Equivalence Principle and Lorentz Covariant Gravitation Contradiction

Karl De Paepe*

Abstract

We show a Lorentz covariant gravitation does not satisfy the equivalence principle.

1 Introduction

We will restrict to a Lorentz covariant gravitation that has only constants c and G with dimension. General relativity [1] is an example. Units are chosen so that $c=G=1$.

Let $m_{A}>0, E_{\gamma}>0$, and $0 \leq v<1$ and define M_{A}^{\prime} and E_{γ}^{\prime} by

$$
\begin{equation*}
M_{A}^{\prime}=\sqrt{1-v^{2}} m_{A} \quad E_{\gamma}^{\prime}=\sqrt{\frac{1+v}{1-v}} E_{\gamma} \tag{1}
\end{equation*}
$$

Let \mathcal{F} be a frame of reference with coordintes t, x, y, z and \mathcal{F}^{\prime} be a frame of reference with coordinates $t^{\prime}, x^{\prime}, y, z^{\prime}$. The coordinates of the frames being related by the Lorentz transformation

$$
\begin{equation*}
t=\frac{t^{\prime}+v x^{\prime}}{\sqrt{1-v^{2}}} \quad x=\frac{x^{\prime}+v t^{\prime}}{\sqrt{1-v^{2}}} \quad y=y^{\prime} \quad z=z^{\prime} \tag{2}
\end{equation*}
$$

With respect to \mathcal{F}^{\prime} let there be a zero rest mass particle γ moving from positive x^{\prime} infinity towards the origin along the x^{\prime} axis. Let $t_{\gamma}^{\prime}\left(x_{\gamma}^{\prime}\right)$ be the path of γ. Also let there be a point mass A such that when γ is at at infinity A is at rest at the origin. When γ is at infinity let M_{A}^{\prime} be the mass of A and E_{γ}^{\prime} be the energy of γ. When γ is at infinity let $P_{A}^{\prime \mu}$ be the components of the energy-momentum four-vector of A and $P_{\gamma}^{\prime \mu}$ be the components of the energy-momentum four-vector of γ. With respect \mathcal{F}^{\prime} when γ is at infinity

$$
\begin{align*}
& P_{A}^{\prime 0}=M_{A}^{\prime} \quad P_{A}^{\prime 1}=P_{A}^{\prime 2}=P_{A}^{\prime 3}=0 \tag{3}\\
& P_{\gamma}^{\prime 0}=E_{\gamma}^{\prime} \quad P_{\gamma}^{\prime 1}=-E_{\gamma}^{\prime} \quad P_{\gamma}^{\prime 2}=P_{\gamma}^{\prime 3}=0
\end{align*}
$$

With respect to \mathcal{F} when γ is at infinity the energy of A is using (1) and (3) and the formula for transformation of energy

$$
\begin{equation*}
P_{A}^{0}=\frac{P_{A}^{\prime 0}+v P_{A}^{\prime}}{\sqrt{1-v^{2}}}=\frac{M_{A}^{\prime}}{\sqrt{1-v^{2}}}=\frac{\sqrt{1-v^{2}} m_{A}}{\sqrt{1-v^{2}}}=m_{A} \tag{4}
\end{equation*}
$$

and the energy of γ is

$$
\begin{equation*}
P_{\gamma}^{0}=\frac{P_{\gamma}^{\prime 0}+v P_{\gamma}^{\prime 1}}{\sqrt{1-v^{2}}}=\frac{E_{\gamma}^{\prime}+v\left(-E_{\gamma}^{\prime}\right)}{\sqrt{1-v^{2}}}=\sqrt{\frac{1-v}{1+v}} E_{\gamma}^{\prime}=\sqrt{\frac{1-v}{1+v}} \sqrt{\frac{1+v}{1-v}} E_{\gamma}=E_{\gamma} \tag{5}
\end{equation*}
$$

[^0]
2 Energy and momentum functions

With respect \mathcal{F}^{\prime} let the functions $p_{\gamma}^{\prime \mu}\left(x_{\gamma}^{\prime}\right)$ be the components of the energy-momentum four-vector of γ. The values of $M_{A}^{\prime}, E_{\gamma}^{\prime}$, and x_{γ}^{\prime} completely determines the system with respect to \mathcal{F}^{\prime}. A component of $p_{\gamma}^{\prime \mu}\left(x_{\gamma}^{\prime}\right)$ is then a function of $M_{A}^{\prime}, E_{\gamma}^{\prime}$, and x_{γ}^{\prime} and no other variables. Since we are considering Lorentz covariant graviation with only c and G as constants with dimension we have $p_{\gamma}^{\prime \mu}\left(x_{\gamma}^{\prime}\right) / E_{\gamma}^{\prime}$ will be a dimensionless function of the dimensionless variables $M_{A}^{\prime} / x_{\gamma}^{\prime}$ and $E_{\gamma}^{\prime} / x_{\gamma}^{\prime}$. Note $M_{A}^{\prime} / E_{\gamma}^{\prime}=\left(M_{A}^{\prime} / x_{\gamma}^{\prime}\right)\left(1 /\left(E_{\gamma}^{\prime} / x_{\gamma}^{\prime}\right)\right)$. There is then a dimensionless function C of $M_{A}^{\prime} / x_{\gamma}^{\prime}$ and $E_{\gamma}^{\prime} / x_{\gamma}^{\prime}$ such that [2]

$$
\begin{equation*}
p_{\gamma}^{\prime 0}\left(x_{\gamma}^{\prime}\right)=E_{\gamma}^{\prime}+\frac{M_{A}^{\prime} E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}} C\left(\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}, \frac{E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}\right) \tag{6}
\end{equation*}
$$

Similarly for the x^{\prime} component of momentum there is a dimsionless function D such that

$$
\begin{equation*}
p_{\gamma}^{\prime 1}\left(x_{\gamma}^{\prime}\right)=-E_{\gamma}^{\prime}+\frac{M_{A}^{\prime} E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}} D\left(\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}, \frac{E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}\right) \tag{7}
\end{equation*}
$$

With respect to \mathcal{F}^{\prime} if γ is at the point $\left(t_{\gamma}^{\prime}, x_{\gamma}^{\prime}, 0,0\right)$ where $t_{\gamma}^{\prime}\left(x_{\gamma}^{\prime}\right)$ then with respect to \mathcal{F} it is at the point $\left(t_{\gamma}, x_{\gamma}, 0,0\right)$ where

$$
\begin{equation*}
t_{\gamma}=\frac{t_{\gamma}^{\prime}+v x_{\gamma}^{\prime}}{\sqrt{1-v^{2}}} \quad x_{\gamma}=\frac{x_{\gamma}^{\prime}+v t_{\gamma}^{\prime}}{\sqrt{1-v^{2}}} \tag{8}
\end{equation*}
$$

and $t_{\gamma}\left(x_{\gamma}\right)$. With respect to \mathcal{F} let the functions $p_{\gamma}^{\mu}\left(x_{\gamma}\right)$ be the components of the energy-momentum four-vector of γ at x_{γ}. The energy of γ at time t_{γ} is using (1), (6)-(8)

$$
\begin{align*}
p_{\gamma}^{0}\left(x_{\gamma}\right) & =\frac{p_{\gamma}^{\prime 0}\left(x_{\gamma}^{\prime}\right)+v p_{\gamma}^{\prime 1}\left(x_{\gamma}^{\prime}\right)}{\sqrt{1-v^{2}}}=\frac{E_{\gamma}^{\prime}+\frac{M_{A}^{\prime} E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}} C\left(\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}, \frac{E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}\right)+v\left[-E_{\gamma}^{\prime}+\frac{M_{A}^{\prime} E_{\gamma}^{\prime \prime}}{x_{\gamma}^{\prime}} D\left(\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}, \frac{E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}\right)\right]}{\sqrt{1-v^{2}}} \tag{9}\\
& =\frac{E_{\gamma}^{\prime}}{\sqrt{1-v^{2}}}\left\{1-v+\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}\left[C\left(\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}, \frac{E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}\right)+v D\left(\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}, \frac{E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}\right)\right]\right\} \\
& =E_{\gamma}+\frac{(1+v) m_{A} E_{\gamma}}{x_{\gamma}-v t_{\gamma}}\left[C\left(\frac{\left(1-v^{2}\right) m_{A}}{x_{\gamma}-v t_{\gamma}}, \frac{(1+v) E_{\gamma}}{x_{\gamma}-v t_{\gamma}}\right)+v D\left(\frac{\left(1-v^{2}\right) m_{A}}{x_{\gamma}-v t_{\gamma}}, \frac{(1+v) E_{\gamma}}{x_{\gamma}-v t_{\gamma}}\right)\right]
\end{align*}
$$

The $v \rightarrow 1$ limit of (9) is

$$
\begin{equation*}
p_{\gamma}^{0}\left(x_{\gamma}\right)=E_{\gamma}+\frac{2 m_{A} E_{\gamma}}{x_{\gamma}-t_{\gamma}}\left[C\left(0, \frac{2 E_{\gamma}}{x_{\gamma}-t_{\gamma}}\right)+D\left(0, \frac{2 E_{\gamma}}{x_{\gamma}-t_{\gamma}}\right)\right] \tag{10}
\end{equation*}
$$

Similarily for the x component of momentum the $v \rightarrow 1$ limit is

$$
\begin{equation*}
p_{\gamma}^{1}\left(x_{\gamma}\right)=-E_{\gamma}+\frac{2 m_{A} E_{\gamma}}{x_{\gamma}-t_{\gamma}}\left[C\left(0, \frac{2 E_{\gamma}}{x_{\gamma}-t_{\gamma}}\right)+D\left(0, \frac{2 E_{\gamma}}{x_{\gamma}-t_{\gamma}}\right)\right] \tag{11}
\end{equation*}
$$

Subtracting (10) and (11) gives

$$
\begin{equation*}
p_{\gamma}^{0}\left(x_{\gamma}\right)-p_{\gamma}^{1}\left(x_{\gamma}\right)=2 E_{\gamma} \tag{12}
\end{equation*}
$$

3 Velocity of γ

We will assume, of a Lorentz covariant gravitation, that the velocity of γ does not depend on its energy. Consequently with respect to \mathcal{F}^{\prime} the velocity $d x_{\gamma}^{\prime} / d t_{\gamma}^{\prime}$ of γ will then be a function of M_{A}^{\prime} and x_{γ}^{\prime} and not E_{γ}^{\prime}. We then have $d x_{\gamma}^{\prime} / d t_{\gamma}^{\prime}$ will be a dimensionless function of the dimensionless variable $M_{A}^{\prime} / x_{\gamma}^{\prime}$. There is then a dimensionless function S such that

$$
\begin{equation*}
\frac{d x_{\gamma}^{\prime}}{d t_{\gamma}^{\prime}}=-1+\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}} S\left(\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}\right) \tag{13}
\end{equation*}
$$

The speed of γ decreases as γ moves towards the origin hence $S(0)>0$. With respect to \mathcal{F} the velocity of γ is using (1), (8), (13) and the velocity addition formula

$$
\begin{equation*}
\frac{d x_{\gamma}}{d t_{\gamma}}=\frac{\frac{d x_{\gamma}^{\prime}}{d t_{\gamma}^{\prime}}+v}{1+v \frac{d x_{\gamma}^{\prime}}{d t_{\gamma}^{\prime}}}=\frac{-1+\frac{M_{A}^{\prime}}{x_{\gamma}^{A}} S\left(\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}\right)+v}{1+v\left[-1+\frac{M_{A}^{\prime}}{x_{\gamma}^{A}} S\left(\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}\right)\right]}=\frac{-1+\frac{(1+v) m_{A}}{x_{\gamma}-v t_{\gamma}} S\left(\frac{\left(1-v^{2}\right) m_{A}}{x_{\gamma}-v t_{\gamma}}\right)}{1+\frac{v(1+v) m_{A}}{x_{\gamma}-v t_{\gamma}} S\left(\frac{\left(1-v^{2}\right) m_{A}}{x_{\gamma}-v t_{\gamma}}\right)} \tag{14}
\end{equation*}
$$

The $v \rightarrow 1$ limit of (14) is

$$
\begin{equation*}
\frac{d x_{\gamma}}{d t_{\gamma}}=\frac{-1+\frac{2 m_{A}}{x_{\gamma}-t_{\gamma}} S(0)}{1+\frac{2 m_{A}}{x_{\gamma}-t_{\gamma}} S(0)} \tag{15}
\end{equation*}
$$

Solving this differential equation gives

$$
\begin{equation*}
\left(x_{\gamma}-t_{\gamma}\right)-\left(x_{\gamma 1}-t_{\gamma 1}\right)+2 m_{A} S(0) \ln \frac{x_{\gamma}-t_{\gamma}}{x_{\gamma 1}-t_{\gamma 1}}=2\left(t_{\gamma 1}-t_{\gamma}\right) \tag{16}
\end{equation*}
$$

where the point $\left(t_{\gamma 1}, x_{\gamma 1}, 0,0\right)$ with $x_{\gamma 1}-t_{\gamma 1}>0$ is on the path of γ. There is no point $\left(t_{\gamma 2}, x_{\gamma 2}, 0,0\right)$ with $x_{\gamma 2}-t_{\gamma 2}=0$ on the path of γ hence all points on the path $x_{\gamma}-t_{\gamma}>0$. From (16) then $x_{\gamma}-t_{\gamma} \rightarrow 0$ as $t_{\gamma} \rightarrow \infty$. Now

$$
\begin{equation*}
p_{\gamma}^{1}\left(x_{\gamma}\right)=\frac{d x_{\gamma}}{d t_{\gamma}}\left(x_{\gamma}\right) p_{\gamma}^{0}\left(x_{\gamma}\right) \tag{17}
\end{equation*}
$$

By (12), (15), and (17) we have

$$
\begin{equation*}
p_{\gamma}^{0}\left(x_{\gamma}\right)=\left[1+\frac{2 m_{A}}{x_{\gamma}-t_{\gamma}} S(0)\right] E_{\gamma} \tag{18}
\end{equation*}
$$

4 Contradiction

Let $T_{\gamma}^{\mu \nu}$ be the $v \rightarrow 1$ limit of the energy-momentum tensor of γ. For points having $t-x$ aproximately zero and t large positive we have $T_{\gamma}^{\mu \nu}$ will have approximately a $x-t$ functional dependence. By (15) and (17) we have $T_{\gamma}^{00} \rightarrow T_{\gamma}^{01}$ as $t_{\gamma} \rightarrow \infty$. Also $T_{\gamma}^{02}=T_{\gamma}^{03}=0$. Consequently $\partial_{\mu} T_{\gamma}^{0 \mu} \rightarrow 0$ as $t_{\gamma} \rightarrow \infty$. We can then conclude p_{γ}^{0} is approximately constant in time as $t_{\gamma} \rightarrow \infty$ but (18) has p_{γ}^{0} going to infinity as $t_{\gamma} \rightarrow \infty$. This is a contradiction. The velocity of γ must then have a dependence on the energy of γ. By the equivalence principal the velocity of γ does not depend on the energy of γ. We have a contradiction. A Lorentz covariant gravitation does not satisfy the equivalence principle.

References

[1] A. Einstein, Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes, Annalen der Physik, 35, (1911), translated in The Principle of Relativity, (Dover Publications, Inc., New York, NY, 1952)
[2] K. De Paepe, Applied Physics Research, Vol. 4 No. 4, November 2012

[^0]: *k.depaepe@alumni.utoronto.ca

