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Abstract

Assuming that an absolute stationary inertial frame exists in the universe and the speed of light
is constant only in the absolute stationary inertial frame, new equations for inertial mass,
momentum and kinetic energy in a moving inertial frame are derived.

In the process of deriving the new equations, an experiment was presented to obtain the
velocity of the inertial frame moving relative to the absolute stationary inertial frame. If this
experiment is successful, we could find out how fast and in which direction our Earth is moving
in space.

1.0 Introduction

Albert Einstein derived the equations for time dilation, mass increase, and kinetic energy in the
theory of special relativity published in 1905, assuming that light speed is constant in all inertial
frames and the absolute stationary inertial frame does not exist in the universe.

In this study, new equations for inertial mass, momentum, and kinetic energy in an inertial
frame moving relative to the absolute stationary inertial frame are derived by assuming that an
absolute stationary inertial frame exists and using the two assumptions for the speed of light
below.

= Assumption 1: An absolute stationary inertial frame exists in the universe

= Assumption 2: The speed of light observed in an absolute stationary inertia frame is
constant regardless of the movement of the light source. That is, light emitted from
both a moving and a stationary object have the same speed in an absolute stationary
inertial frame.

= Assumption 3: In a moving inertial frame, the round-trip speed of light in all directions
is the same and is equal to the speed of light in the absolute stationary inertial frame.



2.0 Conversion Factors to Absolute Stationary Inertial Frame.

A

Moving Inertial Frame with V|

W

Absolute Stationary Inertial Frame

Figure 1. Observe a golf ball hit in an inertial frame flying with velocity Vo in an absolute
stationary inertial frame

As shown in Figure 1, in order to calculate the kinetic energy of an object thrown from a moving
inertial frame in terms of an absolute stationary inertial frame, the following four conversion
factors are used:

= Length Conversion Factor
= Time Conversion Factor

= Velocity Conversion Factor
= Mass Conversion Factor

In the process of deriving this equation, an experiment is presented to determine the velocity
of an inertial frame moving relative to the absolute stationary inertial frame and the new
equation for the relative velocity of an object observed in a moving inertial frame to the
absolute stationary inertial frame.

2.1 Factor that converts length observed in the moving inertial frame to

length observed in the absolute stationary inertial frame

As shown in Figure 2, consider that a spacecraft with a semicircular reflector flies at Vo speed
and generates light at the center of the spacecraft.

Figure 2. A spaceship flying at velocity V, relative to the absolute stationary inertia frame



The path of light emitted from the source at the center of the spaceship hits point Y1. Point Y1
reflects the light back to the source. The motion of this light path is observed from the absolute
stationary inertial frame as follows:
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Figure 3. The path of light in a spacecraft observed in an absolute stationary inertial frame

The path of light reflected at point Y1 and returned to the center of the spaceship

Assuming no length contraction in the Y axis, the time t3 + t4, represents the time it takes for
the emitted light to hit Y1 point and reflect back to the source. The time t3 + t4 can be
calculated as follows in the absolute stationary inertial frame.

t3: The time it takes for the light emitted from the source at center of the spaceship to
reach point Y1 of the reflector.

(Lo)? + (vot3)? = (ct3)?

t4: The time it takes for the light reflected from point Y1 back to the center of the
spaceship.

(Lo)? + (vot4)? = (ct4)?
2L,

The path of light reflected from a point on the reflector and returned to the center of the
spaceship

t3+t4=

The time t1 + t2, represents the time it takes for the emitted light to travel from the source at
center of the spaceship to any point on the reflector, then back to the source. This can be
calculated for the absolute stationary inertial frame as follows:

(ct1)? = (L sinf)? + (L cosO + vyt1)? = L? + 2LcosOvytl + (vyt1)?
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(ct2)? = (L sinf)? + (L cosd — vyt2)? = L? — 2LcosOvyt2 + (vot2)?
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Based on Assumption 3, the speed of light is the same in all directions, so the time for the
round-trip t1+t2, Equation (4), for any one point, and time for the round-trip t3+t4, Equation (1),
for Y1, must be the same.

Hence,

2L\Jvg?(cos0)? + (c2 —vy?)  2LO
€% — py2 2= p,2

The length Lo in a moving inertial frame is observed to be contracted compared to L in the
absolute stationary inertial frame a follows:
L= Lo +Jc? —vy? B Ly
J€2 = vy2 + vy2(cosh)? o2(c0s6)? (5)
1+————
c? — v,

The length contraction factor R, that converts length in a moving inertial frame to length in the
absolute stationary inertial frame is defined as follows:

R L 1
L —_—
L
0 V02 (cos0)? (6)

2.2  Factor that converts time observed in the moving inertial frame to time

observed in the absolute stationary inertial frame

In @ moving inertial frame, unit time is defined as the time for light to travel a distance Lo back
and forth as shown in Figure 4.
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Figure 4. Unit time in an inertial frame



Unit time in an inertial frame is expressed as follows:

2L
t0 = —2 (7)
c
Since the absolute stationary inertial frame observes the round-trip time of the moving inertial
frame as Equation (1) that is always greater than time of Equation (7), it can be inferred that the
unit time in the moving inertial frame is slower than the unit time in the absolute stationary

inertial frame.

Using the absolute stationary inertial frame time t as Equation (1) and the moving inertial
system time to as Equation (7), the factor R; that converts the moving inertial frame time to the
absolute stationary inertial frame time is defined as follows:

2L,
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R t_C 1_0_2_ 1 (8)
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How to measure the velocity, V,, of a moving inertial frame

Based on Equations (2) and (3), the difference between the time t1 to reach a surface point and
the time t2 to return to the source can be expressed as follows in the absolute stationary
inertial frame:

2LvycosO 2Lgvgcosf 2LgvgcosO
Atta=t1—t2=c2 o7 = = > 2 (oind)?
— o 2 2 v Vo2 (sin
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Considering time dilation, the time difference in a moving inertial frame is then
2Lgvgcosf
10
J v02(51n9)2 (10)
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Max At occurs at 0=0, so

Ats max = (11)
If the maximum At,_max can be measured by experiment, the velocity of the moving inertial
frame can be obtained as follows:

CZ
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If this experiment is successful, one can determine the direction and velocity of the inertial
frame moving in space.

2.3  Factor that converts the velocity observed in the moving inertial frame to

the velocity observed in the absolute stationary inertial frame

Using the length conversion factor R, , Equation (6), and the time conversion factor R,
Equation (8), the factor R, can then be derived. R, is the factor that converts the observed
velocity in the moving inertial frame to the velocity observed in the absolute stationary inertial
frame:

R = R, 1 . 7% ( v02> 1
VIR T Nmm=\la) .
Rr v2(c0s0)2 ¢ ¢ \jl _M (13)
=z c

Relative velocity of an object observed in a moving inertial frame to the absolute stationary
inertial frame

When a moving object is observed as v, in an absolute stationary inertial frame and v; in an
inertial frame moving with a velocity v, the velocity v, in the moving inertial frame is observed
as R,v, in the absolute stationary frame, so these velocities can be expressed as shown in
Figure 5.

Vo M

Figure 5. Schematic relationship between velocity Va and the direction j observed in the absolute
stationary inertial frame, and velocity Vi and direction g observed in an inertial frame
moving at velocity Vo

Based on Figure 5, the relationship between v, and v, can be shown as follows:
(R,v1)? = (v, cos(@) — v9)? + (v, 5in(@))? = v, — 2v4v, cos(@) + vy? (14)

vysin(ep) = R,v1sin(6)

vysin(e) _ vysin(e)

sin(@) =
Ryvy Va2 — 2v4v, cos(p) + vy?

(15)




Based on the Equations (13), (14), and (15), the relative velocity v; and 6 can be expressed by v,
v, and ¢ as follows:

Va2 = 2v4v, cos(@) + v,y? B /€2 — vy2(sind)?
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The absolute velocity v, can be expressed by v; and v, as follows:

vy = JUOZ + 2vyR, v, cos(8) + R,*v;2
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Since the velocity v, observed in an absolutely stationary inertial frame cannot exceed the
speed of light, c, the maximum value of v; can be obtained by substituting v, = c in Equation
(18) is as follows:

c

V1 max = m\/cz — Vo2 (sinf)? - [—vo cos(6) ++/c2 — voz(sinG)z] (19)

Equation (19) defines the maximum velocity of an object that can be observed or created in an
inertial frame moving at velocity v.

This is also consistent with the result obtained from kinetic energy Equation (34).

At 6=0, 6= /2, 6= &, Equation (19) can be simply expressed as follows:

2

C
v g =
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VU1 max _at8=m/2 = C (20)
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Between 0 < 8 < 2w, the average value of V1 nax, V1 ave max IS Obtained by dividing the
circumference of a circle with a unit radius; that is, 2rt by the time required for circular motion.
The time it takes to go around the circle is obtained by integrating the time to travel a unit

over the interval 0 < 8 < 2m.

distance with v; a4, Which is

V1_max
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Equation (21) indicates that the circular motion speed of an object in a moving inertial system
cannot exceed the speed c of light.

Suppose we observe the forward light, that is, the light in the direction of_z—ﬂ <0< %, from a

spaceship moving at the speed of light.

When v, is close to ¢, Equation (19) converges to c/2 for the direction of_T7r <6< gas follows:

Cc

Ve —vy2(sind)? - [—vo cos(0) +/c? — voz(sinG)z] = (22)
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That is, the forward light in an inertial frame moving at the speed of light (v, = ¢) is observed
as c/2.

2.4 Mass Increase due to a Moving Inertial Velocity

When a bomb with at-rest mass m, in the absolute stationary inertial frame flies at a speed of
vy and explodes at a speed v,, that is relatively much slower than the speed of light in all
directions as shown in Figure 6.

Vo
Figure 6. A bomb with at rest mass mg explodes with velocity vi while flying with velocity vo

This explosive kinetic energy is assumed as follows considering the mass increase factor:

1
Exp = Emo%zys (23)

As shown in Figure 6, the velocity v, of the fragment observed in the absolute stationary inertial
frame can be expressed as follows:

vp = Vo2 + 2vv,c05(0) + v, 2 (24)



Assume that the mass increase factor y due to the velocity v of a moving inertial frame is as

follows:
cz2 \"
Y= (CZ — v2> (25)

If v, is a very slow speed compared to the speed of light, the fragment kinetic energy in any
direction can be calculated as:

dP m me 2 \"
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Equation (26) can be simplified as follows when v, is very close to O:
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The total explosive energy of the bomb can be obtained as follows by integrating Equation (27)
for all three-dimensional directions.

" my .
Ekapomp = f lim v,d (Eyvb) - 2msin(@) d6
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In Equation (28), 1/2 is the only value of n that satisfies Equation (23), so y can be estimated as
follows:

2 (29)



3.0 Kinetic Energy, Momentum and Inertial Mass in an Inertial Frame

Moving Relative to an Absolutely Stationary Inertial Frame

3.1 Kinetic Energy Observed in Absolute Stationary Inertial Frame
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Figure 7. The velocity of an object with mass m thrown at velocity Vi in an inertial frame with
mass M, and the velocity change of the inertial frame with mass M due to reaction
force, observed in an absolute stationary frame.

As shown in Figure 7, an object with mass m is thrown at velocity v, and angle 0 in an inertial
frame with mass M moving with velocity v,.

Observing this in the absolute frame, the object with mass m moves to R, v, due to the velocity

conversion factor R, , Equation (13), and the inertial frame with mass M moves in the opposite
2

direction at v, = "

velocity.

Therefore, the velocities of m and M observed in the absolute stationary inertial frame can be
expressed as:

Uy = Vo2 + 2vovcos(6) + v2 (30)
mv muvy 2
vy = \/UOZ - 2v, Wcos(&) + (W) (31)

Using the mass increase factor y from Equation (29), m and M are expressed as follows:

my
m=myy =
’ U (32)
1-=-7
c
M,
M =M,y =
o¥ 1_ o (33)



Using Equations (30) to (33), the kinetic energy observed in the absolute stationary inertial
frame can be calculated as follows:

Ryv;

Fra@) = [ vmdlnun) + [ vdMvy)
0 0

RyV1 mO Ryv;, MO
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3.2 Momentum observed in Moving Inertial Frame

The moving inertial kinetic energy, Exs can be calculated with the momentum, P, and velocity,
v, as follows:

V1

Egs(vy) = f vd(Ps) (35)

0

Since the kinetic energy, Ex,, calculated in the absolute stationary inertial frame, and the
kinetic energy, Exs, calculated in the moving inertial frame must be the same, d(Ps) can be
obtained by differentiating Equations (35) and (34) as follows:

d(Exs()) = vd(Ps) = d(Exa(v))

moc3R, vg cos(0) + v v, cos(0)

Vo [e2 = (wo? + 2vR,v cos(8) + szvz)]S/2 (c? —v?)3/2

d(Ps) = dv  (36)

The momentum in the moving inertial frame can be obtained by integrating d(Ps), Equation
(36), as follows:



Psoy) = [ aeps)
0

5 V1 1 UO COS(Q) + va UO COS(Q)
= myC Ruf " 2,2)32 (¢ — 1,232
0 [Cz — (vo? + 2R, vov cos(6) + R, vz)] ’

dv

R,v; + 2v, cos(6)

(
|
al
( - _2) | (vo? + 2R, vV, cos(8) + R,*v,2)
C k 1—

c?

v, cos(0)

07 [ln(Z) +1In <\/cz — vOZch — (v02 + 2R, vV, cos(0) + szvlz) (37)

v 2
/1 - CLZ
— R,vyv cos(8) + c? — v02>]

_ Movo €0s(6) [2 —In(4) — In (c2 — vy?)]

\/1 _ 17_02\/1 _ vo%(sinf)?

c? c?

3.3 Inertial Mass in a Moving Inertial Frame

Using the momentum Equation (37) in the moving inertial frame, the inertial mass in the
moving inertial frame can be obtained as follows:

. Ps(v;)  my . 2v,y%(cos0)?
M= v, S\t 2(sind)2
1 ’1 v 0
-2

Based on (38), the inertial mass is a function of the velocity of the inertial frame and direction.

(38)



4.0 Conclusion

The conclusion of this study and the difference from the theory of special relativity are as

follows:
Theory of Special Conclusion of this study
Relativity
Absolute None Exists
Stationary

Inertial Frame

Constancy of

Constant in all

Constant only in the absolute stationary inertial frame.

Light Speed inertial frames In @ moving inertial frame, the round-trip speed of light is constant.
Velocity of a No way to Measurable by experiment
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