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Abstract

We present an alternative quantum-statistical approach to the electron tunneling through the potential barrier,
which is distinguished from the conventional interpretation. In our approach, the tunnel effect is treated in both
the statistical aspect and quantum aspect. The conventional interpretation of the tunnel effect based purely on the
wave property of a single electron cannot elucidate satisfactorily the dynamics of electron motion in the potential
barrier because the interpretation violates the universal law of energy conservation, just as the subtle term ‘tunnel
effect’ implies. In this work, we clarify the fact that the tunnel effect has statistical aspects too, and explain it both
by applying the electron statistics and by considering the quantum restriction by the potential barrier on electron
surmounting the barrier instead of tunneling. Therefore, our interpretation satisfies the law of energy conservation and
naturally explains all the characteristics of tunneling including the influence of temperature as the statistical aspect
as well. The consideration of the quantum restriction that is determined by potential barrier leads to a satisfactory
explanation of the quantum properties of tunneling. Finally, we offer a complete and general explanation of the tunnel
effect as a phenomenon of quantum plus statistical origin, thus demonstrating that the tunneling substantially depends
on quantum-statistical nature.

Key words: Quantum tunneling dynamics, Entangled trajectory, Husimi function, Quasi-classical approach to
tunneling

1. Introduction

Tunneling experiments are famous for the claim that electrons with energy insufficient to surmount a potential bar-
rier can cross it. One of two types of tunneling experiments is the tunneling from a superconductor to a superconductor
with a thin insulator separating the two superconductors. As the other type of tunneling, the Giaever tunneling (single-
particle tunneling) is the tunneling of single quasi-electrons from an ordinary metal to a superconducting metal [1].
As a pure quantum-mechanical phenomenon, tunneling plays an important role in elucidating the physical processes
in microscopic scales.

The conventional description of the tunnel effect is based on solution of the Schrödinger equation subject to
boundary conditions related to a barrier region and two free-motion regions. The expression for the transmission
coefficient of tunneling through the rectangular potential barrier:

D = D0e−
2
~

√
2m(U0−E) l,

or, that through a barrier of an arbitrary form:

D = D0e−
2
~

∫ l
0

√
2m[U(x)−E] dx

gives a plausible explanation of main characteristics of the tunnel effect.
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However, the pure quantum interpretation of the tunnel effect encounters a serious problem concerning physical
concepts. This is because this interpretation violates the law of energy conservation as a universal law of physics and
does not reflect the temperature dependence at all, and cannot explain the characteristics of the tunneling current in a
whole range of applied voltage.

In order to make dynamics of the tunneling intuitive and intelligible, there have been developed alternative meth-
ods. The quasi-classical approaches of quantum mechanics in phase space have been investigated, which aim to
overcome the above-mentioned difficulties by making use of the Wigner or Husimi function useful for physical pic-
ture [2, 3, 4]. The trajectory-based quasi-classical approaches have been used as an effective mean to treat the quantum
dynamical processes relevant to tunneling [5, 6, 7, 8, 9]. Miller had first introduced an approach to treating a collision
of diatom with an atom by means of complex classical dynamical method [7].

The quasi-classical approach based on the Husimi function has been widely used in the numerical simulation of
tunneling and further developed by Adachi. Tunneling in systems which is not integrable too has been investigated by
Shuodo and his coworkers [8].

Meanwhile, the quantum maps method for time-continuous systems based on quasi-classical approach has been
developed by Takahashi and Ikeda [9].

The entangled-trajectory molecular dynamics (ETMD) is a quasi-classical approach which has been newly de-
veloped based on the quantum phase-space theory [6, 10, 11, 12, 13, 14, 15, 16]. This approach has become a
powerful tool for solving the quantum Liouville equation numerically and also turns effective in elucidating the
dynamical processes of quantum characteristics such as the tunnel effect by using entangled trajectories in phase
space. Comparing to the classical molecular dynamics, the entangled-trajectory molecular dynamics takes some ad-
vantages, i.e., it gets the quantum effect in evolution and requires lesser trajectories in finding the convergent value
[12, 13, 14, 15, 16]. In various fields of quantum dynamics, the results obtained by applying ETMD approaches
have been reported [6, 10, 11, 17, 18]. These approaches are based on utilization of the Wigner function which may
produce negative values at some points. This shortcoming is an obstacle to resolving quantum-mechanical problem
perfectly and correctly [19].

On the other hand, the Husimi function-based approach is a new resolution proposed in an attempt to find the
correct information related to tunneling, since the Husimi function is positive at every point and guarantees accuracy.
Several works using this approach have been reported [20, 21, 22].

In spite of the advances, several difficulties with interpreting the tunnel effect by using physical intuition still
remain uncontrolled. For the conventional interpretation, it is highly questionable that the solution of the Schrödinger
equation in the barrier region violates the law of energy conservation. As far as this problem has not been resolved,
we are not justified in saying that a physically reasonable interpretation of tunneling has been offered.

Next, another problem is whether the tunneling is a quantum effect by a single electron or quantum-statistical effect
by electron ensemble. If tunneling is attributed also to the electron ensemble, then it should depend on temperature.
Noticeably, the conventional interpretation of tunneling is independent of temperature, so the effect is considered to
be important mostly at low temperature. However, many studies of tunneling at room temperature in chemical and
biochemical systems as well as processes at cryogenic temperature have been reported [23, 24, 25]. The most general
and rigorous approach is to apply quantum dynamics, i.e., to solve the time-dependent Schrödinger equation starting
from the reactant state ensemble [25]. This indicates the significance of the time dependence of the tunnel effect.

It is necessary to turn our attention to the fact that actually, experiments on tunneling is not related definitely to
a single electron but deals with an ensemble of electrons. Moreover, it should be considered that the conventional
interpretation cannot explain as yet in a general way the behavior of current through the barrier in the whole domain
of variability of factors relevant to tunneling such as voltage and temperature.

The purpose of our work is to elucidate that tunneling is not a pure quantum-mechanical effect but a quantum-
statistical hybrid effect. On the basis of quantum-statistical approach, we satisfactorily explain the main characteristics
of tunneling by embracing all the quantum-statistical factors. Importantly, based on the statistical formalism of quan-
tum mechanics presented already [26], we produce clear results showing the quantum nature and characteristics of the
tunneling current through the barrier.

The remaining paper is organized as follows. In Sect. 2, we describe why a new consistent interpretation of the
tunnel effect is needed, how to consider the statistical aspect of the tunnel effect and how to explain the quantum
nature of the tunneling. In Sect. 3, the results and discussion are given. The paper is concluded in Sect. 4.
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2. Interpretation of tunneling based on quantum–statistical approach

2.1. Necessity of improving interpretation of tunneling
The conventional theory on the tunnel effect as a peculiar quantum phenomenon gives a possible explanation of the

main feature of the tunnel effect. However, more detailed consideration leads to the recognition that the conventional
methodology is not perfect.

First, the conventional interpretation of tunneling violates energy conservation. To begin with, in order to review
this point, it is necessary to assess whether the solution of the Schrödinger equation in the region of potential barrier
is physically meaningful.

Let us consider this point in detail.
The Schrödinger equation in a barrier region is represented as

−
~2

2m
∆ψ + Uψ = Eψ, (1)

where U is the potential energy in the barrier region. This equation is obtained by applying the correspondence
principle to the energy relation:

E =
p2

2m
+ U. (2)

This fact shows that the law of energy conservation must hold also in the microscopic world. If the height of barrier is
higher than the total energy of a particle, its kinetic energy in the barrier should be negative. For the negative kinetic
energy, two cases are possible: one is the case that the momentum of a particle is purely imaginary and another is the
case that the mass of the particle is negative. But both are not allowed in any physical sense and thus such physically
meaningless motions in the potential barrier are impossible.

Indeed, we cannot imagine an electron of negative kinetic energy moving through the barrier because the case is
not consistent with the physical meaning of the Schrödinger equation and leads to the violation of energy conservation.
In fact, if negative kinetic energy were possible, then in the Schrödinger equation for a free particle,

−
~2

2m
∆ψ = Eψ,

negative E should be allowed, which is physically inconsistent.
In any case, the Schrödinger equation should satisfy the energy conservation law. Recalling the fact that the

Hamilton operator is commuted with itself is sufficient to understand that the energy conservation law should be
satisfied at every instant in the microscopic system. In fact, for a stationary state, we have

dĤ
dt

=
1
i~

[Ĥ, Ĥ] = 0.

This relation tells us that just at every instant the energy of microscopic particles should be conserved.
Thus, it is obvious that energy conservation should be satisfied for microscopic systems as well as macroscopic

ones. Of course, purely from the mathematical point of view, it is possible to obtain a certain solution to the
Schrödinger equation violating the energy conservation law. However, the case is no more than a purely mathematical
instance, so we must necessarily examine obtained solutions in view of physical requirements.

It is impossible to imagine negative mass or purely imaginary momentum inasmuch as quantum mechanics too
should obey the universal conservation laws. Indeed, in any event we cannot assume such a solution to the Schrödinger
equation which is physically meaningless even if it may be mathematically possible. We make use of the Schrödinger
equation exactly on condition that energy conservation is satisfied.

On the other hand, it is unreasonable to justify the violation of energy conservation by means of the uncertainty
relation. The two laws should not exclude or dominate each other, and must be compatible with each other.

In this connection, it is necessary to recall the conventional interpretation. The conventional interpretation is
described as follows. The kinetic energy T = p2/2m is a function of momentum. Therefore, according to the
uncertainty relation 4x · 4p ≥ ~, it is impossible to split the energy precisely into E = T + U. It would seem that
localizing a particle beyond the classically permissible region implies a violation of energy conservation: however,
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this is not the case. If we try to localize the particle (i.e., concentrate its wave function) in the small tails of the function
ψ, the uncertainty of momentum increases to a point where the new total energy exceeds the value of the potential
energy U(x). Thus, from the point of view of energy, the particle is allowed to take an x value beyond the classically
permitted region. In any case, it is the wave character of the quantum-mechanical wave function which allows the
penetration into potential barriers and, finally, its tunneling [27].

Now, we can refute the above description as follows. it is possible to divide the energy precisely into E = T + U.
This is because the total energy E is a constant according to the law of energy conservation and the potential energy
U(x) is a definite function of x as seen from Eq. (1). Therefore, the momentum of a particle is determined definitely
by position in the potential barrier. We understand the uncertainty relation based on the ensemble interpretation,
specifically, in terms of the relation between the distribution of position and that of momentum [26, 28]. According to
the conventional interpretation, beyond the classically permitted region, i.e., in the potential barrier the total energy of
an electron increases, thereby overcoming the potential barrier. It signifies the creation of energy purely from quantum
origin, which is nothing but the violation of the law of energy conservation. In this connection, we should not miss
the fact that we treat the Schrödinger equation for stationary state where the total energy is constant. Obviously, the
conventional description based on the uncertainty relation cannot give clear answer to the problem of the negative
kinetic energy and purely imaginary momentum.

For the purpose of overcoming such a difficulty, some researchers try to explain the tunnel effect by using the
time-dependent Schrödinger equation. In this case too, the tunneling in the conventional sense is not allowed because
it signifies a negative kinetic energy of an electron. As a possible case, we can suppose that an external force exerts
so that the height of the barrier can lower. But also in this case, the passing of electron through the barrier signifies
just the overcoming of barrier rather than tunneling.

True, it is inconsistent to introduce the uncertainty relation to validate the meaningless solution of the Schrödinger
equation allowing purely imaginary momentum. If purely imaginary momentum were to be allowed, we could not
guarantee the Hermitian property of the momentum operator too attributed to the real number property of quantum
observables.

Obviously, if such an interpretation of tunneling is permitted, our argument inevitably cannot but go astray, thus
losing even the significance of the Schrödinger equation as the starting point of discussion.

Second, we should consider the physical meaning of the rectangular potential barrier. The rectangular potential
barrier purports a constant potential. It is common knowledge that a constant potential cannot affect physical pro-
cesses, and thus the width of potential barrier should not have an effect on the motion of electrons merely from the
point of view of dynamics.

However, as far as the conventional interpretation is concerned, the tunneling depends on the width of barrier. In
other words, it means that a constant potential has effect on the motion of electron, so to speak, in the quantum sense.
This is because due to the wave nature of electron, the width of barrier imposes the limitation relevant to periodicity
of wave on the electron motion. In fact, according to the conventional interpretation, the width of barrier plays only
the role which defines the periodicity condition at the boundaries of barrier. Consequently, an electron in a barrier
region is in a state of free motion except for the periodic condition relevant to the wave nature. But it is reasonable to
consider that the potential in a region of barrier in general is dependent on coordinate.

Third, it is important to interpret the temperature dependence of tunneling. We assume that the tunnel effect is
dependent on temperature. It is necessary to reveal whether the tunnel effect is associated with a single electron or
statistical ensemble of electrons. In this connection, we should remember that we always make an experiment with
electron ensemble and cannot do with only one electron. Even for one electron confined in a certain region, such an
electron cannot be considered a free particle, since the electron interacts ceaselessly with surrounding system, i.e.,
many-particle system, so we should consider that it exists in a set of statistical states undergoing quantum fluctuation.
Such a state should be represented with the help of the density matrix, Ψ =

∑
n Wn|ψn〉〈ψn|. Even in the case of

cryogenic phenomena such as the tunnel effect in superconductors, it means not exactly the absolute zero-point state.
It is a key point to consider that every electron does not possess the total energy as determined only by a bias

voltage. Electrons constitute a statistical ensemble by interacting with one another and therefore, it is natural to
consider that in the sense of probability there exist the electrons that possess higher energy than that given by the
applied voltage. In contrast to this, there exist the electrons of lower energy than that by applied voltage. It is both
classical statistics and quantum statistics that explain this fact.

Temperature as a quantity determining the statistical distribution of velocity of electrons signifies nothing but the
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existence of electrons capable of surmounting the potential barrier. True, the number of electrons possessing higher
total energy than the height of barrier is determined by temperature. Therefore, for problems relevant to ensemble
of electrons, temperature should be necessarily considered, but the conventional interpretation of tunneling is limited
purely to the realm of quantum mechanics.

2.2. Interpretation of current in barrier based on statistical consideration
Let us consider the tunnel effect from the physical aspect. Electrons concerning tunneling can be thought of as an

interacting system or open system, and therefore its velocity distribution is dependent on temperature. Consequently
there exist electrons which have the energies able to surmount the barrier with a certain probability. Before applying
a bias voltage, currents toward the both sides of barrier are in a dynamic equilibrium state. As seen in Fig. 1, suppose

Ua

Φ－Ua

Ua

Φ＋Ua

Φ

l

x

Figure 1: Variation in height of barrier in both sides due to applied voltage

that one applies the voltage conveying to an electron an energy lower than the height of barrier, Φ directed from the
left to the right.

Then for the electrons in the left side of barrier the height of barrier becomes Φ − Ua and for the electrons in
the right side of barrier, Φ + Ua. Fig. 1 shows simply the two heights of barrier, respectively. If a bias voltage is
applied, then the currents through the barrier from the both sides are shifted to a new equilibrium, so the total current
is not balanced. To calculate this current density quantitatively, we use the Richardson-Dushmann equation for current
density for the thermionic emission:

j = AT 2 exp
(
−
Φ

kT

)
. (3)

In case the bias voltage is applied from the right to the left, the current density from the left to the right is

j|x=0 = AT 2 exp
(
−
Φ − Ua

kT

)
, (4)

while the current density from the right to the left,

j|x=l = AT 2 exp
(
−
Φ + Ua

kT

)
, (5)
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where Ua is the variation in the height of barrier due to the applied voltage. Fig. 2 shows the variation in the heights
of barrier in both sides due to applied voltage.

Then the total current density from the left to the right can be expressed as

j = j|x=0 − j|x=l = AT 2
[
exp

(
−
Φ − Ua

kT

)
− exp

(
−
Φ + Ua

kT

)]
= AT 2 exp

(
−
Φ

kT

) [
exp

(Ua

kT

)
− exp

(
−

Ua

kT

)]
= 2AT 2 exp

(
−
Φ

kT

)
sinh

(Ua

kT

)
. (6)

In addition, another physical effect should be taken into consideration. An applied voltage changes the density of
electrons capable of surmounting the barrier in both sides and as a result the gradient of electron density appears. It
causes the diffusion current and therefore this effect can be considered to make the electric field due to the potential
difference lower the height of barrier. Fig. 2 shows the variation in the heights of barrier in both sides due to the
gradient of electron density.

Φ－Ua  －Ug

Φ

Ug

Ua

Ua

Ugl

Φ＋Ua＋Ug

x

Figure 2: Variation in the height of potential barrier in both sides of due to applied voltage Ua and density gradient. Ug is the variation in potential
due to the density gradient.

In this case, Ua in Eq. (6) can be replaced with Ua + Ug such that

j = 2AT 2 exp
(
−
Φ

kT

)
sinh

(
Ua + Ug

kT

)
. (7)

To obtain Ug, we should solve the Poisson equation in consideration of the electron density in the barrier region.
The Poisson equation in the barrier region is expressed as

d2ϕ

dx2 = −
ρ

ε0
. (8)
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Supposing that the charge density in the barrier region has such a linearity as

ρ(x) = ax + b, (9)

Eq. (8) becomes
d2ϕ

dx2 = −
ax + b
ε0

. (10)

From the expression of the charge density (9), we have

ρ0 = b. (11)

At the end point of the barrier, the charge density is determined from

ρl = al + ρ0. (12)

Thus, we obtain
a =

ρl − ρ0

l
. (13)

By the Fermi-Dirac distribution, the electron density can be expressed as

n =

∫ ∞

U
f (E)N(E)dE =

4π(2m)3/2

h3

∫ ∞

U

(E − U)1/2

exp
( E−E f

kT

)
+ 1

dE, (14)

where E f is the Fermi energy and U is Ua + Ug. Then, integrating the Eq. (10) we obtain

dϕ
dx

= −
a

2ε0
x2 −

b
ε0

x + c. (15)

Considering the boundary condition, we can determine constant c. Since at the end of the barrier the intensity of
electric field due to charge gradient is zero, we get

dϕ
dx

∣∣∣∣∣
x=l

= −
a

2ε0
l2 −

b
ε0

l + c = 0. (16)

Thus, the integral constant c is

c =
a

2ε0
l2 +

b
ε0

l. (17)

Integrating Eq. (15), we obtain

ϕ(x) = −
a

6ε0
x3 −

b
2ε0

x2 + cx + d. (18)

The potential at the end of barrier is

ϕ(l) = −
a

6ε0
l3 −

b
2ε0

l2 + cl + d. (19)

Therefore, the potential difference between the beginning point and the end point of the barrier is represented as

ϕ(0) − ϕ(l) =
a

6ε0
l3 +

b
2ε0

l2 − cl. (20)

Substituting the determined constants into Eq. (18), the potential difference is given as

4ϕ =
ρl − ρ0

6ε0l
l3 +

ρ0

2ε0
l2 −

[
1
ε0

(
ρl − ρ0

l

) l2

2
+
ρ0

ε0
l
]

l

= −
1

3ε0
(ρl − ρ0)l2 −

ρ0

2ε0
l2 = −

1
ε0

(
ρl

3
+
ρ0

6

)
l2. (21)
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As a consequence, the additional potential energy due to the gradient of charge density is written as

Ug = −e4ϕ =
e
ε0

(
ρl

3
+
ρ0

6

)
l2. (22)

Thus, Eq. (7) has been completely determined. From Eq. (14), the charge densities at the beginning and end
points of barrier are expressed respectively as

ρ0 = −en0, ρl = −enl, (23)

where the electron densities are represented respectively as

n0 =

∫ ∞

Φ−Ua

f (e)N(E)dE =
4π(2m)3/2

h3

∫ ∞

Φ−Ua

(E −Φ + Ua)1/2

exp
( E−E f

kT

)
+ 1

dE, (24)

nl =

∫ ∞

Φ+Ua

f (E)N(E)dE =
4π(2m)3/2

h3

∫ ∞

Φ+Ua

(E −Φ − Ua)1/2

exp
( E−E f

kT

)
+ 1

dE. (25)

As an example using the approximate expression of carrier density in completely degenerated semiconductor, the
electron density can be expressed respectively as

n0 =
8π
3h3 (2m)3/2(E f −Φ + Ua)3/2, (26)

nl =
8π
3h3 (2m)3/2(E f −Φ − Ua)3/2. (27)

With Eqs. (23), (26) and (27), ρ0 and ρl are expressed respectively as

ρ0 = −
8πe
3h3 (2m)3/2(E f −Φ + Ua)3/2, (28)

ρl = −
8πe
3h3 (2m)3/2(E f −Φ − Ua)3/2. (29)

Thus, we have obtained the relation of the height variation of barrier to the difference between the charge densities
in both sides of barrier caused by an applied voltage and have explained the dependence of barrier width on current
through barrier. Inserting Eqs. (28) and (29) into Eq. (22), we can see that the thinner the barrier is, the higher the
current is. In this way, we can explain the dependence of the barrier current on the barrier width.

2.3. Filtering effect of statistical current by condition of quantum resonance in barrier

Using the formalism of quantum mechanics in phase space, quantum characteristic of electron motion in the
barrier region can be satisfactorily interpreted.

Let us consider the case using the fundamental equation of quantum mechanics in phase space. According to the
statistical formalism of quantum mechanics in phase space [26], the equation for probability density is

∂ρ

∂t
= −

1
2

∑
i

[
∂H
∂pi

∂ρ

∂qi
−
∂H
∂qi

∂ρ

∂pi

]
. (30)

We assume the barrier current to be stationary. In this case, the probability density is not dependent on time and thus,
the above equation is reduced to ∑

i

[
∂H
∂pi

∂ρ

∂qi
−
∂H
∂qi

∂ρ

∂pi

]
= 0. (31)
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A solution of this equation is obtained in case the probability density becomes a constant. Generally, if the
probability density is a function of the Hamiltonian function, then the equation is satisfied. Actually, the case is
verified by ∑

i

[
∂H
∂pi

∂ρ

∂qi
−
∂H
∂qi

∂ρ

∂pi

]
=

∑
i

[
∂H
∂pi

∂ρ

∂H
∂H
∂qi
−
∂H
∂qi

∂ρ

∂H
∂H
∂pi

]
=
∂ρ

∂H

∑
i

[
∂H
∂pi

∂H
∂qi
−
∂H
∂qi

∂H
∂pi

]
= 0. (32)

Therefore, the probability density in a stationary state is expressed as

ρ = ψ∗ψ = f (H), (33)

where ψ is the wave function defined in phase space.
Hence, the probabilistic amplitude is represented as

ψ0 =
√
ψ∗ψ =

√
f (H). (34)

As a result, a solution to the wave equation for stationary states in general takes the following form:

ψ(x, p) = ψ0[H(x, p)] exp
[

i
~

∫ x

0
p(x′)dx′

]
. (35)

It is necessary to note that the phase part of this equation is identified with that of the wave function in quasi-classical
approximation. From Eq. (35), it is obvious that the barrier region should satisfy the following periodicity condition:∫ l

0
p(x)dx =

∫ l

0

√
2m[E − U(x)]dx = nh, (36)

where E is the total energy of an electron determined by applied voltage and U(x), the barrier potential. With this
periodicity condition, quantum characteristic of tunneling can be clarified. From Eq. (36), it follows that the kinetic
energy of an electron crossing the barrier should be higher than the height of barrier. For a qualitative consideration,
we shall define the mean value of momentum of an electron in a barrier region as

p̄ =

∫ l
0 p(x)dx

l
=

∫ l
0

√
2m[E − U(x)]dx

l
.

According to Eq. (36), the following condition should be satisfied.

p̄l = nh.

Accordingly, it can be seen that the momentum of an electron crossing over the barrier region should be quantized
as

p̄n =
h
l

n. (37)

An electron satisfying this condition relevant to momentum can be considered to be in a quantum resonance state in
the barrier. The minimum momentum of an electron able to cross over the barrier is represented as

p̄ =
h
l
. (38)

Hence, we can see that the thinner a barrier is, the higher the velocity of an electron crossing it should be. A
barrier can be regarded as a “sack neck” to connect two free-motion regions or a “quantum filter” permitting only
the quantized velocities defined for crossing. With a good reason, it can be considered that the electron density in a
barrier region is almost in a saturation state and thus, is constant. This is because the interaction between electrons and
the applied voltage function as a source complementing the electrons satisfying the quantum condition for electron
crossing.
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From the relation of current density:
j = ρυ, (39)

we can see that the quantity contributing to the current density is principally the velocity of electron, υ. According to
the quantum condition for barrier, i.e., Eq. (36), the thinner the width of barrier is, the greater the momentum which
the barrier filters is, and as a consequence the current is increased.

Meanwhile, it is possible to explain the volt–ampere characteristic of the tunnel effect. Originally, according as the
momentum of electrons due to the bias voltage approaches p̄, the current through the barrier increases in compliance
with the quantum condition, i.e., Eq. (36), but at the next stage according as the increasing momentum of electrons
gets away from p̄ the barrier current decreases gradually despite of the increase in bias voltage as a result of the breach
of the quantum condition. This gives a good explanation to the question on why a peak occurs on the volt-ampere
curve for tunnel phenomenon.

It is possible to show the fact in a semi-quantitative way.
The current density obtained through the consideration of the statistical relation can be represented with respect

to momentum as
jst ∝ sinh(aU) = sinh(bp2). (40)

This reflects the fact that the increase in kinetic energy of an electron is in proportion to applied voltage, i.e.,
U ∝ p2, where U indicates −eV . The volt-ampere characteristic is depicted in Fig. (3). The axes of coordinate are

Figure 3: Current density of statistical origin in the barrier

marked in a relative measure.
On the other hand, the current of statistical origin undergoes a kind of filtering due to the condition of quantum

restriction in the barrier as determined by Eq. (37). This filtering effect modulates the statistical current density.
In conformity with physical meaning, one can suppose the modulation coefficient by which the statistical current
is multiplied. The modulation coefficient characterizing the filtering of statistical current can be represented as the
following mathematically modelled relation:

η =
∑

n

Cn exp
(
−αn

(
p2 − p2

n

)2
)
,

where pn denotes the extreme values of momentum of electron corresponding to the condition of quantum resonance.
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Considering U ∝ p2, the above relation can be recast as voltage–modulation relation

η =
∑

n

Cn exp
(
−αn (U − Un)2

)
, (41)

Eq. (41) is sketched in Fig. 4.

Figure 4: Voltage–modulation due to condition of quantum resonance in barrier

Considering that a barrier is extremely thin, one can give the limitation condition that 2∼3 peaks of voltage
corresponding to extreme currents are effective. From Fig. (3), one can see that the voltage–modulation relation has
the quantum nature similar to that of the Frank-Herz experiment. Then the resultant barrier current density filtered
according to the condition of quantum resonance is represented as

j = η jst. (42)

This must be just the tunnel current density. The resultant current density according to applied voltage is depicted in
Fig. 5.

Fig. 5 is in good agreement with the volt-ampere characteristic of the tunnel diode. This demonstrates that our
quantum-statistical analysis is reasonable. Thus, it is revealed that we have referred to the current phenomena due
to such a quantum cause as the tunnel effect. Since only the electrons fulfilling Eq. (36) can surmount the barrier,
Eq. (7) is an approximate expression. In fact, the exact expression should be given not by the integral in momentum
space but by the sum with respect to quantized momentum satisfying quantum condition (36). However, Eq. (7) can
be considered to explain general characteristics of the barrier current.

The equation for the current density:

j = AT 2 exp
(
−
Φ

kT

) [
exp

(Ua

kT

)
− exp

(
−

Ua

kT

)]
= 2AT 2 exp

(
−
Φ

kT

)
sinh(Ua/kT ) (43)

explains why the tunnel current is significantly increased according as the energy by applied voltage approaches the
height of barrier.
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Figure 5: Resultant current density according to applied voltage

According as Ua is increased, the tunnel current behaves in the manner of function sinh(Ua/kT ). Therefore, the
current is increased. Unlike the conventional interpretation, this approach reasonably elucidates the characteristic of
current change in case the energy by applied voltage is higher than the height of barrier.

This approach gives a reasonable explanation for the resonant tunnel effect as well. From the periodicity condition
(36) it is obvious that in the region where barriers and wells alternate periodically, the periodicity condition in every
region should be satisfied, i.e., ∫ l(k)

f

l(k)
i

p(x)dx =

∫ l(k)
f

l(k)
i

√
2m[E − U(x)]dx = nkh, (44)

where l(k)
i is the first boundary of the kth barrier or well and l(k)

f , the final boundary. Only the electrons satisfying
these periodicity conditions all together can pass through the whole region of barriers and wells. Therefore, barriers
and wells are regarded as playing the role of a kind of resonance which filters the crossing of electrons in conformity
with quantum condition for electron. For this reason, it is possible that in a multiple barrier-well region, the quantum-
selective effect, i.e., the resonance effect occurs. Ultimately, all the properties of tunneling have been explained
consistently.

3. Results and discussion

Our work has explained the characteristics of tunneling by applying the quantum-statistical approach. Tunneling
attracts peculiar attention on the ground that electrons have a probability of crossing the barrier even if the height of
barrier is higher than the energy due to an applied voltage. The smaller the difference between the height of barrier and
the total energy of electron is and the thinner the barrier width is, the higher the probability of tunneling. This shows
the two special aspects of the tunnel effect. For the purpose of explaining this experimental result, the conventional
interpretation of tunneling states that although the energy of an electron is lower than the height of barrier, the electron
can pass through the barrier with a definite probability thanks to the wavelike property of electron. As it is, this implies
that we take the physically meaningless solution of the Schrödinger equation admitting of even the negative kinetic
energy. For this reason, in this interpretation, the relation of energy conservation is violated.

In this work, the two important characteristics of tunneling are satisfactorily explained on condition that the law
of energy conservation is satisfied. Considering that tunneling is related to the statistical ensemble of electrons, we
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treated the tunneling current in the way similar to the approach to the thermionic emission using the quantum-statistical
methodology.

According to this interpretation, the barrier current is associated with three factors. The statistical ensemble of
electrons is in an equilibrium state before applying the voltage. The electrons passing through the barrier exist with
probability because the electron ensemble is in a statistical distribution state. In an equilibrium state, the currents from
both sides of the barrier are identical. If a voltage is applied, then the heights of potential in both sides in reference to
the energy of electron become different. Consequently, the momentum distributions of electrons able to surmount the
barrier in the both sides change, and as a result the current in the direction of the applied voltage occurs. As shown in
the barrier current relation, Eq. (6), the current increases with the behavior of the exponential function according as
the difference between the height of barrier and the energy by applied voltage decreases. This is the first origin from
which the barrier current phenomenon is caused.

Meanwhile, the applied voltage results in the change in the density of electrons which can surmount the barrier.
Therefore, the gradient of electric potential appears. This gradient of electric potential makes the barrier lower in
the left side whereas higher in the right side. Thus, the influence of applied voltage on the statistical distribution of
electron density increases the current through the barrier. This is the second origin of tunneling.

Meanwhile, the barrier imposes the quantum limitation on the tunneling current through the barrier. The periodic-
ity condition which is determined by the relation between the electron momentum passing through the barrier and the
barrier width plays the role which makes the momentum distribution of the crossing electron be raised up. In other
words, the thinner the width of the barrier is, the higher the mean velocity of electrons. For this reason, a barrier can
be considered a quantum filter to make the current increase. Based on the proposed qualitative interpretation, we can
describe the effect of barrier width on the tunneling current. This is the third origin of the tunneling current.

Based on the above arguments, we can give a reasonable interpretation of tunneling. First of all, we can give clear
answer to the question on whether or not the conventional interpretation is correct. Obviously, tunneling is attributed
to the quantum factor. But the wave property of electrons can never result in a miracle such that electrons might
surmount a barrier with lower energy than the height of the barrier, since if the tunneling is possible, it implies that
work is performed but there is no energy consumption. We can reach this conclusion by investigating the solution of
the Schrödinger equation in the barrier region. In the conventional interpretation, the solution to the
Schrödinger equation in the barrier region is derived with the approval of negative kinetic energy.

However, the Schrödinger equation itself must satisfy the energy conservation law. Thus, the conventional inter-
pretation of tunneling cannot be compatible with energy conservation.

The conventional interpretation of tunneling is associated with one electron. However, we in reality can carry out
experiments with electron ensemble or ensemble of electronic states. It is not possible to consider that an electron
can have a definite energy determined purely by applied voltage. Since interacting electrons constitute a statistical
ensemble, an applied voltage changes the statistical distribution of the electron system and therefore we necessarily
cannot but deal with the statistical ensemble in experiments on the electron tunneling. For this reason, tunneling too
should depend on temperature, but the conventional interpretation is beyond the discussion with this problem.

However, our work copes with this problem properly and gives reasonable results. If temperature is very high, the

characteristic tunneling current related to the difference Φ − Ua is insignificant, since as
Φ − Ua

kT
→ 0, Eq. (43) is

reduced to

j = AT 2 exp
(
−
Φ − Ua

kT

) [
1 − exp

(
−

2Ua

kT

)]
≈ AT 2

[
1 − exp

(
−

2Ua

kT

)]
≈ AT 2 2Ua

kT
=

2ATUa

k
. (45)

Therefore, the tunneling current increases with temperature and the role of barrier is insignificant. This means that
in this case, the characteristic current phenomenon resulting from the relation between energy by applied voltage
and height of barrier vanishes completely as a consequence of being quenched by the intensified drift current due to
barrier-surmountable electrons.

In case temperature is very low, the characteristic tunneling current related to the difference Φ−Ua vanishes, since
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as
Φ − Ua

kT
→ ∞, the current becomes

j = AT 2 exp
(
−

Φ − Ua

kT

) [
1 − exp

(
−

2Ua

kT

)]
→ 0. (46)

Eq. (46) enables us to predict that the tunneling current of statistical origin would decrease with lowering temperature,
thereby approaching zero near absolute zero. But in this case, we should take into consideration that the tunneling
current of quantum origin gets rather striking.

The conventional interpretation of tunneling cannot give the satisfactory explanation for higher energy by applied
voltage than the height of barrier. Actually, with the transmission coefficient for tunneling through the barrier:

D = D0e−
2i
~

√
2m(E−U0) l,

we cannot give reasonable physical interpretation of the fact that the exponential part is a pure imaginary number. But
there is no limitation like this in our interpretation. Eqs. (6) and (7) are significant for any values of applied voltage.
This equation shows that according as the applied voltage gets higher, the influence of barrier gradually vanishes and
after all, in the case of U � Φ there is purely the current determined only by applied voltage, i.e.,

j = AT 2
[
exp

(
−
Φ − Ua

kT

)
− exp

(
−
Φ + Ua

kT

)]
≈ AT 2 exp

(Ua

kT

) [
1 − exp

(
−

2Ua

kT

)]
≈ AT 2 exp

(Ua

kT

)
. (47)

Meanwhile, in our interpretation, the quantum characteristics of the barrier current are interpreted satisfactorily.
The quantization condition given by Eq. (36) causes the effect increasing the barrier current. Essentially, this condition
is the periodicity condition given by the barrier. This condition appears to be in line with studies for interpreting the
tunneling by applying the quasi-classical approach in terms of Wigner or Husimi function. What should be emphasized
here is that this periodicity condition is given not by the conventional quasi-classical phase space theory but by the
fundamental equation of statistical formalism in phase space presented by the authors.

The main purpose of this work is to prove that the barrier current phenomenon called ‘tunneling’ is actually
not the tunneling inconsistent with the physical intuition but a quantum-statistical hybrid phenomenon. Our work
has elucidated completely the inconsistency of the conventional approach and has suggested a consistent approach
to tunneling. Moreover, it has been clearly demonstrated that this barrier-current phenomenon is attributed to the
quantum-statistical characteristics of microscopic system.

4. Conclusion

To interpret the tunneling in a more reasonable way, we have adopted a quantum–statistical approach distinguished
from the conventional one. Based on quantum-statistical interpretation, we have satisfactorily explained the tunneling
current through the barrier by using the Richardson-Dushmann equation for the thermionic emission derived by means
of quantum statistics and by taking into consideration the quantum filtering role which the barrier plays in increasing
the current through the barrier.

The central feature of our view is to consider that tunneling is due to not only quantum but also statistical char-
acteristics of electrons. The conventional interpretation of tunneling cannot but accept an incorrect concept which is
not allowed in the physical sense, since it ignores the statistical aspect of the physical phenomenon under consider-
ation. In this connection, it is important to ascertain the fact that the conventional interpretation of the tunnel effect
violates the universal law of energy conservation. In our interpretation, there is no jump of logic by any non-physical
conception, and the relation of energy conservation and the wavelike nature are in harmony with each other.

The main conclusion of our work is that the phenomenon of current through the barrier should be explained
based on quantum-statistical interpretation involving both electron statistics and wavelike property of electron. Such
a perspective has enabled us to elucidate the temperature dependence of the tunneling current and the influence of
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barrier, thus making us capture the essence of the tunneling current. Moreover, it should be emphasized that our work
successfully explains the tunneling current phenomenon in a general way in the whole range of applied voltage.

Ultimately, our work makes it possible to solve some intractable problems such as violation of the law of energy
conservation arising from the conventional approach to the tunneling current phenomenon, and leads to the innovation
in the picture of tunneling. We expect our work to substantially contribute to the elucidation of the physical nature of
tunneling and also to the researches into the tunneling of complex systems including the resonant tunneling effect.
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