and these can require new independent cancellation conditions. We find an intricate
interplay between the gaugings and certain quantum aspects of the theory. More precisely, we
obtain the general cancellation conditions for quantum anomalies, using a Green-Schwarz mech-
anism. We identify a number of models which obey all known low-energy consistency conditions,
but which have no known string theory realization. Many of these models contain novel matter
representations, suggesting possible new superstring theory constructions. We hope that the
variety of new apparently consistent supergravity models identified in the advanced research will
stimulate some further understanding of new superstring realizations or will help to generate new
constraints on quantum theories of gravity.

2 Kinetic Action of Supergravity

In generic low energy effective field theories, gauge fields appear with non-minmal kinetic terms in
which the field strengths may multiply scalar field dependent coefficients. An important example
of such dependence is provided by non-minimal kinetic terms for gauge fields

e 'Ly = —1Re fapFp F" P + Him fapFi F P, (1)

where the gauge kinetic function fap(z) is a nontrivial function of the scalar fields, z°, which, in
N = 1 supersymmetry, has to be holomorphic. The second term in (1) is often referred to as
the Peccei-Quinn term. Under gauge transformation with gauge parameter A4(z), some of the
2 transform nontrivially, this may induce a corresponding gauge transformation of fap(z). If
this transformation is of the form of a symmetric product of two adjoint representations of the
gauge group,

§(A) fap = Ac fag, Scfap = foa” fap + fos” fap (2)

with foa®? the structure constants of the gauge group, the kinetic term (1) is obviously gauge
invariant. This is what was assumed in the action of general matter-coupled supergravity. If one
takes into account also other terms in the (quantum) effective action, however, a more general
transformation rule for f4p(z) may be allowed:

Scfap =iCapc + foa® fep + fes® fap - (3)

Here, C4p ¢ is a constant real tensor symmetric in the first two indices, which we will recognize
as a natural generalization in the context of symplectic duality transformations.
If Cap ¢ is non-zero, this leads to a non-gauge invariance of the Peccei-Quinn term in £;:

S(AN)e 'Ly = 2Cup N F LT (4)

For rigid parameters, A4 = const., this is just a total derivative, but for local gauge parameters,
A4(z), it is obviously not. If (1) is part of a supersymmetric action, the gauge non-invariance
(64) also induces a non-invariance of the action under supersymmetry.



The vector multiplet in the A/ = 1 superspace formulation is described by a real superfield.
The latter has many more components than the physical fields describing an on-shell vector
multiplet, which consists of one vector field and one fermion. The advantage of this redundancy
is that one can easily construct manifestly supersymmetric actions as integrals over full or chiral
superspace. As an example consider the expression

S = / d*zd®0 fap(X)WIWFe + ce. (5)

Here, WA = %DQDQVA, or a generalization thereof for the non-Abelian case, where V4 is the
real superfield describing the vector multiplets labelled by an index A. The fsp are arbitrary
holomorphic functions of a set of chiral superfields denoted by X.

The integrand of (5) is itself a chiral superfield. As we integrate over a chiral superspace, the
Lagrangian transforms into a total derivative under supersymmetry. Formally, this conclusion
holds independently of the gauge symmetry properties of the functions fap(X). For the action
(5) to be gauge invariant, we should have the condition

Scfap — foa” fop — fanfos®” =0, (6)

where 0o denotes the gauge transformation under the gauge symmetry related to the vector
multiplet denoted by the index C.

Due to the large number of fields in the superspace formulation, the gauge parameters are
not just real numbers, but are themselves full chiral superfields. To describe the physical theory,
one wants to get rid of these extra gauge transformations and thereby also of many spurious
components of the vector superfields. This is done by going to the so-called Wess-Zumino gauge,
in which these extra gauge transformations are fixed and many spurious components of the
real superfields are eliminated. Unfortunately, the Wess-Zumino gauge also breaks the manifest
supersymmetry of the superspace formalism. However, a combination of this original supersym-
metry and the gauge symmetries survives and becomes the preserved supersymmetry after the
gauge fixing. The law that gives the preserved supersymmetry as a combination of these differ-
ent symmetries is called decomposition law. Notice, however, that this preservation requires the
gauge invariance of the original action (5). Thus, though (5) was invariant under the superspace
supersymmetry for any choice of fap, we now need (6) for this action to be invariant under
supersymmetry after the Wess-Zumino gauge.

This important consequence of the Wess-Zumino gauge can also be understood from the
supersymmetry algebra. The superspace operator (), satisfies the anticommutation relation

{@a @l = otstn. (7)

This equation shows no mixing between supersymmetry and gauge symmetries. However, after
the Wess-Zumino gauge the right-hand side is changed to

{Qw QL} = OZdDM =0l (au - W:‘(;A) ) (8)

where 04 denotes the gauge transformation. Equation (8) implies that if an action is invariant
under supersymmetry, it should also be gauge invariant.

As mentioned before, the preservation of the Wess-Zumino gauges implies that the effective
supersymmetry transformations are different from the ones in the original superspace formulation.
The resulting supersymmetry transformations of a chiral multiplet are

0(e)2" = eLxy,
S(e)xty = %'y“eRDuz’ + %hieL,
0(e)h' = ErDx + eErApdaz’, (9)
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where we have denoted the scalar fields of the chiral multiplets as 2%, the left-chiral components
of the corresponding fermions as Y% and the auxiliary fields as h’, while A\* is the gaugino of the
vector multiplet V4. These transformations are valid for any chiral multiplet, in particular, they
can be applied to the full integrand of (5) itself.

Compared to the standard superspace transformations, there are two modifications in (9).
The first modification is that the derivatives of 2* and % are covariantized with respect to gauge
transformations. This covariant derivative acts on the chiral fermions x’ as

DX = 0uXG, — Wioaxs - (10)

Here, the gauge variation of the chiral fermions, d4x%, can be expressed in terms of the gauge
variation, d42°, of the scalar fields, using the fact that supersymmetry and gauge transformations
commute,

5(6)5,4/ = 5A5(6)Zi = (SAgLXiL = gLéAXi- (11)
This leads to 96441
i AZZ J
0ax" = —Zx- (12)

The second modification is the additional last term in the transformation of the auxiliary
fields hi. The origin of this term lies in the contribution of the decomposition law for one of the
gauge symmetries contained in the chiral superfield of transformations A, after the Wess-Zumino
gauge is fixed.

To avoid the above-mentioned subtleties associated with the Wess-Zumino gauge, we will use
component field expressions in the remainder of this text. Therefore, we reconsider the action
(5) and in particular its integrand. The components of this composite chiral multiplet are

2(fW?) = —LfapAiAf,
Xe(fW?) = $fas (30" F, —iDY) AL = 30ifapXi A AL
h(fW?) = fap (=M\DAR — 3F, =P + §DADP) (13)

+0i fanXy, (=37 Fp, +1D*) A} = 30: faph' MIAT + 207 fapXoXIAEAL

ij

where we used the notation 9; = 821.. The superspace integral in (5) means that the real part of

h(fW?) is (proportional to) the Lagrangian:

Sp = /d‘{r Re h(fW?). (14)
From (14) and (14), we read off the kinetic terms of Sy:
Sikn = / d%[— YRe fapF, F*P — L Re fapA'DAP
+ HIm fapFo PP + 4(D, Tm fap) A AP . (15)

We have used a partial integration to shift the derivative from the gaugini to (Im f4p5) and
rearranged the structure constants in the last term, so as to obtain a “covariant” derivative
acting on (Im fap). More precisely, we define

Dufas = Oufas —2WS foa® foyp - (16)

In the case that the gauge kinetic matrix transforms without a shift, as in (6), the derivative
defined in (16) is fully gauge covariant. The full covariant derivative has instead the new form

Dyfap = Oufan — W,?5CfAB =D,fap — inCAB,C- (17)
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The last term in (15) is therefore not gauge covariant for non-vanishing Csp . Hence, in presence
of the new term in the transformation of f4p we replace the action Sy with S, in which we use
the full covariant derivative, D,,, instead of D,,. More precisely, we define

S’f = Sf + Sextrau Sextra = /d4.T <_%11WECAB,CE‘A757H)\B) . (18)

Note that we did not use any superspace expression to derive Seya but simply added Sexira
by hand in order to fully covariantize the last term of (15). As we will further discuss in the
next section, Sexra can in fact only be partially understood from superspace expressions, which
motivates our procedure to introduce it here by hand. We should also stress that the covarianti-
zation with Sey.a does not yet mean that the entire action S 7 is now fully gauge invariant. We
would finally like to emphasize that, in the context of N' = 1 supersymmetry, there is a priori no
further restriction on the symmetry of Csp ¢ apart from its symmetry in the first two indices.
This, however, is different in extended supersymmetry, as is most easily demonstrated for N' = 2
supersymmetry, where the gauge kinetic matrix depends on the complex scalars X of the vector
multiplets. These transform themselves in the adjoint representation, which implies

§(A) fap(X) = XPAC focP0p fap(X). (19)
Hence, this gives

iCac = XP fecP0pfas(X) — foa® fop — fos” fap, (20)

which leads to Cap c XA XBXY = 0. As the scalars X* are independent in rigid supersymmetry,
this implies that Ciapcy = 0.

The action Sy is gauge invariant before the modification of the transformation of f4p. In the
presence of the C4p ¢ terms, the action S ¢ is not gauge invariant. However, the non-invariance
comes only from one term. Indeed, terms in S # that are proportional to derivatives of f4p do not
feel the constant shift dc fap = iCapc + .... They are therefore automatically gauge invariant.
Also, the full covariant derivative (17) has no gauge transformation proportional to Cyp ¢, and

also Re f4p is invariant. Hence, the gauge non-invariance originates only from the third term in
(15). We are thus left with

5(A)S; = %iCAB,C/d‘la: Acfl‘fy]}“”B. (21)

This expression vanishes for constant A, but it spoils the local gauge invariance.

We started to construct Sy as a superspace integral, and as such it would automatically be
supersymmetric. However, we saw that when f4p transforms with a shift as in (?7), the gauge
symmetry is broken, which is then communicated to the supersymmetry transformations by the
Wess-Zumino gauge fixing. The Cyp ¢ tensors then express the non-invariance of Sy under both
gauge transformations and supersymmetry.

To determine these supersymmetry transformations, we consider the last line of (9) for
{2%, X", h'} replaced by {z(fW?),x(fW?),h(fW?)} and find

5(6)S; = / Atz Re [erdxo(fIV?) — ey WS L (fW?) + erddoaz(fWD)] . (22)

The first term in the transformation of h(fWW?) is the one that was already present in the super-
space supersymmetry before going to Wess-Zumino gauge. It is a total derivative, as we would
expect from the superspace rules. The other two terms are due to the mixing of supersymmetry
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with gauge symmetries. They vanish if z(fT¥/?) is invariant under the gauge symmetry, as this
implies by (11) that x(fW?) is also gauge invariant.

Using (14) and (?7?), however, one sees that z(f1¥?) is not gauge invariant, and (22) becomes,
using also (12),

i(€)Sy = /d4x Re {1CABC [ - eRv”Wc (47"”]-"’4 — LDY A} - %éR/\%/_\f)\f] } . (23)

Note that this expression contains only fields of the vector multiplets and none of the chiral
multiplets. It remains to determine the contribution of S..;., to the supersymmetry variation,
which turns out to be

5(€)Sextra = / d*zReiCyp o [ — sWENIA (377°Fy, —1D*) en — szngAg‘] S (24)
By combining this with (23), we obtain, after some reordering,
5(€)Sy = / d*zRe (3Cup,ce™ WS Fireryo L — 31Cap,c)ErRAGALAL) - (25)

We describe how the addition of GCS terms and quantum anomalies can cancel the left-over
gauge and supersymmetry non-invariances of equations (21) and (25).

3 Chern-Simons Action of Supergravity

Due to the gauged shift symmetry of fap, terms proportional to C4p ¢ remain in the gauge and
supersymmetry variation of the action Sy. To re-establish the gauge symmetry and supersym-
metry invariance, we need two ingredients: GCS terms and quantum anomalies. They are of the
form

Ses = [t} QWEWAEL + Los WIWEWEWE) (26)

The GCS terms are proportional to a tensor 01(4(1?38,)0 that is symmetric in (A, B). Note that a

completely symmetric part in CESBS,)O would drop out of Scg and we can therefore restrict C A%S)C
to be a tensor of mixed symmetry structure

CS
Claney =0. (27)

A priori, the constants C’S?C need not be the same as the C4p ¢ introduced in the previous
section. For N/ = 2 supergravity one needs them to be the same, but we will, for N' = 1,
establish another relation between both, which follows from supersymmetry and gauge invariance
requirements.

The GCS terms can be obtained from a superfield expression

Stg = O\ e / d'zd'0 [-2VEQP (V) + (foe”VEDVAD? (D VPVE) + cc)]
O = DVUAWD) + D VAW 4 VD WD) (28)

The full non-Abelian superspace expression (28) is valid only in the Wess-Zumino gauge,
where it reduces to the bosonic component expression (26) plus a fermionic term

SéS = SCS + (SéS)ferm ’ (S6S)ferm = /d4$ <__IC(CSCWC)\A’Y ’YM)‘B> (29)
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where we used the restriction C((S]SB) o) = 0 from (27).
Note that the fermionic term in (29) is of a form similar to Seya in (18). More precisely,
in (29) the fermions appear with the tensor CESBS,)O, which has a mixed symmetry, (27). Sextra

n (18), on the other hand, is proportional to the tensor ol Ao T + o ABC From this we see

that if we identify C’Sﬁc =C ACBS)C, as we will do later, we can absorb the mixed part of Seyira
into the superspace expression S(g. This is, however, not possible for the symmetric part of
Sextra Proportional to CE{%,C, which cannot be obtained in any obvious way from a superspace
expression. As we need this symmetric part later, it is more convenient to keep the full Seyira,
as we did in section ?7?, as a part of S 7, and not include (S¢g)s,,, here. Thus, we will further
work with the purely bosonic Scg and omit the fermionic term that is included in the superspace
expression (28). We will show in the remainder of this subsection that for semisimple algebras
the GCS terms do not bring anything new, at least in the classical theory. By this we mean they
can be replaced by a redefinition of the kinetic matrix f4p. This argument is not essential for
the main result of this paper and the reader can thus skip this part. It shows, however, that the
main application of GCS terms is for non-semisimple gauge algebras.
We start with the result

Oﬁx(?c = 2fe”Zp)p (30)

for a constant real symmetric matrix Z 45, the action Scg can be reabsorbed in the original action
Sy using
fap = fap +1Zap . (31)

In fact, one easily checks that with the substitution (30) in (??), the C-terms are absorbed by
the redefinition (31). The equation (30) can be written as

Cor =Toas"  Zpp,  Toas" = 2fC(A(D5§)) - (32)

In the case that the algebra is semisimple, one can always construct a Z 45 such that this equation
is valid for any c! B )C

Zap = 02(T)21130DTE,0 « EFCGHFa (33)

where g4 and Cy(T)~! are the inverses of

gan = fac” fep©, Co(T)ep™ = g*PTacp“ Tr.an™ . (34)

These inverses exist for semisimple groups. To show that (33) leads to (32) one needs (??), which
leads to o <
9"y - (368 fop® + Tip - ) =0, (35)

where we have dropped doublet symmetric indices using the notation - for contractions of such
double indices. This further implies

g BTy Ty - O = oy(T) - 59 (36)

with which the mentioned conclusions can easily be obtained.

The GCS term Scg is not gauge invariant. Even the superspace expression S is not gauge
invariant, not even in the Abelian case. We expect that S{g is not supersymmetric in the Wess-
Zumino gauge, despite the fact that it is a superspace integral. This is highlighted, in particular,
by the second term in (28), which involves the structure constants. Its component expression
simply gives the non-Abelian W AW AW A W correction in (26), which, as a purely bosonic
object, cannot be supersymmetric by itself.



For the gauge variation of Scg, one obtains

d(A)Scs = / d'z [— ‘1CA%S)CACFA FWB/ d4$[ — ¢ (20£x(§)/3chB - CJ(DCAS,)BfCEB

(CS (CS
BE)DfA - BD)CfAE (37)

/d%[ - %iAC< + C](BCCS,)D.}CAEB + C,Ex(ﬁ)(,*fDEB + 1C(CSBfDE >5WWF£W£W5
/d%[ — %AC( BCG?)FfCA + CAG BfCF + CAB rfca )fDEA€WpUW,?WVEWpFWaG] )

where we used the Jacobi identity and the property C’gg? o) = 0.
A careful calculation finally shows that the supersymmetry variation of Scg is

5(€)Ses = —1 / d'z e Re |CASLWE RS + O\ fom  WEWEWP | e (38)

4 The General Gauged Supergravity Model

The supersymmetric o-model coupled to supergravity includes the gravitino and various coupling
terms. The action is

S[GL,ACI#,ZQ,ZE,Z/J&,E,)\(Z, v, = /d4:c det(eZ)ESG , (39)
with Lagrangian density
ACSG = ﬁb + Ef + ‘Cint + quartic terms (40)
with
1 1 1 3
Ly, = §R — FWF’“W — —Dd?a GogDuz"D"2" (41)
1 -
Ly = Q\IIW‘“”’DV\I/,, + §>\a7“D“Aa + G0y D, Ly)®
1 _ o
Ling G o [Du2" U A"y L™ + D,z Ry A0, |

V2

1. - - _ o
—|—§Da\11,ﬁ“75)\a + Fgo ¥, 77" Aa + \/§Ga5 [ch)\aLwo‘ + Xd"z/)ﬁR)\a] .

We omit the complicated set of four-fermion terms but our argument includes their effects. We
assume there is no superpotential and minimal gauge kinetic functions to simplify the discussion.
The gravitino covariant derivative is defined as

Wiy +

1
SiB,5) ¥, (12)

D, = (Vi + zBm)\Ir - (aﬁ1 :

4
in which V, includes the spin connection. Covariant derivatives of the matter fields were given
previously in the current literature. One must replace d, — V,, and we note that the composite
Kahler connection couples to all fermions.

The model has a global U(1)g axial symmetry with transformations

OLY® =daly® , dda =iaysha, 0¥, =iV, (43)



and Noether current
Ne=_L 2Gb by L® + Aaytysha + B, 5, ] (44)

It is an R-symmetry since z* is neutral while Ly)®, LA% and LWV, have charges —1,+1,+1,
respectively. The U(1)r symmetry is effectively gauged by B,. There is also a gauge symmetry
with parameters 0?(z) with §A% = D,0% For the gauge variation of other fields we use the
notation § = #*6*. We then have

daz® = Xd', Sazb = XJ’,
Saly® — Xang/Jﬂ—%Im(FG)L@/}a» Ja"R = Xd;R+%Im(Fa)BRa

Sbha = —fueNe — %Im(Fb)%)\“ , O0a¥, = — %Im(Fa)%\Ifu. (45)

Holomorphic Killing vectors X*(z), X®(%) and the holomorphic function F*(z) induced by a
gauge transformation of the Kéhler potential. The gauge invariance of the theory is expressed
by the identity

. B B 0Lsc 0Lsq 0Lsq
gibLsa = 0 — Qa(x)[—DV—(S 0 X L Xd = (46)
5£SG (SESG (SE 5£SG
6a’R dal® + darb—= + da¥
R R e R T

which is the same applied to the general supergravity Lagrangian. The gauge field equation of
the model reads
S(L+ 1 Fb PO

v __ . 4= pv
D,Fd” = Jd = 2

= Jd + Jd; + jd' 4+ 3DaN" + Jd;,; . (47)

with Ji and J¢ defined in (??), j* = 1 f*°A’y”A¢ and

5£int o 1
Jqlnt - 514,% - \/§

G [Xd_’\ffp’y””prwa + XA R, | + 2D, (T, ha) . (48)

To derive the consistency condition we now follow the same strategy as above. Assuming that
the gauge variation of the action from varying bosons vanishes by the scalar equations of motion,
the consistency condition arises from the fermion variations. The supergravity generalization of
the expressions obtained earlier for only gauginos and for only chiral fermions turns out to be

0= (V,Ja") = iV ai(V, ("7 L*)) + V,ja* + Mm(Fa)(V,N") (49)

in which the V, derivative carries appropriate space-time, target space and gauge connections,
and (...) again indicates just the anomalous divergences of the currents. Comparing with (47),
we have dropped the divergence of J2;. As we argue in the appendix, this does not affect the
anomaly. The condition (49) is the central result of our analysis.

The proper Kéhler anomaly, proportional to Im(F®), is the third term of (49). The anomaly
has contributions from gauginos, from chiral fermions, and from the gravitino. The gravitino
gauge anomaly is times that of a gaugino, but coupled only through the Kéahler connection in
(42). We obtain

y ny+ 3
(VoY) gange =

"7 Coy(G) Fay Fay, +

o BBy + Chper | - (50)
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To write the contribution of the chiral fermions we first define the target space curvature tensor
pulled back to spacetime. Using this we form

Cuvper = S0,5500 + Fau Fho Xd3 XY, — anWBpa
—iFa,, By Xd — 2Fq,, % pUaXag + 35,0 Bpo - (51)

The anomaly of the gaugino current j in the second term of (49) is identical to the truncated
model. The contribution of the chiral fermions to the first term in (49) is

b v 0% Z vVpo «
Yaa(Vo (" Lo g = 335G a5 | S5, T+ Flu Fo XEXE, (52)
1 (e N (e (0%
1B Brod5 = il By XU + 55,5 Bo — P (25,8, +37,,x17)]

In the case of a flat target space = C™ and a linear realization of gauge symmetry, the Killing
vector derivative reduces to constants, X% = Xg* — T, a matrix generator of the gauge
group G. In this case the second term of (52) reduces to the conventional cubic gauge anomaly
of the chiral fermions.

The gravitational anomaly is more conventional. The contribution of the gravitino to the
anomaly of the Noether current is —21 times that of a gaugino. The gaugino current j* itself
has no gravitational anomaly. The complete result is given by

(VuN")gray = ny — 21 — ny) " Ruer Rpot™

1
_768 3

Yaab< (b YLy® )>grav YaabGab GWPURW&RPU . (53)

768 2

One can see that the gauge anomaly is very complicated. As a general observation, it is not
possible to cancel the coefficient ny + 3 — ny of B,,B,, in (50) and (51) for the gauge anomaly
and the gravitational anomaly in (53) at the same time by adjusting n, and ny.

If Im(F*) = 0, then the 9, NV anomaly is absent. However, there are still several new terms
involving B,,, which can affect the consistency of the model. Anomaly cancellation will be studied
with emphasis on the case of a flat target space.

The full Lagrangian of the model is a special case of (40) and rather simple. It reads

1 1 1
Lr = SR—FuF" = GssD,SD"S — 5D2
1 _ 1. _
56" U7 DU + 5 M Dy + Gty DLy
1 - )
Eng [DuSY, A"y L + D, SYRY A, |

1 - _ c— —
+§D\Ifﬂ“75)\ + Fpp U, v\ + V2G5 [ X ALY + XSPRA] (54)

+

where

I
§ZBM’}/5> \IJV )

D\ = (Vﬂ+%iBw5)/\,

DU, = <Vu+

|
Dultr = (Vi +TésDuS + 5iB, ) Lv (55)
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The composite Kahler connection is

1 ]
B, = 2—Z,<K,S DuS = K5 D,S) =

1

—m((’?“h —eA,) . (56)

It is gauge invariant in this model because the Kéhler potential is invariant and Im(F') = ¢ =

0. One can now directly obtain the equations of motions for A, and h (without going through
those of S and S first), which are

V. F* +2eGg5(0"h —eA”) = eJ”,

2V, (ng((?“h — eA“)) = V,J", (57)
where 5(C o)
w_ Oyt Lint)

J SA ) (58)

Applying %VU one finds an expression which vanishes completely when the scalar equation
of motion is used. Thus there is no inconsistency in this model. This agrees with the general
consistency condition, because we have a gauged shift symmetry with constant Killing vectors
and B, is gauge invariant. Therefore the fermions are invariant under the gauge transformation
and all terms cancel when the scalar equations of motion are used. Hence no inconsistency can
arise.

5 Generalized Chern-Simons Terms with Covariant and
Consistent Anomalies in D = 4 Supergravity

The gauge anomalies manifest themselves as a non-invariance of the effective action under gauge
transformations. We will concentrate on anomalous gauge symmetries, which are more prob-
lematic. Since gauge symmetries are needed to decouple the unphysical states of the theory, a
violation of these symmetries renders the theory inconsistent. In a generic low energy effective
field theory, the kinetic and the theta angle terms of vector fields, AMA, appear with scalar field
dependent coefficients,

Ly = ieIAg(z, 2)Fp > — éRAg(z, )P F M Foo™ . (59)
Fu =20, A0 + XA, 2 A% denotes the non-Abelian field strengths with Xso® = Xngt
being the structure constants of the gauge group. We use the metric signature (— + ++) and
work with real 9123 = 1. As usual, e denotes the vierbein determinant. The second term in (59)
is often referred to as the Peccei-Quinn term, and the functions Zxx(z, Z) and Rax(z, Z) depend
nontrivially on the scalar fields, 2%, of the theory. One can combine these functions to a complex
function

NAE(Z, 5) = 'R,AE(Z, 5) + iIAE<Z, 2). (60)

In a supersymmetric context, Nys(z,2) has to satisfy certain conditions, depending on the
amount of supersymmetry. In /' = 1 global and local supersymmetry, which will be the subject
of the remainder of this section, NMyy = Myx(Z) simply has to be antiholomorphic in the complex
scalars of the chiral multiplets.

If, under a gauge transformation with gauge parameter A®(x), acting on the field strengths as
6(A)F), = A=F; Xo=", some of the z* transform nontrivially, this may induce a corresponding

12



gauge transformation of Myx(Z). In case this transformation is of the form of a symmetric
product of two adjoint representations of the gauge group,

S(MNas = A%5qNas SaolNas = Xoa" Ner + Xos' Nar, (61)

the kinetic term (59) is obviously gauge invariant. This is what was assumed in the action of
general matter-coupled supergravity.

If, one takes into account also other terms in the quantum effective action, a more general
transformation rule for My (Z) may be allowed

SalNas = —Xoas + Xoa"Ner + Xas' Nar (62)

Here, Xqax is a constant real tensor symmetric in the last two indices, which can be recognized
as a natural generalization in the context of symplectic duality transformations. Closure of the
gauge algebra requires the constraint

XoasXr=" + 2X5"Xmja0 + 2Xa" Xrse = 0. (63)
If Xoax is non-zero, this leads to a non-gauge invariance of the Peccei-Quinn term in L,

1
5(A)£gk = ég;wpa XQAZAQ.FMVAFpUE . (64)

In order to understand how this broken invariance can be restored, it is convenient to split
the coefficients Xquy into a sum,

Xoax = Xgis + X005, X8 = Xeaw,  Xag =0, (65)

where Xg(;/{E is completely symmetric, and XSK)E denotes the part of mixed symmetry. Terms
of the form (64) may then in principle be cancelled by the following two mechanisms, or a
combination thereof:

1. As was first realized in a similar context in A/ = 2 supergravity, the gauge variation due to
a non-vanishing mixed part, XSX)Z # 0, may be cancelled by adding a generalized Chern-
Simons term (GCS term) that contains a cubic and a quartic part in the vector fields,

1 3 -
Lacs = 3 X0 grveo (AMQA,,A@)AE +3 XFEEAMQAVAAJAU:) , (66)

This term depends on a constant tensor Xg()isz), which has the same mixed symmetry struc-
ture as ng)z The cancellation occurs provided the tensors XSX)E and ng\sz) are, in fact,

the same.

2. If the chiral fermion spectrum is anomalous under the gauge group, the anomalous triangle

diagrams lead to a non-gauge invariance of the quantum effective action I' for the gauge
symmetry: §(A)I = [d*zA* A, of the form

1 3 3
Ay = —15“”)0 [QszAauAyz + (dQEFXAEE + §dQEAXFEE) AMFAVH] 9,4, (67)

with a symmetric tensor dgay. If

X$s = dons (68)
this quantum anomaly cancels the symmetric part of (64). This is the Green-Schwarz

mechanism.
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It was studied to what extent a general gauge theory of the above type with gauged axionic
shift symmetries, GCS terms and quantum gauge anomalies can be compatible with N/ = 1
supersymmetry. The results can be summarized as follows: if one takes as starting point the
matter-coupled supergravity Lagrangian, an axionic shift symmetry with Xxpo # 0 satisfying
the closure condition (63) can be gauged in a way consistent with N' = 1 supersymmetry if

1. a GCS term (66) with X ou = XS, is added,

2. an additional term bilinear in the gaugini, A*(z), and linear in the vector fields is added:

1. S
'Cextra = _ZlAuQXQAZ/\A’Y5’Yu)\E7 (69)

3. the fermions in the chiral multiplets give rise to quantum anomalies with dors = Xg(zS /)\Z.
The consistent gauge anomaly, A, is of the form (121). These quantum anomalies precisely
cancel the classical gauge and supersymmetry variation of the new Lagrangian L4+ Lcos+
Lextra, Where Loq denotes the original Lagrangian.

5.1 Gauge Transformations

The violation of the Jacobi identity is the prize one has to pay for the symplectically covariant
treatment in which both electric and magnetic vector potentials appear at the same time. In
order to compensate for this violation ande in addition to the usual non-Abelian transformation
O A + Xpgi™ ALY A® and extends the gauge transformation of the vector potentials to

sAM =D, A — XnpMENT DA = 9,AM + Xpo™A,AC (70)

i )

where we introduced the covariant derivative D,AY, and new vector-like gauge parameters =,V 7

symmetric in the upper indices. The extra terms X(pQ)M A,PA? and the Z-transformations
contained in (70) allow one to gauge away the vector fields that correspond to the directions
in which the Jacobi identity is violated. The covariant ansatz makes use of the fact that the
non-covariant terms appear projected with the tensor ZM pgy and defines the full covariant field

strengths as
Ho = Fo, + 92" pg BLZ (71)

v
upon the introduction of two-form tensor fields of the type BWN = B(AfN). The non-covariant
terms can then be absorbed by postulating the corresponding transformation laws for the two-
form fields. The full covariant field strength (71) no longer satisfies the standard Bianchi identies,
but rather its deformed version

Dy,H,, gZM po HEE (72)

vpl = § pvp

where Hﬁ;% denotes the covariant field strength of the two-forms. The combined transformation

—MN __ MN M
MN — D, ¢ A

—

= gZMpo €P9 | (73)

Explicitly, the new field strength 7-[ ., transforms covariantly under the combined set of gauge
transformations

SAY = DA —gZMpo B9
6By = 2Dy E)NN —2AMHY) 42 A 6AU] , (74)
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where ZM¥ labels the tensor gauge transformations associated with the two-forms. The two-

forms Bﬁ\%N introduced in (71) cannot simply be added to the fields of the theory, as the number
of degrees of freedom is in general carefully balanced by supersymmetry. Rather, these must be
the two-forms that are already present in the ungauged supergravity. They thus can be labeled
by indices in the adjoint representation of the global symmetry group G. In other words, out of
the two-forms B}" in the symmetric tensor product

(Rv & 7zv)sym = 7zadj & ..., (75)

only those transforming in the adjoint representation R,q; are involved in the gauging. This is
precisely in accordance with the fact that two-forms in four dimensions are dual to the scalar
field isometries as a consequence of the on-shell duality and thus transform in the adjoint repre-
sentation of G. Their precise representation can be inferred from inspection of the tensor ZM pg
under which they appear.

It is important to notice that the modified gauge transformations still close on the gauge
fields and thus form a Lie algebra. Indeed, if we split (70) into two parts,

SAM =5(NAM +6(2)A M, (76)
the commutation relations are
B SA] AN = S(A)AM +8(2)A,M,
[B(A), 03] AN = [6(81),0(E)] AN =0, (77)

with
AM = XinpMANAY 2, = A"D, A — APD, AN (78)

In this case the usual properties of the field strength
]:;WM = Qa[MAV]M + X[pQ]MAMPAVQ (79)

are changed. In particular, it will no longer fulfill the Bianchi identity, which now must be
replaced by
1
DpFug = Xove) AN Foy” = 2 X Xigr"” Ay A4, (80)

Furthermore, 7, does not transform covariantly under a gauge transformation (70). Instead,
we have

5]:,WM = QD[N(SA,,]M - 2X(pQ)MA[HP§AV]Q
= Xno™ FuVA° —2X(np M DLESNT — 2X(poyM AT 0A, (81)

where the covariant derivative is

Xis“DE = 0, (Xoxe"E7) + A, Xing" X 95,
D,EN = 9,5 + XorTAENE + XV A CE, R (82)
Therefore, if we want to deform the original Lagrangian (59) and accommodate electric and
magnetic gauge fields, F,,™ cannot be used to construct gauge-covariant kinetic terms. For

this reason, the authors introduced tensor fields By, , to be described by B,,M", symmetric in
(MN), and with them modified field strengths

H;LVM = F/u/M + X(NP)MB;U/NP . (83)
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We will consider gauge transformations of the antisymmetric tensors of the form
0B, N = 2D, 2N + 24, N54,0 + AB,NT (84)

where AB,,, ¥ depends on the gauge parameter A9, but we do not fix it further at this point.
Together with (81), this then implies

H,u™M = Xno™ AN, N + XvpyM ABLNT (85)

5.1.1 The Kinetic Lagrangian

The first step towards a gauge invariant action is to replace F,,* in Lz by H,,”, which then
yields the new kinetic Lagrangian

Lok = reTasH,  H" — iRAse" "y Hpo™ (86)

where again Zpy, and R,y denote, respectively, Im AVyy; and Re Myy. Using

oL

1
g;u/A = E,ul/pam = RAFH;U/F + S C€ uvpo IAF HPUF ) (87)

2

the Lagrangian and its transformations can be written as

Lg.k. = EMVpUHA ngA )
6La = —Let7G MY,
+3 Lonvpo \Q (HA XQAEHZ - 2HA ,Xor"Gpox — g/WAXQAEng’E) ’ (88)

where, in the third line, we used the infinitesimal form of (77?):
S(MNys = AM [ — Xaas + 2 Xara"Neyr + Nar X' = -/\/’52} - (89)
When we introduce

G = (G, Gun) with Gt =H,", (90)

we can rewrite the second line of (88) in a covariant expression, and when we also use (85) we
get

0Lgr. = " [=2Gun (A2 Xpo  Hpe” + Xvp) AByo™) +1G,,M GV A Xoa " Qnr] - (91)

Clearly, the newly proposed form for £, . in (86) is still not gauge invariant. This should not come
as a surprise because (89) contains a constant shift, which requires the addition of extra terms
to the Lagrangian. Also the last term on the right hand side of (89) gives extra contributions
that are quadratic in the kinetic function. In the next steps we will see that besides GCS terms,
also terms linear and quadratic in the tensor field are required to restore gauge invariance. We
start with the discussion of the latter terms.

5.2 Topological Terms for the B-field and a New Constraint

The second step towards gauge invariance is made by adding topological terms linear and
quadratic in the tensor field B,, V¥ to the gauge kinetic term (86), namely

£top,B = %8pr0 )((NP)A B,uVNP <fpaA + %X(RS)A BpURS) . (92)
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Note that for pure electric gaugings X(NP)A = 0. Therefore, in this case this term vanishes,
implying that the tensor fields decouple.
We recall that, up to now, only the closure constraint has been used. We are now going to
impose one new constraint
Xovm X rs)? = 0. (93)

The constraint thus says that
Xovey* Xrsya = X(vpyr X(rs)™ - (94)
A consequence of this constraint that we will use below follows from the first of (?7) and (?7):
Xpe)"Dunr =0. (95)
The variation of Lip 5 is

5£t0p,B = iguupJX(NP)A [H,LLVA 5BpaNP + BpgNP(S.F;WA} (96)
= 1" Xnp)" [Huwn 6Bpo™ " + 2B (Db Aun — X(rs)an A0 AS)]

5.3 Generalized Chern-Simons Terms
We introduce a generalized Chern-Simons term of the form

1 1 1
Lacs =" AMAN (g Xna 0,4, + 6 N Oy A + gXMNAXPQAApPAaQ) . (97)

Modulo total derivatives one can write its variation as
(Sﬁgcs = ghvre [%J—"HVA'DP(sAoA — %quAX(Np)AApN(SAoP
—DunpAMSAN (9,A.7 + 2Xps"ARALS)] (98)
These variations can be combined with (96) to

6 (Liops + Lacs) = 7 A, Dy Agn + 1 Hun X vp)* (6B, — 24,86 A,7)
—DunpAMSAN (0,A.7 + 2XpsTAALS)] (99)

5.4 Variation of the total action

We are now ready to discuss the symmetry variation of the total Lagrangian
EVT = ‘Cg.k, + ‘Ctop,B + ‘CGCS ) (100)

built from (86), (92) and (97). We first check the invariance of (100) with respect to the =-
transformations. We see directly from (91) that the gauge-kinetic terms are invariant. The
second line of (99) also clearly vanishes inserting (70) and using (95). This leaves us with the
first line of (99), which, using (84) and (70), can be written in a symplectically covariant form

6=Lyvr = =" H,,M X(vp)“ QD27 (101)

The B-terms in H, see (83), are proportional to X RS)M and thus give a vanishing contribution
due to our new constraint (93). For the F terms we can perform an integration by parts and
then (80) gives again only terms proportional to X(RS)M leading to the same conclusion. We
therefore find that the =-variation of the total action vanishes.
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We can thus further restrict to the AM gauge transformations. According to (81), the D,0 Ay~
term in (99) can then be replaced by %AQX ~NoaH 0, which can then be combined with the first
term of (91) to form a symplectically covariant expression (the first term on the right hand side
of (103) below). Adding also the remaining terms of (99) and (91), one obtains, using (84),

0Ly = er? [igwMAQXNQRQMR%poN + %g;wMgpaNAQXQMRQNR (102)
+411(H - g)MVAX(NP)AABpO'NP _DMNPAMMDVAN (apAo'P + %XRSPA[)RAUS)} .

We observe that if the H in the first line was a G, would allow one to write the first line as

an expression proportional to Dy;yp. This leads to the first line in (104) below. The second

observation is that the identity (H — G)* = 0 allows one to rewrite the second line of (103) in a
symplectically covariant way, so that, altogether, we have

0Ly = " [1Gu A Xng™ ir(H — §)po™ + §G" Goo A Dauan (103)
_i(H - g)/ﬂ/MQMRX(NP)RABpUNP _DMNPA/LMDVAN (apAaP + %XRSPA;JRAUS)] .
By choosing
ABpoNP = _AngoP - ApgpaN ) (104)
the result (104) becomes
5£VT — gﬂl’pg [%AQDMNQ (QQW,M(/H - g)poN + gyz/Mng'N)
_DMNPAMMDVAN (aoAUP + %XRSPA/)RAUS)} ) (105)

which is then proportional to Djy;np, and hence zero when the original representation constraint
is imposed.

6 The Covariant Anomaly

The superfield version of the covariant anomaly is straightforward,
Ag / d'r d*0tr iNW W, + h.c. (106)

where W< denotes the non-abelian superfield vector field strength and A is a chiral superfield.
Supersymmetric expressions for the difference between the consistent and covariant anomaly for
a simple gauge group are complicated.

The covariant (left-)chiral anomaly is

. ‘ ,
Ag = (D,j") = ﬁewo tr [T“vwv,m} _ #EWU tr [T“aﬂ (v,,apvg T gvyvpu,ﬂ . (107)

with V,, = 9,V, — 9, V,, + [V,., V..

Our goal is to generalize this for theories with quantum anomalies. These anomalies depend
only on the gauge vectors. The field strengths G, (87), also depend on the matrix N which itself
generically depends on scalar fields. Therefore, we want to consider modified transformations of
the antisymmetric tensors such that G does not appear in the final result.

To achieve this, we would like to replace (104) by a transformation such that

Xvpy"ABN = —2X (npy AN G, + 20 Dyng A (H — G) 0™ (108)
Indeed, inserting this in (104) would lead to
SLy = " [EA®DyrngFuw Foo™ — Dunp A M DAY (8,47 + 2Xrs" AR A%, (109)
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where we have used (95) to delete contributions coming from the B,,N* term in H,,*.

The first term on the right hand side of (108) would follow from (104), but the second
term cannot in general be obtained from assigning transformations to B,,"". Indeed, self-
consistency of (108) requires that the second term on the right hand side be proportional to
X(n p)R, which imposes a further constraint on Dy, yp. We will see how we can nevertheless justify
the transformation law (108) by introducing other antisymmetric tensors. For the moment, we
just accept (108) and explore its consequences.

Expanding (109) using (??) and (70) and using a partial integration, (109) can be rewritten

as
0Ly = —Ap, (110)
which describes the quantum gauge anomalies due to anomalous chiral fermions
S(MT[A] = /d4:1:AMAM, (111)
where the covariant anomaly is
1
-AM = _§€HVPO'APDMNP6HAVM8PAUN
1 3
—Z—lg“”””AP(DMNRX[pS]N + §DMNPX[RS]N)8“AVMAPRAUS. (112)

This expression formally looks like a symplectically covariant generalization of the electric con-
sistent anomaly (121). To prove (110), one uses (95) and the preservation of Dysyp under gauge
transformations, which follows from preservation of X, see (??), and of 2, see (??7), and reads

X' Doryp =0. (113)
For the terms quartic in the gauge fields, one needs the following consequence of (113):

(Xrs" Xpo" Drun)irseyy = —(Xrs™ Xpu™ Doy + Xrs™ Xpr™ Do) rsery
—(Xrs" Xpr" Doun)irspr) » (114)

where the final line uses (95).

Let us summarize the result of our calculation up to the present point. We have used the
action (100) and considered its transformations under (70) and (84), where AB,, V" was un-
determined. We used the closure constraint and one new constraint (93). We showed that the
choice (104) leads to invariance if Djysyp vanishes, which is the representation constraint used in
the anomaly-free case. However, when we use instead the more general transformation (108) in
the case Dy yp # 0, we obtain the non-vanishing classical variation (110). The corresponding
expression (112) formally looks very similar to a symplectically covariant generalization of the
electric consistent quantum anomaly.

7 The Consistent Anomaly

The physical information of a quantum field theory is contained in the Green’s functions, which
in turn are encoded in an appropriate generating functional. Treating the Yang-Mills fields W,
as external fields, the generating functional for proper vertices can be written as a path integral
over the other matter fields,

Tl _ / DFDpeSWudd) (115)
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The gauge invariance,
IA'[W,] =0, (116)

of the effective action encodes the Ward identities and is crucial for the renormalizability of the
theory. Even if the classical action, §, is gauge invariant, a non-invariance of the path integral
measure may occur and violate (116), leading to a quantum anomaly. Even though the functional
I'[W,] is in general neither a local nor a polynomial functional of the I, the quantum anomaly,

S(A)T[IV] = — / dig A <DH5§% ]>A _ / de A A, (117)

does have this property. More explicitly, for an arbitrary non-Abelian gauge group, the consistent
form of the anomaly A, is given by

Ay e 2907 T (T40,, (W0, W, + SW,W,IV5) ). (118)

where W, = Wlf‘TA, and T4 denotes the generators in the representation space of the chiral
fermions. Similarly there are supersymmetry anomalies, such that the final non-invariance of the
one-loop effective action is

A=T(W) =8§(MNT[W] +6(e)L[W] = /d%- (A" A4+ eA.) . (119)

This anomaly should satisfy the Wess-Zumino consistency conditions, which are the statement
that these variations should satisfy the symmetry algebra. For the gauge anomalies these are

5(A1) (A A4) — 3(A2) (A AL) = APAS fre A (120)

If the effective action is non-invariant under gauge transformations, then also its supersymmetry
transformation is non-vanishing. An anomalous spectrum of chiral fermions induces a gauge
non-invariance of the quantum effective action, where Ac denotes the consistent anomaly

i i
Ac = ~1 [dascFy, + (dappfes” + 3dapc foe®) W) WE] Frd, (121)
eA. — Re [%idABCERA%Xf/\LB +idapeWE FrAg 4\

+3dapc foete™ P WEWEWE e 1,07] - (122)

The form of the anomaly depends on the renormalization scheme, which we have chosen such that
the anomaly is proportional to dapc. Choosing a different scheme would change the coefficients
in the GCS term. Quantum anomalies can cancel the terms in the variation (64) that are
proportional to the symmetric part Cﬁ{%’c, provided we have dapc = C’S}BC. This is the Green-
Schwarz mechanism. Thus, putting everything together, if we have

Cap,c = dapc + C&%S,)c, (123)

the variation of the GCS term and the quantum anomaly together cancel the variation (64). The
coefficients d 4gc form a totally symmetric tensor that is not fixed by the consistency conditions.
Comparison with (118) implies that they are of the form

dABC’ ~ Tr ({TA, TB}TC) . (124)

Consequently, the low-energy theory is determined by the Wess-Zumino consistency condi-
tions, rather than by the requirement of supersymmetry, and this procedure does not fix a quartic
coupling for the gauginos.
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We have shown how gauge invariance can be restored in the presence gauged axionic shift
symmetries in general A/ = 1 supersymmetric gauge theories. What we have not yet checked is
whether the new action Sy + Scg is also invariant under supersymmetry. A careful calculation
reveals

5(e) (Sf + SCS> - / d*z Re [— HOG), cErAGAIND
IO WAL, NE — 3CSh o fos S WOWEW e ] (125

This is not zero, and in fact, it should not be zero. The reason is that the above classical action
is not gauge invariant. As we are working in the Wess-Zumino gauge, this will also imply a
non-invariance under supersymmetry. Thus the classical gauge non-invariance triggers a classical
supersymmetry non-invariance. However, this is also true for the quantum gauge anomaly, it
also triggers a supersymmetry anomaly of the quantum effective action,

S(e)L[W] = / d'reA. . (126)

The supersymmetry anomaly has been calculated by Brandt, and it is precisely the negative of
equation (125),

5(¢) (S} + SCS) + /d‘*:che =0. (127)

Thus, the entire classical plus quantum theory is indeed supersymmetric.

8 Mixed Anomalies in Supergravity

Having established that the two forms of anomalies are not equivalent for a simple non-abelian
gauge group, we point out how one can interpolate between them for a mixed anomaly. Consider
a gauge group which is the product of a single U(1) factor and a simple non-abelian group G,
= G'xU(1). Write the gauge field V,, = A5T*+iQC),, where the T are anti-hermitian generators
of G and @ is the charge under U(1). We use Fy, for the non-abelian field strength and C,, for
the abelian field strength. Inserting V, = A{T“ +iQC), into the expression for the consistent
anomaly and covariant anomaly, we pick up terms which are purely abelian or purely non-abelian
anomalies as well as mixed anomalies. We write this

(Duj")* = A" = Aoy + A s (D) =A% = AG,+ AL (128)

abe mixed

where ji = —0L/0A] = —iy,T* Lty and ji = —0L/6C, = —i1)y,iQ L1 are the non-abelian
and abelian currents. Below subscripts “cov” or “con” indicate whether a given term in the
anomalies is written in the covariant form (107) or the consistent form (?7).

To be explicit, we list the mixed anomalies A2, , and Af\?/l in covariant and consistent form
respectively,

i vpo . i vpo , 2
Af\?/l ¢ = SQWEH P tr ZQ F/JVFPU = @Eu P tr |:ZQ8# (Ay ap4’4~cr + gAI/ApAU)] )
; r 1
‘A,}Q\/l c = ﬁGNVPU tr -ZQaﬂ (AI/ 8pA0' + iAl,ApAg)] )
Aug = 5zt [T"QCpuFin.
a Z vpo I a, 1
MC = me“ P tr _T ZQa“ <Cy apAg + ZOVApA0'>i| . (129)
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There are two candidate polynomials in C), and A, from which finite local counter terms in
the Lagrangian can be constructed,

Ly =

Gt QA0 A, |, Ly = = 7, tr |iQA, A, A, | (130)

1272 1272

Their gauge variations under non-abelian gauge transformations 77 are

_ t Hvpo : o
0Ly = 193 € tr [ZQ@ ((’9”0” 0,A, 28M(CVAPAJ)>} ,
e
09 Lo 2 € tr [z@@@u(C,,ApAJ)] ) (131)

One may add these counter terms with arbitrary coefficients to the Lagrangian. This would
modify the non-abelian current conservation law by terms proportional to (131). The unique
combination

3
Loy = L1+ Zﬁg (132)
precisely cancels the non-abelian mixed anomaly in the consistent form,
0Ll = —0° A% . (133)
Under abelian gauge variations
0aC,, = I\ (134)
the counter term gives
OnLe = —AN(AG 0 — A% o) | (135)

it rotates the consistent form of the abelian mixed anomaly into covariant form. This is essential
for the Green-Schwarz mechanism. The gauge variations (131) of the counter terms yield total
derivatives, but the covariant mixed anomaly A}, given in (129) involves ¢***? tr T°C\,, F,,
which is not a total derivative. Hence the non-abelian variations of the counter terms (131)

a o . o
could never fully cancel A% . . it is therefore crucial to use A% . . .on-

9 The Anomalies in D =6 Supergravity

We review some properties of the field equations of six-dimensional (1,0) supergravity coupled
to tensor and vector multiplets, and in particular their relation to covariant, consistent and
gravitational anomalies. We also describe a lagrangian formulation for this system, obtained
applying the Pasti-Sorokin-Tonin prescription. For completeness, we are also including some
new interesting results in identification of the supergravity anomalies.

Perturbative six-dimensional string vacua with minimal supersymmetry can arise for instance
as compactifications of the heterotic string on K3, or as parameter-space orbifolds of K3 reduc-
tions of the type-I1IB string. While in the former case only a single tensor multiplet is present, in
the latter one obtains vacua with variable numbers of tensor multiplets, related by string dualities
to non-perturbative heterotic and M-theory vacua. In these models, the anomalous contribution
due to fermion loops is derived from the residual anomaly polynomial

ro.S 2 2
Cy Cy Mrs trg 77 try F°

where the ¢’s are a collection of constants (z and y run over the various semi-simple Lie factors
in the gauge group and over the Lorentz group) and 7 is the Minkowski metric for SO(1, nr),
with ny the number of tensor multiplets. As a consequence, several antisymmetric tensors take

22



part in a generalized Green-Schwarz mechanism. The corresponding Green-Schwarz term has
the form

B" ¢ tr, F?
and, if one considers only gauge anomalies, contains only two derivatives, and thus belongs to
the low-energy effective action. Consequently, the resulting low-energy lagrangian has a gauge
anomaly, that the Wess-Zumino conditions relate to a supersymmetry anomaly.

The complete coupling of (1,0) six-dimensional supergravity to non-abelian vector and tensor
multiplets requiring the closure of the Wess-Zumino conditions, has revealed another related
aspect of these six-dimensional models: a quartic coupling for the gauginos is undetermined, and
the construction is consistent for any choice of this coupling. Correspondingly, the commutator of
two supersymmetry transformations on the gauginos contains an extension, that plays a crucial
role in ensuring that the Wess-Zumino consistency conditions close on-shell. The coupling of
(1,0) six-dimensional supergravity to non-abelian vectors and self-dual tensors reveals neatly the
realization of a peculiar aspect of the physics of branes: singularities in the gauge couplings
appear for particular values of the scalars in the tensor multiplets, and can be ascribed to a
phase transition in which a string becomes tensionless. In this model the divergence of the
energy-momentum tensor is non-vanishing, as is properly the case for a theory that has gauge
anomalies but no gravitational anomalies. The whole construction can also be repeated with the
inclusion of abelian vectors, that actually allow more general couplings, since in this case the
residual anomaly polynomial can have the more general form

Pa= Sy nsF*NFPANFENF?, (136)

where the indices a,b,c,d run over the different U(1) gauge groups, and where the ¢"’s are
symmetric matrices that may not be simultaneously diagonalized. Notice that these low-energy
couplings are obtained by consistency once one includes the Green-Schwarz term in the low-energy
theory. The complete theory, supersymmetric and gauge-invariant, would also include additional
non-local couplings arising from fermion loops. This is exactly as in the ten-dimensional case,
what is peculiar of these six-dimensional models is that here the anomalous terms belong to the
low-energy effective action. In order to have an explicit realization of the low-energy dynamics of
six-dimensional string vacua, it is of interest to consider how the whole construction is modified
by the inclusion of hypermultiplets. The complete coupling to a single tensor multiplet and to
vector and charged hypermultiplets was obtained for the case in which no anomalies and no
singular couplings are present. More recently, an analysis of the case in which various tensor
multiplets are present without taking into account the anomalous terms. Still, this analysis
shows that, in correspondence to the phase transition, additional singular terms appear because
of the presence of charged hypermultiplets.

9.1 Supergravity in Six Dimensions Coupled to Tensor Multiplets

In formulating the low-energy couplings between tensor and vector multiplets, one has two natural
options. The first is related to covariant field equations and to the corresponding covariant
anomalies. It has the virtue of respecting gauge covariance and supersymmetry, but the resulting
field equations are not integrable. The second is related to consistent, and thus integrable field
equations. These may be derived from an action principle that satisfies Wess-Zumino consistency
conditions, and as a result embody a supersymmetry anomaly.

We describe minimal (1,0) six-dimensional supergravity coupled to n tensor multiplets. Sim-
ple supersymmetry in six dimensions is generated by an Sp(2) doublet of chiral spinorial charges
Q" (a = 1,2), obeying the symplectic Majorana condition

Q" = e Cqr (137)
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where € is the Sp(2) antisymmetric invariant tensor. Since all fermi fields appear as Sp(2)
doublets, from now on we will mostly use ¥ to denote a doublet U®.

The theory includes the vielbein e,,*, a left-handed gravitino ¥,,, (n+1) antisymmetric tensors
B}, (r =0,...,n) obeying (anti)self-duality conditions, n right-handed tensorini ™ (m = 1, ...,n),
and n scalars. The scalars parameterize the coset space SO(1,n)/SO(n), and are thus associated
to the SO(1,n) matrix (r =0, ...n)

V= (vez” (138)
whose matrix elements satisfy the constraints
v, =1, Vs — T T = N v =0. (139)

Defining
Grs = vyvs + Tl (140)

the tensor (anti)self-duality conditions can be succinctly written

1
G H"P = — PPV s (141)

Ge
where H],, = 30, B, o These relations only hold to lowest order in the fermi fields, and imply
that v H},, is self dual, while the n tensors " H,, are antiself dual, as one can see using (187).

The divergence of (141) yields the second-order tensor equation
D (G HP) = 0 (142)

while, to lowest order, the fermionic equations are

YDV, + v, H P, U, — 3 TH’"“"”%,)X + xma VAT =0 (143)
and 1 . .
Y Dux™ — EUTHTWIJVWpXm B %x;nHTWp%w\I}P - %xTauvr'wT/y\Pu =0. (144)
Varying the fermi fields in them with the supersymmetry transformations
a c(—.a T N ANT 1 mr(-m
de,* = —i(ey" V), 0B, = iv" (Y y€) + 2% (X" Yuv€)
1
v, = xm(éxm) 0V, =D,e+ 4UTHTVP7
X" = m(‘? v'yte + ExTHTVﬂW%, (145)

generates the bosonic equations, using also (141) and (142). Thus, the scalar field equation is

T 2 m S
D, (0"") + SO0 L HOPT =0, (146)
while the Einstein equation is
1 T 1 r Qo r s af
Ry = 59 B + 040" 0,0 = 50 000" 00, — G Hj o H' % = 0. (147)
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To this order, this amounts to a proof of supersymmetry, and it is also possible to show that
the commutator of two supersymmetry transformations on the bosonic fields closes on the local
symmetries

(= r 1 r v DT
[51’ 52] = gct(f“ = _2(51'7N€2)) + 5tenS(Au = _§U SM —£ B;w)
+5SO(71) (Amn = f”.?jmT(a#Jj?)) + 5Lorentz(Qab - _gu(w,uab - 'UTHT'LLab» . (148)

To this order, one can not see the local supersymmetry transformation in the gauge algebra, since
the expected parameter, {#W,, is generated by bosonic variations. As usual, the spin connection
satisfies its equation of motion, that to lowest order in the fermi fields is

D,e, — Dye," =0, (149)

and implies the absence of torsion.

Completing these equations will require terms cubic in the fermi fields in the fermionic equa-
tions, and terms quadratic in the fermi fields in their supersymmetry transformations. Super-
symmetry will then determine corresponding modifications of the bosonic equations, and the
(anti)self-duality conditions (141) will also be modified by terms quadratic in the fermi fields.
Supercovariance actually fixes all terms containing the gravitino in the first-order equations and
in the supersymmetry variations of fermi fields.

The supercovariant forms

N 1, = _ _
w;u/p = W,gyp - §(q]u'7u\pp + \I]u'yp\lju + \IJV’Y;A“II/)) ) (150)
7T r 1 mr(—m —m —m i T = —
H/u/p = Huup - 5.1' (X FVMV\IJP + X WVPLIJM + X PYP#\IJV) - 51} (\IJMPYVLIJP + \IjVﬂyquM + \IJPFYquV) )
D" = " — 2™ (Y™, (151)
where . . .
wg,/p = §epa(8ueya —0ye,") — ée“a(&,ep“ —0pe,") + §eya(0pe,ﬂ — 0ue,”) (152)

is the standard spin connection in the absence of torsion, do not generate derivatives of the
parameter under supersymmetry. In the same spirit, one can consider the supercovariant trans-
formations

LT, A e (153)

a 1 rrr v m 4 miaq” r
oV, = D,e+ —v.Hj, "¢, X" = 5% (0o )yHe + 50

4
The tensorino transformation is complete, while the gravitino transformation could include ad-
ditional terms quadratic in the tensorini. On the other hand, one does not expect modifications
of the bosonic transformations in the complete theory.

The algebra (148) has been obtained varying only the fermi fields in the bosonic supersym-
metry transformations. The next step is to compute the commutator varying the bosonic fields
as well. There is no important novelty in the complete commutator on v" and on the vielbein
e,”. However, the local Lorentz parameter is modified and takes the form

Q% = &M@, — v, HI™) (154)
while, as anticipated, the supersymmetry parameter is
(=, (155)
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These results are obtained using the torsion equation for w,
Dye,* — Dye,* =28, = —i(0,7"V,) . (156)

One can also compute the commutator on z!"* and (187) determine its supersymmetry varia-
tion

oz = v (ex™) (157)
and the resulting commutator includes a local SO(n) transformation of parameter
AT = g™ (Oua)) + (X" e)(Xe) — (XMe) (Xe2) (158)

New results come from the complete commutator on B, where one needs to use the (anti)self-

duality conditions. Supercovariantization is at work here, since these conditions are first-order
equations, that become

~ 1
G,sH:

nrp = @ Cuvpay

HP (159)
It is actually possible to alter these conditions demanding that the modified tensor

Hywp = Hpp + 100" (X" YupX™) (160)
satisfy (anti)self-duality conditions as in (159). Using (187), one can see that the new x* terms
contribute only to the self-duality condition, while the tensors z;"Hj, , remain antiself dual with-
out extra y? terms. Consequently, since the commutator on By, uses only the antiself-duality
conditions, the result does not contain terms proportional to a. The commutator on the tensor

fields generates all local symmetries in the proper form, aside from the extra terms

1 - m\/—m 1r— m\ [ .—m
[51752]extraB;y:§UT<€1X )(X 7#1/62)_50 (EZX )(X 7;11/61) ) (161)

that may be canceled adding x? terms to the transformation of the gravitino. The most general
expression one can add is

W, =ia X" (EX™) + b X" (€7 X™) +ic Yuwpx ™ (EYPX™) (162)

with a, b and c real coefficients. The commutator on e,* now closes with a local Lorentz parameter
modified by the addition of

A = —Z[(Te)(En™x™) — (T @r™x™)] (163)

while the commutators on the scalar fields are not modified.

One can now start to compute the commutators on fermi fields, that as usual close only on
shell. We will actually use this result to derive the complete fermionic equations. Supercovariance
determines the field equation of the tensorini up to a term proportional to x3. Closure of the
algebra fixes this additional term, and the end result is

a m 1 7T vp. m 4 m pyruy, i mra” v i a.ni=n m
VDX = 15U X = Gt Ty Wy = Sa (0,0 = o X (XM ax™) = 0.

The complete commutator of two supersymmetry transformations on the tensorini is then

1
[617 52]Xm = Ogct Xm + 5Lorentz Xm + (SSO(n) Xm + 5susy Xm + Z_l’yafa [eq Xm] . (164)
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A similar result can be obtained for the gravitino. In this case the complete equation,

1 ) ; R
’“”’D v, + 4UTHTaﬂ7””"7°‘5\If ~ 5 :”H”‘””%pxm + zm;"(ayvr)yl’v“xm (165)
+27“ X" (X" )_17 X" (X908 97) + rax " (X" 07) = X (X" Wa) = 0,

is fixed by supercovariance, and the commutator closes up to terms proportional to a particular
combination of (166) and its v-trace. Moreover, a non-trivial symplectic structure makes its first
appearance in a commutator, so that the final result is

3 1
[517 52]\112 = gct\IjZ + 5Lorentijz + 5susy\yz + §€a7a([eq' \Ij,u] - nyu[fy - traceDa

1 1
+96 avo‘mfam([eq. v, - Zyu[y — trace])b , (166)
where ' '
apy = —i[€1%apyEa]" (167)

Summarizing, from the algebra we have obtained the complete fermionic equations of (1,0)
six-dimensional supergravity coupled to n tensor multiplets. In addition, the modified 3-form

r r i r(-m m
%uup = Huup 8/0 (X ,YIWPX ) (168)

satisfies the (anti)self-duality conditions

1 ~
GrsHe, = —€upap HEPY (169)

e Ge

We have also identified the complete supersymmetry transformations, that we collect here for
convenience:

de,* = —i(ey*V,)
s T
0B}, = w" (Y v€) + §xm (X" Yuwe)
v, = x'(x"e)
a 1 T vp 31 ni=.mn i v.on(= . vp
00y = Dye + Juntly, 7€ — X" (") — g7 X" (€ X”) + 16wupx "(Ext)
m i r mryr «
ox =5 (D" )y e + Ex’" H g Y Pre . (170)
In order to obtain the bosonic equations, it is convenient to associate the fermionic equations

to the Lagrangian

_ A | . i N
e 1£; = 5" pD,j[E(w + )W, — gvr[HjL H]™™P (0,7, W ,)

NT vo i -m ~ T 17
48 vr[H + H]a,@y(qju'yu BV\I}V) + X YDy (@)x™ 24UTH;Wp( THEX™)
1 1
1o + 0,0 (T y " X™) — 3 2 H + H™ P (0,7,,x™) (171)
]' ruy m ]' —-m v m\ (I ]' m,. . n\(-m n
+o 0 PIH + H]™ (000X )+ g (W W) — (XX (X 7aX™)

where the spin connection is

i T T ST Z T O Z -m m
Whvp = ng,p - E(WMVqup + UV + Vo ¥,) — 1(\1/ VWpaﬁqjﬁ) - Z(X VirpX™) (172)
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satisfies its equation of motion, and is thus kept fixed in all variations.
In order to derive the bosonic equations, one can add to (172)

wvp

1 1 1
-1 — TUVP IJS T Oy 1
e " Lg 4R+ 12GTSH H 48“) o, (173)

One can then obtain from Ly, + Lysse the equations for the vielbein and the scalars, with the
prescription that the (anti)self-duality conditions be used only after varying. Actually, ignoring
momentarily (169) and varying L s, + Lpose With respect to the antisymmetric tensor By, yields
the second-order tensor equation, the divergence of (169),

1

2N m(.—m . uvpa i T, aBuv i —m,_ uvp. m
DH(GTSH a p) = éDu[xr (X P \I/a)] - ZLD}L[/U’I‘(\I}O/Y on quﬁ)] + ZLDM[U’/‘(X X )] (174)

In a similar fashion, the scalar equation is

1 1 B [ i = e
xm[_Du(auvr)_l_gvsHm PHS _ _HTH p(qju%mp)+_Ham(\Iju7u B’Y\I]V)

" | 24
v T —n v n 1 n (T v n 1 TUYP (T4 m
— 51 e (X"PX") = 5 D@ (O X)) + 0 [ H P (T3, X™)
1 TIVP (T m
+EH PP (U Y qmpX™)] =0, (175)
while the Einstein equation is
1 1 1
af af ravp rysp af r spv
§€ﬁa[R - 59 R — GrsH "H vp + 69 Grus,p]? wvp

1 o . _ .
FOD 0, — g0 0] - %eaa(\pwuup D,v,) + %(\I}a,-yazxp DL,

(T 0)

uvp pap

+%(\I/“7“O‘pf?a\llp) + %(@“W“mﬁy\ﬂa) — ie“avTﬁr (UHAYTP) + %v,.]:[’"

+%UT]:IMVP(\IJG%\IIP) + %UT]:IT

avp

0V Lo rrr T, v
(T W7) + o e®av Hi 5 (U7 P10w,)

i 7T T QU ! T T va Lo fom a m
— 15 Vs (Yay B”‘s‘l’u)—gvrﬂam(‘l’w’* 5“I'V)+§6 (X" DyuX™)

—m_ )y m i o 7T —m_ urp. m i 2 —m_avp.m
—5 (X" Dax™) = ope%avn L, (X" "OX™) 4 gunHg, (X" 7™ X™)

a .m(9’ ST m 1 mrq’ ST m 1 mrq” T U . m
+5e% 27 (0,07) (V" y'X™) = 52 (0av") (P X™) — 527 (0,07) (Pay " X™)

1 ~ - 1 - — 1 A -
——€aal’::nHT (qju,yupxm) + ZpmHT (\Iju,yapxm) + Zl,Teran(qja,yupXm)

4 pvp o tr Huap
1 m ryr T Vp. m 1 m fyr T OuVp. m 1 m ryr T, vp. m

_’_Z‘TT Haup(qj Y pX ) + Eeaaxr H,u,up<\110’7 a pX ) - Exr H,uz/p(‘lja’ya“ pX )
1 m T T, .ooUp. m .

L, (B ) + (fermi = 0. (176)

For the sake of brevity, a number of quartic fermionic couplings, fully determined by the la-
grangian of (172) and (173), are not written explicitly. It then takes a direct, if somewhat
tedious, calculation to prove local supersymmetry, showing that

§S = /d% (5?%__ + 5B%> =0, (177)

where F' and B denote collectively the fermi and bose fields aside from the antisymmetric tensors.
We would like to stress that the equations for the fermi fields defined from the gauge algebra
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differ from the lagrangian equations by overall factors that may be simply identified. To see why
this works, consider a generic true supergravity theory with a collection of boson and fermion
fields B(x) and F'(z) and transformation rules which involve arbitrary spinor parameters €(z).
The action S[B, F] is locally supersymmetric, which means that the supersymmetry variation

68 = /d% (5%53 + 5%51?) =0 (178)

vanishes identically, for all configurations of B(x), F(x),e(z). In particular, the terms of each
order in F' vanish independently. To lowest order, with fermions more specifically described as
gravitinos v, (z) and Dirac spinors A(x), the fermion transformations have the generic structure

(0B)y = €GF = €(G"¢Y,+G B\) (179)
) = (D " B

o - [ 000 = gy -
(0X)o = (G"0,B+G" B)e.

The G and G’ are matrices of the Clifford algebra with the appropriate tensor structure.
The lowest order term in 4.5 is linear in the fermions
) )
— D — - —
(09)1in /d x {58 (eGF) + Na (60F)o| =0. (181)

The variation §/0B is purely bosonic to this order, and 6/0F is linear in fermions. Note that
(0.5)yn still vanishes for all configurations of B(z), F'(z),e(x). If € is a Killing spinor, then, by
definition (0F)p = 0, and linsu then reads

d
= Py — (eGF) = 0. 182
(09)1in /d T 5 (EGF) =0 (182)
It vanishes for all configurations of B(z) which support Killing spinors and all fermion configu-
rations F'(z). Thus the sum over all independent boson fields Bj(x) vanishes locally

3 % (€GF); = 0. (183)

If the fermion variations (€ GF'); are independent, then each boson equation of motion §/6B; = 0
is satisfied separately. In many cases the fermion variations are independent, in other cases one
must supplement the equations 183 with gauge field equations of motion. It is in this way that
a bosonic field configuration Bj(z) which supports Killing spinors can give a solution of the
bosonic equations of motion of the theory. The first order equations which determine these BPS
configurations of B;(z) are the integrability conditions for the Killing spinor equations (6¢,)o = 0
and ((5)\)0 = 0.

9.2 Supersymmetry Algebra and Equations of Motion

We describe the full coupling of six-dimensional supergravity to vector, tensor and hypermulti-
plets. We first summarize the field content of the theory. The gravitational multiplet contains
the vielbein e,™, a 2-form and a left-handed gravitino 2/1;?, the tensor multiplet contains a 2-
form, a scalar and a right-handed tensorino, the vector multiplet contains a vector A, and a
left-handed gaugino A\*, and finally the hypermultiplet contains four scalars and a right-handed
hyperino. In the presence of np tensor multiplets, the tensorinos are denoted by x™4 where
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M =1,...,nr is an SO(nr) index. The index A = 1,2 is in the fundamental representation of
USp(2), and the gravitino, the tensorinos and the gauginos are USp(2) doublets satisfying the
symplectic-Majorana condition

YA = ABCyl (184)
The ny scalars in the tensor multiplets parametrize the coset SO(1,nr)/SO(ny), while the
(nr + 1) 2-forms from the gravitational and tensor multiplets are collectively denoted by B,
with r = 0, ..., ny in the fundamental representation of SO(1, nr), and their field-strengths satisfy
(anti)self-duality conditions. The vector and the gaugino are in the adjoint representation of the
gauge group. Finally, taking into account ny hypermultiplets, the hyperinos are denoted by
U where a = 1,...,2ny is a USp(2ny) index, and the symplectic-Majorana condition for these
spinors is

v = Q*ovl | (185)
where Q% is the antisymmetric invariant tensor of USp(2ny). The hyper-scalars ¢, o =
1,...,4nyg, are coordinates of a quaternionic manifold, that is a manifold whose holonomy group
is contained in USp(2) x USp(2ny).

If the quaternionic manifold parametrized by the hyper-scalars has isometries, these corre-
spond to global symmetries of the supergravity theory. Then the global symmetry group, or
a subgroup can be gauged. We will consider without loss of generality the case in which the
scalars parametrize the symmetric manifold USp(2,2ny)/USp(2) x USp(2ny), whose isometry
group is USp(2,2ny). We will then describe the gauging of the maximal compact subgroup
USp(2) x USp(2ny) of the isometry group. All the results can be naturally generalized to other
symmetric quaternionic spaces.

The scalars in the tensor multiplets can be described in terms of the SO(1, ny) matrix

V= (vz) (186)

T

whose elements satisfy the constraints

Vo, =1, vy — oMM =n. oM =0 . (187)

We will take v, and 2, with the constraints of (187), as fundamental fields, so that the composite
SO(nr) connection that appears in the covariant derivative of the tensorinos will be z¥d,zM".
On the other hand, the notation in which the fundamental fields are the scalars ®* (& =1, ..., n7)
parametrizing the coset manifold, adds to the supersymmetry variation of the tensorinos y™4
the term

—PYAMNNNA (188)
where AYY is the composite connection of SO(nr). In this notation, the commutator of two
supersymmetry transformations on the tensorinos does not generate a local SO(ny) transforma-
tion.

We now recall the notations used to describe the scalars in the hypermultiplets. We denote by
Va4($) the vielbein of the quaternionic manifold, where the index structure corresponds to the
requirement that the holomony be contained in USp(2) x USp(2ng). The internal USp(2) and
USp(2ny) connections are then denoted, respectively, by A% p and A%, that in our conventions
are anti-hermitian matrices. The index o = 1,...,4nyg is a curved index on the quaternionic
manifold. The field-strengths of the connections are

Fos'p = 3a¢4§3 — O Al g+ [Aa, Asl's Fap® = OaAfy — Op Ay + [Aas Agl™s

where 0, = 0/0¢“. The request that the vielbein V.%4(¢) be covariantly constant gives the
following relations

1
ViaVinan = Qaean ViV + VLV = g0y ViVIP + VEVEE = g5

a
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where €2, is the antisymmetric invariant tensor of USp(2ng). The field-strength of the USp(2)
connection A% g is naturally constructed in terms of V%4 by the relation:

FopaB = VaaaViB + VaasVg a, (189)

and then the cyclic identity for the internal curvature tensor implies that the field-strength of
the USp(2ny) connection A%, has the form

Fusab = VaaaVar™ + VapaVaa™ + QabchadAVﬂcA , (190)

where 0 18 totally symmetric in its indices.

Now, assuming that the scalars parametrize the coset manifold USp(2,2ng)/USp(2)xUSp(2ny),
we describe the gauging of the hypermultiplets under the group USp(2) x USp(2ny), that is the
maximal compact subgroup of the isometry group. We denote the gauge fields of this group by
AL and Af“ where i and I take values in the adjoint representation of USp(2) and USp(2ng),
and the corresponding field-strengths are

F, = 0,A, — 0,A, + " A AN Fl =0,A0 —0,AL + fITRATAL (191)
where €% and fI/K are the structure constants of USp(2) and USp(2ny). Under the gauge
transformations

§A;, = DA, §A], = D, A (192)
the scalars transform as
G = A€ + ATged (193)

where £ and £*! are the Killing vectors corresponding to the USp(2) and USp(2ny) isometries.
The covariant derivative for the scalars is then

Dy¢™ = 0,¢% — Al g™ — Ale! (194)

One can correspondingly define the covariant derivatives for the spinors in a natural way,
adding the composite connections D,¢*A,. For instance, the covariant derivative for the hyper-
inos ¥* will contain the connections D,¢%A%;,, while the covariant derivative for the gravitino
and the tensorinos will contain the connections D,¢*A%p. The covariant derivatives for the
gauginos A4, A4 are

DX = QX 4 Ly ™A + Dy AR N - AT

1 mn o
DH)\IA — a'u/\IA + Zw,u,mn’y AIA +Dp,¢ AgBAIB _’_fIJKAi)\KA- (195)

Notice that the gravitino, the tensorinos and the hyperinos are not coupled to the gauge vectors
through terms that do not contain the hyperscalars.

We now proceed to the construction of the model. We assume that the gauge group has
the form G =[], G., with G, semi-simple. The scalars in the hypermultiplets are charged with
respect to G1 = USp(2) and Gy = USp(2ng). The field-strengths of the 2-forms B}, are

’ 30, B, + "wy, (196)

pp — pvp

where ¢* are constants and w?® are the Chern-Simons 3-forms

2
w® =tr,(AdA + §A3) : (197)
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These 3-form field-strengths satisfy (anti)self-duality conditions, that to lowest order in the fermi
fields are

1
GrsHSlwp - G_G#VPUCSTHTU(% ) (198)
e

where G,s = v,v5 + T, xM . Gauge invariance of H" requires that B" transform under vector
gauge transformations accordlng to

§B" = —tr,(AdA) . (199)

To lowest order in the fermi fields, we produce the construction adding the hypermultiplet
couplings. The equations for all fields, with the exception of the 2-forms, can be obtained from
the lagrangian

1
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+7AA B[~

after imposing the (anti)self—duality conditions. With this prescription, its variation under the
supersymmetry transformations

56,/” = _i(€7m¢u) )
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gives the supersymmetry anomaly
1 1
A = 46’“’”"5702 & tr, (6, A AN (Fpo Fsr) — 66“””"‘57 cd? tr (0 AL E,p)Ws
related by the Wess-Zumino conditions to the consistent gauge anomaly

1
Ay = =Gt (A At (Fpo Fiy).

Notice the presence in the lagrangian of the scalar potential

V(g) = — apAL A — 1 ApAG AL

4v,cmt

067' ) (202)

(203)

(204)

As in rather more conventional gauged models, the potential contains interesting informations,

and it may be very instructive to study its extrema in special cases.
The complete supersymmetry transformations of the fermi fields are
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We now want to extend the results to all orders in the fermi fields. First of all, we define the

supercovariant quantities

~.
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and require that the transformation rules for the fermi fields be supercovariant. All fermionic
terms in the supersymmetry transformations of the fermi fields that are not determined by
supercovariance are then obtained requiring the closure of the supersymmetry algebra on bose
and fermi fields. Moreover, since the supersymmetry algebra on the fermi fields closes only on-
shell, in this way one can determine the complete fermionic field equations, and from these the
complete lagrangian, up to some subtleties related to the (anti)self-dual forms.

One can compute the commutators of two supersymmetry transformations on the bose fields
using these relations, and show that they generate the local symmetries:

[617 52] = Ogct + 5Lorentz + 5susy + 5tens + 5gauge + 6SO(n) P (207)

where the parameters of generic coordinate, local Lorentz, supersymmetry, tensor gauge, vector
gauge and composite SO(n) transformations are respectively

éﬁ = _i(€1'7u€2) )

~ mn rrmn L. _ mn - mn
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AMN = ¢t (9,2)) + (WMe) (WVea) — (WMe) (W) . (208)

In order to prove this result, one has to use the (anti)self-duality condition for the tensor fields,
that to all orders in the fermi fields is

s 1 1obT
G, = 66%,,0&%5 (209)
in terms of the 3-forms
r T Z r(= Z T (T, a Z rz 3\
",,=H,, - g0 (XX ™) + 20" (Waup¥®) = 1€t (Mupd) (210)

Requiring that the commutator of two supersymmetry transformations on the fermi fields close
on-shell then determines the complete fermi field equations. The equations obtained in this way
are

1
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for the gravitino,
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for the tensorinos, and
_ A 1 )
iV Dy ()P + f—erHZyﬂ“”p\If“ + VY Y aVEAD, ¢ — 1o tr (MY pA )y P
1 - o
QI (87,0 ) + VAN, = 0 (213)

for the hyperinos.

9.3 Wess-Zumino Consistency Conditions

In general, the Wess-Zumino consistency conditions follow from the requirement that the symme-
try algebra be realized on the effective action. For locally supersymmetric theories this implies

5A1AA2 - 51\2"4/\1 - A[Al,AQ} ) 5EAA - 5AAE ) 661-’462 - 5€2~A61 - Ag + A[\? (214)

where only gauge and supersymmetry anomalies are considered, and where ¢ and A are the
parameters of supersymmetry and gauge transformations determined by the supersymmetry al-
gebra.

The operator d makes it possible to understand in a simple way why the Stora—Zumino descent
represents the most general non-trivial solution of the Wess— Zumino consistency condition (?7).
For the case of gauge anomalies we are considering here, Z(v) = [ tr(va(A)), the latter reads

5 / tr(vp a(A)) — 6, / tr(vr a(A)) — / x([u1, va] a(A)) = 0. (215)

The two transformations with parameters v; and vy can be incorporated into a family of trans-
formations parametrized by ' and 6%, with parameter o = v,df®. In this way, v, = g~ '0ag. At
0 =0, g(x,0) = 1 and therefore A(x, O) A(z) and F(z,0) = F(x). At that point, d generates
ordinary gauge transformations on A and F', with d= d0*6,,. The condition (215) can then be
multiplied by df'd#?* and rewritten as

/ te(6da(A)) + / tr(62 a(A)) = 0. (216)

In global supersymmetry the analysis is somewhat simpler, since the r.h.s. of the last of
(214) does not contain the (global) supersymmetry anomaly. Let us therefore begin by reviewing
the case of supersymmetric Yang-Mills theory in four dimensions. From the 6-form anomaly
polynomial

Pa=Is=trF>, (217)
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in the language of forms, one obtains the four-dimensional gauge anomaly
AW = tr[A(dA)? +% dAAY] (218)

and from (214) one can determine the form of the global supersymmetry anomaly. With the
classical lagrangian

1 _
ESYM = tr —§FMVFMV + 22)\")/MDN)\ y (219)

and A a right-handed Weyl spinor, the supersymmetry transformations are
i - 1
0A, = —(Eyu A — Ay,€), oN=——=F, ~"e. 220
n \/5( T Vu€) 92 pvY (220)

The second of (214) (with A: absent in this global case), then determines the supersymmetry
anomaly up to terms cubic in A,

AL = 1[5 AA(dA) + 5 AMA)A — D544 (221)

and indeed

0o ALY — 6, AD = AL + 3tr[6., Ade, AF — 50, A5, AF] . (222)

In order to compensate the second term in (222), one is to add to AW the gauge-invariant term
AAW = —%tr[égA/_\y(?’))\ A AYBN] (223)

so that A + AAY is the proper global supersymmetry anomaly. Although the supersymmetry
algebra closes only on the field equation of A, in four dimensions a simple dimensional counting
shows that (214) can not generate a term proportional to v#D,A. Therefore, in this case the
Wess-Zumino consistency conditions close accidentally even off-shell.

9.4 Inclusion of Vector Multiplets

Up to now, we have always considered the case in which the gauge group is non-abelian. In
the abelian case, the couplings can actually have a more general form, since gauge invariance
allows non-diagonal kinetic and Chern-Simons terms, in which the constants ¢, are substituted
by generic symmetric matrices ¢} ;, with 7, J running over the various U(1) factors. We now want
to generalize it to the case in which also charged hypermultiplets are present, and therefore we
will consider the gauging with respect to abelian subgroups of USp(2) x USp(2ng). There are
no subtleties when the symmetric matrices c}; are diagonal, since in this situation the previous
results can be straightforwardly applied. We are thus interested in the case in which the cj; can
not be simultaneously diagonalized. To this end, we will consider a model in which only these
abelian gauge groups are present.

We denote with AI I =1,...,m, the set of abelian vectors, and the gauginos are correspond-
ingly denoted by )\IA We collect here only the final results, since the construction follows the
same lines as in the non-abelian case. All the field equations may then be derived from the
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lagrangian
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The variation of this lagrangian with respect to gauge transformations gives the abelian gauge

anomaly
1

vpobt 1 rKLNT ) pK pL
Ap = 326“ p ANF,F, s, (225)
Once again, in the case of the gauginos, aside from local symmetry transformations and
field equations, the commutator of two supersymmetry transformations generates the additional

two-cocycle

X! = [0 c>-1cr1”cr“[—§<emK><emL> T — S @ ey
55 N M)V @A e + 2= (N3N ) @7 A e
HL WA @A — (10 2)
s @) (KAL) 2N (226)

The tensionless string phase transition point in the moduli space of the scalars in the tensor
multiplets now would correspond to the vanishing of some of the eigenvalues of the matrix

(v-c)l’.
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In the general case variation with respect to the supersymmetry transformations
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gives the supersymmetry anomaly
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All the observations made for the non-abelian case are naturally valid also here: the theory
is obtained by the requirement that the Wess-Zumino conditions close on-shell, and, as we have
already shown, it is determined up to an arbitrary quartic coupling for the gauginos. In the case
of a single vector multiplet, in which this quartic coupling vanishes, the two-cocycle of (226) is
still present, although it is properly independent of a.

9.5 Covariant Anomaly

It is well known that consistent and covariant gauge anomalies are related by the divergence of
a local functional. In six dimensions the residual covariant gauge anomaly is

1
Ao — §E,Wa,3wscrzcz try(AF) tro (FogFls) | (229)
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and is related to the consistent anomaly by a local counterterm,
A+ a{AD, ) = A", (230)

where .
ff=cc rz! {-= ’“’aﬁ“/‘;A try (F;BFZ/J) — ge“”aﬁ75Fya w’ﬁw}. (231)

Comparing (231) with (??) one can see that, to lowest order in the Fermi fields,
A = tr(d.A,f*), (232)

and this implies that the transition from consistent to covariant anomalies turns a model with
a supersymmetry anomaly into another. Indeed, six-dimensional supergravity coupled to vector
and tensor multiplets was originally formulated in this fashion to lowest order in the Fermi fields.
The resulting vector equation is not integrable. Moreover, the corresponding gauge anomaly
is not the gauge variation of a local functional and does not satisfy Wess-Zumino consistency
conditions.

This result can be generalized naturally, if somewhat tediously, to include terms of all orders
in the Fermi fields. The complete supersymmetry anomaly of (??) has the form

A = tr(6 AL ") + 6,9 e (233)
where to lowest order f* is defined in (231). Modifying the vector equation so that

oL

A (cov) k7(cov) - ﬂ - f* , (234)

and similarly for the Einstein equation, the resulting theory is supersymmetric but no longer
integrable. The covariant vector field equation is
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and completes the results to all orders in the Fermi fields. Analogous to the consistent anomaly
the covariant anomaly is defined by the covariant divergence of the covariant current

tr(ADLT ) = =AY, (236)
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where ALY contains higher-order Fermi terms
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9.6 Gravitational Anomaly

The gauge anomaly A, = d, L naturally satisfies the condition
Ay = —tr(AD,J"), (238)

where J* = ( is the complete field equation of the vector field. One can similarly show that the
supersymmetry anomaly is related to the field equation of the gravitino, that we write succinctly
= 0, according to

Ac = —(eDuJ") - (239)

We would like to stress that the Noether identities (238) and (239) relate the anomalies to the
equations of the fields whose transformations contain derivatives. This observation has a natural
application to gravitational anomalies, that we would now like to elucidate. In fact, in analogy
with the previous cases one would expect that

Ae = 0L = 28, D, T, (240)
where the variation of the metric under general coordinate transformations is

69uu = _faaag/w - gauauga - g,uaaufa . (241)

Thus, for models without gravitational anomalies one would expect that the divergence of the
energy-momentum tensor vanish. Actually, this is no longer true if other anomalies are present,
since all fields, not only the metric, have derivative variations under coordinate transformations.
For instance, in a theory with gauge and supersymmetry anomalies, the gravitational anomaly
is actually

Ae = 6L =26,D,T" + &, tr(A” D, J") + &, (4" D, J") . (242)

In particular, in our case we are not accounting for gravitational anomalies, that would result
in higher-derivative couplings, and indeed one can verify that the divergence of the energy-
momentum tensor does not vanish, but satisfies the relation

1 1 -
D, T" = —5 tr(A"D,J") = S (0" DuJ") (243)

40



Finally, one can study the divergence of the Rarita-Schwinger and Einstein equations in the
covariant model. To this end, let us begin by stating that the derivation of Noether identities for
a system of non-integrable equations does not present difficulties of principle, since these involve
only first variations. Indeed, the only difference with respect to the standard case of integrable
equations is that now dL is not an exact differential in field space. Still, all invariance principles
reflect themselves in linear dependencies of the field equations. Thus, for instance, with the
covariant equations obtained from the consistent ones by the redefinition of (234) and by

oL

- a
de,

(eq. ") (cov) —g"a, (244)
the total 0.L vanishes by construction. The usual procedure then proves that the divergence of
the Rarita-Schwinger equation vanishes for any value of the parameter a. On the other hand,
the divergence of the energy-momentum tensor presents some subtleties that we would now like
to describe. In particular, it vanishes to lowest order in the fermi couplings, while it gives a
covariant non-vanishing result if all fermion couplings are taken into account. The subtlety has
to do with the transformation of the vector under general coordinate transformations,

0eA, = —E%0, A, — 0,6% Ay, (245)

and with the corresponding full form of the identity of (242). Starting again from the consistent
equations, one finds

Ae = 0¢L = 26,D, T + &,tr(A” D, J*) + Etr(F* J,) + £,(87D,TH) . (246)
Reverting to the covariant form eliminates the divergence of the Rarita-Schwinger equation and
alters the vector equation, so that the third term has to be retained. The final result is then

v ]' 12
D, T, = —5tr(A"D,J;

(cov) (cov

1 1 1
) — §tr(f#F“”) — §tr(A”D#f“) — ie”“D“g”a, (247)

and is nicely verified by our equations. In particular, this implies that, to lowest order in the
fermi couplings, the divergence of T(‘Z qu) vanishes.

10 PST Construction

We have reviewed a number of properties of six-dimensional (1, 0) supergravity coupled to vector
and tensor multiplets. We have always confined our attention to the field equations, thus evading
the traditional difficulties met with the action principles for (anti)self-dual tensor fields. We would
like to complete our discussion, presenting an action principle for the consistent field equations.
What follows is an application of a general method introduced by Pasti, Sorokin and Tonin (PST),
that have shown how to obtain Lorentz-covariant Lagrangians for (anti)self-dual tensors with a
single auxiliary field. Alternative constructions, some of which preceded the work of PST, need
an infinite number of auxiliary fields, and bear a closer relationship to the BRST formulation of
closed-string spectra. This method has already been applied to a number of systems, including
(1,0) six-dimensional supergravity coupled to tensor multiplets and type IIB ten-dimensional
supergravity, whose local gravitational anomaly has been shown to reproduce the well-known
results of Alvarez-Gaumé and Witten.

Let us begin by considering a single 2-form with a self-dual field strength in six-dimensional
Minkowski space. The PST lagrangian

1

1
L=—H,, H"" — OMEH-, H™"PY,= | 248
127 1P 4(0=)? pvp (248)
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where H = dB and H~ = H — xH, is invariant under the gauge transformation 6 B = dA, as
well as under the additional gauge transformations

5B = (d=)A’ (249)

and
— " A// — o=
0= =A s 5Bl“’ == @H#Vpa = (250)
The last two types of gauge transformations can be used to recover the usual field equation of a
self-dual 2-form. Indeed, the scalar equation results from the tensor equation contracted with
H. 0=
Tl = (251)
(02)?
and consequently does not introduce any additional degrees of freedom. The invariance of (250)
can then be used to eliminate the scalar field. This field can not be set to zero, since this choice
would clearly make the Lagrangian of (249) inconsistent. With this condition, using (249) one
can see that the only solution of the tensor equation is precisely the self-duality condition for its
field strength.
We now want to apply this construction to six-dimensional supergravity coupled to vector
and tensor multiplets. The theory describes a single self-dual 2-form

» T i —-m m
H;wp - UT‘H'u,yp - g(X YuvpX ) (252)
and n antiself-dual 2-forms
? ags i rz 3
’Hﬁ,{p = xyHWp + Z—lx,],wc tr,(AYwpA) - (253)

The complete Lagrangian is obtained adding the term

LIS gy 4 AN 234
_ZW[ wplte T M, o] (254)
It can be shown that the 3-form

=H0=
OE0E

Kup=Huwp—3 (2 H, oo (255)
is identically self-dual, while the 3-forms

- ~ 0, =20°=

KM, =HM — 31 =M (256)

nvp wvp (62)2

are identically antiself-dual. With these definitions, we can display rather simply the complete
supersymmetry transformations of the fields. Actually, only the transformations of the gravitino
and of the tensorinos are affected, and become

l 37

0ty = Dye + }lf(um”pe + 55 (VX M)0e = (@)™
— @M+ (@ ™ — S ()
—i—évrc” tr (€Y A) Y] — 116%07"2 trL[(€7mpA)Y A
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while the scalar field = is invariant under supersymmetry. It can be shown that the complete
lagrangian transforms under supersymmetry as dictated by the Wess-Zumino consistency condi-
tions.

We now turn to describe the corresponding modifications of the supersymmetry algebra. In
addition to general coordinate, gauge and supersymmetry transformations, the commutator of
two supersymmetry transformations on By, now generates two local PST transformations with
parameters oz

AL, = @(vm;ﬂp —aH I, A=ErO.E. (258)
The transformation of (320) on the scalar field ¢ is opposite to its coordinate transformation,
and this gives an interpretation of the corresponding commutator

[(51, 52]5 - gctE + 5PSTE' - O, (259)

that vanishes consistently with the invariance of = under supersymmetry. Finally, the com-
mutator on the vielbein determines the parameter of the local Lorentz transformation, that is
now

A 1, 1, B
an - _gy(wumn - Kumn - g(XM’YanXM)) + §(XM€1)(XM7mn€2)
1
—§(>_<M€2)(>_<M7mn€1) + AT [(E17mA) (€270 A) — (E27mA) (€170 A)] - (260)

All other parameters remain unchanged while the algebra closes on-shell on the modified field
equations of the Fermi fields.

For completeness, we conclude by displaying the lagrangian of six-dimensional supergravity
coupled to vector and tensor multiplets with the inclusion of the PST term,

b 1 1 TuY S 1 T 1 Tz 4
e 1L = _ZPHL EG”H S5 R Zaf‘v otv, — UrC tr, (F, FM)

Hvp
1 1, - 1 R 1 N
_gewaﬁwﬁq{BLV tr.(FapFys) — E(wu'prDu[E(w +@)|Y,) — évr [H + H|™ " (bunthp)
i aals " vo s ~ ‘ T Y, v
+@UT[H + H]am(ww“ B’sz) + é(XM’V#Du(W)XM) - ﬁUTHMVp<XM7“ pXM)

1 - 1 . i
+72 10,07 + 00"y M) — g [H + HI™ (X ™)
7 HH A+ HMP (0 YappX ™) + v, tr. (M D) + 50 Bl (W77 M)

gl Hy o b, (g 7A) = S e (199 N (B V)]

_|_

1 N
e [N E)

V2

— rz 3\ v 3 Tz — — v 1 rz — —
(XM’YWwp)xi\/[C tr, (AP A) — 1_6@1"0 trz{(XM’YW)‘)(XM'Vu A — gvrc trz{(XM)‘)(XM)‘)]

1 3 M, v
160 b O ) (XXM +

?

8
JaMerzghN sz M N 1, u _
_ T S — — ey uvp M
1 e ETNETEI ST Wnrt)
1aMerzgNess N _ y 1 B 1 - . .
8 vt o [0 AN = (M) (™) + (Db )ore™ tro("7A)
1 ’ - — (0 / — —
— s e [0 X) (X)) + 5076t (V) o)
OMEDE -V, YM+G M+ v
_—[H,uupHa P+ H;pr o p] ) (261)
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where « is the coefficient of the quartic coupling for the gauginos, and the corresponding super-
symmetry transformations

Hm = _Z(€7m¢u) I

s T 1 (= rz
0B, =iv (Yme) + §$M (XM'yWe) — 2t (ARdAy)
Sv, = M (xMe)

?

04, = —E(%A) :

de

3t

. .

5 = Dy + =K pp"e + — (M™% — = (ex™ )y,x M
Ty 3 8

(3

— 12 92 rz -
_(E'YWX o X + = <67 pXM)'YWpXM - §”TC trz[(e'W)‘))‘]

8 16

—I—%vrcm tr (€Y A) YA — %GUTCTZ tr[(€YmpA)Y A
M = ; 7{‘40 vryte + 12ijpfy“”pe+ ;xMc”z tro[(Ey )AL
S\ = 2—\1/5131,,7“” - %ZMCC (XMN)e iijc: (xMe)A

We want now to apply to our case the general method introduced by Pasti, Sorokin and Tonin
for obtaining Lorentz-covariant lagrangians for (anti)self-dual tensors using a single auxiliary field.
Our theory describes a single self-dual 3-form

» r e o< a
Hywp = UTHuup 8<XM7AWPXM) + g(\ya’mupq] ) (263)
and nr antiself-dual 3-forms
HM e Mpr LM (AN Ywp) - (264)

pvp pvp —pT
The complete Lagrangian is obtained adding to (??) the term

019079
4(90)?

where ¢ is an auxiliary field and H* = H 4 xH. The resulting lagrangian is invariant under the
additional gauge transformations

(1, H P+ HMA M ve] (265)

uvp pvp

0By, = (Oud)A;, — (9,0)A,, (266)
and A
Sb= A SB" = ra— Mr M-+19p 2
(b ) uv (a¢) [ H %uyp]a ¢7 ( 67)
used to recover the usual field equations for (anti)self-dual forms. The 3-form
. . 8,007 -
Kywp = Hywp — 3%57)2 vplo (268)
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is identically self-dual, while the 3-forms

KM _ M _36[u¢80¢7:[M+

Hvp pvp (@@2 vplo (269)

are identically antiself-dual. In order to obtain the complete supersymmetry transformations,
we have to substitute 7 with K in the transformation of the gravitino and #™ with K™ in
the transformations of the tensorinos. Moreover, the auxiliary scalar is invariant under super-
symmetry. It can be shown that the complete lagrangian transforms under supersymmetry as
dictated by the Wess-Zumino consistency conditions. The commutator of two supersymmetry
transformations on B}, now generates the local PST transformations with parameters

= %(vﬂft— — MMy A=¢"9,0, (270)

A oy T ouv
while in the parameter of the local Lorentz transformation the term H is replaced by K. All
other parameters remain unchanged.

It would be interesting to study in some detail the vacua of the lagrangian (??), analyzing the
extrema of the potential (204). As a simple example, consider the model without hypermultiplets,
in which one can gauge the global R-symmetry group USp(2) of the theory. Formally, the gauged
theory without hypermultiplets is obtained from the theory described previously putting ng = 0
and making the identification

Al gt - —TH g (271)

where T* are the anti-hermitian generators of U Sp(2). This corresponds to the replacement of the
previous couplings between gauge fields and spinors, dressed by the scalars in the case ny # 0,
with ordinary minimal couplings

D,¢* Adpe” — Allpe®. (272)
Implementing this identification gives in this case the positive-definite potential

3

V= 3o o (273)
for the scalars in the tensor multiplets. One would thus expect that in these models super-
symmetry be spontaneously broken. Notice that this potential diverges at the tensionless string
phase transition point. Similarly, one could try to study explicitly the behavior of the potential
in simple models containing charged hypermultiplets. Their dimensional reduction gives N = 2
supergravity coupled to vector and hypermultiplets in five dimensions, and in the context of
the AdS/CFT correspondence and its generalizations there is a renewed interest in studying the
explicit gauging of these five-dimensional models.

11 Geometric Couplings in Six-Dimensional Models

We construct the low-energy couplings for six-dimensional type-I models with brane supersym-
metry breaking. All the features of brane supersymmetry breaking are present in the 7%/Z,
orientifold, where a change of the orientifold projection leads to D9 branes and D5 branes. The
spectrum has (1,0) supersymmetry in the closed and 9-9 sectors, while supersymmetry is bro-
ken in the 9-5 and 5-5 sectors. The gauge group is SO(16) x SO(16) on the D9 branes and
USp(16) x USp(16) on the D5 branes, if all the D5 branes are at a fixed point. One of the
peculiar features of low-energy effective actions for six-dimensional type-I models with minimal
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supersymmetry is the fact that they embody reducible gauge and supersymmetry anomalies, to
be canceled by fermion loops. Consequently, the Lagrangian is determined imposing the closure of
the Wess-Zumino consistency conditions, rather than by the requirement of supersymmetry. We
use the notations of the previous chapter, and we denote the vector multiplet from the 9-9 sector
as ALQ), A4 Denoting with ®* (& = 1, ..., ny) the scalars in the tensor multiplets, parametrizing
the coset SO(1,nr)/SO(ny), the vielbein VM of the internal manifold is related to v and x™"
of (187) by

Vi =005 (274)
where 85 = 9/09®. The metric of the internal manifold is g,53 = V2" VBM .

Denoting with ALQ)i the gauge fields under which the hypermultiplets are charged. The index

7 runs in the adjoint representation of the gauge group under the gauge transformations

SAP" = D, AP (275)
the scalars transform as

(5¢a _ A(9)z§az ’ (276)

where £% are the Killing vectors corresponding to the isometry that we are gauging. The covariant
derivative for the scalars is then

D¢ = 0,¢" — AQe (277)
The covariant derivatives for the gauginos A4 are

Dﬂ)\(9)zA _ au)\(Q)zA + Zwumn'ymn)\(g)lA + D,u(baAﬁB)\(g)lB + fz]kALQ)]A(9)kA ’ (278)

where f“* are the structure constants of the group.

We use the method of Pasti, Sorokin and Tonin (PST) in order to write a covariant action
for fields that satisfy self-duality conditions. For a self-dual 3-form in six dimensions the PST
action

1 10+=Z0°=
L =—H, H" ————FH_ H "’ | 279
PST 12 uvp 4 (85)2 pvptto ( )
where H~ = H — xH and = is a scalar auxiliary field, is invariant under the standard gauge
transformations for a 2-form,
0B = dA, (280)
and under the additional PST gauge transformations
0B, = (0,2)A, — (0,2)A, (281)
and A
o==A 0By = ——=5H,,,0'Z . (282)

(0=)2 e
We have a single self-dual 3-form and ny antiself-dual 3-forms. These forms are obtained dressing
with the scalars in the tensor multiplets the 3-forms

H" =dB" — ¢*w9% (283)

where the index z runs over the various semi-simple factors of the gauge group in the 9-9 sector,
w is the Chern-Simons 3-form and the ¢’s are constants. We denote with z = 1 the group under
which the hypermultiplets are charged. More precisely, the combinations

Hy,=vH)

pvp

(284)
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and
HM — oM Hr (285)

pvp pvp

are respectively self-dual and antiself-dual, to lowest order in the Fermi fields, although in the
complete lagrangian these conditions are modified by the inclusion of fermionic bilinears. As in
ten dimensions, the gauge invariance of H" in (283) implies that B" vary as

0B" = " tr,(AVdA®) (286)

under gauge transformations.
To lowest order in the Fermi fields, the Lagrangian describing the coupling of the supergravity
multiplet to ny tensor multiplets, vector multiplets and ngy hypermultiplets is

nvp pv

1 1 1 _ _ 1
e ' Lsysy = —ZR + EGrsHTWpHS + Zgagﬁuq)aﬁutbﬂ — §vrcm tr, (FO) FOmy

—%[H;WH;W + Mo HMT ) — 8—1eew06TB;,,c; . (FDF)
99 OD DS L AR ATAE I — (5, Do)

_%”TH O Gunb,) + %(XMV“DuXM) - iUTHZV,O()_(MV#VpXM)

a0 (G ) = S G ) + 50 D)
—i—iUTHZ,}p(\PQVW‘)\I’“) — VD, ¢ (ay’ v W) + ivpc tr,(AO* D A

t Tz N 1 rz = v
5 . [F5) (A + Exiw ¢t [T (M A

—LCZHT trz(j\(g),y;pr(g)) _ ﬁvsAgai(Xg)iq]a)

12 7 P
ARt Gy L, T e 500 ) (287)
\/5 aB AT, \/§ anscsl A )
where G,.s = v,vs + M 2M | while
T 3, - i M M < a
Huyp = UrH,wp - 5(¢[u7u¢p}) - é(X YuvpX ) + g(qja%wp\ll ) (288)
and 3 ,
= 4 rz Y
H%p = :UyH;Vp + é(XM’y[Wwp]) + Z—lwiwc trz()\(g)’yw,p)\(g)) (289)

satisfy on-shell self-duality and antiself-duality conditions, respectively. Finally, = is the PST
auxiliary field.

Due to (286), the Wess-Zumino term B A F'A F' is not gauge invariant, and thus the variation
of (287) under gauge transformations produces the consistent gauge anomaly

1 ,
Ay = =2 G (A9, AD) ra (FFY) (290)
related by the Wess-Zumino conditions to the supersymmetry anomaly

! 1 1 Z/
Ac = 077z [t (6, ADAD) b (FOFY) — ~ tr, (0. A9 FOw7] (291)

4 HoY 6 w ~vp J¥osT

47



that one can recover varying the Lagrangian of (287) under the supersymmetry transformations

de," = —i(ey"Pu)
- T 1 (= rz
6B;, = it (Yyme) + 5o (XM ue) — 207t (ARVSAT)
5(I)d — V&M()ZME) ,
OES acfél(EA\Ila) )

= —
— 3

v
5AL9) = —E(e%)\(g))

)

1
oyt = D,et + Z—lKWpy””eA ,

6XMA - _%VaMauq)&,y,ueA + K VP,Y#VPEA )

127~
SUe = inteVIAD "
1

N = ﬂf,ﬁ%“”e"‘ (z#1)
, 1 ,
9)iA __ i puv A A ai B
SA@iA _ 2\/5]—1(@) A e oo AL pE™e (292)
where 5 =go= -
_ =0 =, M [p=0" =
Koy = oy = 3o Moy o Ky = WL, =37 ML (203)

are identically self-dual and antiself-dual, respectively. In the complete theory, the anomalous
terms would be exactly canceled by the anomalous contributions of fermion loops.

Following the same reasoning as for the ten dimensional case, we can describe the couplings
to non-supersymmetric matter requiring that local supersymmetry be non-linearly realized on
the D5-branes, and requiring that the supersymmetry variation of the non-supersymmetric fields
be as in (?7). The supersymmetry variation of the dressed scalars in the tensor multiplets is

P = % — VM (M) 4 L ya, My (GyP0) (294)

24 pvp
is a general coordinate transformation of parameter

§u=—5(0.€) . (295)
This definition of ® then induces the corresponding dressing

0" =" — MM — ﬂH[wp(ewpf)) , (296)

and, in a similar fashion, the supersymmetry transformation of
. _ i _
0 = 6% = VA'Y) = SViuaV B (39705) D, (297)

is again a coordinate transformation with the same parameter, together with an additional gauge
transformation of parameter

9 _ guAf?) _ (298)

48



Similarly, the supersymmetry variation of

s m m <N L,z m v T mu,
e, " =e," +i(0y"Y,) — 5(97 D,0) — gerWp(H’y r0) (299)

contains also an additional local Lorentz transformation of parameter
AT = =P w,™" — UTH;’””] (300)

where w denotes the spin connection. Since the scalars in the non-supersymmetric 9-5 sector are
charged with respect to the vectors in the 9-9 sector, we define also

~

_ 1 -
AD = A + (0 \D) + S FO Oq0) (2 #1)

QI

l
2

9)i i 9)i i 9)ivp (N,
Et) + E(‘g'yu)‘( : )+ gj:( ) P(07p0) +

whose supersymmetry transformation is a general coordinate transformation of parameter as
in (295), aside from a gauge transformation of parameter as in (298). If one requires that the

l

AP = 4
H 4UTCT1

Aap€™(047,0%) ,  (301)

supersymmetry variation of the vector A,(?) from the non-supersymmetric 5-5 sector be
5 5
JAD) = Floe (302)
namely a general coordinate transformation together with a gauge transformation of parameter

A®) = ¢rAD) (303)

one obtains a supersymmetrization of the kinetic term for A,(f’) writing

1
—5en'e! try (o) FN g7 (304)
where
gm/ = éumél/m 5 (305)

and the index w runs over the various semi-simple factors of the gauge group in the 5-5 sector.
In analogy with the ten-dimensional case, the uncanceled NS-NS tadpole translates, in the low-
energy theory, in the presence of a term

—Aef(d%,6%) (306)

that depends on the scalars of the closed sector and contains the dilaton, that belongs to a
hypermultiplet in type-I vacua. Thus, supersymmetry breaking naturally corresponds in this
case also to a breaking of the isometries of the scalar manifolds.

Denoting with S the scalars in the 9-5 sector, charged with respect to the gauge fields in both
the 9-9 and 5-5 sectors, we define their covariant derivative as

D.S =0,8 —iAPS —iAPs (307)
so that the term )
Se(DuS)(DuS)g" (308)

is supersymmetric, if again the supersymmetry transformation of S is a general coordinate
transformation, together with a gauge transformation of the right parameters. As in the ten-
dimensional case, if one considers terms up to quartic couplings in the fermionic fields, one
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does not have to supersymmetrize terms that are quadratic in the additional fermions from the
non-supersymmetric 5-5 and 9-5 sectors. Denoting with A(®) these fermions, the coupling of
A®)2 to the 3-forms is not determined by supersymmetry, and can only be determined by string
considerations.

The inclusion of additional non-supersymmetric vectors modifies H", that now includes the
Chern-Simons 3-forms corresponding to these fields, so that (283) becomes

H" = dB" — w7 — v, (309)
The gauge invariance of H" then requires that
OB" = " tr, (AP dA®) (310)

under gauge transformations in the 5-5 sector. Consequently, the supersymmetry transformation
of B" is also modified, and becomes

- 1
6B;,, = iv" (dpne) + 5o (M ye) — 267 tro (A SAY) — 2¢™ tr, (AVSAT)) . (311)

The complete reducible gauge anomaly

1 ,
An = =5 e (A9, AP tr (FOFD) + 2 tr (A9, AD) tr, (FOFL)

e e tr, (AP0, AD) b (FDF) + ™ tr, (AP0, AD) tro (FHF2)} (312)

related by the Wess-Zumino conditions to the supersymmetry anomaly

A, = oot [—i b, (0,49 AD) tr, (FOFY) % b, (8,49 FO)097
+cgcrw[_i 11, (5 AP AD) tr, (FOFE) — é 12 (8 A Fi)w )
+c;ﬁ”c“[—i tr, (8 AP AD) o (F FLY) — é b, (8 AP FE w7
e [—}1 b, (5.AF AD) b1, (FOFD) - é tr, (6.4 FO ) )} | (313)
is induced by the Wess-Zumino term
—ée“”p‘”STB;Vc},” try(FOFE) . (314)

It should be noticed that, as in the case of linearly realized supersymmetry, (312) and (313)
satisfy the Wess-Zumino condition

oAAe =0.Ax (315)

since the explicit form of the gauge field supersymmetry variation plays no role in its proof. We
expect that, to higher order in the fermions, the supersymmetry anomaly will be modified by
gauge-invariant terms. From the definition of H", one can deduce the Bianchi identities

3 3
O H o) = — 56 tro (FOFDY = 2 o, (FOFON (316)

(v po] 9w WA [uv po]

We now want to determine the terms proportional to F' A F' containing the goldstino that
one has to add for the consistency of the model. Unlike the ten dimensional case, where duality
maps the 2-form theory with Chern-Simons couplings to the 6-form theory with Wess-Zumino
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couplings, in this case the low-energy effective action contains both Chern-Simons and Wess-
Zumino couplings. First of all, we observe that for the quantity

2
—c"tr,|A
V2 |

+ (O (B706) + ¢ MTHMP%eWe)+3vf<év[uD,,]e>

T r s T 1 r(=
B,u,u = B,uzz —w (1/}[;/71/]9) - _IM (XM'VNV0> -

: (67,2

— L [AD FOR) (Br108) — AA €AY (67,167 (317)

dvg

the supersymmetry variation is a general coordinate transformation of the correct parameter,
together with an additional tensor gauge transformation of parameter

T 1 s v T
A =506 —¢"B), (318)

as well as PST gauge transformations of parameters

8 o
PST)r s Mr M s
A; ) ( I —— v H,, — M el HIE 1¢P (319)
and
APST) = ¢eng = (320)

and gauge transformations of the form (286) and (310) whose parameters are as in (298) and (303).
We should now consider all the terms proportional to F' A F' that arise, those directly introduced
by the inclusion of the Chern-Simons 3-form for the fields in the 5-5 sector, those originating
from the consequent modification of the Bianchi identities, and finally those introduced by the
variation of the Wess-Zumino term.

The end result is that the variation of all these contributions gives

) 1
SL = EMVPU&'{ 4 (GVMQ/)V)_FS‘T (E'YMVX )}crwtrw<f(5)f(5))

— 20,y (SAQ F) K0 — 22 M ¢ty (SAD F) KMrve (321)

The first two terms are canceled by the goldstino variation in the additional couplings

/ vpooT Z ) 1 2} W
£ = Lo (Byahy) — g B}t (FFSY) . (322)

where, however, the variations of the gravitino and the tensorinos produce additional terms.
Some of these cancel the last two terms in (321), while the remaining ones are canceled by the
goldstino variation in

vpadT i ) i ) i M Ma rw 5
L' = {00, (D) — G0r (07 D0) — o I Oy Yt (FOFSY) . (323)
If one restricts the attention to terms up to quartic fermion couplings, no further contributions
are produced. We can thus conclude that the non-linear realization of supersymmetry is granted
by the inclusion of £ and L£” in the low-energy effective action. From (317) we also see that
these two contributions can be written in the compact form

1 vpooT T 5
L4 r = 4 etvpodTpr . trw(f/gg)fé_r))’ (324)
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where

21 -
M (M 8) — = AL (1 AO)]

V2
+§(3va)(9%/9) 3 MTKM""(Q%WQ)+§vT(6’7[MD,,]€) (325)

T T 1
B,uu =W (QZJ[H’YV}H) - §$

coincides with the counterterm of B” only if no 9-9 vectors are present.

To this end, observe that, if no 9-9 vectors are present, (324) is exactly twice the term that one
should add to (314) in order to geometrize the Wess-Zumino term, substituting B with B. This
means, roughly speaking, that half of the contribution in (324) comes from the Green-Schwarz
term, and half from the Chern-Simons couplings. This interpretation is in perfect agreement with
self-duality, and thus in six dimensions there is no duality transformation that can give a fully
geometric Lagrangian. If also 9-9 vectors are in the spectrum, no additional terms are produced
in the lagrangian, in agreement with the fact that the additional terms of B™ in (317) are not
gauge invariant.

To resume, the Lagrangian for supergravity coupled to tensor multiplets, hypermultiplets and
non-supersymmetric vectors is

A ~

1 AAr W AVO a (e} 1 5 Ll
‘CSUGRA = ESUSY — 56’(} CT‘ trw(F;(j).F/Eg))gup Aef(® 7¢ ) 56<DMS)T(DVS)9M
1 1
6p,l/pacSTBfr ¢ trw(féi)féi)) euupacSTBr C try (}‘(5)].'(5)) . (326)

8 4

Since the supersymmetry transformation of other non-supersymmetric fermions is of higher order
in the Fermi fields, at this level we can always add them in the construction, while the couplings
that can not be determined by supersymmetry could in principle be determined by string inputs.

Finally, it is important to observe that without 9-9 vectors, although the Lagrangian (326)
is not completely geometric. Indeed, if one fixes the PST gauge in such a way that the 3-forms
satisfy the standard (anti)self-duality conditions, the equation for the vector fields, up to terms
quartic in the fermions, is

1 A
ED, (07 LG 5") + et e T H,

vp “todT
1 / w’ 1 /
+Ee"””g&cm]:y(2)cm w((;?T + ge"”p”‘sTcrwAl(F)crw try (féi)féf)) =0, (327)
where
H,, =308, — chwi (328)

and this is nicely of geometric form. It should be noticed that no additional counterterms
containing the goldstino have to be added if also 9-9 vectors are present. In fact, all the terms
in B” induced by A® are not gauge invariant, and their inclusion in the lagrangian is forbidden
because it would modify the gauge anomaly. The resulting equation for A®) is then

1 ~ 1 .
éDlI [ﬁrcrwfég)gupgya] + EEMVpoﬁfcrwJ—_'(S) ;67- + —EMVPU(STCTU,.F(S))CTZCU(Q&)

ve 12
+%E“Vﬂ06TCTwA(V5)CTZ tr, (JT_' 9)‘/—_-(9)) 112 EMVPU(STCTW‘F(S)CTU/W((’E;);U
1 /
+§e“"ﬂ057cm,4§5>c’"w trp (FOFD) =0, (329)
where
T I ex ra 9)z rw, (5w
jwp = 30uBy, + 30,8, tra._¢r W,(w)p c w;)p (330)
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is geometric up to gauge-invariant terms proportional to ¢"*. The result is thus in agreement with
what expected by anomaly considerations. If gauge and supersymmetry anomalies are absent, the
A®) equation is mapped into itself by supersymmetry: this is the very reason why this equation
is geometric. In the presence of gauge and supersymmetry anomalies, as long as 9-9 vectors are
absent, the equation for A®) is still geometric, albeit not gauge invariant. The supersymmetry
anomaly, in this case, results from the gauge transformation contained in (302). When also 9-9
vectors are present, these arguments do not apply, and thus in (329) the geometric structure is
violated by terms proportional to c™*cy’.

The consistent formulation described above can be reverted to a supersymmetric formulation
in terms of covariant non-integrable field equations, that embody the corresponding covariant

gauge anomaly

1 /
A?\OU _ §€uupa6~r [CTZCf tI’Z (A(@f/ﬁ?})) tI'Z/ (f/gg)fég)) + Crzcrlf) trz<A(9)JT_‘,(ji)) trw (f/gg)f'éi))

e try (A FE) b, (FDFD) + el tr, (A FD) tew (FEFD)] (331)
given by the divergence of the covariant equation for AE’),
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and the divergence of the covariant equation for A,(Lg). Without 9-9 vectors, (332) is both geometric
and gauge-covariant, while, if 9-9 vectors are present, the geometric structure is violated by
gauge-covariant terms proportional again to ¢"*c¥.

12 Conclusion

The main purpose of this publication was to investigate the covariant, consistent and gravitational
anomalies in gauged supergravity. We have shown how general gauge theories with axionic shift
symmetries, generalized Chern-Simons terms and quantum anomalies can be formulated in a way
that is covariant with respect to electric-magnetic duality transformations. We performed our
analysis first in rigid supersymmetry. Using superconformal techniques, we could then show that
only one cancellation had to be checked to extend the results to supergravity. It turns out that
the Chern-Simons term does not need any gravitino corrections and can thus be added as such
to the matter-coupled supergravity actions. Our paper provides thus an extension to the general
framework of coupled chiral and vector multiplets in N = 1 supergravity. We have completed
the coupling of (1, 0) six-dimensional supergravity to tensor and vector multiplets. The coupling
to tensor multiplets is of a more conventional nature, and parallels similar constructions in other
supergravity models. Our work is here confined to the field equations, but a lagrangian formula-
tion of the (anti)self-dual two-forms is now possible, following the proposal of Pasti, Sorokin and
Tonin and indeed, results to this effect have been presented in a superspace formulation. The
Yang-Mills currents are not conserved, and the consistent residual gauge anomaly is accompanied
by a corresponding anomaly in the supersymmetry current. In completing these results to all
orders in the fermi fields, we have come to terms with another peculiar feature of anomalies,
neatly displayed by these field equations: anomalous divergences of gauge currents are typically
accompanied by corresponding anomalies in current commutators. We have shown that cancella-
tion of gravitational, gauge, and mixed anomalies gives a sufficient constraint on six-dimensional
supersymmetric theories of gravity with gauge and matter fields that in some cases all models
consistent with anomaly cancellation admit a realization through string theory. We have ruled
out a number of infinite families of models which satisfy anomaly factorization, so that the gap
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is rather small between the set of known 6D models satisfying anomaly cancellation and the set
of models realized through string compactification. We have conjectured that all consistent 6D
supergravity theories with Lagrangian descriptions can be realized in string theory, and that this
set of models can be identified from low-energy considerations. All N = (1,0) supersymmetric
theories in 6D with one gravity and one tensor multiplet which are free of anomalies or other
quantum inconsistencies admit a string construction. It would also be interesting to formulate
the matter coupled anomaly-free supergravity theories in six dimensions such that the classically
gauge invariant and supersymmetric part of the action is identified and the anomaly corrections
are determined by means of the anomaly equations. We conduct a systematic search for anomaly-
free six-dimensional N = 1 chiral supergravity theories. In six dimensions, cancellation of gauge,
gravitational, and mixed anomalies strongly constrains the set of quantum field theories which
can be coupled consistently to gravity. Anomaly cancellation has turned out to be a crucial
guiding principle for the identification of consistent D = 6 theories for the same reason as in the
D = 10 case. The D = 6 anomaly cancellation conditions are weaker than those in D = 10, they
are still very stringent, especially in the case of gauged supergravity theories. To obtain the fully
consistent equations of motion at the quantum level one must also take into account the non-local
corrections to the one loop effective action. This raises the question of which equations of motion
are to be solved in search of special solutions of the theory. Constructing a consistent quantum
theory of gravity has proven to be substantially more difficult than identifying a quantum theory
describing the other forces in nature. Even if it is known that consistent superstring theories
can be formulated in six dimensions and that six-dimensional supergravity can arise as their
low-energy limit, this is not the only reason for investigating D = 6 supergravity. In fact, while
supergravities in D = 10 and D = 11 spacetime dimensions are of direct interest as backgrounds
for strings, membranes and M-theory, one frequently performs compactifications down to D =
6 to clarify relations among these theories, which are hidden in their ten or eleven-dimensional
formulations. Supergravity theories in diverse dimensions play nowadays an important role as
low-energy effective field theories of superstring and membrane theories. Supergravity theories
have been extensively studied in four dimensions, of course because of their direct physical rel-
evance, and in ten and eleven dimensions of their fundamental features. Explicit knowledge of
this set of theories gives us a powerful tool for exploring the connection between string theory
and low-energy physics. The anomalies are the key to a deeper research and understanding of
gauged supergravity. We hope to have conveyed the idea that anomalies play an important role
in supergravity and their cancellation has been and still is a valuable guide for constructing con-
sistent quantum supergravity theories. The treatment of anomalies makes fascinating contacts
with several branches of modern theoretical physics.
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