A PROOF OF THE SCHOLZ CONJECTURE ON ADDITION CHAINS

THEOPHILUS AGAMA

Abstract. Applying the pothole method on the factors of numbers of the form $2^n - 1$, we prove the inequality

$$\iota(2^n - 1) \leq n - 1 + \iota(n)$$

where $\iota(n)$ denotes the length of the shortest addition chain producing n.

1. Introduction

An addition chain producing $n \geq 3$, roughly speaking, is a sequence of numbers of the form $1, 2, s_3, s_4, \ldots, s_k - 1, s_k = n$ where each term is the sum of two earlier terms in the sequence, obtained by adding each sum generated to an earlier term in the sequence. The length of the chain is determined by the number of entries in the sequence excluding the mandatory first term 1, since it is the only term which cannot be expressed as the sum of two previous terms in the sequence. There are numerous addition chains that result in a fixed number n; In other words, it is always possible to construct as many addition chains producing a fixed number positive integer n as n grows in magnitude. The shortest among these possible chains producing n is regarded as the optimal or the shortest addition chain producing n. There is currently no efficient method for getting the shortest addition yielding a given number, thus reducing an addition chain might be a difficult task, thereby making addition chain theory a fascinating subject to study. By letting $\iota(n)$ denotes the length of the shortest addition chain producing n, then Arnold Scholz conjectured the inequality

Conjecture 1.1 (Scholz). The inequality

$$\iota(2^n - 1) \leq n - 1 + \iota(n)$$

holds for all $n \geq 2$.

It has been shown computationally by Neill Clift, that the conjecture holds for all $n \leq 5784688$ and in fact it is an equality for all exponents $n \leq 64$ [2]. Alfred Brauer proved the Scholz conjecture for the star addition chain, a special type of addition chain where each term in the sequence obtained by summing uses the immediately subsequent number in the chain. By denoting with $\iota^*(n)$ as the length of the shortest star addition chain producing n, it is shown that (See [1])

\textit{Date: June 5, 2023.}
Theorem 1.1. The inequality
\[\tau^*(2^n - 1) \leq n - 1 + \tau^*(n) \]
holds for all \(n \geq 2 \).

In this paper, we combine the factor method and the newly introduced "fill in the pothole" method to study short addition chains producing numbers of the form \(2^n - 1 \) and the Scholz conjecture. Given any number of the form \(2^n - 1 \), we obtain the decomposition
\[
2^n - 1 = (2^{n-(1-(1)\frac{n}{2})} - 1)(2^{n-(1-(1)\frac{n}{2})} + 1) + \frac{(1 - (-1)^n)}{2}(2^{n-(1-(1)\frac{n}{2})})
\]
which eventually yield the following decomposition \(2^n - 1 = (2^{\frac{n}{2}} - 1)(2^{\frac{n}{2}} + 1) \) in the case \(n \equiv 0 \pmod{2} \) and
\[
2^n - 1 = (2^{\frac{n+1}{2}} - 1)(2^{\frac{n+1}{2}} + 1) + 2^n
\]
in the case \(n \equiv 1 \pmod{2} \). We iterate this decomposition up to a certain desired frequency and apply the factor method on all the factors obtained from this decomposition. We then apply the pothole method to obtain a bound for the shortest addition chain producing the only factor of form \(2^n - 1 \). The length of the shortest addition chains of numbers of the form \(2^n + 1 \) is easy to construct, by first constructing the shortest addition chain producing \(2^n \), adding the first term of the chain to the last term and adjoining to the chain. We combine the method of filling the potholes and the factor method to prove the Scholz conjecture on length of addition chain producing \(2^n - 1 \).

1.1. Summary sketch and idea of proof. In this section we describe in a somewhat intuitive fashion the mode of operation of the method of filling the potholes, which is employed to obtain our upper bound. We lay them down chronologically as follows.

- We first construct a complete sub-addition chain producing \(2^n - 1 \). For technical reasons which will become clear later, we stop the chain prematurely at \(2^n - 1 \).
- We extend this addition chain by a length of logarithm order.
- This extension has missing terms to qualify as addition chain producing \(2^n - 1 \). We fill in the missing terms thereby obtaining what one might refer to as spoof addition chain producing \(2^n - 1 \).
- Creating this spoof addition chain comes at a cost. The remaining step will be to cover the cost and render an account to obtain the upper bound.

2. Sub-addition chains

Definition 2.1. Let \(n \geq 3 \), then by the addition chain of length \(k - 1 \) producing \(n \) we mean the sequence
\[
1, 2, \ldots, s_{k-1}, s_k
\]
where each term \(s_j \) \((j \geq 3)\) in the sequence is the sum of two earlier terms, with the corresponding sequence of partition
\[
2 = 1 + 1, \ldots, s_{k-1} = a_{k-1} + r_{k-1}, s_k = a_k + r_k = n
\]
with \(a_{i+1} = a_i + r_i \) and \(a_{i+1} = s_i \) for \(2 \leq i \leq k \). We call the partition \(a_i + r_i \) the \(i^{th} \) generator of the chain for \(2 \leq i \leq k \). We call \(a_i \) the determiners and \(r_i \) the regulator of the \(i^{th} \) generator of the chain. We call the sequence \((r_i) \) the regulators of the addition chain and \((a_i) \) the determiners of the chain for \(2 \leq i \leq k \).

Definition 2.2. Let the sequence \(1, 2, \ldots, s_{k-1}, s_k = n \) be an addition chain producing \(n \) with the corresponding sequence of partition

\[
2 = 1 + 1, \ldots, s_{k-1} = a_{k-1} + r_{k-1}, s_k = a_k + r_k = n.
\]

Then, we call the sub-sequence \((s_{j,m}) \) for \(1 \leq j \leq k \) and \(1 \leq m \leq t \leq k \) a **sub-addition** chain of the addition chain producing \(n \). We say it is **complete** sub-addition chain of the addition chain producing \(n \) if it contains exactly the first \(t \) terms of the addition chain. Otherwise we say it is an **incomplete** sub-addition chain.

2.1. Addition chains of numbers of special forms and Main result.

In this section, we prove an explicit upper bound for the length of the shortest addition chain producing \(2^n - 1 \). We begin with the following important but fundamental result.

Lemma 2.3. Let \(\iota(n) \) denote the length of the shortest addition chain producing \(n \). Then we have the inequality

\[
\left\lfloor \frac{\log n}{\log 2} \right\rfloor \leq \iota(n).
\]

Proof. The proof of this Lemma can be found in [1].

Lemma 2.4. Let \(\iota(n) \) denote the length of the shortest addition chain producing \(n \). If \(a, b \in \mathbb{N} \) then

\[
\iota(ab) \leq \iota(a) + \iota(b).
\]

Proof: The proof of this Lemma can be found in [1].

Theorem 2.5. The inequality

\[
\iota(2^n - 1) \leq n - 1 + \iota(n)
\]

holds for all \(n \in \mathbb{N} \) with \(n \geq 2 \), where \(\iota(\cdot) \) denotes the length of the shortest addition chain producing \(\cdot \).

Proof. We note that

\[
\iota(2^n - 1) = n - 1 + \iota(n)
\]

for all \(n \leq 64 \), according to a known computational record of Neill Clift [2]. Thus, it suffices to prove the stated inequality for all exponents \(n > 64 \). Thanks in part to the computer assisted verification of Neill Clift, as the followup arguments naturally tend out to be efficient only for all exponents \(> 64 \). First, we consider the number \(2^n - 1 \) and obtain the decomposition

\[
2^n - 1 = (2^{\frac{n-1-(-1)^n}{2}} + 1)(2^{\frac{n-1-(-1)^n}{2}} - 1)(2^{\frac{n-1-(-1)^n}{2}} + 1) + \frac{(1 - (-1)^n)}{2}(2^{\frac{n-1-(-1)^n}{2}}).
\]

It is easy to see that we can recover the general factorization of \(2^n - 1 \) from this identity according to the parity of the exponent \(n \). In particular, if \(n \equiv 0 \) (mod 2), then we have

\[
2^n - 1 = (2^{\frac{n}{2}} + 1)(2^{\frac{n}{2}} - 1)
\]
and

\[2^n - 1 = (2^{\frac{n-1}{2}} - 1)(2^{\frac{n-1}{2}} + 1) + 2^{n-1} \]

if \(n \equiv 1 \pmod{2} \). By combining both cases, we obtain the inequality

\[\lambda(2^n - 1) \leq \lambda((2^{\frac{n-(1-(-1)^n)}{2}} - 1)(2^{\frac{n-(1-(-1)^n)}{2}} + 1) + 2 \]

obtained by constructing an addition chain producing \(2^n - 1 \), adding \(2^{n-1} - 1 \), adding 1 and adjoining the result in the case \(n \equiv 1 \pmod{2} \). Applying Lemma 2.4, we obtain further the inequality

\[\lambda(2^n - 1) \leq \lambda(2^{\frac{n-(1-(-1)^n)}{2}} - 1) + \lambda(2^{\frac{n-(1-(-1)^n)}{2}} + 1) + 2 \]

(2.1)

Again let us set \(\frac{n-(1-(-1)^n)}{2} = k \) in (2.1), then we obtain the general decomposition

\[2^k - 1 = (2^{\frac{k-(1-(-1)^k)}{2}} - 1)(2^{\frac{k-(1-(-1)^k)}{2}} + 1) + \frac{(1-(-1)^k)}{2} (2^{k-(1-(-1)^k)} \frac{1}{2}). \]

It is easy to see that we can recover the general factorization of \(2^k - 1 \) from this identity according to the parity of the exponent \(k \). In particular, if \(k \equiv 0 \pmod{2} \), then we have

\[2^k - 1 = (2^{\frac{k}{2}} - 1)(2^{\frac{k}{2}} + 1) \]

and

\[2^k - 1 = (2^{\frac{k-1}{2}} - 1)(2^{\frac{k-1}{2}} + 1) + 2^{k-1} \]

if \(k \equiv 1 \pmod{2} \). By combining both cases, we obtain the inequality

\[\lambda(2^k - 1) \leq \lambda((2^{\frac{k-(1-(-1)^k)}{2}} - 1)(2^{\frac{k-(1-(-1)^k)}{2}} + 1) + 2 \]

obtained by constructing an addition chain producing \(2^{k-1} - 1 \), adding \(2^{k-1} - 1 \), adding 1 and adjoining the result in the case \(k \equiv 1 \pmod{2} \). Applying Lemma 2.4, we obtain further the inequality

\[\lambda(2^k - 1) \leq \lambda(2^{\frac{k-(1-(-1)^k)}{2}} - 1) + \lambda(2^{\frac{k-(1-(-1)^k)}{2}} + 1) + 2 \]

(2.2)

so that by inserting (2.2) into (2.1), we obtain the inequality

\[\lambda(2^n - 1) \leq \lambda(2^{\frac{n-(1-(-1)^n)}{2}} - 1) + \lambda(2^{\frac{n-(1-(-1)^n)}{2}} + 1) + 2 \]

(2.3)

\[+ \lambda(2^{\frac{n-(1-(-1)^n)}{2}} + 1) + 2. \]

Next we iterate the factorization up to frequency \(s \) to obtain

\[\lambda(2^n - 1) \leq \lambda(2^{\frac{n-(1-(-1)^n)}{2}} + 1) + 2 + \lambda(2^{\frac{n-(1-(-1)^n)}{2}} - 1) + \lambda(2^{\frac{n-\xi(n,s)}{2}} - \xi(n,s) + 1) + 2 \]

(2.4)

where \(0 \leq \xi(n,s) \leq 1 \) for a fixed integer \(s \geq 2 \) to be chosen later. It follows from (2.4) the inequality

\[\lambda(2^n - 1) \leq \sum_{v=1}^{s} \frac{n}{2^v} + 3s - \theta(n,s) + \lambda(2^{\frac{n-\xi(n,s)}{2}} - \xi(n,s) - 1) \]

(2.5)

\[= n(1 - \frac{1}{2^{s-1}}) + 3s - \theta(n,s) + \lambda(2^{\frac{n-\xi(n,s)}{2}} - \xi(n,s) - 1) \]
for some $0 \leq \theta(n, s) := \sum_{j=1}^{s} \xi(n, j)$ and $s \geq 2$, a fixed integer to be chosen later. It is worth noting that

$$\theta(n, s) := \sum_{j=1}^{s} \xi(n, j) = 0$$

if $n = 2^r$ for some $r \in \mathbb{N}$, since $\xi(n, j) = 0$ for each $1 \leq j \leq s$ for all n which are powers of 2. It is also important to note that the $2s$ term is obtained by noting that there are at most s terms with odd exponents under the iteration process and each term with odd exponent contributes 2, and the other s term comes from summing 1 with frequency s finding the total length of the short addition chains producing numbers of the form $2^n + 1$. Now we set $\ell = \frac{n}{2} - \xi(n, s)$ and construct the addition chain producing 2^k as $1, 2, 2^2, \ldots, 2^{k-1}, 2^k$ with corresponding sequence of partition

$$2 = 1 + 1, 2 + 2 = 2^2, 2^2 + 2^2 = 2^3, \ldots, 2^{k-1} = 2^{k-2} + 2^{k-2}, 2^k = 2^{k-1} + 2^{k-1}$$

with $a_i = 2^{i-2} = r_i$ for $2 \leq i \leq k + 1$, where a_i and r_i denotes the determiner and the regulator of the i^{th} generator of the chain. Let us consider only the complete sub-addition chain

$$2 = 1 + 1, 2 + 2 = 2^2, 2^2 + 2^2 = 2^3, \ldots, 2^{k-1} = 2^{k-2} + 2^{k-2}.$$

Next we extend this complete sub-addition chain by adjoining the sequence

$$2^{k-1} + 2^{\lfloor \frac{k-1}{2} \rfloor}, 2^{k-1} + 2^{\lfloor \frac{k-1}{2} \rfloor} + 2^{\lfloor \frac{k-1}{2} \rfloor}, \ldots, 2^{k-1} + 2^{\lfloor \frac{k-1}{2} \rfloor} + 2^{\lfloor \frac{k-1}{2} \rfloor} + \cdots + 2 \cdot 1.$$

Since $\xi(n, s) = 0$ if $n = 2^r$ and $0 \leq \xi(n, s) \leq 1$ if $n \neq 2^r$, we note that the adjoined sequence contributes at most

$$\left\lfloor \frac{\log k}{\log 2} \right\rfloor = \left\lfloor \frac{\log (\frac{n}{2} - \xi(n, s))}{\log 2} \right\rfloor = \left\lfloor \frac{\log n - s \log 2}{\log 2} \right\rfloor = \left\lfloor \frac{\log n}{\log 2} \right\rfloor - s \leq \nu(n) - s$$

terms to the original complete sub-addition chain, where the upper bound follows by virtue of Lemma 2.3. Since the inequality holds

$$2^{k-1} + 2^{\lfloor \frac{k-1}{2} \rfloor} + 2^{\lfloor \frac{k-1}{2} \rfloor} + \cdots + 2 \cdot 1 < \sum_{i=1}^{k-1} 2^i$$

we insert terms into the sum

$$2^{k-1} + 2^{\lfloor \frac{k-1}{2} \rfloor} + 2^{\lfloor \frac{k-1}{2} \rfloor} + \cdots + 2 \cdot 1$$

so that we have

$$\sum_{i=1}^{k-1} 2^i = 2^k - 2.$$

Let us now analyze the cost of filling in the missing terms of the underlying sum. We note that we have to insert $2^{k-2} + 2^{k-3} + \cdots + 2^{\lfloor \frac{k-1}{2} \rfloor} + 1$ into (2.6) and this is comes at the cost of adjoining

$$k - 2 - \left\lfloor \frac{k-1}{2} \right\rfloor$$

terms to the term in (2.6). The last term of the adjoined sequence is given by

$$2^{k-1} + (2^{k-2} + 2^{k-3} + \cdots + 2^{\lfloor \frac{k-1}{2} \rfloor} + 1) + 2^{\lfloor \frac{k-1}{2} \rfloor} + 2^{\lfloor \frac{k-1}{2} \rfloor} + \cdots + 2 \cdot 1.$$

Again we have to insert \(2^\left\lfloor \frac{k-1}{2} \right\rfloor - 1 \) into (2.7) and this comes at the cost of adjoining
\[\left\lfloor \frac{k}{2^j} \right\rfloor - 1 \]
terms to the term in (2.7). The last term of the adjoined sequence is given by
\[2^{k-1} + (2^{k-2} + 2^{k-3} + \ldots + 2^{\left\lfloor \frac{k-1}{2} \right\rfloor + 1}) + 2^{\left\lfloor \frac{k-1}{2} \right\rfloor - 1} + (2^{\left\lfloor \frac{k-1}{2} \right\rfloor - 1} + \ldots + 2^{\left\lfloor \frac{k-1}{2} \right\rfloor + 1}) + 2^{\left\lfloor \frac{k-1}{2} \right\rfloor} + \ldots + 2^1. \]

By iterating the process, it follows that we have to insert into the immediately previous term by inserting into (2.8) and this comes at the cost of adjoining
\[\left\lfloor \frac{k}{2^j} \right\rfloor - 1 \]
terms to the term in (2.8) for \(j \leq \left\lfloor \frac{\log n}{\log 2} \right\rfloor - s \) since we are filling in at most \(\left\lfloor \frac{\log k}{\log 2} \right\rfloor \) blocks with \(k = \frac{n}{2^s} - \xi(n, s) \). It follows that the contribution of these new terms is at most
\[k - 1 - \left\lfloor \frac{k - 1}{2^s} \right\rfloor - 1 \]
obtained by adding the numbers in the chain
\[k - 1 - \left\lfloor \frac{k - 1}{2^s} \right\rfloor - 1 \]
\[\left\lfloor \frac{k - 1}{2} \right\rfloor - 1 \]
\[\left\lfloor \frac{k - 1}{2^2} \right\rfloor - 1 \]
\[\left\lfloor \frac{k - 1}{2^3} \right\rfloor - 1 \]
\[\left\lfloor \frac{k - 1}{2^4} \right\rfloor - 1 \]
\[\left\lfloor \frac{k - 1}{2^5} \right\rfloor - 1 \]
\[\left\lfloor \frac{k - 1}{2^{s+1}} \right\rfloor - 1. \]

By undertaking a quick book-keeping, it follows that the total number of terms in the constructed addition chain producing \(2^k - 1 \) with \(k = \frac{n}{2^s} - \xi(n, s) \) is
\[\delta(2^k - 1) \leq k - 1 + \left\lfloor \frac{k - 1}{2^{\left\lfloor \frac{k}{2^s} \right\rfloor + 1}} \right\rfloor - \left\lfloor \frac{\log k}{\log 2} \right\rfloor + \iota(n) - s \]
\[\leq \frac{n}{2^{s-1}} - 1 + \left\lfloor \frac{n}{2^{s-1}} - \xi(n, s) - 1 \right\rfloor - \left\lfloor \frac{\log n}{\log 2} \right\rfloor + s + \iota(n) - s \]
\[= \frac{n}{2^{s-1}} - 1 + \left\lfloor \frac{n}{2^{s-1}} - \xi(n, s) - 1 \right\rfloor - \left\lfloor \frac{\log n}{\log 2} \right\rfloor + \iota(n). \]

(2.10)
By plugging the inequality (2.10) into the inequalities in (2.5) and noting that \(\iota(\cdot) \leq \delta(\cdot) \), we obtain the inequality

\[
\iota(2^n - 1) \leq \sum_{v=1}^{s} \frac{n}{2^v} + 3s - \theta(n, s) + \iota(2^{\frac{n}{2^s}} - \xi(n,s) - 1)
\]

\[
= n - 1 + 3s - \left\lfloor \frac{\log n}{\log 2} \right\rfloor - \theta(n, s) - \left\lfloor \frac{n}{2} - \frac{\xi(n,s) - 1}{2^{\frac{\log n}{\log 2} + 1-s}} \right\rfloor + \iota(n).
\]

By taking \(s \geq 2 \) to be the greatest integer such that \(2^{3s} \leq n \), then \(3s \leq \left\lfloor \frac{\log n}{\log 2} \right\rfloor \) with

\[
\left\lfloor \frac{n}{2} - \frac{\xi(n,s) - 1}{2^{\frac{\log n}{\log 2} + 1-s}} \right\rfloor = 0
\]

and we obtained further the inequality

\[
\iota(2^n - 1) \leq n - 1 - \theta(n, s) + \iota(n) \leq n - 1 + \iota(n)
\]

since \(0 \leq \theta(n, s) \) for \(n > 64 \) and the claimed inequality follows as a consequence. \(\square \)

It follows trivially by virtue of our construction and the computational verification of Neill Clift [2] for all numbers of the form \(m = 2^n \), we have

\[
l(2^m - 1) \leq m - 1 + l(m)
\]

since \(\theta(m, s) = 0 \) for all numbers of this form. The current argument may be viewed as uniquely complicated as opposed to other arguments on this topic. However, the central idea should not be far fetched and could be adapted to study similar problems on addition chain minimization.

3. **Data availability statement**

The manuscript has no associated data.

4. **Conflict of interest**

The author has no conflict of interest.

1.

References