
Primorials in Pi
Jabari Zakiya © Rev2 January 30, 2023

jzakiya@gmail.com

Abstract: Since at least 1734 (when Euler solved the Basel problem), it’s been
 known for the positive even integers s, the Euler Zeta Function (EZF) can be

 written in terms of the even powers of . I manipulate its form and find lurking
 (hidden) in it an exquisite and elegant formula for . Thus, not only does the EZF
 have embedded in it, has embedded in its construction primorials of primes.

Introduction
For most people π, i.e. 3.14159…, is the most well known math constant they can recite to at least a
few digits. There are many algorithms [6] that can generate its digits, with varying speed. Using Prime
Generator Theory (PGT) we can derive an exquisite formula to compute it, that’s been hiding in plain
sight (for centuries) that heretofore hadn’t been noticed, missed by even the great Leonhard Euler, who
probably had the first chance (best mindset) to notice it, but didn’t. And its starts with his Zeta function.

Zeta function
In contemporary math the Euler/Riemann Zeta function expression is usually written in this form:

 (1)

But Euler wrote it like this: (2)

Written in primorial form it’s: (3)

For s = 2 we get: (4)

But , and is , which now gives us this exquisite formula for .

 (5)

 (6)

And now we see a simple formula for hidden in the background of the Zeta function! We see we
can represent (and calculate) strictly with primorials, i.e. consecutive prime factors. We’ll further see
not only does lurk within the) values, but the primorials also lurk within the construction of .

1

mailto:jzakiya@gmail.com
mailto:jzakiya@gmail.com
mailto:jzakiya@gmail.com
mailto:jzakiya@gmail.com

But we don’t have to stop with , as each expression for has a factor of in it.

For s = 2k: (7)

The B2k are the 2k-th Bernoulli numbers. Here are the first 8 expressions for [5].

I’ll show we can compute to increasing accuracy with primorials, using its generalized form:

(8)

where the are the constant rational inverse coefficients of from the expressions.

With the having form: (9)

What we will discover is that the coefficients have embedded within them the value of π, to
increasing digits of accuracy. From their starting approximations for π, the primorials boost the number
of accurate digits higher, as more primes are used in their construction. We’ll also discover that from
the factorization of the numerators we can reconstruct their written forms as factors of primorials.

Geometric Interpretation using PGT
Let’s see how to geometrically understand this conceptually, from the perspective of PGT.

As explained in [1], [2], [3] Prime Generators break the number line into modular groups of size
integers, which contain integer residues, along which all the primes not a factor of exist.
As we increase the modular group size by we increase the number of residues by . This has
the effect of squeezing the primes into a smaller and smaller percentage of the integer number space.
It’s essentially the same process Euler used to squeeze out all the composites in the reciprocal integer
form (1), (2) of the Zeta function to create his multiplicative prime (primorial) form (3).

2

Useful for our purposes here, we can model the periodicity of the modular groups with a clock.

Using our generator clock model we can conceptualize the geometric meaning of the expression for .

(10)

From geometry: (11)

where r = c/2 = c/ , with (tau) = 2 . Thus when we take generators of length integers, and fold
them into, and model them as clocks (modular circles), c = is the circumference of these circles,
which increase by factors of for each larger generator. Thus we get these geometric relationships:

 (12)

 (13)

Thus we see the modular diameters and radii expressions are the (principal) 2k-th roots of primorial
expressions. Thinking about this more extensively, this suggests there may be complex roots, which we
know come as complex conjugate pairs. This would be consistent with the fact that the generator
residues come as modular complement pairs. We’ll also see for the , ~ and ~ .

I’ve only scratched the surface here, but I’ll suspend going further down this rabbit hole of analysis, as
it’s diverging from the principal purpose of this paper. However, it presents itself as an interesting area
of math to explore and develop, and I encourage others to vigorously pursue it if desired.

Numerical Analysis
Compared to other methods for generating , the presented method is much simpler to understand and
remember. And from a Number Theory point of view, it also has a conceptual and numerically pleasing
elegance, which I will show and explain. To demonstrate its utility and performance I provide software
code to generate some results of its accuracy and convergence speed for the first few coefficients.

3

1
12

2

3

4

5
6

11

10

9

8

7

From this form of the formula: (14)

We expand it into: (15)

In fact, this is the form of the algorithm the software code uses to numerically compute it.

Notice in the factors we’re raising each to a power 2k, then bringing one less than that
value back down to be almost (but less than) . Using = 3 as an example, we can see the process.

As 2k increases becomes increasingly closer to . If we set to be
then the primorial ratios / are always > 1 but can be made arbitrarily close to 1, as 2k .

Thus as 2k : (16)

So if the primorial ratios are marching in unison toward 1 where do we get from? Well, there’s only
one place left its digits can come from. And this is what we discover, apparently missed by even Euler.

We can theoretically get arbitrary convergence with a few (or just = 2) primes. However in the real
world, at least with using personal computers, calculators, etc, we will soon hit the wall in reaching the
limit on the number of digits floating point implementations can accurately represent. But that is an
implementation issue true for all numerical (floating point) operations performing computations with
small numbers. However, software algebra systems like Pari/GP [10], et al, are specifically designed to
provide arbitrary precision in such situations, which I’ll use to show some calculations.

4

Values for

We’ve previously seen that: (17)

and therefore the are: (18)

From [5], , and thus , where and are positive integers for n even.

There are lists of some of them already pre-computed, or we can compute them, using online resources.

Sequence lists for the first 250 can be found on the On-Line Encyclopedia of Integer Sequences (OEIS)
website – https://oeis.org/ – with the – A002432 sequence and – A046988 sequence at [11].

We can get many, many more using the WolframAlpha math engine – https://www.wolframalpha.com/.

As an example, putting in the searchbar zeta(18), returns (43867 π^18) / 38979295480125, making
 = 38979295480125 / 43867. These numbers grow fast. For zeta(250) we get for and ,

and then (which I’ll show later gives the first 78 accurate digits of) and
from there we can boost the number of digits further by the EZF primorials multiplications shown in
(15), which we see from the short Ruby code that follows, starting with the first few values.

From just looking at these values you can begin to image the scale of their sizes for larger coefficients.
Also as their values increase, they will contain more and more accurate digits of . And as there are an
unending number of coefficients, there are an unending number of digits they will represent,
which can then be boosted to even higher accuracy by multiplying them by the EZF primorial ratios.

Thus you can see (even feel) this deep structural connection between and the primes, and primes to
circles, and in general to the concept of periodicity of functions, derived from the Euler Zeta Function.

5

https://www.wolframalpha.com/
https://oeis.org/

Below is Ruby code to generate to 15 digits (when capable) using the coefficients for – .

require "primes/utils" # Load primes-utils RubyGem

def pi_Z2k(k2, cz2k, primes)
 pi, exp = 1.0, 1.0/k2
 primes.each do |p|
 pi *= p / (p**k2 - 1)**exp
 end
 pi * cz2k**exp
end

Example inputs for Zeta(8)
nth = 18 # Select number of primes to use
nth_prime = nth.nthprime # Set prime value of nth prime
n_primes = nth_prime.primes # Generate array of first n primes
k2, cz2k = 8, 9450 # Set Zeta(8) parameters

puts "\nUsing #{nth} primes up to #{nth_prime}"
pi = pi_Z2k(k2, cz2k, n_primes) # Using 18 primes uo to 61
puts "pi_Z#{k2} = #{pi} \n" # pi_Z8 = 3.141592653589792

This table shows the speed of convergence up to pi_Z16. On my laptop using Ruby, I was able to get up
to 15 significant digits of accuracy until the fractions got too small to generate more accurate digits.

Pi digits pi_Z2 pi_Z4 pi_Z6 pi_Z8 pi_Z10 pi_Z12 pi_Z14 pi_Z16
m primes m primes m primes m primes m primes m primes m primes m primes

3. 2
3.1 5 1
3.14 38 1
3.141 76 3
3.1415 301 5 2 1 1
3.14159 516 10 2
3.141592 16,663 14 4 3 1
3.1415926 142,215 26 6 2 1 1
3.14159265 1,534,367 51 9 4 3 2
3.141592653 80 11 5
3.1415926535 132 15 6 4 3 2
3.14159265358 240 21 8 5 2
3.141592653589 481 30 10 6 4 3
3.1415926535897 837 40 13 7 5 3
3.14159265358979 18 6 4 4

Using arbitrary precision software we’d see we can boost the initial true digits to arbitrary size by using
more primes. Thus we can get arbitrary digits from the alone, and from using the EZF primorials.
This approach for generating may be interesting to compare to the Chudnovsky algorithm [6], which
(as of March 21, 2022) computed it to a record 100 trillion digits, and in general, to test the speed and
numerical accuracy of super computers, et al.

6

Factoring into Primorials

The numerators can be written as primorial factors, first factoring them and then completing
their primorials from the prime factors, and including factors of 2 in the denominator when necessary.

 is easy: .

For :

The process continues in this straightforward manner, and can be done visually by just completing the
primorial for the largest remaining prime factor, always accounting for factors of 2 in the denominator.

With practice, you can just write down the primorials after each prime factor step, as shown here.

While there can be different representations for the primorial factorizations reveal their inherent
structure based upon the building up of small primes.

Thus, while can be written as:

it doesn’t reveal its primes structure written as:

Another amazing property you’ll notice of the primorial forms of the integers is that the highest
primorial prime value pm of their factoring is the closest prime less than or greater than the value 2k.

7

Let’s put all the pieces together and show the computation of to 100 digits, giving 78 digits of .

Pari/GP calculator output (edited)
? a250 =
7577834251451999039514401422585053122879168525469783889771482580471296975561406781
0243342006985231178239466845501965507527978673164129134066590331397661329298670769
4694276386213013321688626077273626360722083755519960623995664925415614342891786954
8201022666738599222421121372972346925680848155864177245403685649611860640062092862
8795853239016491782077621215583653516313384285902484197028350365599180804565548896
78955078125

? b250 =
3909101330895614339970586848854445032806776798697690058731856271636606737446563047
9693627791986818159374909975797473729786383620775709648303500553694838976502165726
2148702222512700610047178264090235751465369826826453593001128502525120475383538551
603116972574837556726126471606175751529391663117616

? \p 100
realprecision = 115 significant digits (100 digits displayed)

? cz250 = 1.0*a250/b250
1.93851057059087316478149489348121059930781091205080073184210793037338921512381326
3067816173293718294 E124

? cz250^(1/250)
3.14159265358979323846264338327950288419716939937510582097494459230781640628620205
3009170736283102349

8

Growth of Pi Digits for
Two natural questions are: 1) for a given how many accurate digits will it contain?, and 2) what

 will first give a certain number of digits? The plot below shows the digits for the first 250 .

We see there’s a clear linear relationship, thus we can create the equation of its line, .
From the data, at k = 1, digits = 0, and k =250, digits = 152, from which we can get the slope m.

Therefore the slope is: (19)

and the line equation: (20)

We now have a deterministic way to answer these two questions about the growth of digits in .

Thus, for the 1000th coefficient, from , gives about the first 608 digits of , and
from , we see that to get the first 1000 digits of we need to use up to about .

Thus, though the integers and grow exponentially, their ratios 2k-th roots grow linearly to .

Further Research

We also know for some number there are n root values for , some as complex conjugate pairs.
Thus for example, gives us 7 more roots besides the principal root approximation.

(3.14036879+0.0i), (2.22057607+2.22057607i), (0.0+3.14036879i), (-2.22057607+2.22057607i)
(-3.14036879+0.0i), (-2.22057607-2.22057607i), (0.0-3.14036879i), (2.22057607-2.22057607i)

What do the other roots mean in this context (if any), especially the complex ones? How do they fit in?
These, and other questions, may open up new areas of research pursuits, and more amazing discoveries.

9

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

0

20

40

60

80

100

120

140

160

Cz2k Pi digits

Pi digits

K number of Cz2k

N
um

be
r o

f P
i d

ig
its

Conclusion
Using Prime Generator Theory as the mathematical|conceptual framework to start from, I looked at
Euler's Zeta function differently since when he solved the Basel problem in 1734. Discovered lurking
within its structure, is a simple|elegant formula to compute to arbitrary accuracy, previously missed.
Specifically for s = 2k, we see is embedded in the coefficients 2k-th roots to arbitrary accuracy, which
can then be boosted to higher arbitrary accuracy by primorial multiplications. Their numerators can be
factored into consecutive small primes, and written as primorial factors, whose largest is the closest
prime less|greater than 2k. Finally, we find we can predict the number of digits for each coefficient, and
which coefficients will provide a desired number of digits. Thus we find that primorials (primes) are
inextricably linked to , and thus to the geometry of circles, which heretofore was totally unexpected.

References
[1] The Use of Prime Generators to Implement Fast Twin Primes Sieve of Zakiya (SoZ), Applications
 to Number Theory, and Implications to the Riemann Hypothesis, Jabari Zakiya, 2018/19
 https://vixra.org/pdf/2006.0054v1.pdf
https://www.academia.edu/37952623/
The_Use_of_Prime_Generators_to_Implement_Fast_Twin_Primes_Sieve_of_Zakiya_SoZ_Application
s_to_Number_Theory_and_Implications_for_the_Riemann_Hypotheses

[2] On The Infinity of Twin Primes and other K-tuples, Jabari Zakiya, 2019/20
 https://vixra.org/pdf/2006.0053v2.pdf
 https://www.academia.edu/41024027/On_The_Infinity_of_Twin_Primes_and_other_K_tuples

[3] (Simplest) Proof of Twin Primes and Polignac’s Conjectures, Jabari Zakiya, video, 2021
 https://www.youtube.com/watch?v=HCUiPknHtfY

[4] The Twin Primes Segmented Sieve of Zakiya (SSoZ) Explained, Jabari Zakiya, 2022
 https://vixra.org/pdf/2206.0100v1.pdf
 https://www.academia.edu/81206391/Twin_Primes_Segmented_Sieve_of_Zakiya_SSoZ_Explained

[5] Particular values of the Riemann Zeta Function
 https://en.wikipedia.org/wiki/Particular_values_of_the_Riemann_zeta_function

[6] Coded different methods to Calculate PI – https://github.com/joaojcorreia/Calculate-pi

[7] WolframAlpha Compute Engine – https://www.wolframalpha.com/input/?i=mathematica

[8] primes-utils Rubygem – https://rubygems.org/gems/primes-utils

[9] PRIMES-UTILS HANDBOOK, Jabari Zakiya, 2016
 https://www.academia.edu/19786419/PRIMES_UTILS_HANDBOOK

[10] Pari/GP software algebra system – https://pari.math.u-bordeaux.fr/

[11] | integer lists – [] https://oeis.org/A002432/ and [] https://oeis.org/A046988

10

https://oeis.org/A046988
https://oeis.org/A002432/
https://pari.math.u-bordeaux.fr/
https://www.academia.edu/19786419/PRIMES_UTILS_HANDBOOK
https://rubygems.org/gems/primes-utils
https://www.wolframalpha.com/input/?i=mathematica
https://github.com/joaojcorreia/Calculate-pi
https://en.wikipedia.org/wiki/Particular_values_of_the_Riemann_zeta_function
https://www.academia.edu/81206391/Twin_Primes_Segmented_Sieve_of_Zakiya_SSoZ_Explained
https://vixra.org/pdf/2206.0100v1.pdf
https://www.youtube.com/watch?v=HCUiPknHtfY
https://www.academia.edu/41024027/On_The_Infinity_of_Twin_Primes_and_other_K_tuples
https://vixra.org/pdf/2006.0053v2.pdf
https://www.academia.edu/37952623/The_Use_of_Prime_Generators_to_Implement_Fast_Twin_Primes_Sieve_of_Zakiya_SoZ_Applications_to_Number_Theory_and_Implications_for_the_Riemann_Hypotheses
https://www.academia.edu/37952623/The_Use_of_Prime_Generators_to_Implement_Fast_Twin_Primes_Sieve_of_Zakiya_SoZ_Applications_to_Number_Theory_and_Implications_for_the_Riemann_Hypotheses
https://www.academia.edu/37952623/The_Use_of_Prime_Generators_to_Implement_Fast_Twin_Primes_Sieve_of_Zakiya_SoZ_Applications_to_Number_Theory_and_Implications_for_the_Riemann_Hypotheses
https://vixra.org/pdf/2006.0054v1.pdf

List of Primorials in Pi from first 25 constants

11

12

	Introduction
	Zeta function
	Geometric Interpretation using PGT
	Numerical Analysis
	Values for
	Growth of Pi Digits for
	Conclusion

	References

