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Abstract

We study the question that does classical electromagnetic field have in-
trinsic angular momentum, and we find a surprising result that it is not
possible to answer this question. We also go through how the quantity
ϵ0E×A can be used as the intrinsic angular momentum density of classical
electromagnetic field.

We study a system that has been defined with a Lagrangian

L(A, ∂tA, x, ẋ) =

∫
R3

(
− 1

4µ0

(
∂µAν(x)− ∂νAµ(x)

)(
∂µAν(x)− ∂νAµ(x)

)

− Aµ(x)
K∑
k=1

ρµk(x)
)
d3x −

K∑
k=1

mkc
2

√
1− ∥ẋk∥2

c2

=

∫
R3

1

2µ0

(∥∥∥1
c
∂tA(x) + ∇xA

0(x)
∥∥∥2 −

∥∥∇x ×A(x)
∥∥2)d3x

−
K∑
k=1

qk
(
cA0(xk)−A(xk) · ẋk

)
−

K∑
k=1

mkc
2

√
1− ∥ẋk∥2

c2
,

where µ0 ≈ 4π · 10−7kg · m/C2 is the vacuum magnetic permeability, c =
299792458m/s is the speed of light, Aµ : R3 → R and ∂tA

µ : R3 → R are
fields for all µ ∈ {0, 1, 2, 3}, x, ẋ ∈ R3K are coordinates, andK ∈ {1, 2, 3, . . .}
is some constant that describes the number of particles. We use the notation
A = (A1, A2, A3). The coordinates of the vector x are arranged so that it
is x = (x1,x2, . . . ,xK), and then for all k ∈ {1, 2, . . .K} there is a relation
xk ∈ R3, and xk = (x1k, x

2
k, x

3
k), where xik ∈ R for all i ∈ {1, 2, 3}. The

vector ẋ is arranged similarly. This means that we have K particles in 3
dimensions. The particles have masses m1,m2, . . . ,mK ∈ R. The quantity
ρµk is a current density associated to a particle k. We have substituted

ρµk(x) = qkδ(x− xk)(c, ẋk),
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which means that we assume the particles to be point-like. Here qk ∈ R is the
charge of the particle k. This model has some mathematical inconsistencies
that are related to the paradoxes of classical point-like particles, but we can
use this model anyway. If one does calculations with this model formally,
one gets similar results as one would have gotten with more elaborate models
that avoid the paradoxes.

The functional and partial derivatives of this Lagrangian are

δL

δA0(x)
= − 1

µ0
∇x ·

(1
c
∂tA(x) + ∇xA

0(x)
)

−
K∑
k=1

qkcδ(x− xk),

δL

δAi(x)
= − 1

µ0

(
∂i
(
∇x ·A(x)

)
+ ∇2

xAi(x)
)
+

K∑
k=1

qkẋ
i
kδ(x− xk)

for i ∈ {1, 2, 3},
δL

δ(∂tA0(x))
= 0,

δL

δ(∂tAi(x))
=

1

µ0c

(
− 1

c
∂tAi(x) + ∂iA

0(x)
)
,

∂L

∂xik
= qk

(
− c∂iA

0(xk) + ∂iA(xk) · ẋk

)
and

∂L

∂ẋik
= −qkAi(xk) +

mkẋ
i
k√

1− ∥ẋk∥2
c2

.

The Euler-Lagrange equations of this system are

Dt
δL(A(t, •), ∂tA(t, •), x(t), ẋ(t))

δ(∂tA0(x))
=

δL(A(t, •), ∂tA(t, •), x(t), ẋ(t))
δA0(x)

⇐⇒ 0 = − 1

µ0
∇x ·

(1
c
∂tA(t,x) + ∇xA

0(t,x)
)

−
K∑
k=1

qkcδ(x− xk(t)),

Dt
δL(A(t, •), ∂tA(t, •), x(t), ẋ(t))

δ(∂tAi(x))
=

δL(A(t, •), ∂tA(t, •), x(t), ẋ(t))
δAi(x)

⇐⇒ 1

µ0c
∂t

(
− 1

c
∂tAi(t,x) + ∂iA

0(t,x)
)

= − 1

µ0

(
∂i
(
∇x ·A(t,x)

)
+ ∇2

xAi(t,x)
)

+

K∑
k=1

qkẋ
i
k(t)δ(x− xk(t))
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and

Dt
∂L(A(t, •), ∂tA(t, •), x(t), ẋ(t))

∂ẋik
=

∂L(A(t, •), ∂tA(t, •), x(t), ẋ(t))
∂xik

⇐⇒ −qk
(
∂tAi(t,xk(t)) + ẋk(t) · ∇xAi(t,xk(t))

)
+ Dt

mkẋ
i
k(t)√

1− ∥ẋk(t)∥2
c2

= qk
(
− c∂iA

0(t,xk(t)) + ∂iA(t,xk(t)) · ẋk(t)
)
.

The Euler-Lagrange equations related to A can be rearranged into a form

− ∂t
(
∂tA(t,x) + c∇xA

0(t,x)
)

= c2∇x ×
(
∇x ×A(t,x)

)
−

K∑
k=1

µ0c
2qkẋk(t)δ(x− xk(t)).

The Euler-Lagrange equations related to xk can be rearranged into a form

Dt
mkẋk(t)√
1− ∥ẋk(t)∥2

c2

= qk

(
− ∂tA(t,xk(t))− c∇xA

0(t,xk(t)) + ẋk(t)×
(
∇x ×A(t,xk(t))

))
.

The vacuum permittivity is related to the vacuum permeability and the
speed of light according to the formula ϵ0 =

1
µ0c2

. In this model the electric
and magnetic fields can be considered to have been defined with formulas

E(t,x) = −∂tA(t,x) − c∇xA
0(t,x) and

B(t,x) = ∇x ×A(t,x).

Using these quantities the Euler-Lagrange equations related to A0 and A
can be written as

∇x ·E(t,x) =
1

ϵ0

K∑
k=1

qkδ(x− xk(t)) and

∂tE(t,x) =
1

ϵ0µ0
∇x ×B(t,x) − 1

ϵ0

K∑
k=1

qkẋk(t)δ(x− xk(t)),

that are two of the Maxwell’s equations. The other two Maxwell’s equations
that are

∇x ·B(t,x) = 0 and ∂tB(t,x) = −∇x ×E(t,x)

are true even without the Euler-Lagrange equations. If we denote

Fk(t) = Dt
mkẋk(t)√
1− ∥ẋk(t)∥2

c2

,
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the Euler-Lagrange equations related to xk can be written as

Fk(t) = qk
(
E(t,xk(t)) + ẋk(t)×B(t,xk(t))

)
that is the Lorentz force formula.

We see that our Lagrangian appears to be interesting, because it implies
the basics of electromagnetism with point-like particles. The major problem
with this model is that in the Lorentz force formula we assume that the fields
would be well defined at locations (t,xk(t)), but eventually this assumption
turns out to be false, which maybe means that this is all nonsense. We can
try to study these formulas anyway.

The energy of this system is∫
R3

δL

δ(∂tAµ(x))
∂tA

µ(x)d3x +
K∑
k=1

∂L

∂ẋik
ẋik − L

=

∫
R3

(ϵ0
2
∥E(x)∥2 +

1

2µ0
∥B(x)∥2 +

1

µ0c
E(x) · ∇xA

0(x)
)
d3x

+
K∑
k=1

(
qkcA

0(xk) +
mkc

2√
1− ∥ẋk∥2

c2

)
.

It turns out that this formula can be simplified. If we apply integration
by parts to the term 1

µ0c
E(x) · ∇xA

0(x), and then use one of the Euler-
Lagrange equations of this system, this term cancels out, and we are left
with an energy formula

1

2

∫
R3

(
ϵ0∥E(x)∥2 +

1

µ0
∥B(x)∥2

)
d3x +

K∑
k=1

mkc
2√

1− ∥ẋk∥2
c2

.

At this point we face some difficulties in deciding that which formulas would
best describe the energy of this system. If somebody asks that what is the
system’s energy E(t), it looks like that we can reasonably start by answering
that the energy is

E(t) =

∫
R3

E(t,x)d3x +
K∑
k=1

Ek(t),

where E(t,x) is the energy density of the field, and where E1(t), E2(t), . . . ,
EK(t) are the energies of the particles. However, there are two different
options to what the energy density and the energies of the particles can be.
The first option is that we define the energy density to be

Ea(t,x) =
1

2

(
ϵ0
∥∥E(t,x)

∥∥2 +
1

µ0

∥∥B(t,x)
∥∥2) +

1

µ0c
E(t,x) · ∇xA

0(t,x),
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and the particle energies to be

Ea,k(t) = qkcA
0(t,xk(t)) +

mkc
2√

1− ∥ẋk(t)∥2
c2

.

The second option is that we define the energy density to be

Eb(t,x) =
1

2

(
ϵ0
∥∥E(t,x)

∥∥2 +
1

µ0

∥∥B(t,x)
∥∥2),

and the particle energies to be

Eb,k(t) =
mkc

2√
1− ∥ẋk(t)∥2

c2

.

When we have two options like this, you might be interested to know if
we could somehow decide which one of these options is the right one. It
turns out that making a such decision is extremely difficult. An obvious
observation is that the second option appears to use formulas that look
simpler, which could be a reason to favor them, but this doesn’t mean that
we should judge the first option as somehow incorrect. We should recognize
the fact that both of these options still use the same equations of motion,
which means that they produce the same predictions for empirical tests. It
will not be possible to device an experiment that would tell which one of the
options is the right one. One argument in favor of the second option is that
the energy density and the particle energies should not depend directly on
the vector potential Aµ, because it does not have a unique time evolution
due to the gauge issue. We can criticize this argument by noting that since
there does not exist an experimental setup that could be used to measure the
pointwise values of the energy density or the individual true particle energies,
then maybe there is nothing wrong with them directly depending on Aµ.
One argument in favor of the first option is that since its formulas came
directly from the generic expression for energy π · ẋ− L without any extra
modifications, it is simple in that sense. This reminds us of the problem with
Occam’s razor that different people can have different opinions about what
is simple and what is not. Another argument in favor of the first option
is that actually the second option doesn’t give correct energies to all states
(A, ∂tA, x, ẋ), but only to those states that satisfy the one Euler-Lagrange
equation, which makes that energy formula slightly suspicious. The used
Euler-Lagrange equation did not have a second order time derivative in it,
so it imposes a constraint on the vector (A, ∂tA, x, ẋ). We can criticize
this argument by noting that maybe the energies don’t matter for states
(A, ∂tA, x, ẋ) that don’t satisfy the Euler-Lagrange equation. Smart people
hopefully recognize that these are all philosophical arguments, and it is
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maybe impossible to determine which one them would be correct purely in
light of some mathematical facts. It is a little strange that we cannot even
know the true energies of the particles, but this is how it seems to be.

Obviously these two options should not be mixed. For example, if one
uses the energy density Eb(t,x) together with the particle energies Ea,k(t),
then one will get incorrect results.

Let’s have a look at the momentum of this system. In order to apply
Noether’s theorem, we must fix some vector u ∈ R3, and then define a
translation transformation Tα, where α ∈ R is some parameter, according
to formulas(

Tα(A
µ)
)
(x) = Aµ(x− αu) and Tαxk = xk + αu.

The derivative of the transformed vector potential with respect to α at the
location α = 0 is (

DαT0(A
µ)
)
(x) = −u · ∇xA

µ(x).

According to Noether’s theorem the momentum of the system in the direc-
tion u is the quantity∫

R3

(
DαT0(A)

)µ
(x)

δL

δ(∂tAµ(x))
d3x +

K∑
k=1

(DαT0x
i
k)

∂L

∂ẋik

= −uj
1

µ0c

∫
R3

(
∂jA

i(x)
)(

− 1

c
∂tAi(x) + ∂iA

0(x)
)
d3x

+
K∑
k=1

3∑
i=1

ui
(
− qkAi(xk) +

mkẋ
i
k√

1− ∥ẋk∥2
c2

)
.

We can remove u and conclude that the momentum vector is

P(t) = −ϵ0

∫
R3

(
∇xAi(t,x)

)
Ei(t,x)d3x

+
K∑
k=1

(
qkA(t,xk(t)) +

mkẋk(t)√
1− ∥ẋk(t)∥2

c2

)
.

Equation(
E(t,x)×B(t,x)

)j
= E(t,x) · ∂jA(t,x) − E(t,x) · ∇xA

j(t,x)

is true for all j ∈ {1, 2, 3}. This means that we can alternatively write the
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momentum as

P(t) = ϵ0

∫
R3

(
E(t,x)×B(t,x) + (E(t,x) · ∇x)A(t,x)

)
d3x

+
K∑
k=1

(
qkA(t,xk(t)) +

mkẋk(t)√
1− ∥ẋk(t)∥2

c2

)
.

We see that now we can simplify this similarly as the energy. If we apply
integration by parts to the term (E(t,x) · ∇x)A(t,x), and then use the one
Euler-Lagrange equation of this system, this term cancels out, and we are
left with a momentum formula

P(t) = ϵ0

∫
R3

E(t,x)×B(t,x)d3x +
K∑
k=1

mkẋk(t)√
1− ∥ẋk(t)∥2

c2

.

Now we face a similar problem as what we faced with the energy. If some-
body asks that what is the system’s momentum P(t), it looks like that we
can reasonably start by answering that the momentum is

P(t) =

∫
R3

P(t,x)d3x +
K∑
k=1

pk(t),

where P(t,x) is the momentum density of the field, and where p1(t),p2(t),
. . . ,pK(t) are the momenta of the particles. However, there are two different
options to what the momentum density and the momenta of the particles
can be. The first option is that we define the momentum density to be

Pa(t,x) = ϵ0E(t,x)×B(t,x) + ϵ0E(t,x) · ∇xA(t,x),

and the particle momenta to be

pa,k(t) = qkA(t,xk(t)) +
mkẋk(t)√
1− ∥ẋk(t)∥2

c2

.

The second option is that we define the momentum density to be

Pb(t,x) = ϵ0E(t,x)×B(t,x),

and the particle momenta to be

pb,k(t) =
mkẋk(t)√
1− ∥ẋk(t)∥2

c2

.
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We face the same philosophical arguments as with the energy. It is a little
strange that we cannot know the true momenta of the particles, but this is
how it seems to be.

Let’s have a look at the angular momentum of this system. In order to
apply Noether’s theorem, we must fix some vector u ∈ R3, and then define
a rotation transformation Rα according to formulas(

Rα(A
0)
)
(x) = A0(e−αu×x),(

Rα(A)
)
(x) = eαu×A(e−αu×x) and

Rαxk = eαu×xk.

The derivatives of the transformed vector potential with respect to α at the
location α = 0 are(

DαR0(A
0)
)
(x) = −u · (x×∇x)A

0(x) and(
DαR0(A)

)
(x) = u×A(x) −

(
u · (x×∇x)

)
A(x).

According to Noether’s theorem the angular momentum of the system in
the direction u is the quantity∫

R3

(
DαR0(A)

)µ
(x)

δL

δ(∂tAµ(x))
d3x +

K∑
k=1

(DαR0x
i
k)

∂L

∂ẋik

= u ·
(
ϵ0

∫
R3

(
E(x)×A(x) −

(
(x×∇x)Ai(x)

)
Ei(x)

)
d3x

+
K∑
k=1

xk ×
(
qkA(xk) +

mkẋk√
1− ∥ẋk∥2

c2

))
We can remove u and conclude that the angular momentum vector is

L(t) = ϵ0

∫
R3

(
E(t,x)×A(t,x) −

(
(x×∇x)Ai(t,x)

)
Ei(t,x)

)
d3x

+
K∑
k=1

xk(t)×
(
qkA(t,xk(t)) +

mkẋk(t)√
1− ∥ẋk(t)∥2

c2

)
.

Equation

−
(
(x×∇x)Ai(t,x)

)
Ei(t,x) = x×

(
E(t,x)×B(t,x)

)
+ x×

(
E(t,x) · ∇x

)
A(t,x)

is true. This is not obvious at a glance, but if one studies the right side
carefully, many terms cancel, and what remains is the same as that on the
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left side. This means that we can alternatively write the angular momentum
as

L(t) = ϵ0

∫
R3

(
E(t,x)×A(t,x)

+ x×
(
E(t,x)×B(t,x)

)
+ x×

(
E(t,x) · ∇x

)
A(t,x)

)
d3x

+
K∑
k=1

xk(t)×
(
qkA(t,xk(t)) +

mkẋk(t)√
1− ∥ẋk(t)∥2

c2

)
.

We see that now we can simplify this similarly as the energy and the momen-
tum. If we apply integration by parts to the term x× (E(t,x) · ∇x)A(t,x),
and then use the one Euler-Lagrange equation of this system, some can-
celling happens, and we are left with an angular momentum formula

L(t) = ϵ0

∫
R3

x×
(
E(t,x)×B(t,x)

)
d3x +

K∑
k=1

xk(t)×
mkẋk(t)√
1− ∥ẋk(t)∥2

c2

.

Now we face a similar problem as what we faced with the energy and the
momentum. If somebody asks that what is the system’s angular momentum
L(t), we can give two different answers. The first option is that we say that
the angular momentum is

L(t) =

∫
R3

(
S(t,x) + x×Pa(t,x)

)
d3x +

K∑
k=1

xk(t)× pa,k(t),

where
S(t,x) = ϵ0E(t,x)×A(t,x)

is the intrinsic angular momentum density of electromagnetic field, Pa(t,x)
is the momentum density of the field defined earlier above, and pa,k(t) are
the momenta of the particles defined earlier above.

The second option is that we say that the angular momentum is

L(t) =

∫
R3

x×Pb(t,x)d
3x +

K∑
k=1

xk(t)× pb,k(t),

where Pb(t,x) is the momentum density of the field defined earlier above,
and pb,k(t) are the momenta of the particles defined earlier above. In this
second option there is no intrinsic angular momentum density. The angular
momentum density x × Pb(t,x) is what is given by Jackson in Chapters
6.12 and 12.10 (3rd edition) [1].
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Figure 1: A simplified representation of the R. A. Beth’s experiment from 1936.
Circularly polarized light hits a solid object, and the solid object turns a little,
apparently revealing that the circularly polarized light carries intrinsic angular
momentum.

If we assume that our philosophy and logic has been valid above, we can
continue using the same philosophy and logic here, and conclude that we
cannot know which one of these two formulas for angular momentum would
be more correct than the other. We obtain a crazy result that we cannot
know whether the intrinsic angular momentum of classical electromagnetic
field exists or not.

Again, the found two options should not be mixed. For example, if
one uses the intrinsic angular momentum density S(t,x) together with the
momentum density Pb(t,x) and the particle momenta pb,k(t), then one will
get incorrect results.

The existence of the quantity ϵ0E×A is known among the mainstream
physics community, but there seems to be confusion about how it should be
interpreted. Many people seem to believe that this term would somehow be
related to quantum theory, but no clear justification for this belief can be
found. For example, in exercise 7.27 (3rd edition) Jackson [1] gives a vague
comment: “ The first term is sometimes identified with the “spin” of the
photon and the second with its “orbital” angular momentum. . . ”

Let’s take a look at how the angular momentum density S(t,x) seems
to work in a light of a simple example. Let’s define an electromagnetic field
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by formulas

E(t,x) = E0

 cos
(
k(ct− x3)

)
0
0


and

B(t,x) =
E0

c

 0
cos

(
k(ct− x3)

)
0

 ,

where E0 ∈ R and k ∈ R are some constants. These formulas describe a
linearly polarized plane wave that travels in the direction of z-axis. A natural
choice for a vector potential that generates this electromagnetic field is

A0(t,x) = 0 and A(t,x) =
E0

kc

 − sin
(
k(ct− x3)

)
0
0

 .

Now
S(t,x) = ϵ0E(t,x)×A(t,x) = 0

so according to our formula there is no intrinsic angular momentum present.
With this choice of A(t,x) also

(E(t,x) · ∇x)A(t,x) = 0

is true, which is nice. What happens if we instead define an electromagnetic
field by formulas

E(t,x) = E0

 cos
(
k(ct− x3)

)
sin

(
k(ct− x3)

)
0


and

B(t,x) =
E0

c

 − sin
(
k(ct− x3)

)
cos

(
k(ct− x3)

)
0

?

These formulas describe a circularly polarized plane wave that travels in the
direction of z-axis. A natural choice for a vector potential that generates
this electromagnetic field is

A0(t,x) = 0 and A(t,x) =
E0

kc

 − sin
(
k(ct− x3)

)
cos

(
k(ct− x3)

)
0

 .

Now

S(t,x) = ϵ0E(t,x)×A(t,x) =
ϵ0E

2
0

kc

 0
0
1

 ,
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so according to our formula there is a non-trivial intrinsic angular momen-
tum present. With this choice of A(t,x) also

(E(t,x) · ∇x)A(t,x) = 0

is true, which is nice. We see that the expression ϵ0E×A assigns intrinsic
angular momentum correctly to circularly polarized light and not to linearly
polarized light, which is in agreement with the Beth’s experimental result
[2]. It is unlikely that we got a result like this by pure chance, so there seems
to be some truth to the expression ϵ0E×A.

This example produces a paradox: If it is true that the two angular
momentum formulas, of which one has the intrinsic angular momentum
term, and the other one does not, are both equivalent, then how is it possible
that one of them seems to explain the Beth’s experimental result, and the
other one does not? The solution to this paradox is to notice that the
derivation of the angular momentum formula that doesn’t have the intrinsic
angular momentum term required integration by parts, and integration by
parts doesn’t work with plane waves. So even though we cannot tell whether
the intrinsic angular momentum exists in reality or not, we can tell that if
you want to use plane waves because you believe that they are a good tool to
approximate reality, then with those you should use the angular momentum
formula with the intrinsic angular momentum term.
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