Equivalence Principle and Lorentz Covariant Gravitation Contradiction

Karl De Paepe*

Abstract

We show a Lorentz covariant gravitation does not satisfy the equivalence principle.

1 Introduction

We will restrict to a Lorentz covariant gravitation that has only constants c and G with dimension. General relativity [1] is an example. Units are chosen so that c = G = 1.

Let $m_A > 0, E_{\gamma} > 0$, and $0 \le v < 1$ and define M'_A and E'_{γ} by

$$M'_{A} = \sqrt{1 - v^2} m_{A} \qquad E'_{\gamma} = \sqrt{\frac{1 + v}{1 - v}} E_{\gamma}$$
(1)

Let \mathcal{F} be a frame of reference with coordinates t, x, y, z and \mathcal{F}' be a frame of reference with coordinates t', x', y, z'. The coordinates of the frames being related by the Lorentz transformation

$$t = \frac{t' + vx'}{\sqrt{1 - v^2}} \qquad x = \frac{x' + vt'}{\sqrt{1 - v^2}} \qquad y = y' \qquad z = z'$$
(2)

With respect to \mathcal{F}' let there be a zero rest mass particle γ moving from positive x' infinity towards the origin along the x' axis. Let $t'_{\gamma}(x'_{\gamma})$ be the path of γ . Also let there be a point mass A such that when γ is at at infinity A is at rest at the origin. When γ is at infinity let M'_A be the mass of A and E'_{γ} be the energy of γ . When γ is at infinity let P'^{μ}_A be the components of the energy-momentum four-vector of A and P'^{μ}_{γ} be the components of the energy-momentum four-vector of γ . With respect \mathcal{F}' when γ is at infinity

$$P_{A}^{\prime 0} = M_{A}^{\prime} \qquad P_{A}^{\prime 1} = P_{A}^{\prime 2} = P_{A}^{\prime 3} = 0$$

$$P_{\gamma}^{\prime 0} = E_{\gamma}^{\prime} \qquad P_{\gamma}^{\prime 1} = -E_{\gamma}^{\prime} \qquad P_{\gamma}^{\prime 2} = P_{\gamma}^{\prime 3} = 0$$
(3)

With respect to \mathcal{F} when γ is at infinity the energy of A is using (1) and (3) and the formula for transformation of energy

$$P_A^0 = \frac{P_A^{\prime 0} + v P_A^{\prime 1}}{\sqrt{1 - v^2}} = \frac{M_A^{\prime}}{\sqrt{1 - v^2}} = \frac{\sqrt{1 - v^2}m_A}{\sqrt{1 - v^2}} = m_A \tag{4}$$

and the energy of γ is

$$P_{\gamma}^{0} = \frac{P_{\gamma}^{\prime 0} + vP_{\gamma}^{\prime 1}}{\sqrt{1 - v^{2}}} = \frac{E_{\gamma}^{\prime} + v(-E_{\gamma}^{\prime})}{\sqrt{1 - v^{2}}} = \sqrt{\frac{1 - v}{1 + v}}E_{\gamma}^{\prime} = \sqrt{\frac{1 - v}{1 + v}}\sqrt{\frac{1 + v}{1 - v}}E_{\gamma} = E_{\gamma}$$
(5)

k.depaepe@alumni.utoronto.ca

2 Energy and momentum functions

With respect \mathcal{F}' let the functions $p_{\gamma}'^{\mu}(x_{\gamma}')$ be the components of the energy-momentum four-vector of γ . The values of M'_A , E'_{γ} , and x'_{γ} completely determines the system with respect to \mathcal{F}' . A component of $p_{\gamma}'^{\mu}(x'_{\gamma})$ is then a function of M'_A, E'_{γ} , and x'_{γ} and no other variables. Since we are considering Lorentz covariant graviation with only c and G as constants with dimension we have $p_{\gamma}'^{\mu}(x'_{\gamma})/E'_{\gamma}$ will be a dimensionless function of the dimensionless variables M'_A/x'_{γ} and E'_{γ}/x'_{γ} . Note $M'_A/E'_{\gamma} = (M'_A/x'_{\gamma})(1/(E'_{\gamma}/x'_{\gamma}))$. There is then a dimensionless function C of M'_A/x'_{γ} and E'_{γ}/x'_{γ} such that [2]

$$p_{\gamma}^{\prime 0}(x_{\gamma}^{\prime}) = E_{\gamma}^{\prime} + \frac{M_A^{\prime} E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}} C\left(\frac{M_A^{\prime}}{x_{\gamma}^{\prime}}, \frac{E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}\right)$$
(6)

Similarly for the x' component of momentum there is a dimsionless function D such that

$$p_{\gamma}^{\prime 1}(x_{\gamma}^{\prime}) = -E_{\gamma}^{\prime} + \frac{M_A^{\prime} E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}} D\left(\frac{M_A^{\prime}}{x_{\gamma}^{\prime}}, \frac{E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}\right)$$
(7)

With respect to \mathcal{F}' if γ is at the point $(t'_{\gamma}, x'_{\gamma}, 0, 0)$ where $t'_{\gamma}(x'_{\gamma})$ then with respect to \mathcal{F} it is at the point $(t_{\gamma}, x_{\gamma}, 0, 0)$ where

$$t_{\gamma} = \frac{t_{\gamma}' + vx_{\gamma}'}{\sqrt{1 - v^2}} \qquad x_{\gamma} = \frac{x_{\gamma}' + vt_{\gamma}'}{\sqrt{1 - v^2}} \tag{8}$$

and $t_{\gamma}(x_{\gamma})$. With respect to \mathcal{F} let the functions $p_{\gamma}^{\mu}(x_{\gamma})$ be the components of the energy-momentum four-vector of γ at x_{γ} . The energy of γ at time t_{γ} is using (1), (6)-(8)

$$p_{\gamma}^{0}(x_{\gamma}) = \frac{p_{\gamma}^{\prime 0}(x_{\gamma}^{\prime}) + vp_{\gamma}^{\prime 1}(x_{\gamma}^{\prime})}{\sqrt{1 - v^{2}}} = \frac{E_{\gamma}^{\prime} + \frac{M_{A}^{\prime}E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}C\left(\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}, \frac{E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}\right) + v\left[-E_{\gamma}^{\prime} + \frac{M_{A}^{\prime}E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}D\left(\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}, \frac{E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}\right)\right]$$

$$= \frac{E_{\gamma}^{\prime}}{\sqrt{1 - v^{2}}} \left\{1 - v + \frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}\left[C\left(\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}, \frac{E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}\right) + vD\left(\frac{M_{A}^{\prime}}{x_{\gamma}^{\prime}}, \frac{E_{\gamma}^{\prime}}{x_{\gamma}^{\prime}}\right)\right]\right\}$$

$$= E_{\gamma} + \frac{(1 + v)m_{A}E_{\gamma}}{x_{\gamma} - vt_{\gamma}}\left[C\left(\frac{(1 - v^{2})m_{A}}{x_{\gamma} - vt_{\gamma}}, \frac{(1 + v)E_{\gamma}}{x_{\gamma} - vt_{\gamma}}\right) + vD\left(\frac{(1 - v^{2})m_{A}}{x_{\gamma} - vt_{\gamma}}, \frac{(1 + v)E_{\gamma}}{x_{\gamma} - vt_{\gamma}}\right)\right]$$

$$(9)$$

The $v \to 1$ limit of (9) is

$$p_{\gamma}^{0}(x_{\gamma}) = E_{\gamma} + \frac{2m_{A}E_{\gamma}}{x_{\gamma} - t_{\gamma}} \left[C\left(0, \frac{2E_{\gamma}}{x_{\gamma} - t_{\gamma}}\right) + D\left(0, \frac{2E_{\gamma}}{x_{\gamma} - t_{\gamma}}\right) \right]$$
(10)

Similarly for the x component of momentum the $v \to 1$ limit is

$$p_{\gamma}^{1}(x_{\gamma}) = -E_{\gamma} + \frac{2m_{A}E_{\gamma}}{x_{\gamma} - t_{\gamma}} \left[C\left(0, \frac{2E_{\gamma}}{x_{\gamma} - t_{\gamma}}\right) + D\left(0, \frac{2E_{\gamma}}{x_{\gamma} - t_{\gamma}}\right) \right]$$
(11)

Subtracting (10) and (11) gives

$$p^0_{\gamma}(x_{\gamma}) - p^1_{\gamma}(x_{\gamma}) = 2E_{\gamma} \tag{12}$$

3 Velocity of γ

We will assume, of a Lorentz covariant gravitation, that the velocity of γ does not depend on its energy. Consequently with respect to \mathcal{F}' the velocity $dx'_{\gamma}/dt'_{\gamma}$ of γ will then be a function of M'_A and x'_{γ} and not E'_{γ} . We then have $dx'_{\gamma}/dt'_{\gamma}$ will be a dimensionless function of the dimensionless variable M'_A/x'_{γ} . There is then a dimensionless function S such that

$$\frac{dx'_{\gamma}}{dt'_{\gamma}} = -1 + \frac{M'_A}{x'_{\gamma}} S\left(\frac{M'_A}{x'_{\gamma}}\right) \tag{13}$$

The speed of γ decreases as γ moves towards the origin hence S(0) > 0. With respect to \mathcal{F} the velocity of γ is using (1), (8), (13) and the velocity addition formula

$$\frac{dx_{\gamma}}{dt_{\gamma}} = \frac{\frac{dx'_{\gamma}}{dt'_{\gamma}} + v}{1 + v\frac{dx'_{\gamma}}{dt'_{\gamma}}} = \frac{-1 + \frac{M'_{A}}{x'_{\gamma}}S\left(\frac{M'_{A}}{x'_{\gamma}}\right) + v}{1 + v\left[-1 + \frac{M'_{A}}{x'_{\gamma}}S\left(\frac{M'_{A}}{x'_{\gamma}}\right)\right]} = \frac{-1 + \frac{(1+v)m_{A}}{x_{\gamma} - vt_{\gamma}}S\left(\frac{(1-v^{2})m_{A}}{x_{\gamma} - vt_{\gamma}}\right)}{1 + \frac{v(1+v)m_{A}}{x_{\gamma} - vt_{\gamma}}S\left(\frac{(1-v^{2})m_{A}}{x_{\gamma} - vt_{\gamma}}\right)}$$
(14)

The $v \to 1$ limit of (14) is

$$\frac{dx_{\gamma}}{dt_{\gamma}} = \frac{-1 + \frac{2m_A}{x_{\gamma} - t_{\gamma}}S(0)}{1 + \frac{2m_A}{x_{\gamma} - t_{\gamma}}S(0)}$$
(15)

Solving this differential equation gives

$$(x_{\gamma} - t_{\gamma}) - (x_{\gamma 1} - t_{\gamma 1}) + 2m_A S(0) \ln \frac{x_{\gamma} - t_{\gamma}}{x_{\gamma 1} - t_{\gamma 1}} = 2(t_{\gamma 1} - t_{\gamma})$$
(16)

where the point $(t_{\gamma 1}, x_{\gamma 1}, 0, 0)$ with $x_{\gamma 1} - t_{\gamma 1} > 0$ is on the path of γ . There is no point $(t_{\gamma 2}, x_{\gamma 2}, 0, 0)$ with $x_{\gamma 2} - t_{\gamma 2} = 0$ on the path of γ hence all points on the path $x_{\gamma} - t_{\gamma} > 0$. From (16) then $x_{\gamma} - t_{\gamma} \to 0$ as $t_{\gamma} \to \infty$. Now

$$p_{\gamma}^{1}(x_{\gamma}) = \frac{dx_{\gamma}}{dt_{\gamma}}(x_{\gamma})p_{\gamma}^{0}(x_{\gamma})$$
(17)

By (12), (15), and (17) we have

$$p_{\gamma}^{0}(x_{\gamma}) = \left[1 + \frac{2m_{A}}{x_{\gamma} - t_{\gamma}}S(0)\right]E_{\gamma}$$
(18)

4 Contradiction

Let $T^{\mu\nu}_{\gamma}$ be the $v \to 1$ limit of the energy-momentum tensor of γ . For points having t-x aproximately zero and t large positive we have $T^{\mu\nu}_{\gamma}$ will have approximately a x-t functional dependence. By (15) and (17) we have $T^{00}_{\gamma} \to T^{01}_{\gamma}$ as $t_{\gamma} \to \infty$. Also $T^{02}_{\gamma} = T^{03}_{\gamma} = 0$. Consequently $\partial_{\mu}T^{0\mu}_{\gamma} \to 0$ as $t_{\gamma} \to \infty$. We can then conclude p^0_{γ} is approximately constant in time as $t_{\gamma} \to \infty$ but (18) has p^0_{γ} going to infinity as $t_{\gamma} \to \infty$. This is a contradiction. The velocity of γ must then have a dependence on the energy of γ . By the equivalence principal the velocity of γ does not depend on the energy of γ . We have a contradiction. A Lorentz covariant gravitation does not satisfy the equivalence principle.

References

- A. Einstein, Uber den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes, Annalen der Physik, 35, (1911), translated in The Principle of Relativity, (Dover Publications, Inc., New York, NY, 1952)
- [2] K. De Paepe, Applied Physics Research, Vol. 4 No. 4, November 2012