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Abstract

We present the deep connections among (Anti) de Sitter geometry,
complex conformal gravity-Maxwell theory, and grand unification, from a
gauge theory of gravity based on the complex Clifford algebra Cl(4, C).
Some desirable results are found, like a plausible cancellation mechanism
of the cosmological constant involving an algebraic constraint between
eaµ, b

a
µ (the real and imaginary parts of the complex vierbein).
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1 Introduction

In recent years conformal gravity has been advanced as a candidate towards a
satisfactory quantum theory that is both renormalizable and unitary (despite
higher derivatives) due to a modification of the Hilbert space inner products;
i.e. unitarity is being obtained because the theory is a PT symmetric rather
than a Hermitian theory. For a recent discussion, details and references see
[2]. Weinberg’s Asymptotic Safety program for quantum Einstein gravity based
on the existence of an interacting (non-Gaussian) ultraviolet fixed point of the
nonperturbative renormalization group flow of the average quantum effective
action has also received a lot of attention in recent years [3].

Clifford algebras are essential tools in many aspects in Physics [1]. In this
letter we shall present the deep connections among (Anti) de Sitter geome-
try, complex conformal gravity-Maxwell theory, and grand unification, starting
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from a gauge theory of gravity based on the complex Clifford algebra Cl(4, C).
The key role of Clifford algebras will be self-evident. We will show that the
complexified 4D Conformal Gravity-Maxwell theory turns out to be isomorphic
to a gauge theory of gravity based on the complex Clifford CL(4, C) algebra.
This is attained by simply extending the de Sitter algebra to the Clifford al-
gebra case. The Clifford algebraic version of the de Sitter algebra so(4, 1) is
realized via the of Cl(4, 1, R) algebra, and which in turn, leads to a complexifi-
cation of the Conformal Gravity-Maxwell theory in 4D due to the isomorphism
Cl(4, C) ∼ Cl(4, 1, R). Similar results follow in the Anti de Sitter case after
constructing a Cl(3, 2, R) gauge theory of gravity. Because Cl(3, 1, R) is a sub-
algebra of both Cl(4, 1, R) and Cl(3, 2, R), after reduction of one spatial and
temporal dimension, respectively, one recovers 4D conformal gravity in both
cases. Despite that this reduction of one dimension mimics the holographic
principle we have not invoked holography in this work

Some desirable results are found, like a very plausible cancellation mech-
anism of the cosmological constant involving an algebraic constraint between
eaµ, b

a
µ (the real and imaginary parts of the complex vierbein). We expect to find

other novel consequences emerging from the physics behind complex conformal
gravity-Maxwell theory and Clifford gauge theories of gravity.

2 Clifford Gauge Theories of Gravity

In this letter we shall generalize the Macdowell-Mansouri-Chamseddine-West
(MMCW) [5] formulation of ordinary 4D gravity, based on the de Sitter group
SO(4, 1), to the Clifford group associated to the real Cl(4, 1, R) algebra. This
construction also applies to the Anti de Sitter group SO(3, 2) and the real
Cl(3, 2, R) algebra. Given a Clifford algebra defined by the anticommutators
{γa, γb} = 2ηab1, with ηab = diag(−1,+1,+1, · · · ,+1), the 2D Clifford-algebra
generators inD-dimensions are given respectively by the wedge products (signed
antisymmetrized sums of products of gamma matrices)

1, γa, γa1 ∧ γa2 , · · · , γa1 ∧ γa2 ∧ · · · ∧ γaD (2.1)

where 1 is the unit element of the algebra and the numerical combinatorial
factors due to the antisymmetrization of indices can be omitted by imposing
the ordering prescription a1 < a2 < a3 · · · < aD.

The evaluation of the commutators of the above Clifford-algebra generators
can be found in [6]. In general for pq = odd one has

[γb1b2.....bp , γ
a1a2......aq ] = 2γ

a1a2......aq

b1b2.....bp
−

2p!q!

2!(p− 2)!(q − 2)!
δ
[a1a2

[b1b2
γ
a3....aq ]

b3.....bp]
+

2p!q!

4!(p− 4)!(q − 4)!
δ
[a1....a4

[b1....b4
γ
a5....aq ]

b5.....bp]
− ......

(2.2)
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for pq = even one has

[γb1b2.....bp , γ
a1a2......aq ] = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1

[b1
γ
a2a3....aq ]

b2b3.....bp]
−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[a1....a3

[b1....b3
γ
a4....aq ]

b4.....bp]
+ ...... (2.3)

The anti-commutators of the Clifford algebra generators can also be found in
[6], and one has the reciprocal situation as in eqs-(2.2,2.3), one has instead that
for pq = even

{γb1b2.....bp , γa1a2......aq} = 2γ
a1a2......aq

b1b2.....bp
−

2p!q!

2!(p− 2)!(q − 2)!
δ
[a1a2

[b1b2
γ
a3....aq ]

b3.....bp]
+

2p!q!

4!(p− 4)!(q − 4)!
δ
[a1....a4

[b1....b4
γ
a5....aq ]

b5.....bp]
− ......

(2.4)
And for pq = odd one has

{γb1b2.....bp , γa1a2......aq} = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1

[b1
γ
a2a3....aq ]

b2b3.....bp]
−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[a1....a3

[b1....b3
γ
a4....aq ]

b4.....bp]
+ ...... (2.5)

The aim to is to construct the Clifford-algebra generalization of MMCW
procedure to construct a gauge theory of gravity with a cosmological constant
by gauging the de Sitter group. The natural generalization of the de Sitter group
SO(4, 1) is the Clifford group based on the Cl(4, 1) algebra. Consequently, let
us begin by writing the Cl(4, 1)-valued gauge field in 4D

Aµ = AM
µ ΓM = Aµ1 + Am

µ γm + Am1m2
µ γm1m2

+ Am1m2m3
µ γm1m2m3

+

Am1m2m3m4
µ γm1m2m3m4

+ Am1m2m3m4m5
µ γm1m2m3m4m5

, m = 1, 2, 3, 4, 5 (2.6)

In the next subsection we will split the field decomposition in the expansion in
eq-(2.6) in terms of the fields Aµ,Am

µ ,Am1m2
µ and their duals Ãµ, Ãm

µ , Ãm1m2
µ as

a result of the duality property of the gamma matrices in odd dimensions D =
r+s = odd given by the relations γm1m2···mr ∼ ϵm1m2···mrn1n2···nsγ

n1n2···ns . The
proportionality factor is given by a phase factor that can be ±1,±i depending
on the odd dimensions and the metric signature. As a result of this splitting
we shall show how the Clifford Cl(4, 1) gauge theory of gravity is equivalent to
a theory of complexified conformal gravity-Maxwell theory involving conformal
gravity-Maxwell theory and their purely imaginary dual fields; i.e. such theory is
tantamount to a Clifford gauge theory of gravity based on the complex Cl(4, C)
algebra.

For now, let us perform a 4 + 1 split of the indices in AM
µ ΓM in eq-(2.6) of

the form
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AM
µ ΓM ≡ AI

µΓI + AI5
µ ΓI5 (2.7)

with

AI
µ ΓI = Aµ1 + Ai

µγi + Ai1i2
µ γi1i2 + Ai1i2i3

µ γi1i2i3 +Ai1i2i3i4
µ γi1i2i3i4 (2.8)

whose indices span only four directions i = 1, 2, 3, 4, and whereas the indices in
AI5

µ ΓJ5 span all of the five directions. In this way one can split the ΓM ’s into
generalized boosts/rotations and generalized translations. The latter transla-
tions have the following one-to-one correspondence with the following gamma
generators

P ↔ γ5, Pi ↔ γi5, Pij ↔ γij5, Pijk ↔ γijk5, Pijkl ↔ γijkl5 (2.9)

where P can be interpreted (from the four-dim point of view) as the scalar part
of the momentum polyvector P in 4D. Pi is the vector part; Pij is the bi-vector
part; Pijk is the tri-vector part, and Pijkl is the quad-vector part.

Hence, after naming {ΓI} = J, and {ΓI5} = P as the sets of general-
ized boosts/rotations and translation generators, respectively, one obtains the
sought-after commutation relations of the form

[J, J] ∼ J, [J, P] ∼ P, [P, P] ∼ J (2.10)

after direct application of the commutators in eqs-(2.2,2.3). Therefore, the split
(2.7) has precisely the same algebraic form as the gauge fields in the de Sitter
gauge theory of gravity

Aµ = ωi5
µ Ji5 + ωij

µ Jij = ρ ωi5
µ Pi + ωij

µ Jij = eiµ Pi + ωij
µ Jij (2.11)

which is given in terms of the vierbein eiµ = ρ ωi5
µ and the spin connection ωij

µ .
ρ is a length scale which can be identified with the de Sitter throat size. The
noncommutative translation generators are Pi, and the Lorentz generators are
Jij , with i, j = 1, 2, 3, 4. In the limit ρ → ∞ the Pi will commute and one
recovers the Poincare algebra. Therefore, we have attained the desired goal of
extending the de Sitter algebra to the Clifford algebra case.

The next step is to construct a Clifford extension of a de Sitter gauge theory
of gravity (with a cosmological constant). In the conclusion we discuss how a
similar procedure follows in the Anti de Sitter case. From eqs-(2.2,2.3), one can
evaluate the commutators appearing in the definition of the Cl(4, 1)-algebra-
valued two-form field strength F = dA + [A,A]. Thus, the Cl(4, 1)-algebra-
valued field strength components are given respectively by

Fµν = ∂[µAν], µ, ν = 1, 2, 3, 4 (2.12a)

Fk
µν = ∂[µA

k
ν] + 4 (Aµr Amn

ν − µ ↔ ν) δr[m δkn] −
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48 (Aµrst Amnpq
ν − µ ↔ ν) δrst[mnp δkq] (2.12b)

Fk1k2
µν = ∂[µA

k1k2

ν] − (Aµr Am
ν − µ ↔ ν) ηr[k1 δk2]

m +

4 (Aµrs Amn
ν − µ ↔ ν) δ

[r
[m ηs][k1 δ

k2]
n] +

18 (Aµrst Amnp
ν − µ ↔ ν) δ

[rs
[mn ηt][k1 δ

k2]
p] −

96 (Aµrstu Amnpq
ν − µ ↔ ν) δ

[rst
[mnp ηu][k1 δ

k2]
q] −

600 (Aµrstuv Amnpqk
ν − µ ↔ ν) δ

[rstu
[mnpq ηv][k1 δ

k2]
k] (2.12c)

Fk1k2k3
µν = ∂[µA

k1k2k3

ν] − 2 (Aµrs Amn
ν − µ ↔ ν) δ

[r
[m ηs][k1 δ

k2k3]
np] +

80 (Aµrstu Amnpqk
ν − µ ↔ ν) δ

[rst
[mnp ηu][k1 δ

k2k3]
qk] +

4

3
(Aµr Amnpq

ν − µ ↔ ν) δr[m δk1k2k3

npq] (2.12d)

Fk1k2k3k4
µν = ∂[µA

k1k2k3k4

ν] − 1

12
(Aµr Amnp

ν − µ ↔ ν) δ
[k2k3k4

[mnp ηk1]r +

2

3
(Aµrs Amnpq

ν − µ ↔ ν) δ
[r
[m ηs][k1 δ

k2k3k4]
npq] +

5 (Aµrst Amnpqk
ν − µ ↔ ν) δ

[rs
[mn ηt][k1 δ

k2k3k4]
pqk] (2.12e)

Fk1k2k3k4k5
µν = ∂[µA

k1k2k3k4k5

ν] − 1

6
(Aµrs Amnpqk

ν − µ ↔ ν) δ
[r
[m ηs][k1 δ

k2k3k4k5]
npqk] +

1

5
(Aµrst Amnpq

ν − µ ↔ ν) δ
[r
[m ηst]|[k1k2 δ

k3k4k5]
npq] (2.12f)

The indices’ range in the above equations is 1, 2, 3, 4, 5, and one has the following
definitions

ηm1m2|n1n2
= ηm1n1

ηm2n2
− ηm1n2

ηm2n1
(2.13a)

ηm1m2m3|n1n2n3
= ηm1n1

ηm2n2
ηm3n3

∓ · · · (2.13b)

ηm1m2m3m4|n1n2n3n4
= ηm1n1

ηm2n2
ηm3n3

ηm4n4
∓ · · · (2.13c)

and so forth. The expressions in eqs-(2.13) can be rewritten as the determinants
of a square N × N matrix whose entries are ηmrns

; r, s = 1, 2, 3, · · · , N . The
mixed generalized Kronecker symbols δm1m2···mN

n1n2···nN
can also be rewritten as the de-

terminants of a square N×N matrix whose entries are δmr
ns

; r, s = 1, 2, 3, · · · , N .
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The evaluation of the field strength components in eqs-(2.12) required taking
the scalar parts of the geometric product of the gammas, which is denoted by
the brackets. For example, < ΓMΓN > denotes the scalar part (those terms
multiplying the Clifford algebra unit element 1) of the geometric product of two
gamma matrices. It was required in order to perform the necessary contractions.
In particular one has

< γm γn > = ηmn, < γm1m2 γn1n2 > = ηm1n1 ηm2n2 − ηm1n2 ηm2n1

< γm1
γm2

γm3
> = 0, < γm1m2m3

γn1n2n3
> = ηm1n1

ηm2n2
ηm3n3

∓ · · ·

< γm1m2m3m4
γn1n2n3n4

> = ηm1n1
ηm2n2

ηm3n3
ηm4n4

∓ · · · (2.14)

and so forth.
The terms that one is familiar with are those appearing in eq-(2.12b)

∂[µA
k1k2

ν] + (Aµrs Amn
ν − µ ↔ ν) δ

[r
[m ηs][k1 δ

k2]
n] (2.15)

which have the same functional form as the de Sitter field strength. To see
this one just needs to recall that given the spin connection one-form ωk1k2 ≡
ωk1k2
µ dxµ, and the exterior derivative d, the field strength two-form F k1k2 ≡

F k1k2
µν dxµ ∧ dxν is defined as

F k1k2 = dωk1k2 + ωk1
r ∧ ωrk2 , r, k1, k2 = 1, 2, 3, 4, 5 (2.16)

Upon performing the 4 + 1 split of the indices in eq-(2.16 ) one can isolate the
curvature from the torsion terms as follows

F ab = dωab + ωa
c ∧ ωcb + ωa

5 ∧ ω5b = dωab + ωa
c ∧ ωcb +

1

ρ2
ea ∧ eb =

Rab +
1

ρ2
ea ∧ eb = Rab + Λ ea ∧ eb, a, b, c = 1, 2, 3, 4 (2.17)

after identifying ρ−2 with the cosmological constant Λ, and Rab with the curva-
ture two-form associated with the spin connection ωab

µ . The torsion two-form is

given in terms of the mixed components involving the spin connection ωab
µ and

the vierbein eaµ = ρωa5
µ , where ρ is the de Sitter throat size, as follows

F a5 = dωa5 + ωa
c ∧ ωc5 =

1

ρ
(dea + ωa

c ∧ ec) ⇒

T a ≡ T a
µν dxµ ∧ dxν = ρ F a5

µν dxµ ∧ dxν = dea + ωi
c ∧ ec (2.18)

After constraining the torsion to zero which allows to express the spin con-
nection in terms of the vielbein ω = ω(e), the 4D MMCW Lagrangian (den-
sity) [5] is defined by F ab ∧ F cd ϵabcd which decomposes into a sum of the
4D Gauss-Bonnet topological invariant term Rab ∧ Rcdϵabcd; the 4D Einstein-
Hilbert term ρ−2Rab ∧ ec ∧ edϵabcd, and the 4D cosmological constant term
ρ−4ea ∧ eb ∧ ec ∧ edϵabcd.
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One may notice that after one introduces a matrix representation of the
Clifford algebra generators, some of the ΓM matrices are Hermitian, and some
are anti-Hermitian, due to the chosen signature ηab = diag(−1, 1, 1, 1, 1). For
example, because (γ1)

2 = −1 the γ1 matrix is anti-Hermitian, while γ2, γ3, γ4, γ5
are Hermitian. γmn is anti-Hermitian when m,n = 2, 3, 4, 5, and Hermitian
when m = 1 or n = 1; and so forth. Hence, if all of the gauge field components
AM

µ are chosen to be real-valued, the matrix AM
µ ΓM has a mixture of Hermitian

and anti-Hemitian pieces. The Clifford-valued field strength Fµν = FM
µνΓM ,

with FM
µν real, will also have a mixture of Hermitian and anti-Hermitian pieces.

There are two (real-valued) gauge-invariant Lagrangians (densities) which can
be constructed in 4D

L1 = FM
µν Fµν

M , L2 = ϵµ1µ2µ3µ4 FM
µ1µ2

Fµ3µ4M , µ, ν = 1, 2, 3, 4 (2.20)

where M is a Clifford-valued polyvector index spanning the 25-dimensional
Cl(4, 1, R) algebra. These Lagrangians have the same functional form Tr(F ∧∗

F ), T r(F ∧ F ) as in ordinary Yang-Mills theory.1

Complex Conformal Gravity-Maxwell Theory from
a Cl(4, C) Gauge Theory of Gravity

Let us focus now on the following terms

Aµ1 + Am
µ γm + Am1m2

µ γm1m2
, m,m1,m2 = 1, 2, 3, 4, 5 (2.21)

in eq-(2.6). A 4 + 1 splitting of the indices above yields

Aµ1 + Aa
µγa + A5

µγ5 + Aab
µ γab + Aa5

µ γa5, a, b = 1, 2, 3, 4 (2.22)

As explained earlier, as a result of the dualization process of the gamma matrices
in odd dimensions, the remaining terms in eq-(2.6)

Am1m2m3
µ γm1m2m3

+

Am1m2m3m4
µ γm1m2m3m4

+ Am1m2m3m4m5
µ γm1m2m3m4m5

, m = 1, 2, 3, 4, 5
(2.23)

lead to an expansion expressed in terms of the dual fields as follows

Ãµ1 + Ãm1
µ γm1 + Ãm1m2

µ γm1m2 , m1,m2 = 1, 2, 3, 4, 5 (2.24a)

with

Ãµ ∼ ϵm1m2m3m4m5
Am1m2m3m4m5

µ , Ãm1 ∼ ϵm1
m2m3m4m5

Am2m3m4m5
µ ,

Ãm1m2 ∼ ϵm1m2
m3m4m5

Am3m4m5
µ (2.24b)

1Due to ϵµ1µ2µ3µ4 = ϵµ3µ4µ1µ2 , the Lagrangian L2 is not zero
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The key phase factors appearing in the dualization process of the gamma ma-
trices are ±i due to the signature (−,+,+,+,+), and can be reabsorbed into
the definition of the dual fields. Thus the dual fields are purely imaginary.2 The
4 + 1 decomposition of eq-(2.24a) yields

Ãµ1 + Ãa
µγa + Ã5

µγ5 + Ãab
µ γab + Ãa5

µ γa5, a, b = 1, 2, 3, 4 (2.25)

This dualization process is also consistent with the isomorphisms of the following
Clifford algebras

Cl(4, C) ∼ M(4, C) ∼ Cl(4, 1, R) ∼ Cl(2, 3, R) ∼ Cl(0, 5, R) (2.26a)

Cl(4, C) ∼ M(4, C) ∼ Cl(3, 1, R)⊕ i Cl(3, 1, R), Cl(3, 1, R) ∼ M(4, R)
(2.26b)

where M(4, R),M(4, C) is the 4× 4 matrix algebra over the reals and complex
numbers, respectively.

Therefore, the Clifford gauge theory of gravity based on the real Cl(4, 1, R)
algebra involving the real valued 16 gauge fields in eq-(2.22), and their 16 imag-
inary valued duals in eq-(2.25), can be accommodated into the 16 complex-
valued fields based on a complex Clifford Cl(4, C) algebra, and given by Aµ =

(Aµ + iBµ)
AΓA, such that AA

µ = AA
µ and ÃA

µ = iBA
µ .

3 .
In this case, the 4D quadratic Yang-Mills-like Lagrangian is of the form

(F + iG)Aµν(F − iG)µνA (real-valued). A theta-like Lagrangian density is of the

form ϵµντσ(F + iG)abµν(F + iG)cdτσϵabcd + complex-conjugate (also real-valued
by construction). The Clifford extension of the latter Lagrangian density is
ϵµντσ(F+iG)Aµν(F+iG)τσA + complex-conjugate, where the internal indices are

raised and lower with ηa1a2···ar|b1b2···br and ηa1a2···ar|b1b2···br whose expressions
are provided by eqs-(2.13).

Caution must be taken in this latter case when dealing with bivector in-
dices because ϵµντσ(F + iG)a1a2

µν (F + iG)a3a4
τσ ϵa1a2a3a4 ̸= ϵµντσ(F + iG)a1a2

µν (F +

iG)a3a4
τσ ηa1a2|a3a4

. This is analogous to the difference between the term Ra
b ∧Rb

a

and Rab ∧Rcdϵabcd in ordinary gravity.
Next we recall the relationship between a Cl(3, 1, R)-valued gauge field the-

ory of gravity and conformal gravity [10]. By fixing some of the gauge sym-
metries and imposing some constraints one recovers ordinary gravity. We shall
begin by showing how the conformal algebra in four dimensions admits a Clifford
algebra realization; i.e. the generators of the conformal algebra can be expressed
in terms of the Clifford algebra basis generators. The conformal algebra in four
dimensions so(4, 2) is isomorphic to su(2, 2).

Let ηab = (−,+,+,+) be the Minkowski spacetime (flat) metric inD = 3+1-
dimensions. The epsilon tensors are defined as ϵ1234 = −ϵ1234 = 1. The real

2This can be simply verified, for example, in the case of Γmn = i ϵmnpqrΓpqr when
m = 1 is a temporal-like index, and the rest of the indices are spatial-like, because Γ1n is
Hermitian but Γpqr is anti-Hermitian, when n, p, q, r = 2, 3, 4, 5. Without the i factor there
would be an inconsistency. Similar findings apply to the other combinations, for example,
Γmnpqr = i ϵmnpqr 1

3ΓA = 1, γa, γab, γabc, γabcd leading to 24 = 16 generators
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Clifford Cl(3, 1, R) algebra associated with the tangent space of a 4D spacetime
M is defined by the anticommutators {Γa,Γb} = 2ηab 1, a, b = 1, 2, 3, 4. Given
the chosen signature, the chirality operator Γ5 is defined as

Γ5 ≡ − i Γ1 Γ2 Γ3 Γ4 ⇒ (Γ5)
2 = 1; {Γ5,Γa} = 0 (2.27a)

The generators Γab,Γabc,Γabcd are defined as usual by a signed-permutation sum
of the anti-symmetrizated products of the gammas. As a result of the relations
in (2.27a) one finds

Γabc = i ϵabcd Γ5 Γd, Γabcd = i ϵabcd Γ5, Γab =
i

2
ϵabcd Γ5 Γcd (2.27b)

We shall be using a representation of the Cl(3, 1) algebra where the generators
(4× 4 matrices)

1; − i Γ1; Γ2; Γ3; Γ4; Γ5 = − i Γ1 Γ2 Γ3 Γ4; Γ1j ; Γ1Γ5; j = 2, 3, 4 (2.28)

are Hermitian; while −i Γ1Γ5; ΓkΓ5; Γkl for k, l = 2, 3, 4 are anti-Hermitian.
Using eqs-(2.27a,2.27b) allows to re-write the Cl(3, 1) algebra-valued one-form
AA

µΓAdx
µ in the following way

A =

(
aµ 1 + i bµ Γ5 + eaµ Γa + i fa

µ Γa Γ5 +
1

4
ωab
µ Γab

)
dxµ. (2.29)

after using the following definitions Aµ = aµ; Aa
µ = eaµ; Aabcd

µ ϵabcd ≡ bµ;

Abcd
µ ϵabcd ≡ fa

µ , and Aab
µ = 1

4ω
ab
µ .

As stated earlier, the 4 × 4 matrices Aµ, µ = 1, 2, 3, 4, will have a mixture
of Hermitian and anti-Hermitian pieces. All of the gauge fields appearing in
(2.29) are real. The physical significance of the real-valued field components
aµ, bµ, e

a
µ, f

a
µ , ω

ab
µ in eq-(2.29) will be explained below.

The Clifford-valued gauge fieldAµ transforms according toA′
µ = U−1 Aµ U+

U−1∂µU under Clifford-valued gauge transformations. The Clifford-valued field
strength is F = dA+ [A,A] so that F transforms covariantly F′ = U−1 F U.
Decomposing the field strength in terms of the Clifford algebra generators gives

Fµν = Fµν 1 + i F 5
µν Γ5 + F a

µν Γa + i F a5
µν Γa Γ5 +

1

4
F ab
µν Γab. (2.30)

the Clifford-algebra-valued 2-form field strength is F = 1
2 Fµν dxµ ∧ dxν and

Fµν = ∂µAν − ∂νAµ + [ Aµ, Aν ] where ∂µAν = ∂Aν

∂xµ . The field-strength
components are given by [9], [10]

Fµν = ∂µaν − ∂νaµ (2.31a)

F 5
µν = ∂µbν − ∂νbµ + 2eaµfνa − 2eaνfµa (2.31b)

F a
µν = ∂µe

a
ν − ∂νe

a
µ + ωab

µ eνb − ωab
ν eµb + 2fa

µbν − 2fa
ν bµ (2.31c)

F a5
µν = ∂µf

a
ν − ∂νf

a
µ + ωab

µ fνb − ωab
ν fµb + 2eaµbν − 2eaνbµ (2.31d)
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F ab
µν = ∂µω

ab
ν + ωac

µ ω b
νc + 4

(
eaµe

b
ν − fa

µf
b
ν

)
− µ ↔ ν. (2.31e)

At this stage we may provide the relation among the Cl(3, 1) algebra gen-
erators and the the conformal algebra so(4, 2) ∼ su(2, 2) in 4D. Due to the
key condition of the chirality matrix (Γ5)

2 = 1, a close inspection reveals that
the operators of the Conformal algebra can be written in terms of the Clifford
algebra generators as [7]

Pa =
1

2
Γa (1 − Γ5); Ka =

1

2
Γa (1 + Γ5); D = − 1

2
Γ5, Lab =

1

2
Γab.

(2.32)
Pa ( a = 1, 2, 3, 4) are the translation generators; Ka are the conformal boosts; D
is the dilation generator and Lab are the Lorentz generators. The total number
of generators is respectively 4+4+1+6 = 15. From the above realization of the
conformal algebra generators (2.32), the explicit evaluation of the commutators
yields

[Pa, D] = Pa; [Ka, D] = −Ka; [Pa, Kb] = − 2ηab D + 2 Lab

[D, Lab] = 0, [Pa, Pb] = 0; [Ka,Kb] = 0, a, b = 1, 2, 3, 4 (2.33)

which is consistent with the su(2, 2) ∼ so(4, 2) commutation relations.4. The
dilation D operator is represented by a Hermitian matrix, while the Lorentz
generator Lab is represented by an anti-Hermitian matrix when a, b = 2, 3, 4,
and a Hermitian matrix when a or b is 1. The fact that Hermitian and anti-
Hermitian matrices are both required is consistent with the fact that U(2, 2) =
SU(2, 2)× U(1) is a pseudo-unitary group which can be obtained via the Weyl
“unitary trick” from the unitary group U(4) by the analog of the Wick rotation
procedure [8], [10].

Having established this one can infer that the (complex) tetrad V a
µ field

(associated with translations) and its complex-conjugate partner V̄ a
µ (associated

with conformal boosts) can be defined in terms of the gauge fields eaµ, f
a
µ as

follows
eaµ Γa + i fa

µ ΓaΓ5 = V a
µ Pa + V̄ a

µ Ka (2.34)

From eqs-(2.29,2.32) one learns that eq-(2.34) leads to a complex-conjugate pair
of fields

eaµ − i fa
µ = V a

µ ; eaµ + i fa
µ = V̄ a

µ ⇒

eaµ =
1

2
(V a

µ + V̄ a
µ ), fa

µ =
1

2i
(V̄ a

µ − V a
µ ). (2.35)

The components of the torsion and conformal-boost curvature of conformal
gravity are given respectively by the linear combinations of eqs-(2.31c, 2.31d)

4We should notice that the Ka, Pa generators in (2.32) are both comprised of Hermitian
Γi, and anti-Hermitian ΓiΓ5 matrices, when i = 2, 3, 4. Whereas, one has an anti-Hermitian
Γ1 and a Hermitian Γ1Γ5 matrix. As a result, Pa,Ka are represented by 4 × 4 nilpotent
matrices P 2

a = K2
a = 0 (no sum over a)
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F a
µν − i F a5

µν = F a
µν [P ]; F a

µν + i F a5
µν = F a

µν [K] ⇒

F a
µν Γa + i F a5

µν Γa Γ5 = F a
µν [P ] Pa + F a

µν [K] Ka. (2.36)

When a = 1, the left-hand side of eq-(2.36) furnishes an overall anti-Hermitian
matrix; whereas, when a = 2, 3, 4, it yields a Hermitian matrix. Therefore, the
same occurs for the right-hand side. Inserting the expressions for eaµ, f

a
µ in terms

of the vierbein V a
µ and V̄ a

µ given by (2.35), yields the standard expressions for
the torsion and conformal-boost curvature, respectively.

F a
µν [P ] = ∂[µ V a

ν] + ωab
[µ Vν]b − 2i V a

[µ bν], (2.37a)

F a
µν [K] = ∂[µ V̄ a

ν] + ωab
[µ V̄ν]b + 2i V̄ a

[µ bν], (2.37b)

Once again, despite the complex-valued nature of the components F a
µν [P ];F a

µν [K],
the expression in the right hand side of eq-(2.36) must yield an overall anti-
Hermitian matrix when a = 1, and a Hermitian matrix when a = 2, 3, 4, as
expected.

The Lorentz curvature in eq-(2.31e) can be recast in the standard form as

F ab
µν = Rab

µν = ∂[µ ωab
ν] + ωac

[µ ωb
ν]c + 2(V a

[µ V̄ b
ν] + V̄ a

[µ V b
ν]). (2.37c)

As expected, Rab
µν is real-valued since eq-(2.37c) is the same as eq-(2.31e) (real-

valued).
The components of the (real-valued) curvature corresponding to the Weyl

dilation generator given by F 5
µν in eq-(2.31b) can be rewritten as

F 5
µν = ∂[µ bν] +

1

2i
( V a

[µ V̄ν]a − V̄ a
[µ Vν]a ). (2.37d)

The Maxwell U(1) curvature is given by Fµν in eq-(2.31a). A re-scaling of the
vierbein V a

µ /l and V̄ a
µ /l by a length scale parameter5 l is necessary in order to

endow the curvatures and torsion in eqs-(2.37) with the proper dimensions of
length−2, length−1, respectively.

Gauge invariant actions involving Yang-Mills terms of the form
∫
Tr(F ∧∗F )

and theta terms of the form
∫
Tr(F ∧F ) are straightforwardly constructed. For

example, a SO(4, 2) gauge-invariant action for conformal gravity is [9]

S =

∫
d4x ϵabcd ϵµνρσ Rab

µν Rcd
ρσ (2.38)

where the components of the Lorentz curvature 2-form Rab
µνdx

µ ∧ dxν are pro-
vided by eq-(2.37c).

The conformal boost symmetry can be fixed by choosing the gauge bµ = 0
because under infinitesimal conformal boosts transformations the field bµ trans-
forms as δbµ = −2 ξa eaµ = −2 ξµ; i.e the parameter ξµ has the same number

5The length parameter l is the same as the de Sitter throat size ρ
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of degrees of feedom as bµ. After further fixing the dilational gauge symme-
try by setting F 5

µν = 0, it gives fa
µ = 0, and then constraining the sum of

F a
µν [P ] + F a

µν [K] = 0 to zero, it furnishes the spin connection as a function

of eaµ : ωab
µ (eaµ) and leading to the torsionless Levi-Civita connection. Finally,

the action (2.38) leads to the de Sitter group SO(4, 1) invariant Macdowell-
Mansouri-Chamseddine-West (MMCW) action [5] (suppressing spacetime in-
dices for convenience) described earlier

SMMCW =

∫
d4x ( Rab(ω) − 1

l2
ea∧eb ) ∧ ( Rcd(ω) − 1

l2
ec∧ed ) ϵabcd. (2.39)

and leading to the Gauss-Bonnet topological invariant, Einstein-Hilbert and
cosmological constant terms.6

The familiar Einstein-Hilbert gravitational action can also be obtained from
a coupling of conformal gravity to a scalar field like it occurs in a Brans-Dicke-
Jordan theory of gravity. The kinetic term ϕ(Dµ

cD
c
µ)ϕ in the action (after

integrating by parts) and based on the conformally covariant derivative operator
Dc

µ can be decomposed in the following form

S =
1

2

∫
d4x

√
g ϕ

(
1
√
g
∂ν(

√
g gµν Dc

µϕ) + bµ (Dc
µϕ) +

1

6
R ϕ

)
.

(2.40a)
where the conformally covariant derivative acting on a scalar field ϕ of Weyl
weight one is

Dc
µϕ = ∂µϕ − bµ ϕ (2.40b)

Fixing the conformal boosts symmetry by setting bµ = 0 and the dilational
symmetry by setting ϕ = constant leads to the Einstein-Hilbert action for
ordinary gravity.

Complexified Conformal Gravity

A natural complexification of a metric can be chosen to be gµν = g(µν) +
ig[µν], and is comprised of symmetric g(µν) and anti-symmetric matrices g[µν],

obeying the Hermiticity condition g†
µν = gµν [11], [13]. Introducing a complex

vierbein Ea
µ = eaµ + ifa

µ , a Hermitian complex metric can be defined as gµν =

Ea
µ(E

b
ν)

∗ηab, leading to the components

g(µν) = (eaµ ebν + fa
µ f b

ν) ηab; i g[µν] = − i (eaµ f b
ν − fa

µ ebν) ηab (2.41)

Chamseddine formulated gravity with a complex vierbein based on SL(2, C)
gauge invariance and proposed an action in terms of a four-form. The resulting

6Gravity involves invariance under diffeomorphisms (coordinate transformations) and
gravitons have spin 2, not 1. What occurs is that the torsion constraint Fa

µν = 0 allows
to convert a combination of translations, Lorentz and dilation transformations of the vierbein
eaµ into general coordinate transformations of the vierbein, see [9] for further details
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theory was equivalent to bigravity. He extended the gauge group to GL(2, C),
constructed a star-product-deformed action and derived the Seiberg-Witten map
for the complex vierbein and gauge fields. His work [13] is very different than
the one presented here, mainly because the Cl(4, C) algebra is isomorphic to
M(4, C) ∼ gl(4, C), and not gl(2, C). For further details on complex, quater-
nionic, and octonionic valued gravity see [12] and references therein.

Another more direct route one can take is to begin directly with the com-
plexification of all the fields associated with a Cl(4, C) gauge theory of gravity.
To illustrate what the complexification of the Lagrangian (density) in eq-(2.39)
looks like, one simply introduces a complex-valued spin connection and vierbein
of the form ωab

µ + ivabµ , eaµ + ibaµ, and sets the complex-valued extension of fa
µ to

zero, leading to a complex-valued curvature two-form, whose real and imaginary
components are, respectively,

Fab = dωab + ωa
c ∧ ωcb +

1

l2
ea ∧ eb − vac ∧ vcb − 1

l2
ba ∧ bb (2.42)

Gab = dvab + ωa
c ∧ vcb + vac ∧ ωcb +

1

l2
ea ∧ bb +

1

l2
ba ∧ eb (2.43)

Constraining the torsion to zero leads to ωab = ωab(ea, ba), and vab = vab(ea, ba),
which is the generalization of the relation ωab = ωab(ea) in ordinary real-valued
gravity. Consequently, the curvature-squared terms will no longer yield the
Gauss-Bonnet topological invariant. Furthermore, the real part of the curvature
receives an extra contribution given by the last two terms in eq-(2.43). Since
the last term − 1

l2 b
a ∧ bb appears with a minus sign, one might have a desirable

cancellation mechanism of the cosmological constant term 1
l2 e

a∧ eb, when ea =
eaµdx

µ = ±ba = ±baµdx
µ. While the imaginary part of the curvature (2.44)

involves the imaginary part vabµ of the spin connection plus terms involving the
mixing of the real parts and imaginary parts of the spin connection and vierbein.

Given a complex-valued curvature of the form (F + iG)abµν , where F,G are
given by eqs-(2.42,2.43), a real-valued Yang-Mills-like Lagrangian is of the form
(F + iG)abµν(F − iG)µνab . A theta-like MMCW Lagrangian density was provided

earlier as ϵµντσ(F + iG)abµν(F + iG)cdτσϵabcd + complex-conjugate (real-valued by
construction). It is important to remark that if one wishes to obtain an over-
all cancellation of the cosmological constant in the latter action, it leads to an
algebraic constraint between eaµ, b

a
µ and whose solution is no longer given by

eaµ = ±baµ. Another salient feature is, besides that one has additional contribu-
tions to the ordinary curvature, is a key coupling, “entanglement” among the
real and imaginary components of the spin connection and vierbein. Whether or
not this may play a role in understanding the nature of dark energy and Quan-
tum Gravity deserves further investigation. Finally, the modified gravitational
theory involving the complex metric must not be confused with bi-gravity since
the imaginary component ig[µν] is antisymmetric.
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3 Conclusion

To sum up, we have shown how a Cl(3, 1, R) gauge theory of gravity in 4D can be
recast as a 4D Conformal Gravity-Maxwell theory based on U(2, 2) = SU(2, 2)×
U(1). By including the extra contribution of the (purely imaginary) dual fields
(2.25) it leads to a complexification of the Conformal Gravity-Maxwell the-
ory and based on the complex Cl(4, C) algebra. The complexification of the
U(2, 2), SU(2, 2) groups is U(2, 2)⊗C = GL(4, C), and SU(2, 2)⊗C = SL(4, C),
respectively, see [8] for more specific details. In general, the algebra gl(N,C) is
the complex extension of u(p, q) for all p, q such that p + q = N [8]. The cov-
ering of the general linear group GL(N,R) does not admit finite dimensional
spinorial representations but infinite dimensional. For a rigorous treatment of
these infinite-dim spinorial representations and the perturbative renormalization
property of metric affine theories of gravity based on the semidirect product of
GL(N,R) with the translations TN we refer to [4].

Therefore, to conclude, the complexified 4D Conformal Gravity-Maxwell
theory turns out to be isomorphic to a gauge theory of gravity based on the
complex group GL(4, C). We also have attained the desired goal of extending
the de Sitter algebra to the Clifford algebra case. The Clifford algebraic version
of the de Sitter algebra so(4, 1) is realized via the of Cl(4, 1, R) algebra, and
which in turn, leads to a complexification of the Conformal Gravity-Maxwell
theory in 4D due to the isomorphism Cl(4, C) ∼ Cl(4, 1, R). This interplay be-
tween a gauge theory of gravity based on Cl(4, 1, R), whose bivector-generators
encode the de Sitter algebra so(4, 1), and conformal gravity based on Cl(3, 1, R)
is reminiscent of the AdSD+1/CFTD correspondence between D+1-dim gravity
in the bulk and Conformal field theory in the D-dim boundary.

The Clifford algebraic version of the de Sitter algebra was depicted by the
commutators in eq-(2.10). After performing the dualization procedure of the
gamma matrices of Cl(4, 1, R) it leads to a 4D complexified conformal gravity-
Maxwell theory. It is interesting that this procedure via the use of Clifford alge-
bras is the reversal to what occurs when one embeds the de Sitter algebra so(4, 1)
into the larger conformal algebra so(4, 2). In this work the conformal symme-
try, encoded in the Cl(3, 1, R) algebra, is captured from the larger Cl(4, 1, R)
algebra which is the Clifford extension of the de Sitter algebra so(4, 1).

Similar results follow in the Anti de Sitter case after constructing a Cl(3, 2, R)
gauge theory of gravity. Because Cl(3, 1, R) is a sub-algebra of both Cl(4, 1, R)
and Cl(3, 2, R), after reduction of one spatial and temporal dimension, respec-
tively, one recovers 4D conformal gravity in both cases. Despite that this re-
duction of one dimension mimics the holographic principle we have not invoked
holography in this work.7

Related to the issue of grand-unification models with gravity we recall a
model based on Cl(5, C) = Cl(4, C)⊕Cl(4, C) [10]. The gauge theory involving

7No boundaries of the bulk spacetime have been invoked. From the isomorphism displayed
in eq-(2.26a) one learns that the bivectors of Cl(2, 3, R) generate the so(2, 3) algebra which is
not the same as the Anti de Sitter algebra so(3, 2)

14



the first copy Cl(4, C) has been studied in this work and leads to a complexified
conformal gravity-Maxwell theory in 4D based on U(2, 2) = SU(2, 2) × U(1).
As mentioned earlier, in general, the unitary compact group U(p+ q) is related
to the noncompact pseudo-unitary group U(p, q) via the Weyl unitary trick [8].
Consequently, the second copy of the Cl(4, C) algebra in the decomposition
of Cl(5, C) = Cl(4, C) ⊕ Cl(4, C) has the same algebraic structure of u(4) ⊕
u(4) after performing the Weyl unitary trick (“analytical continuation”) from
u(2, 2) to u(4). Therefore, a Cl(4, C) gauge theory living in the second copy can
accommodate a U(4) × U(4) gauge theory which contains the Pati-Salam and
the Standard Model groups [10]. Furthermore, no violation of the Coleman-
Mandula theorem takes place.

This formulation of the (pseudo) unitary groups is very different from the

standard procedure to obtain the u(N) generators Ejk = a†jak in terms of
the complex Cl(2N,C) algebra via the creation and annihilation fermionic os-

cillators defined as follows aj = 1
2 (Γ2j + i Γ2j−1); a†j = 1

2 (Γ2j − i Γ2j−1);

j = 1, 2, · · · , N . One can verify that {aj , a†k} = δjk; {aj , ak} = 0; {a†j , a
†
k} = 0

leading to the u(N) commutation relations [Ejk, Elm] = δklEjm− δjmElk. This
construction is just a reflection of the fact that u(N) ⊂ so(2N). In particular,
u(4) ⊂ so(8).

These results can be extended to larger gauge groups associated to higher
dimensional Clifford algebras Cl(N − 1, 1, R), Cl(N − 2, 2, R);N ≥ 5, and to
higher base-spacetime dimensions D ≥ 4. Moreover, one can even enlarge the
ordinary spacetime vector coordinates xµ to include Clifford-valued polyvector
coordinates X = XMΓM, with XM = x, xµ, xµ1µ2 , xµ1µ2µ3 , · · · , xµ1µ2···µD be-
longing to the so-called C-space (Clifford space) associated to the underlying
base spacetime Clifford algebra Cl(D− 1, 1, R), which is defined by {Γµ,Γν} =
2gµν1;µ, ν = 1, 2, 3, · · · , D, with gµν the spacetime metric [7]. The most general
Clifford-valued polyform is defined by AA

M(X)ΓAdX
M, where the polyvector-

valued internal indexA spans the 2N -dim Clifford algebras Cl(N−1, 1, R), Cl(N−
2, 2, R) representing the gauge symmetry. And, finally, one can proceed to con-
struct a Clifford gauge theory of gravity in C-spaces. Extended theories of
gravity in C-spaces via the conventional methods were constructed in [7].

The issue of ghosts, renormalizabilty, unitarity, · · · of the theory remains
to be studied. In the meantime a detailed analysis of the two Lagrangians de-
scribed above, and based on the complex-valued curvature two-form, whose real
and imaginary components are, respectively, given by eqs-(2.42,2.43), warrants
further investigation. We found some desirable results, like a very plausible
cancellation mechanism of the cosmological constant involving an algebraic con-
straint between eaµ, b

a
µ, and the coupling of the real and imaginary components

of the spin-conection and vierbein. We expect to find other novel consequences
emerging from the physics behind complex conformal gravity-Maxwell theory8

and Clifford gauge theories of gravity.
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