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Abstract: Since at least 1734 (when Euler solved the Basel problem), it’s been     
        known for the positive even integers s, the Euler Zeta Function (EZF)  can be        

   written in terms of the even powers of . I manipulate its form and find lurking     
 (hidden) in it an exquisite and elegant formula for . Thus, not only does the EZF  
  have  embedded in it,  has embedded in its construction primorials of primes.      

Introduction
For most people π, i.e. 3.14159…, is the most well known math constant they can recite to at least a 
few digits. There are many algorithms [6] that can generate its digits, with varying speed. Using Prime 
Generator Theory (PGT) we can derive an exquisite formula to compute it, that’s been hiding in plain 
sight (for centuries) that heretofore hadn’t been noticed, missed by even the great Leonhard Euler, who 
probably had the first chance (best mindset) to notice it, but didn’t. And its starts with his Zeta function.

Zeta function 
In contemporary math the Euler/Riemann Zeta function expression is usually written in this form:

  (1)

But Euler wrote it like this:        (2)

Written in primorial form it’s:     (3)

For s = 2 we get:  (4)

But , and  is , which now gives us this exquisite formula for .

 (5)

     (6)

And now we see a simple formula for  hidden in the background of the Zeta function!  We see we 
can represent (and calculate)  strictly with primorials, i.e. consecutive prime factors.  We’ll further see
not only does  lurk within the ) values, but the primorials also lurk within the construction of .
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But we don’t have to stop with , as each expression for  has a factor of  in it.

For s = 2k: (7)

The B2k are the 2k-th Bernoulli numbers.  Here are the first 8 expressions for  [5].

                                   

                 

I’ll show we can compute  to increasing accuracy with primorials, using its generalized form:

(8)

where the  are the constant rational inverse coefficients of  from the  expressions.

                                         

                       

With the  having form:  (9)

What we will discover is that the  coefficients have embedded within them the value of π, to 
increasing digits of accuracy. From their starting approximations for π, the primorials boost the number
of accurate digits higher, as more primes are used in their construction.  We’ll also discover that from 
the factorization of the  numerators we can reconstruct their written forms as factors of primorials.

Geometric Interpretation using PGT
Let’s see how to geometrically understand this conceptually, from the perspective of PGT.

As explained in [1], [2], [3] Prime Generators break the number line into modular groups of size  
integers, which contain  integer residues, along which all the primes not a factor of  exist. 
As we increase the modular group size by  we increase the number of residues by .  This has 
the effect of squeezing the primes into a smaller and smaller percentage of the integer number space.  
It’s essentially the same process Euler used to squeeze out all the composites in the reciprocal integer 
form (1), (2) of the Zeta function to create his multiplicative prime (primorial) form (3).
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Useful for our purposes here, we can model the periodicity of the modular groups with a clock.

Using our generator clock model we can conceptualize the geometric meaning of the expression for .

(10)

From geometry:                                      (11)

where r = c/2  = c/ , with (tau)  = 2 . Thus when we take generators of length  integers, and fold
them into, and model them as clocks (modular circles), c =  is the circumference of these circles, 
which increase by factors of  for each larger generator.  Thus we get these geometric relationships:

                                         (12)

                   (13)

Thus we see the modular diameters and radii expressions are the (principal) 2k-th roots of primorial 
expressions. Thinking about this more extensively, this suggests there may be complex roots, which we
know come as complex conjugate pairs.  This would be consistent with the fact that the generator 
residues come as modular complement pairs. We’ll also see for the ,  ~  and  ~ .

I’ve only scratched the surface here, but I’ll suspend going further down this rabbit hole of analysis, as 
it’s diverging from the principal purpose of this paper.  However, it presents itself as an interesting area 
of math to explore and develop, and I encourage others to vigorously pursue it if desired.

Numerical Analysis
Compared to other methods for generating , the presented method is much simpler to understand and 
remember.  And from a Number Theory point of view, it also has a conceptual and numerically pleasing
elegance, which I will show and explain.  To demonstrate its utility and performance I provide software
code to generate some results of its accuracy and convergence speed for the first few  coefficients.

3

1
12

2

3

4

5
6

11

10

9

8

7



From this form of the formula:         (14)

We expand it into:      (15)

In fact, this is the form of the algorithm the software code uses to numerically compute it.

Notice in the factors  we’re raising each  to a power 2k, then bringing one less than that
value back down to be almost (but less than) .  Using  = 3 as an example, we can see the process.

   

                                            

                                      

As 2k increases  becomes increasingly closer  to .  If we set  to be 
then the primorial ratios /  are always > 1 but can be made arbitrarily close to 1, as 2k   .

Thus as 2k   :       (16)

So if the primorial ratios are marching in unison toward 1 where do we get  from?  Well, there’s only 
one place left its digits can come from.  And this is what we discover, apparently missed by even Euler.

                                                                    

                                                                  

We can theoretically get arbitrary convergence with a few (or just  = 2) primes.  However in the real 
world, at least with using personal computers, calculators, etc, we will soon hit the wall in reaching the 
limit on the number of digits floating point implementations can accurately represent. But that is an 
implementation issue true for all numerical (floating point) operations performing computations with 
small numbers.  However, software algebra systems like Pari/GP [10], et al, are specifically designed to
provide arbitrary precision in such situations, which I’ll use to show some calculations.
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Values for 

We’ve previously seen that:       (17)

and therefore the  are:          (18)

From [5], , and thus , where  and  are positive integers for n even.

There are lists of some of them already pre-computed, or we can compute them, using online resources.

Sequence lists for the first 250 can be found on the On-Line Encyclopedia of Integer Sequences (OEIS) 
website – https://oeis.org/ – with the  – A002432 sequence and  – A046988 sequence at [11].
 
We can get many, many more using the WolframAlpha math engine – https://www.wolframalpha.com/.

As an example, putting in the searchbar zeta(18), returns (43867 π^18) / 38979295480125, making
 =  38979295480125 / 43867.  These numbers grow fast.  For zeta(250) we get for  and ,

and then  (which I’ll show later gives the first 78 accurate digits of ) and 
from there we can boost the number of digits further by the EZF primorials multiplications shown in 
(15), which we see from the short Ruby code that follows, starting with the first few  values.

From just looking at these values you can begin to image the scale of their sizes for larger coefficients.  
Also as their values increase, they will contain more and more accurate digits of .  And as there are an 
unending number of  coefficients, there are an unending number of  digits they will represent, 
which can then be boosted to even higher accuracy by multiplying them by the EZF primorial ratios.

Thus you can see (even feel) this deep structural connection between  and the primes, and primes to 
circles, and in general to the concept of periodicity of functions, derived from the Euler Zeta Function.
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Below is Ruby code to generate  to 15 digits (when capable) using the coefficients for  – .

require "primes/utils"         # Load primes-utils RubyGem

def pi_Z2k(k2, cz2k, primes)
  pi, exp = 1.0, 1.0/k2
  primes.each do |p|
    pi *= p / (p**k2 - 1)**exp
  end
  pi * cz2k**exp
end

# Example inputs for Zeta(8)
nth = 18                       # Select number of primes to use
nth_prime = nth.nthprime       # Set prime value of nth prime
n_primes = nth_prime.primes    # Generate array of first n primes
k2, cz2k = 8, 9450             # Set Zeta(8) parameters

puts "\nUsing #{nth} primes up to #{nth_prime}"  
pi = pi_Z2k(k2, cz2k, n_primes)     # Using 18 primes uo to 61
puts "pi_Z#{k2} = #{pi} \n"     # pi_Z8 = 3.141592653589792

This table shows the speed of convergence up to pi_Z16. On my laptop using Ruby, I was able to get up
to 15 significant digits of accuracy until the fractions got too small to generate more accurate digits.

Pi digits pi_Z2 pi_Z4 pi_Z6 pi_Z8 pi_Z10 pi_Z12 pi_Z14 pi_Z16
m primes m primes m primes m primes m primes m primes m primes m primes

3. 2
3.1 5 1
3.14 38 1
3.141 76 3
3.1415 301 5 2 1 1
3.14159 516 10 2
3.141592 16,663 14 4 3 1
3.1415926 142,215 26 6 2 1 1
3.14159265 1,534,367 51 9 4 3 2
3.141592653 80 11 5
3.1415926535 132 15 6 4 3 2
3.14159265358 240 21 8 5 2
3.141592653589 481 30 10 6 4 3
3.1415926535897 837 40 13 7 5 3
3.14159265358979 18 6 4 4

Using arbitrary precision software we’d see we can boost the initial true digits to arbitrary size by using
more primes. Thus we can get arbitrary digits from the  alone, and from using the EZF primorials. 
This approach for generating  may be interesting to compare to the Chudnovsky algorithm [6], which 
(as of March 21, 2022) computed it to a record 100 trillion digits, and in general, to test the speed and 
numerical accuracy of super computers, et al.

6



Factoring into Primorials

The  numerators  can be written as primorial factors, first factoring them and then completing 
their primorials from the prime factors, and including factors of 2 in the denominator when necessary.

 is easy:  .

For :  

The process continues in this straightforward manner, and can be done visually by just completing the 
primorial for the largest remaining prime factor, always accounting for factors of 2 in the denominator.

With practice, you can just write down the primorials after each prime factor step, as shown here.

 

While there can be different representations for  the primorial factorizations reveal their inherent 
structure based upon the building up of small primes.

Thus, while  can be written as:   

it doesn’t reveal its primes structure written as:  

Another amazing property you’ll notice of the primorial forms of the  integers is that the highest 
primorial prime value pm of their factoring is the closest prime less than or greater than the value 2k.
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Let’s put all the pieces together and show the computation of  to 100 digits, giving 78 digits of .

Pari/GP calculator output (edited)
? a250 = 
7577834251451999039514401422585053122879168525469783889771482580471296975561406781
0243342006985231178239466845501965507527978673164129134066590331397661329298670769
4694276386213013321688626077273626360722083755519960623995664925415614342891786954
8201022666738599222421121372972346925680848155864177245403685649611860640062092862
8795853239016491782077621215583653516313384285902484197028350365599180804565548896
78955078125 

? b250 = 
3909101330895614339970586848854445032806776798697690058731856271636606737446563047
9693627791986818159374909975797473729786383620775709648303500553694838976502165726
2148702222512700610047178264090235751465369826826453593001128502525120475383538551
603116972574837556726126471606175751529391663117616

? \p 100 
realprecision = 115 significant digits (100 digits displayed) 

? cz250 = 1.0*a250/b250 
1.93851057059087316478149489348121059930781091205080073184210793037338921512381326
3067816173293718294 E124 

? cz250^(1/250) 
3.14159265358979323846264338327950288419716939937510582097494459230781640628620205
3009170736283102349
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Growth of Pi Digits for 
Two natural questions are: 1) for a given  how many accurate  digits will it contain?, and 2) what

 will first give a certain number of digits? The plot below shows the  digits for the first 250 .

We see there’s a clear linear relationship, thus we can create the equation of its line, .
From the data, at k = 1, digits = 0, and k =250, digits = 152, from which we can get the slope m.

Therefore the slope is:   (19)

and the line equation: (20)

We now have a deterministic way to answer these two questions about the growth of  digits in .

Thus, for the 1000th coefficient, from ,  gives about the first 608 digits of , and 
from , we see that to get the first 1000 digits of  we need to use up to about .

Thus, though the integers  and  grow exponentially, their ratios 2k-th roots grow linearly to .

Further Research

We also know for some number  there are n root values for , some as complex conjugate pairs. 
Thus for example,  gives us 7 more roots besides the principal root  approximation.
 

(3.14036879+0.0i), (2.22057607+2.22057607i), (0.0+3.14036879i), (-2.22057607+2.22057607i)
(-3.14036879+0.0i), (-2.22057607-2.22057607i), (0.0-3.14036879i), (2.22057607-2.22057607i)

What do the other roots mean in this context (if any), especially the complex ones? How do they fit in?
These, and other questions, may open up new areas of research pursuits, and more amazing discoveries.
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Conclusion
Using Prime Generator Theory as the mathematical|conceptual framework to start from, I looked at 
Euler's Zeta function differently since when he solved the Basel problem in 1734.  Discovered lurking 
within its structure, is a simple|elegant formula to compute  to arbitrary accuracy, previously missed. 
Specifically for s = 2k, we see  is embedded in the coefficients 2k-th roots to arbitrary accuracy, which
can then be boosted to higher arbitrary accuracy by primorial multiplications. Their numerators can be 
factored into consecutive small primes, and written as primorial factors, whose largest is the closest 
prime less|greater than 2k. Finally, we find we can predict the number of digits for each coefficient, and
which coefficients will provide a desired number of digits.  Thus we find that primorials (primes) are 
inextricably linked to , and thus to the geometry of circles, which heretofore was totally unexpected.
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List of Primorials in Pi from first 25  constants
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