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We present an new explanation of the mechanism of tunneling from the quantum-statistical per-
spective. The purpose of our work is to elucidate the true mechanism of tunneling consistent with
quantum theory and energy conservation. We explain tunneling on the basis of the thermionic cur-
rent due to the ensemble of electron, and the current resonance due to the quantum constraint in
the barrier and the exchange-correlation interaction of electrons around the barrier. The statistical
aspect of tunneling is interpreted as being due to the existence of electrons able to surmount the
barrier thanks to the ensemble of electrons or microscopic states of electron. Considering the current
resonance of quantum essence in the barrier and the exchange-correlation interaction around the
barrier enables a satisfactory explanation of the quantum aspect of tunneling relative to the width
of barrier. Eventually, we arrive at a consistent and general explanation of the mechanism and
characteristics of tunneling that is essentially a phenomenon of quantum plus statistical causes.
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I. INTRODUCTION

Tunneling is famous for the understanding that elec-
trons with energy insufficient to surmount a potential
barrier can cross it. One of two typical tunneling ex-
periments is the tunneling between two superconductors
separated by an insulator. As the other type of tunnel-
ing, the Giaever tunneling (single-particle tunneling) is
the tunneling of a single quasi-electron from an ordinary
metal to a superconducting metal [1]. Tunneling that
is regarded as a pure quantum-mechanical phenomenon,
above all, is significant for elucidating the physical pro-
cesses in microscopic scales. Physical phenomena of semi-
conductor device including new quantum Hall devices
and tunneling diode are explained based on tunneling
[2, 3]. It is recognized that tunneling lies behind the α
decay and the cold-field emission as well.

Moreover, tunneling is significant for studying a wide
range of physical world beyond microscopic world. Sev-
eral kinds of tunneling and their subtle properties which
extend the coverage of tunneling have been discovered
and reported. Tunneling rises as an interesting subject
even in cosmology, since tunneling is regarded as an in-
dispensable element for solving the problem of black hole
[4, 5]. As a phenomenon of significance, the evapora-
tion of black holes as a result of the Hawking radiations
has also been considered to be due to tunneling of parti-
cles from the horizons of black holes. Brabec’s theory of
tunnel ionization in complex systems yielded reasonable
results in agreement with experiments [6]. Thus, tunnel-
ing leads to an understanding of the essence of ioniza-
tion. Vindel-Zandbergen’s studies of tunneling-induced
electron transfer between separated protons showed the
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relevance of tunneling in nuclear reactions [7].

The recent researches have confirmed that tunneling
depends on several factors purely beyond quantum realm.
Jürgensen reported the observation of density-induced
tunneling which breaks the symmetric behavior for at-
tractive and repulsive interactions predicted by the Hub-
bard model [8]. Perrin proposed that theoretical pre-
dictions and models based on other mechanisms such as
asymmetric tunneling barriers or asymmetric charging
are possible [9]. Tokieda’s study on quantum tunnel-
ing in a one-dimensional potential in the presence of en-
ergy dissipation showed that it was possible to calculate
the tunneling probability using a time-dependent wave
packet method [10]. An analytical study of relativistic
tunneling through opaque barriers demonstrated that it
is necessary to consider the relativistic aspect of tunnel-
ing [11]. Chuprikov showed a deep relevance of tunneling
time and superposition principle, the gist of which is that
scattering of a quantum particle on a one-dimensional
potential barrier violates the superposition principle and
thus the potential barrier and the layered structure play
role of nonlinear elements [12].

In order to explain the mechanism of tunneling in an
intuitive and reasonable way, there have been proposed
and developed several methods. The non-tunnel model
for a physical particle consisting of a bare particle and
its virtual decay cloud was assumed. In this theory, it is
supposed that the barrier is more transparent for virtual
particles than for the bare particle and the barrier width
is less than the size of virtual cloud. Then tunneling
is explained in such a manner that virtual particles re-
generate the primary physical particle behind the barrier
[13]. Jonson ascribed a mechanism of tunneling to the
exchange-correlation potential (image potential) felt by
an electron tunneling from a metal through a classically
forbidden region into vacuum [14].

The quasi-classical approaches of quantum mechanics
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in phase space is an important paradigm, which uses
the Wigner or Husimi function useful for physical pic-
ture [15–23]. The quasi-classical approaches based on
trajectory have been used as an effective mean to treat
the quantum dynamical processes relevant to tunneling
[24, 25]. Meanwhile, the quantum maps method for time-
continuous systems based on quasi-classical approach has
been developed by Takahashi and Ikeda [25].

As a version of quasi-classical approaches, the
entangled-trajectory molecular dynamics (ETMD) has
been newly developed based on the quantum phase-space
theory [24, 26]. This approach has become a powerful
tool for solving the quantum Liouville equation numer-
ically and also elucidating the dynamical processes of
quantum characteristics such as the tunnel effect by using
entangled trajectories in phase space. Comparing to the
classical molecular dynamics, the entangled-trajectory
molecular dynamics takes some advantages of getting the
quantum effect in evolution and requiring lesser trajec-
tories in finding the convergent value [24]. In various
fields of quantum dynamics, the results obtained by ap-
plying ETMD approaches have been reported [24, 27].
These approaches are based on utilization of the Wigner
function which may produce negative values at some
points. This shortcoming precludes resolving quantum-
mechanical problem correctly.

On the other hand, the Husimi function-based ap-
proach is useful for obtaining the correct information re-
lated to tunneling, since the Husimi function is positive
at every point and guarantees accuracy. Several works
using this approach have been reported [25, 28].

Despite the advances, several difficulties with inter-
preting the tunnel effect by using clear physical intuition
still remain unsolved. Concerning the conventional in-
terpretation, it should be noted that the solution of the
Schrödinger equation in the barrier region violates the
law of energy conservation and the continuity of proba-
bility current density. This big problem makes the con-
ventional explanation of tunneling unreliable.

What is important is to elucidate the mechanism of
tunneling in a consistent way. The problem is whether
tunneling is a quantum effect by a single electron or quan-
tum statistical effect by an ensemble of electrons or elec-
tronic states. If tunneling is due to the ensemble of elec-
trons or ensemble state of an electron, then it should
depend on temperature. Noticeably, the conventional
interpretation of tunneling is not associated with tem-
perature. However, many studies of tunneling at room
temperature in chemical and biochemical systems as well
as processes at cryogenic temperature have been reported
[29]. Some researchers claim that the most general and
exact approach is to apply quantum dynamics, i.e., to
solve the time-dependent Schrödinger equation starting
from the reactant state ensemble [29].

It is necessary to turn our attention to the fact that
actually, experiments on tunneling are related not to an
independent single electron but to an ensemble of elec-
trons or of electron states. Moreover, it should be con-

sidered that the conventional theory cannot explain as
yet in a general way the behavior of current across the
barrier in the whole domain of variability of factors such
as bias voltage and temperature.

The purpose of our work is to elucidate that tunneling
is not a pure quantum mechanical effect but a quantum
statistical hybrid effect. Based on quantum statistical
approach, we satisfactorily explain the main characteris-
tics of tunneling by embracing all the quantum statistical
factors. Importantly, based on the statistical formalism
of quantum mechanics presented already [32], we produce
clear results showing the quantum statistical nature and
the characteristics of current across the barrier.

II. RESULTS

In the case of the absence of bias voltage, the cross
flow of thermionic electrons in the barrier balances. In
the presence of bias voltage, the balance breaks down, so
the drift current in the barrier occurs. Based on quantum
statistics, we wrote the current density for this case as

jst = 2AT 2 exp

(
− Φ

kT

)
sinh

(
Ua
kT

)
. (1)

Here, the subscript st signifies the statistical origin,
or thermionic. In addition, the bias voltage changes the
density of electrons capable of surmounting the barrier on
both sides and as a result the gradient of electron density
appears. It causes the diffusion current and therefore this
effect plays the role of changing the heights of the barrier
on both sides. In this case, Ua in Eq. (1) can be replaced
simply with Ua + Ug to be

jst = 2AT 2 exp

(
− Φ

kT

)
sinh

(
Ua + Ug
kT

)
. (2)

To obtain the additional voltage Ug, we solved in con-
sideration of the electron density in the barrier region the
Poisson equation:

d2ϕ

dx2
= − ρ

ε0
.

Supposing the linearity of the charge density in the bar-
rier region, we determined the potential difference be-
tween the edges of the barrier:

4ϕ = − 1

ε0

(ρl
3

+
ρ0

6

)
l2. (3)

As a consequence, the additional voltage due to the gra-
dient of charge density has been determined as

Ug = −e4ϕ =
e

ε0

(ρl
3

+
ρ0

6

)
l2. (4)

The obtained result shows that the thinner the width of
the barrier is, the larger the current in the barrier, which
explains a main character of tunneling as well.
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Another effect of quantum origin related to the barrier
width has been clarified. Taking into account the general
form of the wave function in phase space, we set up the
quantum constraint in the barrier:∫ l

0

p(x)dx =

∫ l

0

√
2m [E − U(x)]dx = nh, (5)

where E is the total energy of an electron determined by
applied voltage and U(x), the potential in the barrier. In
terms of this constraint, quantum characteristic of tun-
neling is clarified. By introducing the definition of the
mean value of momentum of an electron in the barrier:

p̄ =

∫ l
0
p(x)dx

l
=

∫ l
0

√
2m[E − U(x)]dx

l
, (6)

the quantum constraint is represented as

p̄l = nh.

An electron satisfying this condition is to be in a quantum
resonance state in the barrier, in which case the current
is increased.

We explained this fact in a semi-quantitative way. The
current density obtained by the statistical consideration
is represented with respect to momentum p as

jst ∝ sinh(aUa) = sinh(bp2). (7)

The current-voltage characteristic is depicted in Fig. (1).
The axes of coordinate are marked in a relative measure.

FIG. 1: Current density of statistical origin in the barrier

On the other hand, the current of statistical origin un-
dergoes a kind of filtering due to the quantum constraint
in the barrier to be resonated. This filtering effect mod-
ulates the statistical current density. We represented the
modulation coefficient characterizing the filtering as the
following mathematically modelled relation:

η =
∑
n

Cn exp
(
−βn (Ua − Un)

2
)
. (8)

Eq. (8) is visualized in Fig. 2, taking one peak in view
of the short-range characteric of the exchange-correlation
interaction. In addition, we include in Ug the effect due to

FIG. 2: modulation-voltage due to condition of quantum
resonance in barrier

the exchange-correlation interaction of electrons, which
effect inherent to many-electron systems plays the role
of lowering the barrier height. The exchange-correlation
interaction is evaluated by

Exc = −Ae
2 {1− cos[(k −K)l]}

2l(k −K)2
.

In the end, the resultant current density filtered accord-
ing to the condition of quantum constraint is represented
as

j = ηjst. (9)

This must be just the tunnel current density in the con-
ventional sense. The resultant current density according
to applied voltage is depicted in Fig. 3.

Fig. 3 is in good agreement with the current-voltage
characteristic of the tunneling diode that exhibits a max-
imum followed by a minimum and subsequently an ex-
ponential increase [3]. Ultimately, all the properties of
tunneling have been explained consistently without vio-
lating energy conservation. Based on our work, hereafter,
tunneling is understood to be the phenomenon related to
the current across the barrier occurring in case the bias
is lower than the barrier height. In this case, the current
resonance due to the quantum constraint and electronic
correlation plays a key role in the increase in current
across the barrier.
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FIG. 3: Resultant current density according to applied volt-
age

III. DISCUSSION

A. Necessity of improving understanding of
tunneling

Obviously, there is a diversity of views on the mecha-
nism of tunneling. Since these views are not in harmony
with one another, it is necessary to achieve consensus
on the mechanism of tunneling. The conventional expla-
nation of the tunnel effect is based on a solution of the
Schrödinger equation subject to boundary conditions re-
lated to a barrier region and two free-motion regions. Fig.
4 shows these regions in the case of the square barrier.
The transmission factor for tunneling through the square
barrier:

T (E) =

{
1 +

1

4

[
Φ2

E(Φ− E)

]
sinh2 αl

}−1

(10)

gives a plausible explanation of main characteristics of

the tunnel effect. Here, α =

√
2m(Φ−E)

~ . For high, wide
barriers, we simplify the formula as

T = T0e
− 2

~

√
2m(Φ−E) l. (11)

Thus, for barriers of an arbitrary form, we have

T = T0e
− 2

~
∫ l
0

√
2m[U(x)−E]dx.

However, the conventional interpretation of the tunnel ef-
fect encounters serious problems related to physical foun-
dations. This is because it violates the fundamentals of
quantum mechanics and the law of energy conservation
as a universal law of physics. To review this problem, it
is necessary to reconsider the solution of the Schrödinger
equation in the region of potential barrier.

From Fig. 4, the Schrödinger equation in a square
barrier region is represented as

− ~2

2m
∆ψ + Φψ = Eψ, (12)

where Φ is the barrier height. This equation reflects the
correspondence principle for the energy relation:

E =
p2

2m
+ Φ. (13)

In other words, the total energy of an incident electron
before a barrier should equal the sum of the kinetic en-
ergy of the electron in the barrier and the energy which
the electron loses in the barrier. Therefore, the kinetic
energy must be positive also in the barrier. If the bar-
rier height is higher than the total energy of a particle,
its kinetic energy in the barrier should be negative. For
the negative kinetic energy, two cases are possible: one
is the case where the momentum of a particle is purely
imaginary and the other is the case where the mass of
the particle is negative.

But both the cases are not allowed because they are
physically meaningless. Above all, the momentum of
a particle is never imaginary because of the Hermitian
property of the momentum operator. Thus, the kinetic
energy of negative value is inconsistent with quantum
theory. This fact is enough to understand that the con-
ventional method for describing tunneling has an incor-
rect starting point.

Let us consider the problem of negative kinetic energy
in more detail. The wave functions for the regions in Fig.

FIG. 4: A barrier (II) and two free-motion regions (I and III):
A free electron of total energy E in region I is incident upon
the barrier of potential Φ, i.e., region II . The transmitted
electron moves freely in region III.
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4 are represented respectively as

ψI = eikx +B1e
−ikx

ψII = A2e
iKx +B2e

−iKx

ψIII = A3e
ikx

 , (14)

where k =
√

2mE
~ and K =

√
2m(E−Φ)

~ . All things con-
sidered, Eq. (14) states that particles do not lose their
energy in the barrier and the barrier performs only the
role of reflecting particles.

At its face value, Fig. 4 says that at point 0, an electron
loses energy as much as Φ, and then at point l, it gains
energy as much as Φ. Therefore, the energy of the elec-
tron remains unchanged after having passed through the
barrier. In the end, the barrier has no effect on the dy-
namical state of the electron besides changing the prob-
ability of transmission. ψIII in Eq. (14) illustrates this
fact. In fact, k is the same before and after the barrier.

But in the true sense, an electron in region III should
possess kinetic energy E −Φ, since it has already passed
through the barrier. To describe this process correctly,
Fig. 4 should be replaced by Fig. 5. Correspondingly,

FIG. 5: A barrier (II) and two free-motion regions (I and III):
A free electron of total energy E in region I is incident upon
the barrier of potential Φ, i.e., region II . The transmitted
electron moves freely with kinetic energy E −Φ in region III.
The red line denotes the potential energy.

Eq. (14) should be replaced by

ψI = eikx +B1e
−ikx

ψII = A2e
iKx +B2e

−iKx

ψIII = A3e
iKx

 . (15)

On the other hand, it is necessary to reconsider the con-
tinuity condition. We conventionally takes the continuity
condition as

ψI|x=0 = ψII|x=0

ψII|x=l = ψIII|x=l

ψ
′

I|x=0 = ψ
′

II|x=0

ψ
′

II|x=l = ψ
′

III|x=l

 . (16)

However, it is more reasonable to impose the continuity
condition on the boundaries in terms of the continuity of
the wave function and probability current density. Then
we can write the continuity condition otherwise as

ψI|x=0 = ψII|x=0

ψII|x=l = ψIII|x=l

jI|x=0 = jII|x=0

jII|x=l = jIII|x=l

 . (17)

Evidently, Eqs. (16) and (17) are not identical. Really,
Eq. (17) is more reasonable than Eq. (16). This shows
that the starting point of the conventional interpretation
is not correct.

The negative kinetic energy implies that in the
Schrödinger equation in the barrier:

− ~2

2m
∆ψ = (E − Φ)ψ,

E−Φ is negative. According to the law of energy conser-
vation, the total energy of the electron behind the barrier,
i.e., in region III should become E − Φ. This indicates
that the kinetic energy of the electron behind the barrier
should be negative. However, the conventional theory
supposes that the kinetic energy of the electron in re-
gion III is equal to that before the barrier. Obviously,
it is the violation of the law of energy conservation, thus
physically inconsistent.

It is instructive to recall the following fact. If negative
E − Φ were permitted, for the wave equation for a free
particle,

− ~2

2m
∆ψ = Eψ,

a negative E should be admitted. Obviously, it is phys-
ically impossible because it means that the de Broglie
wave damps out or increases spontaneously in a free
space. Therefore, the Schrödinger equation has physical
meaning only for positive E −Φ. Of course, purely from
the mathematical point of view, we may obtain a solution
of the Schrödinger equation violating the energy conser-
vation law. However, the case is no more than a purely
mathematical instance, so we must necessarily examine
whether obtained solutions satisfy physical requirements.

On the other hand, the fact that the Hamilton operator
is commuted with itself is sufficient to understand that
the energy conservation law should hold exactly at every
instant in microscopic systems. In fact, for a stationary
state, we have

dĤ

dt
=

1

i~
[Ĥ, Ĥ] = 0.

This indicates energy conservation.
Next, it is unreasonable to justify the violation of en-

ergy conservation by means of the uncertainty relation.
The two laws, i.e., the law of energy conservation and the
uncertainty relation must hold together with each other.
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In this connection, it is necessary to recall the conven-
tional interpretation. The conventional interpretation is
described as follows [30]. The kinetic energy T = p2/2m
is a function of momentum. Therefore, according to the
uncertainty relation 4x ·4p ≥ ~, it is impossible to split
the energy precisely into E = T + U . It would seem
that localizing a particle beyond the classically permis-
sible region implies the violation of energy conservation.
However, this is not the case. If we try to localize the
particle (i.e., concentrate its wave function) in the small
tails of the function ψ, the uncertainty of momentum in-
creases to a point where the new total energy exceeds
the value of the potential energy U(x). Thus, from the
point of view of energy, the particle is allowed to take a
x value beyond the classically permitted region. In any
case, it is the wave character that allows the penetration
into potential barriers and, finally, its tunneling [30].

The following reasoning refutes the above description.
Contrary to the above argument, it is possible to divide
the energy precisely into E = T +U . This is because the
total energy E is constant according to the Schrödinger
equation for stationary state and the potential energy
U(x) is a definite function of x. So in the case of a finite
square barrier, the potential energy is constant. Thus,
the kinetic energy has a definite value. What varies is
the probability density depending on position, which is
due to the wave property. From the above argument, it is
impossible to imagine a quantum effect which causes the
energy of an electron to surpass the barrier height. We
understand the uncertainty relation based on the ensem-
ble interpretation, specifically, in terms of the relation
between the distribution of position and that of momen-
tum [31, 32]. This understanding denies the conventional
interpretation of tunneling based on the uncertainty rela-
tion. Since the conventional theory permits purely imag-
inary momentum inconsistent with the Hermitian prop-
erty of the momentum operator, any subsequent discus-
sions are unnecessary. Evidently, any quantum observ-
ables should always be real.

It is necessary to examine the physical meaning of the
square potential barrier. As mentioned above, the square
potential barrier carries the meaning of the loss of energy
at the beginning of the barrier and then the gain of energy
at the end of the barrier. This indicates the lack of the
change in dynamical state of transmitted electrons. In
the end, the square barrier is meaningless. On the other
hand, the square potential barrier purports a constant
potential inside the barrier. Since the constant potential
does not generate force, it cannot affect the energy of a
particle inside the barrier regardless of the width of po-
tential barrier. However, according to the conventional
interpretation, the probability of tunneling depends on
the width of barrier. The possible effect of the width
of barrier in the quantum sense is the constraint rele-
vant to the de Broglie wavelength of an electron. In fact,
the width of barrier plays only the role of selecting the
de Broglie wavelengths of electrons commensurate to the
barrier. Consequently, an electron in the potential bar-

rier should be considered to be in a state of free motion
except for the quantum constraint due to the wave na-
ture. But the conventional theory does not describe such
a mechanism. It is reasonable to consider that the poten-
tial in the barrier in general is dependent on coordinate.

According to the conventional theory, the wave func-
tion inside the barrier has the form of ψII = A2e

−χx +

B2e
χx where K =

√
2m(E−Φ)

~ = iχ. Hence, it follows
that since χ is real, the probability current density inside
the barrier vanishes according to

jII =
i~

2m

(
ψII

dψ∗II
dx
− ψ∗II

dψII

dx

)
.

It violates the continuity condition.
The conventional interpretation of tunneling cannot

give the reasonable explanation for electron of higher en-
ergy than the top of barrier. Actually, with the transmis-
sion factor for tunneling through the barrier, i.e., Eqs.
(10) and (11), it is not possible to give reasonable in-
terpretation of tunneling. This is because in case E is
higher than Φ, the transmission factor becomes complex
number. In fact, Eqs. (10) and (11) are derived from the
ratio of transmitted current density jt to incident current
density ji:

D =
jt
ji
,

so they should be real. Eventually, D of a complex value
is inconsistent from the mathematical aspect.

As an important problem, it is necessary to reveal
whether the tunnel effect is associated with a single elec-
tron or statistical ensemble of electrons. In this connec-
tion, we should note that we always make an experiment
with electron ensemble but not one electron. Even for
one electron confined in a certain region, such an elec-
tron cannot be considered a free particle, since the elec-
tron interacts ceaselessly with surrounding system, i.e.,
many-particle system, so we should consider that it exists
in a set of statistical states undergoing quantum fluctu-
ation. Such a state should be represented with the help
of the density matrix, Ψ =

∑
nWn|ψn〉〈ψn|. Even in the

case of cryogenic phenomena such as the tunnel effect in
superconductors, it means not exactly the absolute zero-
point state.

It is important to consider that every electron does
not possess the total energy as determined only by a bias
voltage. Electrons constitute a statistical ensemble by
interacting with one another and therefore, it is natural
to consider that in the sense of probability there exist
the electrons that possess higher energy than that given
by the applied voltage. In contrast to this, there exist
the electrons of lower energy than that by applied volt-
age. It is both classical statistics and quantum statistics
that explain this fact. Therefore, temperature as a quan-
tity determining the statistical distribution of velocity of
electrons signifies nothing but the existence of electrons
capable of surmounting the potential barrier. In fact, the



7

number of electrons possessing higher total energy than
the barrier height is determined by temperature. There-
fore, for problems relevant to ensemble of electrons, tem-
perature should be necessarily considered, but the con-
ventional theory on tunneling is limited purely to the
realm of quantum mechanics. The above arguments lead
us to a reasonable interpretation of tunneling. First of
all, we can give clear answer to the question on whether
or not the conventional interpretation is correct. Obvi-
ously, tunneling is attributed to the quantum factor. But
the wave property of electrons can never result in a mir-
acle such that electrons might surmount a barrier with
lower energy than the height of the barrier. If tunneling is
possible, it means that work is performed but there is no
energy consumption. In the conventional interpretation,
one uses the solution to the Schrödinger equation with
negative kinetic energy and purely imaginary momentum
in the barrier region. This is inconsistent with the fun-
damentals of quantum mechanics, e.g., including the real
property of observables. In any case, the Schrödinger
equation must satisfy the energy conservation law and
fundamentals of quantum mechanics.

B. Consistent and general results

The conventional theory on the tunnel effect as a pecu-
liar quantum phenomenon seems to give a possible expla-
nation of the main features of the tunnel effect relative
to the height and width of barrier. However, more de-
tailed consideration leads to the understanding that the
conventional theory is not perfect. Obviously, the mech-
anism of tunneling still remains unclear.

To explain the mechanism of tunneling in a consistent
way, we adopted the quantum statistical approach. Tun-
neling attracts peculiar attention on the grounds that
electrons have a probability of passing through the bar-
rier even if the height of barrier is higher than the energy
due to an applied voltage. The smaller the difference
between the barrier height and the total energy of elec-
tron is and the thinner the barrier width is, the larger
the tunneling current. This shows the two main features
of the tunnel effect. For the purpose of explaining this
phenomenon, the conventional theory on tunneling states
that although the energy of an electron is lower than
the barrier height, the electron can tunnel through the
barrier with a definite probability thanks to the wave-
like property of electron. As it is, this implies that we
should take the physically meaningless solution of the
Schrödinger equation admitting of even the negative ki-
netic energy. For this reason, this interpretation is not
consistent with the quantum theory and violates energy
conservation.

In this work, we have satisfactorily explained the two
important characteristics of tunneling in line with the
law of energy conservation and quantum theory. Consid-
ering that tunneling pertains to the statistical ensemble
of electrons, we treated the tunneling current based on

the thermionic emission, current resonance in the barrier
and collective behavior of correlated electrons around the
barrier.

Our view is that tunneling is due to not only quantum
but also statistical characteristics of electrons. In this
connection, our method should be considered to belong
to such a category of picture as presented in [15–23].

According to our interpretation, the current across the
barrier depends on three factors. The statistical ensem-
ble of electrons is in an equilibrium state before applying
voltage. The electrons passing through the barrier exist
with a definite probability because the electron ensemble
corresponds to a statistical distribution. In an equilib-
rium state, the cross flows from both sides of a barrier
balance. If a voltage is applied, then the barrier heights
on both sides which electrons feel become different. Con-
sequently, the momentum distributions of electrons able
to surmount the barrier on both sides change, and as
a result the current in the forward direction occurs. As
shown in Eq. (1), the current increases with the behavior
of the exponential function according as the difference be-
tween the barrier height and the energy of electron due to
applied voltage decreases. This is the first origin respon-
sible for the current phenomenon in the barrier, which
does not assume quantum.

Meanwhile, a bias voltage results in the change in
the density of electrons which can surmount the bar-
rier. Therefore, the gradient of electric potential appears.
This gradient of electric potential makes the barrier lower
on the left side whereas higher on the right side. Thus,
the influence of applied voltage on the statistical distri-
bution of electron density increases the current through
the barrier. This is the second origin of the current phe-
nomenon in the barrier, which is not quantum as well.

On the other hand, the barrier imposes the quantum
constraint on the current across the barrier. The quan-
tum constraint which is determined by the relation be-
tween the electron momentum passing through the bar-
rier and the barrier width plays the role of making the
momentum distribution of the passing electron be raised
up. In other words, the thinner the width of the barrier
is, the higher the mean velocity of electrons. For this
reason, the barrier can be considered a quantum filter
to make the current increase. Based on the proposed
qualitative interpretation, we can describe the effect of
barrier width on the current across the barrier. On the
other hand, as a quantum effect, the exchange-correlation
interaction around the barrier which combines electrons
to form a chain of electrons behaving collectively results
in lowering the barrier height. These two effects are the
third origin of the current phenomenon in the barrier.

If temperature is very high, the current across the bar-
rier related to the difference Φ−Ua is insignificant, since



8

Eq. (1) is reduced to

jst = AT 2 exp

(
−Φ −Ua

kT

)[
1− exp

(
−2Ua
kT

)]
≈ AT 2

[
1− exp

(
−2Ua
kT

)]
≈ AT 2 2Ua

kT
=

2ATUa
k

.

(18)

Therefore, the current across the barrier increases with
temperature and the role of barrier is insignificant. This
means that in this case, the characteristic current phe-
nomenon due to the relation between the energy by ap-
plied voltage and height of barrier vanishes completely as
a consequence of being quenched by the increasing drift
current due to barrier-surmountable electrons.

In the case of very low temperature too, the charac-
teristic current related to the difference Φ−Ua vanishes,

since as
Φ −Ua

kT
→∞, the current becomes

jst = AT 2 exp

(
−Φ− Ua

kT

)[
1− exp

(
−2Ua
kT

)]
→ 0.

(19)
From Eq. (19), it is evident that the current across the
barrier of statistical origin would decrease with lower-
ing temperature, thereby approaching zero near absolute
zero. But in this case, the current of quantum origin
across the barrier, which is temperature independent,
gets rather higher.

Eqs. (1) and (2) shows that according as the applied
voltage gets higher, the influence of barrier gradually van-
ishes and thus in the case of Ua � Φ the total current
is dominated purely by the current determined only by
applied voltage, i.e.,

jst = AT 2

[
exp

(
−Φ −Ua

kT

)
− exp

(
−Φ + Ua

kT

)]
≈ AT 2 exp

(
Ua
kT

)[
1− exp

(
−2Ua
kT

)]
≈ AT 2 exp

(
Ua
kT

)
.

(20)

The hitherto described contents are limited to the sta-
tistical consideration. The main feature of tunneling is
due to quantum origin. The quantum condition given by
Eq. (5) and the exchange-correlation interaction cause
the effect increasing the current across the barrier. Es-
sentially, the quantum constraint reflects the periodicity
of quantum phase given by the barrier. This condition
is in common with studies for interpreting tunneling by
applying the quasi-classical approach in terms of Wigner
or Husimi function [15–17, 24, 25]. What should be em-
phasized here is that this periodicity condition is given
by the fundamental equation of the statistical formalism
in phase space presented previously by the authors. The
current of statistical origin across the barrier is filtered
and amplified by the ensemble of electrons entangled by
the exchange-correlation interaction.

The cold-field emission which occurs when applying a
strong electric field to a metal is considered to be due to

tunneling. For this case too, our approach is consistent,
if it is considered that electrons in metal should be in a
statistical state. Before an electric field is applied to a
metal, near the surface of metal there is a cross flow re-
sponsible for thermionic emission and electrons returning
to the metal by the image charge attraction. The bar-
rier is caused by the image charge attraction. This cross
flow is formed within a definite distance from the sur-
face, which is determined by the distribution of electrons
in the metal. By the application of an electric field, the
work function of electrons in the metal gets smaller, so
the distribution of electrons according to distance from
the surface of metal shifts to a new equilibrium state.
Thus, the range of cross flow is expanded. When this
range is stretched to the electrode, the current by the
emitted electrons emerges. This phenomenon can be ex-
plained quantitatively based on our theory. Furthermore,
the tunneling in ionization is explained in the same way
based on the ensemble of states as well.

According to our theory, α decay can be attributed to
a preformed particle rattling around within the nucleus
of the radioactive (parent) element, eventually surmount-
ing the potential barrier to escape as a detectable decay
product. While inside the parent nucleus, the α is virtu-
ally free, but nonetheless confined to the nuclear poten-
tial well by the nuclear force. But as a result of the in-
teraction between nuclear particles, the concentration of
energy on a particle inside the nucleus may arise and thus
this possibility provides the opportunity for the electron
to escape out of the nucleus. In this case, the escaping α
particle should have energies of narrow range related to
the height of the potential well, since the energies near
the top of the barrier have high probability. Such a view
leads to the reasonable explanation of the fact that all
particles emitted from any one source have nearly the
same energy and, for all known emitters, emerge with
kinetic energies in the same narrow range, from about 4
to 9 MeV. Once outside the nucleus, the particle expe-
riences only the Coulomb repulsion of the emitting nu-
cleus. The nuclear force on the α outside the nucleus is
insignificant due to its extremely short range. Due to the
stochastic process inside nucleus, α decay should exhibit
a wide range of half-life of the emitter. This is compatible
with the fact that in contrast to the uniformity of ener-
gies, the half-life of the emitter varies over an enormous
range-more than 20 orders of magnitude.

The main purpose of this work has been to demon-
strate that the phenomenon of current across the barrier
called tunneling is actually a quantum statistical hybrid
phenomenon beyond pure quantum realm. Our work has
unraveled some imperfect aspects of the conventional in-
terpretation and has offered a consistent and general for-
mulation for explaining the true mechanism of tunneling.
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IV. METHOD

A. Current of statistical origin

1. Bias current in barrier

Let us consider the tunnel effect from the point of view
of quantum statistics. Electrons, for instance, in metals
can be thought of to be an interacting system or open
system, and therefore its velocity distribution depends on
temperature. Consequently, there exist electrons which
have the energies able to surmount the barrier with a cer-
tain probability. Before applying a bias voltage, currents
toward both sides of barrier are in equilibrium. Fig. 6
shows merely the changes in the heights on both sides of
the barrier without considering a particular shape of the
barrier. Suppose that one applies the voltage, Ua making

FIG. 6: Variation in height of barrier on both sides due to
applied voltage. Ua denotes the variation in height of the
barrier by an bias voltage.

electrons move in the forward direction, which conveys a
lower energy than the height of barrier to the electrons.

Then for the electrons on the left side of the barrier,
the height of barrier becomes Φ−Ua and for the electrons
on the right side of barrier, Φ + Ua . Fig. 6 shows the
changes in the barrier heights on both sides, respectively.
If a bias voltage is applied, then the currents across the
barrier from both sides are shifted to a new equilibrium,
so the total current is not balanced. Since the current
for this case is thermionic, we calculate it by means of
the Richardson-Dushmann equation for current density
for the thermionic emission:

jt = AT 2 exp

(
− Φ

kT

)
. (21)

In case the forward bias is applied, the current density

in the forward direction is

j⇒ = AT 2 exp

(
−Φ −Ua

kT

)
, (22)

while the current density in the backward direction,

j⇐ = AT 2 exp

(
−Φ + Ua

kT

)
. (23)

Then the resultant current density in the forward direc-
tion can be evaluated from

jst = j⇒ − j⇐

= AT 2

[
exp

(
−Φ −Ua

kT

)
− exp

(
−Φ + Ua

kT

)]
= AT 2 exp

(
− Φ

kT

)[
exp

(
Ua
kT

)
− exp

(
−Ua
kT

)]
(24)

= 2AT 2 exp

(
− Φ

kT

)
sinh

(
Ua
kT

)
.

This is Eq. 1 that has been already shown.

2. Diffusion current

In addition to the drift current of statistical origin, an-
other physical effect should be taken into consideration.
A bias voltage changes the density of electrons capable of
surmounting the barrier on both sides and as a result the
gradient of electron density appears. It causes the diffu-
sion current and therefore this effect additionally change
the heights of the barrier on both sides. Fig. 7 shows the
variation in the barrier heights on both sides due to the
gradient of electron density.

In this case, Ua in Eq. (24) should be replaced with
Ua + Ug, so that

jst = 2AT 2 exp

(
− Φ

kT

)
sinh

(
Ua + Ug
kT

)
. (25)

To obtain Ug, we should solve the Poisson equation in
consideration of the electron density in the barrier region.
The Poisson equation in the barrier region is expressed
as

d2ϕ

dx2
= − ρ

ε0
. (26)

Supposing that the charge density in the barrier region
has such a linearity as

ρ(x) = ax+ b, (27)

Eq. (26) becomes

d2ϕ

dx2
= −ax+ b

ε0
. (28)
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FIG. 7: Variation in barrier heights on both sides of the
potential barrier due to applied voltage Ua and density gra-
dient. Ug is the variation in barrier height due to the density
gradient.

From Eq. (27), we have

ρ0 = b. (29)

At the end point of the barrier, the charge density is
determined as

ρl = al + ρ0. (30)

Thus, we identify

a =
ρl − ρ0

l
. (31)

By the Fermi-Dirac distribution, the electron density
can be expressed as

n =

∫ ∞
U

f(E)N(E)dE

=
4π(2m)3/2

h3

∫ ∞
U

(E − U)1/2

exp
(
E−Ef

kT

)
+ 1

dE, (32)

where Ef is the Fermi energy and U is Ua + Ug. Then,
integrating the Eq. (28), we obtain

dϕ

dx
= − a

2ε0
x2 − b

ε0
x+ c. (33)

Considering the boundary condition, we can determine
constant c. Since at the end of the barrier the intensity
of electric field due to charge gradient is zero, we get

dϕ

dx

∣∣∣∣
x=l

= − a

2ε0
l2 − b

ε0
l + c = 0. (34)

Thus, the integral constant c is

c =
a

2ε0
l2 +

b

ε0
l. (35)

Integrating Eq. (33), we obtain

ϕ(x) = − a

6ε0
x3 − b

2ε0
x2 + cx+ d. (36)

The potential at the end point of barrier is

ϕ(l) = − a

6ε0
l3 − b

2ε0
l2 + cl + d. (37)

Therefore, the potential difference between the edges of
the barrier is represented as

ϕ(0)− ϕ(l) =
a

6ε0
l3 +

b

2ε0
l2 − cl. (38)

Inserting the determined constants into Eq. (38), we get

4ϕ =
ρl − ρ0

6ε0l
l3 +

ρ0

2ε0
l2 −

[
1

ε0

(
ρl − ρ0

l

)
l2

2
+
ρ0

ε0
l

]
l

= − 1

3ε0
(ρl − ρ0)l2 − ρ0

2ε0
l2 = − 1

ε0

(ρl
3

+
ρ0

6

)
l2.

(39)

As a consequence, the additional voltage due to the
gradient of charge density is written as

Ug = −e4ϕ =
e

ε0

(ρl
3

+
ρ0

6

)
l2. (40)

Thus, Eq. (25) has been completely determined. From
Eq. (32), the charge densities at the edges of barrier are
expressed respectively as

ρ0 = −en0, ρl = −enl, (41)

where the electron densities are determined respectively
by

n0 =

∫ ∞
Φ−Ua

f(E)N(E)dE

=
4π(2m)3/2

h3

∫ ∞
Φ−Ua

(E − Φ + Ua)1/2

exp
(
E−Ef

kT

)
+ 1

dE, (42)

nl =

∫ ∞
Φ+Ua

f(E)N(E)dE

=
4π(2m)3/2

h3

∫ ∞
Φ+Ua

(E − Φ −Ua)1/2

exp
(
E−Ef

kT

)
+ 1

dE. (43)

As an example of using the approximate expression of
carrier density in completely degenerated semiconductor,
the electron densities can be expressed respectively as

n0 =
8π

3h3
(2m)3/2(Ef − Φ + Ua)3/2 , (44)

nl =
8π

3h3
(2m)3/2(Ef − Φ −Ua)3/2. (45)
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With the help of Eqs. (41), (44) and (45), ρ0 and ρl
are determined respectively as

ρ0 = −8πe

3h3
(2m)3/2(Ef − Φ + Ua)3/2, (46)

ρl = −8πe

3h3
(2m)3/2(Ef − Φ −Ua)3/2 . (47)

Thus, we have obtained the relation of the height varia-
tion of barrier to the difference between the charge den-
sities at the edges of barrier caused by an applied voltage
and have explained the dependence of current across the
barrier on barrier width. Inserting Eqs. (46) and (47)
into Eq. (40), we identify that the thinner the barrier is,
the larger the current. In this way, we can explain the de-
pendence of the current across the barrier on the barrier
width. In the end, it is Eq. 2 that has been explained.

B. Quantum effects in barrier

1. Current resonance due to quantum constraint in barrier

Based on the formalism of quantum mechanics in phase
space, the quantum characteristic of current across the
barrier can be satisfactorily interpreted. This tempera-
ture independent, purely quantum effect should be con-
sidered to correspond to the so-called tunneling. Let us
start by using the fundamental equation of quantum me-
chanics in phase space. According to the statistical for-
malism of quantum mechanics in phase space [32], the
equation for probability density is

∂ρ

∂t
= −1

2

∑
i

[
∂H

∂pi

∂ρ

∂qi
− ∂H

∂qi

∂ρ

∂pi

]
, (48)

where H is the Hamilton function. We suppose that the
current across the barrier is stationary. In this case, the
probability density is not dependent on time and thus,
the above equation is reduced to∑

i

[
∂H

∂pi

∂ρ

∂qi
− ∂H

∂qi

∂ρ

∂pi

]
= 0. (49)

This equation holds for the constant probability den-
sity. Generally, if the probability density is a function of
the Hamiltonian function, then the equation is satisfied.
The case is verified by∑

i

[
∂H

∂pi

∂ρ

∂qi
− ∂H

∂qi

∂ρ

∂pi

]
=
∑
i

[
∂H

∂pi

∂ρ

∂H

∂H

∂qi
− ∂H

∂qi

∂ρ

∂H

∂H

∂pi

]
=

∂ρ

∂H

∑
i

[
∂H

∂pi

∂H

∂qi
− ∂H

∂qi

∂H

∂pi

]
= 0. (50)

Therefore, the probability density in a stationary state
is expressed as

ρ = ψ∗ψ = f(H), (51)

where ψ is the wave function defined in phase space.
Hence, the probabilistic amplitude is represented as

ψ0 =
√
ψ∗ψ =

√
f(H). (52)

As a result, a solution to the wave equation for sta-
tionary states in general takes the following form:

ψ(x, p) = ψ0(H(x, p)) exp

[
i

~

∫ x

0

p(x′)dx′
]
. (53)

It is necessary to note that the phase part of this equa-
tion is identified with that of the wave function in quasi-
classical approximation. From Eq. (53), it is obvious
that the barrier region should satisfy the following con-
straint:∫ l

0

p(x)dx =

∫ l

0

√
2m [E − U(x)]dx = nh, (54)

where E is the total energy of an electron determined
by applied voltage and U(x), the barrier potential. This
constraint stands for the periodicity condition of the wave
function within the barrier, which is distinguished from
the Wentzel-Kramer-Brillouin approximation (WKB ap-
proximation) according to which the transmission factor
of a barrier is proportional to

exp
(
− 2

~
∫ √

U(x)− Edx
)

.

With the help of this constraint, the quantum char-
acteristic of tunneling can be clarified. From Eq. (54),
it follows that the kinetic energy of an electron passing
through the barrier should be higher than the height of
barrier. For the purpose of a qualitative consideration,
we define the mean value of momentum of an electron in
a barrier region as

p̄ =

∫ l
0
p(x)dx

l
=

∫ l
0

√
2m[E − U(x)]dx

l
.

According to Eq. (54), the following condition should be
satisfied.

p̄l = nh.

From this, the mean momentum of an electron sur-
mounting the barrier should be quantized as

p̄n =
h

l
n. (55)

This condition relevant to momentum characterizes the
current resonance in the barrier. The minimum momen-
tum of an electron able to pass through the barrier is
represented as

p̄ =
h

l
. (56)
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Hence, it follows that the thinner a barrier is, the
higher the velocity of an electron passing through it
should be. A barrier can be regarded as a quantum fil-
ter which connects the two free-motion regions and de-
fines quantized momenta necessary to pass through the
barrier. With a good reason, it can be considered that
the electron density in a barrier region is almost in a
saturation state and thus, is constant. This is because
the interaction between electrons and the applied volt-
age functions as a source complementing the electrons
satisfying the quantum constraint in the barrier.

From the relation of current density:

j = ρυ, (57)

the quantity contributing to the current density is as-
sessed principally as the velocity of electron, υ. Accord-
ing to the quantum constraint, Eq. (55), the thinner
the width of barrier is, the larger the momentum which
the barrier filters, and as a consequence the current is
increased.

2. Exchange-correlation interaction and collective behavior
of electrons around barrier

We assume that the exchange-correlation interaction
is an important factor contributing to lowering the bar-
rier height. Two ensembles of electrons before and after
the barrier are correlated, or entangled, so the interac-
tion between them helps electrons of low energy to ac-
quire the additional energy necessary to overcome the
barrier from the correlated electrons of high energy after
the barrier. Then it depends on the distance between
the incident electrons and the transmitted electrons, i.e.,
the width of the barrier: the thinner the width of the
barrier is, the stronger the exchange interaction. Thus,
electrons as an integrated entity around the barrier coop-
erate with one another to overcome the barrier. In this
case, the quantum constraint in the barrier is indispens-
able. This mechanism of the resonant current across the
barrier attributed purely to quantum property satisfies
energy conservation unlike the conventional interpreta-
tion of tunneling.

Based on Ref. [33], it is possible to evaluate the
exchange-correlation energy combining electrons around
the barrier as

Exc =− 1

2

∑
j 6=i

[
δ
(
msi ,msj

)
·

∫
ψ∗i (r1)ψ∗j (r2) Ĥ12ψi (r2)ψj (r1) θ(r1, r2)dτ1τ2

]
,

(58)

where ψi and ψj are the one-electron wave functions for
states before and after the barrier, msi ,msj the spin
quantum numbers for states before and after the barrier,
respectively, Ĥ12 the operator of interaction between two

electrons, and θ(r1, r2) the correlation hole function. Set-

ting ψi(r) = eikx, ψj(r) = eiKx, Ĥ12 = e2

x2−x1
where k and

K are the wave number of electron before and after the
barrier, we write the energy of the exchange-correlation
interaction as

Exc =− 1

2

∑
j 6=i

[
δ
(
msi ,msj

)
·

∫ ∫
e−ikx1e−iKx2

e2

x2 − x1
eikx2eiKx1dx1dx2

]
.

Introducing parameter A taking synthetically into con-
sideration the spin correlation of the many-electron sys-
tem, we write

Exc = −Ae
2

2

∫ ∫
ei(k−K)(x2−x1)

x2 − x1
dx1dx2.

Taking into consideration that the exchange-correlation
interaction is the interaction between electrons which are
spaced about the width of the barrier apart, we set x2−x1

approximately as the width of the barrier, l to rewrite

Exc ≈ −
Ae2

2l

∫ l

0

∫ l

0

ei(k−K)(x2−x1)dx1dx2.

By computing the integral and making A embrace all
approximate factors, we obtain the final result,

Exc = −Ae
2 {1− cos[(k −K)l]}

2l(k −K)2
.

This outcome manifestly shows that the smaller the
barrier width and the difference between the energy of
electrons and the height of barrier are, the larger the
exchange-correlation interaction. Therefore, electrons
are to behave collectively before and after the barrier by
combining one another. This effect should be considered
to perform the role of lowering the height of the barrier.
Then bias Ua includes Exc.

Meanwhile, it is possible to explain the current-voltage
characteristic of the tunnel effect. Originally, according
as the momentum of electrons due to the bias voltage ap-
proaches p̄, the current through the barrier increases in
compliance with the quantum constraint, Eq. (55) but at
the next stage according as the increasing momentum of
electrons gets away from p̄ the current across the barrier
decreases gradually as a result of the breach of the quan-
tum constraint. This gives a good explanation to the
question on why a peak occurs on the current-voltage
characteristics for tunneling.

It is possible to show this fact in a semi-quantitative
way. The current density obtained through the consider-
ation of the statistical relation can be represented with
respect to momentum as

jst ∝ sinh(aUa) = sinh(bp2). (59)

This reflects the fact that the increase in kinetic energy
of an electron is proportional to applied voltage, i.e.,
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Ua ∝ p2, where Ua indicates −eV . The current-voltage
characteristic is depicted in Fig. (1).

On the other hand, the current of statistical origin un-
dergoes a kind of filtering due to the quantum constraint
in the barrier as determined by Eq. (54). This filtering
effect modulates the statistical current density. In line
with physical meaning, one can suppose the modulation
coefficient by which the statistical current is multiplied.
The modulation coefficient characterizing the filtering of
statistical current can be represented as the following
mathematically modelled relation:

η =
∑
n

Cn exp
(
−αn

(
p2 − p2

n

)2)
,

where pn denotes the extreme values of momentum of
electron corresponding to the quantum constraint. Con-
sidering U ∝ p2, the above relation can be recast as
modulation-voltage relation

η =
∑
n

Cn exp
(
−βn (Ua − Un)

2
)
, (60)

Eq. (60) is sketched in Fig. 2. Considering that the
exchange-correlation interaction is effective within the
range comparable to the de Broglie wavelength, we can
take one peak for the modulation corresponding to cur-
rent resonances. Then the resultant current density
across the barrier, filtered by the condition of current
resonance, is evaluated from

j = ηjst. (61)

The current density according to applied voltage is de-
picted in Fig. 3. The figure is in good agreement with the
current-voltage characteristic of the tunnel diode. This
demonstrates that our quantum statistical analysis is rea-
sonable. Thus, it is revealed that we have referred to
the current phenomena due to such a quantum cause as
tunneling. Unlike the conventional theory, our approach
reasonably explains the characteristic of current change
in case the energy by applied voltage is higher than the
barrier height as well.

This approach gives a reasonable explanation for the
resonant tunnel effect as well. From the quantum con-
straint, Eq. (54), it is obvious that in the region where
barriers and wells alternate periodically, the quantum
constraints for every region should be satisfied, i.e.,∫ l

(k)
f

l
(k)
i

p(x)dx =

∫ l
(k)
f

l
(k)
i

√
2m[E − U(x)]dx = nkh, (62)

where l
(k)
i is the first boundary of the kth barrier or well

and l
(k)
f , its final boundary. Only electrons satisfying

these constraints all together can pass through the whole
region of barriers and wells. Therefore, barriers and
wells should be regarded as playing the role of a kind of

resonance which filters electrons in agreement with the
quantum constraint for passing through. For this reason,
it is possible that in a multiple barrier-well region, the
quantum-selective effect, i.e., the sharp resonance effect
occurs. Ultimately, all the properties of tunneling have
been explained in a consistent way.

V. CONCLUSION

Our aim has been to elucidate the mechanism of tun-
neling in a consistent way and to explain general char-
acteristics of tunneling based on the quantum statistical
theory. For this reason, we adopted a quantum statisti-
cal approach distinct from the conventional one. Based
on quantum statistical interpretation, we have satisfac-
torily explained the statistical and quantum aspects of
the current phenomenon in the barrier. The adopted ap-
proach encompasses the thermionic emission due to sta-
tistical ensemble of electrons or electron states and the
quantum resonant current and the exchange-correlation
interaction.

As a main motivation of our work, it has been analyzed
that the conventional explanation of the tunnel effect vi-
olates the universal law of energy conservation and is
incompatible with quantum theory. Our theory satisfies
the energy conservation and quantum theory together.
This is because we took into consideration the statistical
aspect of the current phenomenon in the barrier.

The main conclusion of our work is that the phe-
nomenon of the current across the barrier should be ex-
plained based on quantum statistics as well as quantum
mechanics. Such a perspective has enabled us to eluci-
date the statistical and quantum aspects of the current
across the barrier, thus making us unravel the essence of
tunneling. Moreover, it should be emphasized that our
work has successfully explained the current phenomenon
in the barrier in a general way in the whole range of ap-
plied voltage.

Ultimately, our work makes it possible to solve some in-
tractable problems such as the violation of the law of en-
ergy conservation arising from the conventional approach
to tunneling and the direct contradiction to quantum the-
ory, and offers the possibility of leading to the innovation
in the picture of tunneling. We expect our work to sub-
stantially contribute to the elucidation of the physical
nature of tunneling and also to the researches on tunnel-
ing of complex systems including the resonant tunneling
effect.
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