Raising a question regarding an alternative explanation for the dark
matter effect after developing an intuitive model for general relativity

Abstract Barbara Spangenberg
To explain general relativity to the public, often the rubber blanket model is used. However, it can be
criticized for again needing gravity and using an additional dimension. Here, employing a mesh-grid
of triangles, we develop a model that explains gravity only with the curvature of space inside the
twodimensional plane and works without the need for an additional dimension. Based on this model,
we review the derivation of Newton’s law at the different magnitude scales within our universe while
emphasizing the assumption of a flat background space. Finally, we raise the question whether a
completely different gravitational law than Newton’s could hold for galaxies, which could be derived
from Einstein’s field equations while abandoning the assumption of flat background space at this
magnitude scale. Consequences would be to explain the dark matter effect by operating gravity, to
explain the dark energy effect by a net gravitational blueshift of light in the expanding universe and a
slightly changed perceiving of the starry sky.

The rubber blanket model

Since we were taking the first steps with general relativity, the rubber blanket model has been
applied to explain the curvature of space to the public (figure 1). With the rubber blanket model, one
understands intuitively two important aspects of general relativity. First, masses curve the space, and
the extent of curvature is related to the amount of mass, i.e. more massive objects lead to more
curvature than less massive objects. Second, the trajectories of objects is deviated by the curvature
of the underlying space.

However, the rubber blanket model has some imperfections for that it can be criticized because they
are misleading. The main criticisms are that is again needs gravity to work and that it uses an
additional dimension. The masses only dent the rubber blanket because they are pulled down,
presumably due to gravitation (figure 2 A). Furthermore, the movement of the objects only takes
place because the objects are pulled down along curved rubber blanket — likewise presumably due to
gravitation. Therefore, the rubber blanket model does not explain gravitation fully by curvature. It
still needs the gravitation to function. One idea to overcome this criticism is to use a toy car instead
of a marble (figure 2 B). Still not illustratin why the central mass curves space without gravity, this
model at least shows that the toy car follows the curvature of the spacetime - also in case the
curvature is the opposite way round (figure 3 A). Therefore, it explains the deviation of the trajectory
of the car fully by curvature. Why does the toy car move that way? If it went straight, the path close
to the central mass, which the left side of the car takes (figure 3 B, green), would be a little bit longer
than the path further away from the central mass (figure 3 B, yellow). Only with the deviated
trajectory, both paths of the right and the left side of the car are equally long (figure 3 C). And as the
internal forces of the toy car keep it rigid and resist the different forces at both sides, a torsional
moment is the result and the trajectory of the car is deviated.

For symmetry reasons it‘s appropriate that the rubber blanket model simplifies the threedimensional
space into a twodimensional plane. However, it curves into an additional dimension, while general
relativity does not need any additional dimension. It does not help to look at the rubber blanket
model from above because the projection of the paraboloid function to the plane would not show



any distorted squares. The squares of the rubber blanket model from the perspective of below or
above are flat and undistorted (figure 4).

A 2-dimesional model of general relativity

To find a model for general relativity which does not need an additional dimension and works in the
twodimensional plane, we take a look into the mathematics. The Schwarzschild metric describes the
curvature of spacetime mathematically. This is what is underlying the rubber blanket model, it is the
paraboloid which is described by the spatial term of the Schwarzschild solution:

ds? = — (1 - 2) dt? + — dr? + r2do (1)
r
The coefficient of the space-part of the metric is always bigger than 1 and approximates 1 in the
infinity (figure 5 A). That means that near the central mass there is more space than further away
from the central mass. If this coefficient were constantly 1 the space would be flat. The coefficient
therefore can be interpreted as the density of space. A graphic visualisation is a mesh-grid of
triangles (figure 5 B, C). It's easy to change the density of the triangles by adding them or taking them
away. With squares that doesn‘t work. If there are more triangles as in the centre, the triangles have
to become smaller to fit into the image. The curvature of space, however, is visualized through the
fact that the triangles actually all have the same area. By looking at this model, one understands
intuitively that the curved is spaced and how the curvature of space is realized in nature: That there
is more space “pressed” into the plane through curvature. That is a better visualization for the
curvature of space than the rubber blanket model as it doesn’t use any additional dimension and
educates the contemplator that the curvature takes place within the dimension it is happening. That
is what the Schwarzschild solution actually describes: that more length is put into the centre than
would be expected from the outside, if an outside observer would visually interpolate from his own
viewpoint. In the inside, there is more space than without curvature, the coefficient of the spatial
part of the metric is bigger than 1. Using the mesh grid as a 2D-model for curvature of space, the
trajectories of the objects are diverted in direction of ,more space” — similar to a car with differently
big wheels will be diverted in direction to the smaller, more compact, wheel (figure 6).

The coefficient of the space-part and the coefficient of the time-part of the metric are reciprocals
(that is true in every spherical symmetric spacetime out of the masses). That means that the time
runs slower where there is more space. The action on our car is the same again: The car will be
diverted in direction of a slower moving wheel, in direction to the centre of mass. Finally, the model
is a relatively simple one: the mesh-grid of triangles that shows that in the centre there is more
space. That only visualizes that the coefficient of the space-part of the Schwarzschild-solution is with
mass bigger than one and the larger the mass the larger the curvature. Additionally, one has to
memorize that the time is running slower where there is more space. And that objects are moving in
direction to more compact space and slower time.

More space with more mass

With the model in figure 6, a new interpretation of general relativity becomes obvious: As there is
more space with more mass, mass is surrounded by space like its own field. That is the reason why
mass curves space, like an electron curves the electric field of a capacitor: because it adds its own
field to the pre-existing one. That follows directly from the fact that the curvature of space takes not
place in an extra-dimension.



Flat background space and Newton’s law

Until now, most of the models make the assumption of flat background space. This flat background
space is only slightly curved by the effects of general relativity. That is visible with the rubber blanket
model (figure 1): It's a flat rubber blanket, slightly dented by the masses. It‘s also visible in the
equations (eq. 1, figure 5 A): The coefficient of the space-part of the Schwarzschild metric is
approaching 1 in the infinity. That shows that the Schwarzschild metric assumes that the background
space is flat. From the Schwarzschild metric, Newton's law can be derived, which is well-confirmed
within the solar system.

Deviations from Newton’s law

Deviations from Newton’s law within the solar system appear only near the central mass (precession
of the perihelion of mercury). At larger scales, however, there is again a deviation from Newton's
law: We measure higher velocities than expected, for example in the rotation curves of the galaxies.
To save Newton's law for galaxies, around 1960, dark matter was postulated that couldn‘t have been
found until today. All systems where Newtons law could be confirmed are located in the sphere of
influence of a much more compact and far away system: The centre of our milky way. It is that
compact and that far away that we do not measure differences in space-time curvature from it
within our solar system (no tidal forces). The background space therefore is flat within our moving
solar system (figure 7).

Large scales, question for another gravitational law and consequences

At very large scales the universe is quite homogeneous (figure 8 A). The single galaxies do not move
within the sphere of influence of other more massive and more compact sources of gravity. From
that viewpoint and with the insight in mind that mass adds space like its own field, | want to raise the
qguestion whether it could be possible that a totally different gravitational law than Newton’s applies
for galaxies, which may be derived from Einstein’s field equations without the assumption of a flat
background space (figure 8 B).

The dark matter effect would be explainable without postulating unknown particles. The empty
space between the galaxies would be thinner space with faster-running time. Light would undergo a
net gravitational blueshift while running through those regions of thin space as the space as a whole
is expanding. That possibly could explain the dark energy effect.

No consequences for climate change. That's a problem we have to deal with on earth. Fast.



FIGURES

Figure 1. The rubber blanket model is used to explain the curvature of space to the public. It is used
to explain that A) masses curve the space and that B) the movement of masses follows the curvature
of space. (Bildquellen: Uni Hamburg, Helmut Linde)
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Figure 2. A) The masses only dent the rubber blanket and follow the curvature of space with their
trajectories because they are pulled down, presumably due to gravitation. B) one idea to overcome
this criticism is to use a toy car instead of a marble as moving object. (Bildquellen: Helmut Linde)
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Figure 3. A) The toy car also follows the curvature if the curvature is the opposite and the marble
would roll down. B) If it went straight, the path close to the central mass, which the left side of the
car takes (green), would be a little bit longer than the path further away from the central mass
(yellow). €) Only with the deviated trajectory, both paths of the right and the left side of the car are
equally long. (Bildquellen A + B: Helmut Linde)
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Figure 4. A) The rubber blanket model curves the space into an additional dimension, while general
relativity does not need any additional dimension. B) Looking at the paraboloid (the mathematical
object behind the rubber blanket model) from the perspective above or below does not help: C) The
projection of the function onto the flat plane is only the flat space and doesn‘t show any distortion.
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Figure 5. A) The coefficient of the spatial part of the Schwarzschild metric. It is always bigger than
one and approaching 1 in the infinity. B) A graphic visualisation of the curvature of space in the two-
dimensional plane is this mesh-grid of triangles. It‘s easy to change the density of the triangles by
adding them or taking them away to create Schwarzschild-like curved space or C) flat space. All
triangles, especially all those in B) actually have the same area: That way they are visualising the
changing density of space and the curvature of space within the plane.
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Figure 6. Using the mesh grid as a 2D-model for curvature of space, the trajectories of the objects are
diverted in direction of “more space” — similar to a car with differently big wheels will be diverted in
direction to the smaller (more compact) wheel.

Figure 7. All systems where Newtons law could be confirmed are located in the sphere of influence
of a much more compact and far away system: The centre of our milky way. It is that compact and
that far away that we do not measure differences in space-time curvature from it within our solar
system (no tidal forces). The background space therefore is indeed flat in the detection limit within
our moving solar system.
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Figure 8. A) Matter distribution in a cubic section of the universe. The blue fiber structures represent
the matter and the empty regions in between represent the cosmic voids. (source:
https://en.wikipedia.org/wiki/Void (astronomy)) B) | want to raise the question, whether a totally
different gravitational law than Newton’s could apply for galaxies, which may be derived from
Einstein’s field equations by abandoning the assumption of a flat background space.
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