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Abstract

We present the deep connections among (Anti) de Sitter geometry,
complex conformal gravity-Maxwell theory, and grand unification, from a
gauge theory of gravity based on the complex Clifford algebra Ci(4,C).
Some desirable results are found, like a plausible cancellation mechanism
of the cosmological constant involving an algebraic constraint between

ey, by, (the real and imaginary parts of the complex vierbein).
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1 Introduction

In recent years conformal gravity has been advanced as a candidate towards a
satisfactory quantum theory that is both renormalizable and unitary (despite
higher derivatives) due to a modification of the Hilbert space inner products;
i.e. unitarity is being obtained because the theory is a PT symmetric rather
than a Hermitian theory. For a recent discussion, details and references see
[2]. Weinberg’s Asymptotic Safety program for quantum Einstein gravity based
on the existence of an interacting (non-Gaussian) ultraviolet fixed point of the
nonperturbative renormalization group flow of the average quantum effective
action has also received a lot of attention in recent years [3].

Clifford algebras are essential tools in many aspects in Physics [1]. In this
letter we shall present the deep connections among (Anti) de Sitter geome-
try, complex conformal gravity-Maxwell theory, and grand unification, starting



from a gauge theory of gravity based on the complex Clifford algebra Ci(4,C).
The key role of Clifford algebras will be self-evident. We will show that the
complexified 4D Conformal Gravity-Maxwell theory turns out to be isomorphic
to a gauge theory of gravity based on the complex Clifford CL(4,C) algebra.
This is attained by simply extending the de Sitter algebra to the Clifford al-
gebra case. The Clifford algebraic version of the de Sitter algebra so(4,1) is
realized via the of Cl(4,1, R) algebra, and which in turn, leads to a complexifi-
cation of the Conformal Gravity-Maxwell theory in 4D due to the isomorphism
Cl(4,C) ~ Cl(4,1, R). Similar results follow in the Anti de Sitter case after
constructing a C1(3,2, R) gauge theory of gravity. Because C1(3,1, R) is a sub-
algebra of both Cl(4,1, R) and CI(3,2, R), after reduction of one spatial and
temporal dimension, respectively, one recovers 4D conformal gravity in both
cases. Despite that this reduction of one dimension mimics the holographic
principle we have not invoked holography in this work

Some desirable results are found, like a very plausible cancellation mech-
anism of the cosmological constant involving an algebraic constraint between
e, b, (the real and imaginary parts of the complex vierbein). We expect to find
other novel consequences emerging from the physics behind complex conformal
gravity-Maxwell theory and Clifford gauge theories of gravity.

2  Clifford Gauge Theories of Gravity

In this letter we shall generalize the Macdowell-Mansouri-Chamseddine-West
(MMCW) [5] formulation of ordinary 4D gravity, based on the de Sitter group
S0O(4,1), to the Clifford group associated to the real Ci(4,1, R) algebra. This
construction also applies to the Anti de Sitter group SO(3,2) and the real
Cl1(3,2, R) algebra. Given a Clifford algebra defined by the anticommutators
{79,4%} = 2191, with n? = diag(—1,+1,+1,---,+1), the 2P Clifford-algebra
generators in D-dimensions are given respectively by the wedge products (signed
antisymmetrized sums of products of gamma matrices)

1, 7% AT AR, e AT AN AP (2.1)

where 1 is the unit element of the algebra and the numerical combinatorial
factors due to the antisymmetrization of indices can be omitted by imposing
the ordering prescription a1 < as < asg--- < ap.

The evaluation of the commutators of the above Clifford-algebra generators
can be found in [6]. In general for pg = odd one has
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for pq = even one has
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The anti-commutators of the Clifford algebra generators can also be found in
[6], and one has the reciprocal situation as in eqs-(2.2,2.3), one has instead that
for pq = even
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And for pg = odd one has
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The aim to is to construct the Clifford-algebra generalization of MMCW
procedure to construct a gauge theory of gravity with a cosmological constant
by gauging the de Sitter group. The natural generalization of the de Sitter group
S0O(4,1) is the Clifford group based on the Ci(4,1) algebra. Consequently, let
us begin by writing the Cl(4, 1)-valued gauge field in 4D

Ay = ATy = AL+ Ay + AP Ym, + A0 my

m1m2imsamaq mi1m2mamaqmms —
A‘u‘ 7m1m2m3m4 + A# 7m1m27n3m4m5a m = 17 23 3) 4’ 5 (2'6)

In the next subsection we will split the field decomposition in the expansion in
eq-(2.6) in terms of the fields A, A", A771"™2 and their duals Au’ fl:f, /IL”””? as
a result of the duality property of the gamma matrices in odd dimensions D =
r+s = odd given by the relations Vi, my--m, ~ €mima-meoning-n.Y 2. The
proportionality factor is given by a phase factor that can be +1,+i depending
on the odd dimensions and the metric signature. As a result of this splitting
we shall show how the Clifford C1(4,1) gauge theory of gravity is equivalent to
a theory of complexified conformal gravity-Maxwell theory involving conformal
gravity-Maxwell theory and their purely imaginary dual fields; i.e. such theory is
tantamount to a Clifford gauge theory of gravity based on the complex Cl(4,C)
algebra.

For now, let us perform a 4 + 1 split of the indices in .ALV[FM in eq-(2.6) of
the form



with

A{L I'y = Aul + AL% + Aﬂiz’yiliz + Aﬁiﬂ&ﬁlizig+Afji2i3i4’yi1i2i3i4 (2.8)

whose indices span only four directions ¢ = 1,2, 3,4, and whereas the indices in
AE’F 75 span all of the five directions. In this way one can split the I'™’s into
generalized boosts/rotations and generalized translations. The latter transla-
tions have the following one-to-one correspondence with the following gamma
generators

P o ys, P vis, P < vigs, Pijr < Vijes, Pijrl < Yijris (2.9)

where P can be interpreted (from the four-dim point of view) as the scalar part
of the momentum polyvector P in 4D. P; is the vector part; P;; is the bi-vector
part; P;ji is the tri-vector part, and Pj;y; is the quad-vector part.

Hence, after naming {I'’} = J, and {I''®} = P as the sets of general-
ized boosts/rotations and translation generators, respectively, one obtains the
sought-after commutation relations of the form

3,3 ~ 3, [3,P] ~ P, [P, P] ~J (2.10)

after direct application of the commutators in eqs-(2.2,2.3). Therefore, the split
(2.7) has precisely the same algebraic form as the gauge fields in the de Sitter
gauge theory of gravity

A# = CUZLS Ji5 + waj Jij = pwff’ Pz -+ wff Jij = 6’; Pz + Wftj Jij (211)

which is given in terms of the vierbein efL =p wff’ and the spin connection wfﬁ
p is a length scale which can be identified with the de Sitter throat size. The
noncommutative translation generators are P;, and the Lorentz generators are
Jij, with 4,5 = 1,2,3,4. In the limit p — oo the P; will commute and one
recovers the Poincare algebra. Therefore, we have attained the desired goal of
extending the de Sitter algebra to the Clifford algebra case.

The next step is to construct a Clifford extension of a de Sitter gauge theory
of gravity (with a cosmological constant). In the conclusion we discuss how a
similar procedure follows in the Anti de Sitter case. From eqs-(2.2,2.3), one can
evaluate the commutators appearing in the definition of the Ci(4,1)-algebra-
valued two-form field strength F = dA + [A, A]. Thus, the Ci(4,1)-algebra-

valued field strength components are given respectively by

Fuw = 0 Ay, mv=12734 (2.12a)
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The indices’ range in the above equations is 1, 2, 3, 4, 5, and one has the following
definitions

(Aurst A0 — g5 ) of7 ptiliake ghatitsl (2.12f)

Nmima|nine = Tmaing MTmane = Nming Thmang (2.130,)
NMmimams|ninans — Mming Mmona Mmang + 0 (2.13b)
NMmimaomsmy|ningnang — Nming Nmang Mmans Mmang + - (2130)

and so forth. The expressions in eqs-(2.13) can be rewritten as the determinants
of a square N x N matrix whose entries are n,,n.;7,s = 1,2,3,---,N. The
mixed generalized Kronecker symbols 52111,21?,;;’]\7N can also be rewritten as the de-

terminants of a square N x N matrix whose entries are 6,;'";r,s =1,2,3,---, N.



The evaluation of the field strength components in eqs-(2.12) required taking
the scalar parts of the geometric product of the gammas, which is denoted by
the brackets. For example, < I'p;T'y > denotes the scalar part (those terms
multiplying the Clifford algebra unit element 1) of the geometric product of two
gamma matrices. It was required in order to perform the necessary contractions.
In particular one has

< Ym Yn 2 FNmns < VYmims Ynane > = Nming Mmons — Nmang Mmang

< Ymy Yma Ymsg > = 0, < TYmimams Yningns > = Nminy Mmons Mmany £ -
< Ymimomsmy Vninanzng > = Nming NMmang Thmans Nmgang + - (214)

and so forth.
The terms that one is familiar with are those appearing in eq-(2.12b)
DAY + (s AZ™ — o v) o) il 622 (2.15)
which have the same functional form as the de Sitter field strength. To see
this one just needs to recall that given the spin connection one-form w"1¥2
w,’jl’”dx“, and the exterior derivative d, the field strength two-form F¥*1%2
Fﬁ;kzdx“ A dx is defined as

Fhike — gk ki n ke e by ke =1,2,3,4,5 (2.16)

Upon performing the 4 + 1 split of the indices in eq-(2.16 ) one can isolate the
curvature from the torsion terms as follows

1
F® = dw® + WP Aw® + W AW = dw® + W Aw® +—2ea/\eb =
P
1
R® + < e*Ne” = R + Ae*Ae’, a,b,c=1,2,3,4 (2.17)
p

after identifying p~2 with the cosmological constant A, and R® with the curva-
ture two-form associated with the spin connection wzb. The torsion two-form is
given in terms of the mixed components involving the spin connection w® and

o
the vierbein e}, = psz, where p is the de Sitter throat size, as follows

1
F*® = dw™ + wiAw® = = (de® + wiAef) =
p

T = T, da* Ndz” = p F/ff dzt Ndz¥ = de® + wiAe” (2.18)

After constraining the torsion to zero which allows to express the spin con-
nection in terms of the vielbein w = w(e), the 4D MMCW Lagrangian (den-
sity) [5] is defined by F® A F¢? ¢,,.q which decomposes into a sum of the
4D Gauss-Bonnet topological invariant term R A R¢,p.q; the 4D Einstein-
Hilbert term p‘zR“b A €€ A ebegpeq, and the 4D cosmological constant term
p 4 A e Ae® A elegpeq.



One may notice that after one introduces a matrix representation of the
Clifford algebra generators, some of the I'j; matrices are Hermitian, and some
are anti-Hermitian, due to the chosen signature 74, = diag(—1,1,1,1,1). For
example, because (71)? = —1 the y; matrix is anti-Hermitian, while vz, 73,74, 75
are Hermitian. -, is anti-Hermitian when m,n = 2,3,4,5, and Hermitian
when m = 1 or n = 1; and so forth. Hence, if all of the gauge field components
Aﬂ/f are chosen to be real-valued, the matrix Aﬁ/f I'pr has a mixture of Hermitian
and anti-Hemitian pieces. The Clifford-valued field strength F,, = ]-',%F M
with F, % real, will also have a mixture of Hermitian and anti-Hermitian pieces.
There are two (real-valued) gauge-invariant Lagrangians (densities) which can
be constructed in 4D

Ly = FYFY, Lo = errrebn B P, v =1,2,3,4  (2.20)

where M is a Clifford-valued polyvector index spanning the 25-dimensional
Cl(4,1, R) algebra. These Lagrangians have the same functional form Tr(F A*
F), Tr(F A F) as in ordinary Yang-Mills theory.*

Complex Conformal Gravity-Maxwell Theory from
a Cl(4,C) Gauge Theory of Gravity

Let us focus now on the following terms
Ayl + AT v + A Ymim,, myma,me =1,2,3,4,5 (2.21)

in eq-(2.6). A 4+ 1 splitting of the indices above yields

Al 4+ Al + Ays + A%y + A%qes, a,b=1,2,3,4  (2.22)

As explained earlier, as a result of the dualization process of the gamma matrices
in odd dimensions, the remaining terms in eq-(2.6)

mimaom
‘AH e Ny mams T
mi1maoamszmaqg mi1ma2msamaqms _
"4“ ! 7m1m2m3m4 + AF’ °'Ym1m2m3m4m5a m = 17 27 3a 47 5
(2.23)
lead to an expansion expressed in terms of the dual fields as follows
1 im Amim
AL+ Ay, 4+ ATy my me = 1,2,3,4,5 (2.24a)
with
1 mimomsamams 1m1 mi maomsmams
AN ~ €m1m2m3m4m5 A/t ) 'A ~ €m2m3m4m5 Ap, )
Amimo mims msmams
AT e g AT (2.24b)

Due to eM1H2H31a = l3H4al1M2 | the Lagrangian Lo is not zero



The key phase factors appearing in the dualization process of the gamma ma-
trices are i due to the signature (—,+,+,+,—+), and can be reabsorbed into
the definition of the dual fields. Thus the dual fields are purely imaginary.?2 The
4 + 1 decomposition of eq-(2.24a) yields

Al + Ay + By + A%ya + AP, a,b=1,2,3,4  (2.25)

This dualization process is also consistent with the isomorphisms of the following
Clifford algebras

Cl(4,C) ~ M(4,C) ~ Cl(4,1,R) ~ C1(2,3, R) ~ Cl(0,5, R) (2.26a)

Cl(4,C) ~M(4,C) ~CI(3,1,R)®i CI(3,1,R), CI(3,1,R) ~ M(4,R)
(2.26b)
where M (4, R), M (4,C) is the 4 x 4 matrix algebra over the reals and complex
numbers, respectively.

Therefore, the Clifford gauge theory of gravity based on the real Ci(4,1, R)
algebra involving the real valued 16 gauge fields in eq-(2.22), and their 16 imag-
inary valued duals in eq-(2.25), can be accommodated into the 16 complex-
valued fields based on a complex Clifford Cl(4,C) algebra, and given by A, =
(Ay +iB,)"T 4, such that A/} = Azt and At =iB %

In this case, the 4D quadratic Yang-Mills-like Lagrangian is of the form
(F +iG)i, (F —iG)Y) (real-valued). A theta-like Lagrangian density is of the
form 77 (F + iG)% (F + iG)5% €apea + complex-conjugate (also real-valued
by construction). The Clifford extension of the latter Lagrangian density is
ervTe (F+iG)fV(F—|—iG)mA + complex-conjugate, where the internal indices are
raised and lower with 7®102 ar(bibzb
are provided by eqs-(2.13).

Caution must be taken in this latter case when dealing with bivector in-
dices because €77 (F +iG)1L* (F +iG) 5" €4y azazaq 7 €477 (F +1G)[L2 (F +
iG) 5% g, aslaza,- Lhis is analogous to the difference between the term Rj A R
and R A R%e,p.q in ordinary gravity.

Next we recall the relationship between a CI(3, 1, R)-valued gauge field the-
ory of gravity and conformal gravity [10]. By fixing some of the gauge sym-
metries and imposing some constraints one recovers ordinary gravity. We shall
begin by showing how the conformal algebra in four dimensions admits a Clifford
algebra realization; i.e. the generators of the conformal algebra can be expressed
in terms of the Clifford algebra basis generators. The conformal algebra in four
dimensions so(4,2) is isomorphic to su(2, 2).

Let ngp = (—, +, +, +) be the Minkowski spacetime (flat) metric in D = 341-
dimensions. The epsilon tensors are defined as ejo34 = —e'23* = 1. The real

" and 74, q5--a, by bo--b, WhOSE expressions

2This can be simply verified, for example, in the case of I'ypn = i €mnpgrI'P9" when
m = 1 is a temporal-like index, and the rest of the indices are spatial-like, because I'y,, is
Hermitian but I'P?" is anti-Hermitian, when n,p,q,r = 2,3,4,5. Without the i factor there
would be an inconsistency. Similar findings apply to the other combinations, for example,
anpqr =1 Emnpgqr 1

SPA =1, @, yab yabe yabed Jeading to 24 = 16 generators



Clifford CI(3,1, R) algebra associated with the tangent space of a 4D spacetime
M is defined by the anticommutators {T's, Ty} = 294 1,a,b = 1,2,3,4. Given
the chosen signature, the chirality operator I's is defined as

I's = -1 I 13Ty = (F5)2 = 1 {F57Fa} =0 (2270’)

The generators I' g5, Tape, Lapeq are defined as usual by a signed-permutation sum
of the anti-symmetrizated products of the gammas. As a result of the relations
in (2.27a) one finds

Fabc = ieabcd F5 Fda Fabcd = ieabcd F57 Fab = % €abed F5 FCd (227b)
We shall be using a representation of the C1(3,1) algebra where the generators
(4 x 4 matrices)

1; —ily; Ty Ty Tys Ts = —i Ty T Ty Ty Ty Thls; j=2,3,4 (2.28)

are Hermitian; while —i I'1I's; I'yI's; Ty for k,1 = 2,3,4 are anti-Hermitian.
Using eqs-(2.27a,2.27b) allows to re-write the CI(3,1) algebra-valued one-form
AﬁF adz* in the following way

- a o a 1 a
A = (au 1 4iby D5 + e To +i fi Ta Ts + Jwp l“ab) dat. (2.29)

after using the following definitions A, = a,; Aj, = ef; AZdeeabcd =b,;
Abedes = fo, and A%l = Jwob.

As stated earlier, the 4 x 4 matrices A, = 1,2,3,4, will have a mixture
of Hermitian and anti-Hermitian pieces. All of the gauge fields appearing in
(2.29) are real. The physical significance of the real-valued field components
Qs by €51 fﬁ,wzb in eq-(2.29) will be explained below.

The Clifford-valued gauge field A, transforms according to AL =U"1A,U+
U~'9,U under Clifford-valued gauge transformations. The Clifford-valued field
strength is F = dA + [A, A] so that F transforms covariantly F/ = U~! F U.

Decomposing the field strength in terms of the Clifford algebra generators gives

. a . ad 1 a
Fo = Ful +iF, Ts + Fi,Tq +i Fiy ToTs + ZFWL’ Tap.  (2.30)
the Clifford-algebra-valued 2-form field strength is F = % F,, dz* A dz¥ and
F. = 0.A, — 0,A, + [A,, A)] where 9,A, = %22 The field-strength
components are given by [9], [10]

Fu = 0ua, — 0yay (2.31a)

FP, = 0Ouby — Ouby +2€% fra — 2€5 fua (2.31b)

Fi, = Oue, — Ove, + wzbe,,b — wgbeub +2f5b, — 2170, (2.31¢)
F5 = 0ufs — 0ufi +wil fup — Wil fub + 2€5b, — 2eb, (2.31d)



Fﬁg = le‘fb + wiw,. biyq (eZei’, — f;fff) — . (2.31¢)

At this stage we may provide the relation among the CI(3,1) algebra gen-
erators and the the conformal algebra so(4,2) ~ su(2,2) in 4D. Due to the
key condition of the chirality matrix (I's)? = 1, a close inspection reveals that
the operators of the Conformal algebra can be written in terms of the Clifford
algebra generators as [7]

1 1 1 1
Pa - §Pa (1 - F5)7 Ka - g]-—‘a (]- + F5)7 D= - 5 F57 Lab - 5 Fab-
(2.32)

P, (a=1,2,3,4) are the translation generators; K, are the conformal boosts; D
is the dilation generator and L, are the Lorentz generators. The total number
of generators is respectively 44+4+1+6 = 15. From the above realization of the
conformal algebra generators (2.32), the explicit evaluation of the commutators
yields

[Paa D} = Pa; [Kaa D} = _Ka; [Pav Kb} = _277abD + 2 Lg

D, Lay) = 0, [Pa, P)) = 0; [Ko, K] = 0, a,b=1,2,3,4  (2.33)

which is consistent with the su(2,2) ~ so(4,2) commutation relations.*. The
dilation D operator is represented by a Hermitian matrix, while the Lorentz
generator L, is represented by an anti-Hermitian matrix when a,b = 2, 3,4,
and a Hermitian matrix when a or b is 1. The fact that Hermitian and anti-
Hermitian matrices are both required is consistent with the fact that U(2,2) =
SU(2,2) x U(1) is a pseudo-unitary group which can be obtained via the Weyl
“unitary trick” from the unitary group U(4) by the analog of the Wick rotation
procedure [8], [10].

Having established this one can infer that the (complex) tetrad V¢ field
(associated with translations) and its complex-conjugate partner Vj (associated
with conformal boosts) can be defined in terms of the gauge fields ey, [ as
follows

€Ty +i fiTls = VI P, + Vi K, (2.34)

From eqs-(2.29,2.32) one learns that eq-(2.34) leads to a complex-conjugate pair
of fields B
e, —ify =Vh e, tifi =V =

H 12
a 1 a [/a a 1 \/a a
eu = 5 (VU’ + V:U' ), fu = Z(VH’ - V/»" ) (235)

The components of the torsion and conformal-boost curvature of conformal
gravity are given respectively by the linear combinations of eqs-(2.31c, 2.31d)

4We should notice that the Ka, P, generators in (2.32) are both comprised of Hermitian
T';, and anti-Hermitian I';I'5 matrices, when ¢ = 2,3,4. Whereas, one has an anti-Hermitian
'y and a Hermitian I'1T's matrix. As a result, P,, K, are represented by 4 X 4 nilpotent
matrices P2 = K2 =0 (no sum over a)

10



: ab ) © a5 _
PR, —iFy, = Fi [P, Fi, +iF,, = Fi[K] =
F,Tq +i Fi2 Ty Ts = F3 [P P, + Ff[K] K,. (2.36)
When a = 1, the left-hand side of eq-(2.36) furnishes an overall anti-Hermitian
matrix; whereas, when a = 2, 3,4, it yields a Hermitian matrix. Therefore, the
same occurs for the right-hand side. Inserting the expressions for ej;, f in terms
of the vierbein Vi and V; given by (2.35), yields the standard expressions for
the torsion and conformal-boost curvature, respectively.
Fo[P) = 0y Vi + Wiy Vi — 20 Vi3, by, (2.37a)

v]
Fo K] = 0y, Vi + wit Vi +2i Vi by, (2.37b)

Once again, despite the complex-valued nature of the components F, [P]; Fi, [K],
the expression in the right hand side of eq-(2.36) must yield an overall anti-
Hermitian matrix when a = 1, and a Hermitian matrix when a = 2, 3,4, as
expected.

The Lorentz curvature in eq-(2.31e) can be recast in the standard form as

Fob =R = 0, 0l + witwhy, + 2VE VY + Ve Vh. (2370

vlc v V]

As expected, R4Y is real-valued since eq-(2.37c) is the same as eq-(2.31e) (real-
valued).

The components of the (real-valued) curvature corresponding to the Weyl
dilation generator given by F) l‘;’,j in eq-(2.31b) can be rewritten as

1 _ _
F,, = 0 b,y + % (Vi Vila = Vip Vi )- (2.37d)
The Maxwell U(1) curvature is given by F),, in eq-(2.31a). A re-scaling of the
vierbein V! /1 and Vlf /1 by a length scale parameter® [ is necessary in order to
endow the curvatures and torsion in eqs-(2.37) with the proper dimensions of
length=2, length™!, respectively.

Gauge invariant actions involving Yang-Mills terms of the form [ Tr(FA* F)
and theta terms of the form [7Tr(F AF) are straightforwardly constructed. For
example, a SO(4,2) gauge-invariant action for conformal gravity is [9]

S = / d*z €apea €77 Ry, RoE (2.38)

where the components of the Lorentz curvature 2-form Rz,bjd:v“ A dz" are pro-
vided by eq-(2.37c).

The conformal boost symmetry can be fixed by choosing the gauge b, = 0
because under infinitesimal conformal boosts transformations the field b,, trans-
forms as 0b, = —2 £% eqy = —2 &,,; i.e the parameter &, has the same number

5The length parameter [ is the same as the de Sitter throat size p
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of degrees of feedom as b,. After further fixing the dilational gauge symme-
try by setting Fl‘;’y = 0, it gives f; = 0, and then constraining the sum of
Fg,[P] + Fj,[K] = 0 to zero, it furnishes the spin connection as a function
of €] : wﬁb(eZ) and leading to the torsionless Levi-Civita connection. Finally,
the action (2.38) leads to the de Sitter group SO(4,1) invariant Macdowell-
Mansouri-Chamseddine-West (MMCW) action [5] (suppressing spacetime in-
dices for convenience) described earlier

Sarniow = / 'z (R*(w) —llz cTACh ) A (R (w) —llg e“net ) eapea. (2.39)
and leading to the Gauss-Bonnet topological invariant, Einstein-Hilbert and
cosmological constant terms.6

The familiar Einstein-Hilbert gravitational action can also be obtained from
a coupling of conformal gravity to a scalar field like it occurs in a Brans-Dicke-
Jordan theory of gravity. The kinetic term ¢(DEDy,)é in the action (after
integrating by parts) and based on the conformally covariant derivative operator
Dy, can be decomposed in the following form

1 nv c " c 1
OV 9" D) + V(D) + G R ).
(2.40a)
where the conformally covariant derivative acting on a scalar field ¢ of Weyl
weight one is

S:;/d4x\/§¢(

Dihp = 0.6 — by & (2.400)

Fixing the conformal boosts symmetry by setting b, = 0 and the dilational
symmetry by setting ¢ = constant leads to the Einstein-Hilbert action for
ordinary gravity.

Complexified Conformal Gravity

A natural complexification of a metric can be chosen to be g, = g(u) +
9], and is comprised of symmetric g(,,) and anti-symmetric matrices gj,,1,
obeying the Hermiticity condition gLV = g, [11], [13]. Introducing a complex
vierbein E} = e}, +if;;, a Hermitian complex metric can be defined as g, =
E&(E?)*nap, leading to the components

Gy = (eh e + [ ) nav; i g = —i (el f2 — fied) na  (2.41)

Chamseddine formulated gravity with a complex vierbein based on SL(2,C')
gauge invariance and proposed an action in terms of a four-form. The resulting

6Gravity involves invariance under diffeomorphisms (coordinate transformations) and
gravitons have spin 2, not 1. What occurs is that the torsion constraint Fj, = 0 allows
to convert a combination of translations, Lorentz and dilation transformations of the vierbein

ef, into general coordinate transformations of the vierbein, see [9] for further details
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theory was equivalent to bigravity. He extended the gauge group to GL(2,C),
constructed a star-product-deformed action and derived the Seiberg-Witten map
for the complex vierbein and gauge fields. His work [13] is very dif ferent than
the one presented here, mainly because the Cl(4,C) algebra is isomorphic to
M4,C) ~ gl(4,C), and not gl(2,C). For further details on complex, quater-
nionic, and octonionic valued gravity see [12] and references therein.

Another more direct route one can take is to begin directly with the com-
plexification of all the fields associated with a Cl(4,C) gauge theory of gravity.
To illustrate what the complexification of the Lagrangian (density) in eq-(2.39)
looks like, one simply introduces a complex-valued spin connection and vierbein
of the form wzb + ivﬁb, e, +1b},, and sets the complex-valued extension of f to
zero, leading to a complex-valued curvature two-form, whose real and imaginary
components are, respectively,

1
bt Au® — AR (2.42)

1
F? = dw™® + wiAw® + = e Ae B

l2

l% e A+ %2 bAaet  (2.43)
Constraining the torsion to zero leads to w® = w®(e?, b*), and v® = v (e, b%),
which is the generalization of the relation w® = w®(e?) in ordinary real-valued
gravity. Consequently, the curvature-squared terms will no longer yield the
Gauss-Bonnet topological invariant. Furthermore, the real part of the curvature
receives an extra contribution given by the last two terms in eq-(2.43). Since
the last term —l%b“ ALY appears with a minus sign, one might have a desirable
cancellation mechanism of the cosmological constant term l%e“ Neb, when e =
epdrt = b = +£bjdr*. While the imaginary part of the curvature (2.44)
involves the imaginary part va of the spin connection plus terms involving the
mixing of the real parts and imaginary parts of the spin connection and vierbein.

Given a complex-valued curvature of the form (F + iG)%, where F,G are
given by eqs-(2.42,2.43), a real-valued Yang-Mills-like Lagrangian is of the form
(F +iG) (F —iG)hy . A theta-like MMCW Lagrangian density was provided
earlier as e"’7? (F —|—z'G)le’,(F +1iG)% €4pea + complex-conjugate (real-valued by
construction). It is important to remark that if one wishes to obtain an over-
all cancellation of the cosmological constant in the latter action, it leads to an
algebraic constraint between ey, b, and whose solution is no longer given by
e, = £bj;. Another salient feature is, besides that one has additional contribu-
tions to the ordinary curvature, is a key coupling, “entanglement” among the
real and imaginary components of the spin connection and vierbein. Whether or
not this may play a role in understanding the nature of dark energy and Quan-
tum Gravity deserves further investigation. Finally, the modified gravitational
theory involving the complex metric must not be confused with bi-gravity since
the imaginary component gy, is antisymmetric.

G?® = dv® 4+ Wl AV? + V2 AW? +
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3 Conclusion

To sum up, we have shown how a C1(3, 1, R) gauge theory of gravity in 4D can be
recast as a 4D Conformal Gravity-Maxwell theory based on U(2,2) = SU(2, 2) x
U(1). By including the extra contribution of the (purely imaginary) dual fields
(2.25) it leads to a complexification of the Conformal Gravity-Maxwell the-
ory and based on the complex Cl(4,C) algebra. The complexification of the
U(2,2),5U(2,2) groups is U(2,2)®C = GL(4,C), and SU(2,2)®C = SL(4,C),
respectively, see [8] for more specific details. In general, the algebra gl(N, C) is
the complex extension of u(p, q) for all p, ¢ such that p+ g = N [8]. The cov-
ering of the general linear group GL(N, R) does not admit finite dimensional
spinorial representations but infinite dimensional. For a rigorous treatment of
these infinite-dim spinorial representations and the perturbative renormalization
property of metric affine theories of gravity based on the semidirect product of
GL(N, R) with the translations T we refer to [4].

Therefore, to conclude, the complexified 4D Conformal Gravity-Maxwell
theory turns out to be isomorphic to a gauge theory of gravity based on the
complex group GL(4,C). We also have attained the desired goal of extending
the de Sitter algebra to the Clifford algebra case. The Clifford algebraic version
of the de Sitter algebra so(4,1) is realized via the of Cl(4,1, R) algebra, and
which in turn, leads to a complexification of the Conformal Gravity-Maxwell
theory in 4D due to the isomorphism Ci(4,C) ~ Cl(4,1, R). This interplay be-
tween a gauge theory of gravity based on Cl(4,1, R), whose bivector-generators
encode the de Sitter algebra so(4,1), and conformal gravity based on C1(3,1, R)
is reminiscent of the AdSp41/CFTp correspondence between D+ 1-dim gravity
in the bulk and Conformal field theory in the D-dim boundary.

The Clifford algebraic version of the de Sitter algebra was depicted by the
commutators in eq-(2.10). After performing the dualization procedure of the
gamma matrices of Cl(4,1, R) it leads to a 4D complexified conformal gravity-
Maxwell theory. It is interesting that this procedure via the use of Clifford alge-
bras is the reversal to what occurs when one embeds the de Sitter algebra so(4, 1)
into the larger conformal algebra so(4,2). In this work the conformal symme-
try, encoded in the CI(3,1, R) algebra, is captured from the larger Cl(4, 1, R)
algebra which is the Clifford extension of the de Sitter algebra so(4,1).

Similar results follow in the Anti de Sitter case after constructing a C1(3,2, R)
gauge theory of gravity. Because Cl(3,1, R) is a sub-algebra of both Cl(4, 1, R)
and CI(3,2, R), after reduction of one spatial and temporal dimension, respec-
tively, one recovers 4D conformal gravity in both cases. Despite that this re-
duction of one dimension mimics the holographic principle we have not invoked
holography in this work.”

Related to the issue of grand-unification models with gravity we recall a
model based on Ci(5,C) = Cl(4,C)®Cl(4,C) [10]. The gauge theory involving

"No boundaries of the bulk spacetime have been invoked. From the isomorphism displayed
in eg-(2.26a) one learns that the bivectors of CI(2, 3, R) generate the so(2,3) algebra which is
not the same as the Anti de Sitter algebra so(3,2)
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the first copy Cl(4, C') has been studied in this work and leads to a complexified
conformal gravity-Maxwell theory in 4D based on U(2,2) = SU(2,2) x U(1).
As mentioned earlier, in general, the unitary compact group U(p + q) is related
to the noncompact pseudo-unitary group U(p, ¢) via the Weyl unitary trick [8].
Consequently, the second copy of the Cli(4,C) algebra in the decomposition
of Ci(5,C) = Ci(4,C) @ Cl(4,C) has the same algebraic structure of u(4) &
u(4) after performing the Weyl unitary trick (“analytical continuation”) from
u(2,2) to u(4). Therefore, a Ci(4, C) gauge theory living in the second copy can
accommodate a U(4) x U(4) gauge theory which contains the Pati-Salam and
the Standard Model groups [10]. Furthermore, no violation of the Coleman-
Mandula theorem takes place.

This formulation of the (pseudo) unitary groups is very different from the
standard procedure to obtain the w(IN) generators E;; = a;ak in terms of
the complex CI(2N, C') algebra via the creation and annihilation fermionic os-
cillators defined as follows a; = %(ng +4 I'yjo1); a; = %(ng — 4 Toj1);
j=1,2,---,N. One can verify that {aj,aL} = i {aj,ar} = 0; {a},a,t} =0
leading to the u(NN) commutation relations [Ejk, Eim] = 0p1Ejm — 0jm Eig. This
construction is just a reflection of the fact that w(/N) C so(2N). In particular,
u(4) C so(8).

These results can be extended to larger gauge groups associated to higher
dimensional Clifford algebras CI(N — 1,1, R),CI(N — 2,2, R); N > 5, and to
higher base-spacetime dimensions D > 4. Moreover, one can even enlarge the
ordinary spacetime vector coordinates z* to include Clifford-valued polyvector
coordinates X = XMT y,, with XM = g, gh, ghitz ghikeps ... gplip2 bD hhe
longing to the so-called C-space (Clifford space) associated to the underlying
base spacetime Clifford algebra C1(D — 1,1, R), which is defined by {T',,I',} =
20,1 0,v =1,2,3,---, D, with g, the spacetime metric [7]. The most general
Clifford-valued poly form is defined by .Af,l (X)T'4d XM, where the polyvector-
valued internal index A spans the 2V -dim Clifford algebras CI(N—1,1, R), CI(N—
2,2, R) representing the gauge symmetry. And, finally, one can proceed to con-
struct a Clifford gauge theory of gravity in C-spaces. Extended theories of
gravity in C-spaces via the conventional methods were constructed in [7].

The issue of ghosts, renormalizabilty, unitarity, --- of the theory remains
to be studied. In the meantime a detailed analysis of the two Lagrangians de-
scribed above, and based on the complex-valued curvature two-form, whose real
and imaginary components are, respectively, given by eqs-(2.42,2.43), warrants
further investigation. We found some desirable results, like a very plausible
cancellation mechanism of the cosmological constant involving an algebraic con-
straint between ej;, bj;, and the coupling of the real and imaginary components
of the spin-conection and vierbein. We expect to find other novel consequences
emerging from the physics behind complex conformal gravity-Maxwell theory®
and Clifford gauge theories of gravity.
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