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Abstract:  Most of the Universe’s baryon mass lies in the intergalactic medium, is unaccreted, 

and can be treated as an ideal monatomic gas with a uniform comoving density.  The thermal 

loss of such a gas is herein shown to partition into one-third gravity gain and two-thirds entropic 

gain.  The entropic gain of an unbound gas with uniform comoving density is differentially 

expressed as instant pressure.  This instant pressure is proposed as the principal cause of the 

Hubble parameter.  Using gas laws, a three-term expression of the gas’s Hubble parameter can 

be derived from estimated present-day energy density values, which are extrapolated to the time 

of last scattering, when baryon content was all unaccreted atoms having a uniform comoving 

density. This “GCDM thermal model” gives an exclusive dependence of the Hubble parameter 

on baryon mass density.  The ΛCDM model is similarly covariant but uses total energy as the 

central variable instead of baryon mass.  Instant pressure at last scatter gives a Hubble parameter 

that is 25% larger than the value found from baryon acoustic oscillation calculations, which rely 

on ΛCDM’s Friedmann and fluid equations as accurate.  These two equations appear to be 

inaccurate for that time period.  Relativistic energy at last scatter gave increased instant pressure, 

as it made the baryons more dense.  These two models’ opposing predictions of the effect of 

relativistic energy density on the Hubble parameter is proposed as the cause of the Hubble 

tension.  Today, the intergalactic medium consists of a plasma.  The plasma’s instant pressure is 

fed by Compton scattering and covariant with photon flux.  Much of this pressure doesn’t obey 

the gas laws, as it arises from high-energy suprathermal electrons.  This suprathermal pressure in 

the late Universe is expressed within the ΛCDM model by giving Einstein’s time-invariant Λ a 

nonzero value.  The effects attributed to Λ are proposed to instead arise from the ratio of 

suprathermal to thermal energies in the intergalactic medium.  Both the presently held time-

invariance of Λ, and the Hubble tension, are proposed to arise from neglect of entropic gain.  

Entropic gain is not found within the ΛCDM model because the Friedmann and fluid equations 

which comprise the model are developed isoentropically. 
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1 INTRODUCTION 

After Arno Penzias and Robert Wilson’s discovery [1] of the cosmic microwave background, or CMB, unanimous 

consensus rapidly converged around the hot-big-bang concept of the Universe’s origin.  Consensus converged more 

slowly around the ΛCDM model [2] as the most empirically accurate explanation of distant star movement to date.  

The “Λ” in ΛCDM was first proposed by Albert Einstein (see [3] and references therein) and corresponds to a 

perceived repulsive field, fully scalar in both time t and space xyz.  This concept of Λ is historically entrenched 

within the community of cosmologists and has been applied to the CMB’s miniscule anisotropies to calculate the 

Hubble constant H0.  These results differ from conventional distance ladder measurements [4-9].  The CMB 

methods give H0 ≈ 68 km/sec/Mpc and the distance ladder methods give H0 ≈ 74 km/sec/Mpc.  Improved 

measurements and changed methodology have only made this “Hubble tension” more obvious.  Explanations have 

been proffered to resolve the Hubble tension [10-20].  Most but not all of these rely on Λ.  One alternate, 

quintessence [21], having a time-dependent scalar field, has been proposed.  Quintessence is, like Λ and the Higgs 

field, held to exist in vacuo.  Of these three only the Higgs field has an experimentally consistent in vacuo 

theoretical foundation, and to date neither Λ nor quintessence have been shown to have a clearly defined, energy-

conservative source.  Attempts to treat the second law of thermodynamics within a Λ-containing Universe have 

arisen in numerous papers, many of which (1,800 and counting) cite an original publication by Erik Verlinde [22].  

While Verlinde’s proposed entropic “screen” or end state has proven quite popular, it tends to indicate that at some 

point in time, Universal entropy reaches a final value with no further increase.  Inconsistency with the second law 

remains in such treatments. 

The present paper takes an approach to Universal expansion consistent with the second law by treating baryon 

content as the unbound gas it mostly is, making “Λ” variable in the process.  The model that arises from this 

treatment is called the GCDM model, for gas-cold-dark-matter.  The GCDM model gives a repulsive field, but this 

field bears little theoretical resemblance to a quintessent, Λ, or Higgs field.  It’s currently plasma kinetic energy, is 

entropic in Nature, and is covariant with both the density and momentum of unaccreted baryons.  We will first 

review relevant thermodynamic principles.  We then examine the classic behavior of a freely expanding gas, and use 

this behavior to construct the GCDM model at the time of last scattering.  We then apply this model to the plasma 

content of the intergalactic medium in the more recent Universe.  Finally, GCDM’s and ΛCDM’s theoretical 

foundations are compared in the discussion section. 

2 ADIABATIC FREE EXPANSION: THE CENTRAL PREMISE OF THE GCDM MODEL 

2.1 The two laws of thermodynamics  

The first and second laws of thermodynamics were discovered in the 19th century and fully quantified by the 20th.  

They’ve stood the test of time, held inviolate by most scientists and all engineers.  The first law, in its broadest 

definition, says that energy is neither created nor destroyed: 

𝑑𝐸 𝑑𝑡⁄ = 0      (1) 

Where E is the total energy, the sum of all forms of energy in the Universe as a whole and in a sufficiently large 

proxy sphere, generally accepted as 200 megaparsecs (Mpc) or about 600 million light-years (ly) in observed 

diameter.  A sphere this large is said to be at scale. 

The second law of thermodynamics has had several descriptions over the years.  The broadest of these says that 

entropy at scale is always increasing and can never be zero: 

𝑑𝑆 𝑑𝑡⁄ > 0      (2) 
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Equation (2) links time t and entropy S.  If one assumes an isoentropic process then (2) requires that no time shall 

elapse.  Setting dS = 0 is a common misconception of (2) among cosmologists at present, discussed in section 5.2.    

Equation (2) can’t be directly compared to (1) because they have different units.  At scale, (2) can be directly 

compared to (1) by expression as gain ES: 

𝑑(𝐸𝑆) 𝑑𝑡⁄ > 0      (3) 

For a gas: 

𝑑(𝐸𝑆) = 𝑑(𝑇𝑆)      (4) 

Note that (3) and (4) only describe an unbound system.  “System” usually means e.g. a sealed or bound vessel’s 

contents.  In this paper it also refers to constant amounts of gas, and more generally total energy, that isn’t bound.  

It’s common in a bound system for d(TS)/dV < 0 and d(S)/dV > 0 if work is performed.  However, for both the 

system and surroundings combined, (3) is always true.  At scale, the system is the surroundings.  There is no 

scenario at scale where the entropy of the system is increasing and its entropic energy isn’t.  The converse applies. 

We now examine entropic energy gain on a small scale where gravity can be neglected. 

2.2 Bound, equilibrium free expansion 

 Take a spherical helium balloon, of radius r1 = 10 cm, at a temperature T = 300K and pressure P = 1 atmosphere, 

and place it in the center of a perfectly rigid, insulated, spherical vacuum chamber of radius r2 = 50 cm.  The 

insulation and rigidity of the chamber means any gas expansion from r1 to r2 will be adiabatic.  The gas’s internal 

kinetic energy Ui is 100% thermal.  Helium is monatomic, so: 

𝑈𝑖 =
3

2
𝑃𝑉 =

3

2
𝑛𝑅𝑇 =

3𝑀𝑅𝑇

2Ж
     (5) 

Where n is the number of moles of gas, R is the gas constant, and Ж is the gas’s atomic weight.  The Ui in the 

chamber is the instant sum of its atoms’ individual kinetic energies: 

𝑈𝑖 = ∑ ∑ ∑ {
1

2
𝑚[(𝒗𝑠𝑖𝑛[𝛳′])𝟐 +  (𝒗𝑐𝑜𝑠[𝛳′])𝟐]}2𝜋

𝜑=0
𝜋
𝜃=0

𝑟2
𝑟=0    (6) 

Where the tensor v is the atom’s kinetic energy, m is its atomic rest mass, r is its distance from the center, θ is its 

conic angle of latitude, 𝜑 is its angle of longitude, and 𝛳′ is the conic angle of v’s deviance from radial.  These are 

shown in two dimensions in Figure 1.  The balloon is an idle sphere with a constant r1.  The void between r1 and r2 

makes no contribution to Ui as long as the balloon is intact. 

We pop the balloon.  The thermal energy Ui is temporarily and partly transformed into radial kinetic energy Ek: 

𝐸𝑘 = ∑ ∑ ∑ ∑ {
1

2
𝑚[(𝒗𝑐𝑜𝑠[𝛳′])𝟐]}

𝜋 2⁄
𝛳′=0

2𝜋
𝜑=0

𝜋
𝜃=0

𝑟2
𝑟=0 − ∑ ∑ ∑ ∑ {

1

2
𝑚[(𝒗𝑐𝑜𝑠[𝛳′])𝟐]}𝜋

𝛳′=𝜋 2⁄
2𝜋
𝜑=0

𝜋
𝜃=0

𝑟2
𝑟=0   (7) 

Which is the scalar difference between the outward and inward radial components of the atoms’ tensors.  For an idle 

sphere, the inward and outward radials of v in (7) are equal.   We can double (7)’s inward radial and replace the 

radial expression in (6), giving 𝑈𝑖
′: 

𝑈𝑖
′ = ∑ ∑ ∑

1

2
𝑚[(𝒗𝑠𝑖𝑛[𝛳′])𝟐]2𝜋

𝜑=0
𝜋
𝜃=0

𝑟2
𝑟=0 + 2 ∑ ∑ ∑ ∑ {

1

2
𝑚[(𝒗𝑐𝑜𝑠[𝛳′])𝟐]}𝜋

𝛳′=𝜋 2⁄
2𝜋
𝜑=0

𝜋
𝜃=0

𝑟2
𝑟=0  (8) 
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Equations (7) and (8) combined give: 

𝑈𝑘 = 𝑈𝑖
′ + 𝐸𝑘      (9) 

Where Uk is the total kinetic energy.  When idle, 𝑈𝑘 = 𝑈𝑖
′ = 𝑈𝑖.  When 

expanding, 𝑈𝑘 > 𝑈𝑖
′.  The instant Ek is the differential gain: 

𝐸𝑘 = 𝑑(𝐸𝑠)     (10) 

Equation (10) is shown in scalar form.  It’s more broadly expressed with 

tensors and links kinetic and entropic energies.  Gas gain can be found using 

(10) without resort to direct calculation of entropy.   

Equation (10) is only true for ideal gases.  We will use “Ek” in several 

different contexts later.  It always describes the kinetic energy of radial 

movement in some sort of model sphere. 

In the special condition of uniform gas density ρ(t), Ek is given as: 

𝐸𝑘 = 𝑃𝑉′𝑑𝑉      (11) 

Where 𝑃𝑉′ is a physical force, the instant or “entropic” pressure: 

𝑃𝑉′ =
𝑑(𝐸𝑠)

𝑑𝑉
      (12) 

Instant pressure 𝑃𝑉′ is simply covariant P.  In the above example, 𝑃𝑉′ = P only at the instant the balloon is popped.  

Since ρ is not uniform after the balloon is popped, (11) and (12) don’t describe the later behavior of these atoms.  

However, (9) and (10) remain accurate.  Since loss to gravity is negligible, 𝐸𝑘 = (𝑈𝑘 − 𝑈𝑖
′) for the r2 sphere 

throughout expansion, which lasts for a second or two.  Initially 𝑈𝑖
′ drops and Ek rises.  The atoms quickly bounce 

off the wall and Ek drops back down.  At reequilibrium, Ek→0, the terms of (7) again cancel, and 𝑈𝑖 is restored: 

“𝑈𝑖 → 𝐸𝑘 → 𝑈𝑖”.  The gain ΔES from volume increase is: 

𝛥𝐸𝑆 = 𝑇(𝑆2 − 𝑆1) = 𝑛𝑅𝑇𝑙𝑛 (
𝑉2

𝑉1
)     (13) 

2.3 Bound, nonequilibrium free expansion 

Take that same balloon, put it in the center of a large vacuum chamber (r2 = 108 m) and pop it.  A helium atom at T 

= 300K has a root mean square speed vrms = 1368 m/s.  Those atoms will take about 20 hours to reach the wall of the 

chamber if their tensor of movement is perfectly radial.  As they expand, they stop colliding with each other at any 

meaningful rate.  After that happens, atomic movement is in an unbound regime which is best considered when the 

atoms have stopped colliding, but haven’t hit the wall yet.  In this regime, the radial component of each outward 

atom’s speed, or radial velocity vr, is proportional to its distance from the center: 

𝑣𝑟/𝑟 =  𝐻 =  1/𝑡      (14) 

The atomic Hubble parameter H is simply expressed by (14).  Once the atoms stop colliding, Ek ≈ Uk at 300K and 

𝑈𝑖 → 𝐸𝑘 almost entirely.  The value of Ek remains unchanged until the atoms start to hit the wall.  Eventually the 

atoms bounce off the wall, 𝐸𝑘 → 𝑈𝑖, and the regime slowly ends. 
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2.4 Unbound, nonequilibrium free expansion 

What if there’s no boundary?  There’s no equilibrium to be reached, so for a freely expanding gas, 𝑈𝑖 → 𝐸𝑘 only and 

there’s no 𝐸𝑘 → 𝑈𝑖.  One can approach Universal conditions at last scatter by looking only at the comoving core of a 

popped sphere with initial rcore = 10-6 rsphere.  The atoms in that core would be slow, cold, and nearly isodense (dρ/dr 

≈ 0) with a uniform Ui which obeys (11) and (12).  This sort of treatment could be accurate at scales large enough to 

include gravity.  I’m not suggesting that the Universe has finite mass, only that it can be so modeled. 

3 CONSTRUCTION OF THE GCDM MODEL AT LAST SCATTER, z = 1089 

The GCDM model expresses (1) through a combination of equivalent 

mass and kinetic energy.  We construct the model at last scatter (z = 

1089) with a finite difference method using the radius r of a sphere as 

the variable.  A spreadsheet is used for the calculations.  This is less 

satisfactory than an analytic derivation, but it does give solace in that 

expressions herein describe change 𝑈𝑖 → 𝑈𝑖
′ with precise instant 

values.  It is only in the partition of ΔUi between gain (26) and work 

(25) where error accrues.  At last scatter, the BBN estimate for 

baryons [23] gives a mass proportion of about 75% hydrogen : 25% 

helium, having a mean atomic weight Ж = 1.24 x 10-3 kg/mol.  

Hydrogen was monatomic and nonrecombinant to diatomic form, 

absent catalysis through aggregation.  The baryon density ρb(z=1089) 

was (Ωbρcrit)(1+z)3 = 5.46 x 10-19 kg/m3.  This is very low by 

engineers’ standards so we will assume the gas behaved ideally.  The 

critical mass density ρcrit and the Ω values are given in Table 1.  These are CMB values derived by the author from 

table 6 of [24].  The CMB had almost fully decoupled from the baryons at last scatter by definition, so the baryon 

temperature T at z = 1089 will be set to the extrapolated value (TCMB, z=0)(z + 1) = (2.726K)(1090) = 2971K.  
 

3.1 The Universe at last scatter had a Euclidean comoving coordinate system 

The observed tiny wiggles [24], in the otherwise perfect Boltzmann distribution of the CMB, are telling.  There is a 

metric, ηslip, found from the wiggles.  It describes variance between Einstein’s and Newton’s models.  At z = 1089, if 

ηslip = 1, then there was no variance, and the atoms in this Universe would have been unaccreted, homogenous, and 

isotropic, i.e. an isodense gas. The value of ηslip was found to be 1.004 ± 0.007.  The text in [24] proclaims that this 

value of ηslip means the models fully converge, so gravitational anisotropy arising from density variance was 

practically zero.  We can then say that at last scatter, atomic movement is accurately expressed with Newtonian 

momentum tensors in Euclidean space, and (6) - (12) can be applied.  The wiggles indicate acoustic oscillation of 

the baryons.  This oscillation gave antinodes of baryon density which grew in magnitude over time and eventually 

led to gravitational collapse via a process described by the Jeans model [25].  Acoustic oscillation is used by [24] to 

get an HΛ value at last scatter which is then extrapolated to give H0 today. 

 

3.2 The thermal model at last scatter  

The thermal or “dark” model is constructed using monatomic gas expressions found in many introductory 

engineering textbooks and Wikipedia.  Most of the z values in the thermal model (10→1089) cover the dark age [26-

27].  The effect of light on the thermal model at z ≥ 10 is practically nil. 
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3.2.1 Adiabatic release  

Consider a comoving sphere of initial radius r1 around a single atom of H1, at 2971K and ρb = 5.46 x 10-19 kg/m3.  

There are similar spheres around all the other atoms.  Nonequilibrium conditions besides expansion, e.g. turbulence, 

acoustic oscillation, etc. will be set aside so that the underlying transformation of conserved energy is more clearly 

described.  There are two competing forces acting on the sphere:  Repulsive entropic push, and attractive gravity 

pull.  We are using a finite difference method, so we define an increment:  
(𝑟2−𝑟1)

𝑟1
=

Δ𝑟𝑖

𝑟
, which must be kept below 

10-4 for most purposes to minimize the partition error.  I use 10-9, as low as the spreadsheet will tolerate.  When the 

gas in the sphere expands, it must do so adiabatically, and there’s no void outside the sphere into which free 

expansion can occur.  Under classic bound conditions, the comoving sphere would then have to lose Ui (through 

work).  We postulate that this thermal loss applies in a cosmic setting as well.  For monatomic gases the loss is: 

𝑈𝑖1
− 𝑈𝑖2

= −𝛥𝑈𝑖 =
3

2
𝑃1𝑉1 ((

𝑉2

𝑉1
)

−
2

3
− 1)    (15) 

Where the numeric subscripts refer to the before and after Ui and V values.  Volumes V1 and V2 are readily found 

(4πr3/3).  Thermal pressure P1 is found from the equation of state for gases, the ideal gas law: 

𝑃 =
𝜌𝑅𝑇

Ж
=

𝑀𝑅𝑇

Ж𝑉
=

3𝑀𝑅𝑇

4Ж𝜋𝑟3    `  (16) 

If work against gravity is negligible, there is no alternative to free expansion within the sphere that I can find, so the 

released energy from (15) is, from (9), 100% Ek.  Its finite differential value is ΔES: 

𝐸𝑘 = 𝛥𝐸𝑆 = ∫ 𝑑(𝐸𝑆)𝑑𝑉
𝑉2

𝑉1
= ∫ 𝑑(𝑇𝑆)𝑑𝑉

𝑉2

𝑉1
= ∫ (𝑇𝑑𝑆 + 𝑆𝑑𝑇)

𝑉2

𝑉1
≈ (𝑆2 − 𝑆1) (𝑇2 +

1

2
(𝑇1 − 𝑇2)) (17) 

Where the subscripts refer to the before and after values on a T-S diagram.  Volume increase is strictly local to the 

sphere.  In an infinitely large Universe, it all just gets less dense.  The pressure gradient which causes this density 

decrease is a function of time, not space. 

3.2.2 Gravity loss 

We now look at the gravitational potential energy U of the sphere: 

𝑈 = −3𝐺𝑀′2

5𝑟
      (18) 

Where G is Newton’s constant.  The potential energy U must take into account the total mass 𝑀′, not just M.  

There’s evidence for the existence of cold dark matter (CDM) which is held to be about five times as abundant as 

baryon mass.  Its only interaction with nucleons1, electrons, or light, is through gravity.  CDM is herein treated as a 

covariant scalar.  While it can move relative to accreted baryons like stars, all that occurs within the gravitationally 

bound network of galaxies known as the “cosmic web”, and within GCDM, does not affect H.  A consistent 

description of CDM’s composition and origin is elusive [28].  Cold dark matter’s density evolution is presently 

treated nonrelativistically; we use this convention.  Due to ηslip ≈ 1, its density at last scatter can be kept constant 

with respect to baryon density.  Both follow 1/r3, as expressed by the scale factor a: 

𝑎 =
𝑟

𝑟0
=

1

(𝑧+1)
=

1

𝑧′     (19) 

 
1 “Nucleon” doesn’t include electrons; “Baryon” does.  Inclusion of electrons into baryon content is widespread in the literature. 
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 where r0 is the comoving radius of a sphere today, and z is the cosmic redshift: 

𝑧 =
𝜆𝑜𝑏−𝜆𝑒𝑚

𝜆𝑒𝑚
       (20) 

Where λob is the observed wavelength of light of known laboratory value, λem.  There’s also relativistic CMB energy 

density ϵCMB = ρCMBc2, which at last scatter fully comprises photon density ϵλ = ρλc2.  It follows 1/r4.  The effect of 

these combined densities on H is expressed in the minimum flat-universe ΛCDM model by (21): 

𝐻𝛬
2(𝑎) = 𝐻0

2[𝛺𝜆𝑎−4 + 𝛺𝑏𝑎−3 + 𝛺𝑐𝑎−3 + 𝛺𝛬]    (21) 

Where HΛ is the ΛCDM Hubble parameter, H0 is today’s Hubble constant (z = 0), the Ω values are energy density 

ratios ϵ/ϵcrit at z = 0, and the critical energy density ϵcrit is: 

  𝜖𝑐𝑟𝑖𝑡 =
3𝐻2𝑐2

8𝜋𝐺
= 𝜌𝑐𝑟𝑖𝑡𝑐2    (22) 

The Ω’s in theory always add up to one at any given z, and have identical values when expressed as mass density 

ratios ρ/ρcrit.  In GCDM, these contributions to total mass are expressed through a density multiplier ɱ: 

ɱ =
𝛺𝜆𝑎−4+𝛺𝑏𝑎−3+𝛺𝑐𝑎−3

𝛺𝑏𝑎−3      (23) 

which gives: 

𝑀′ = 𝑀ɱ = 𝑀 (
𝛺𝜆𝑎−4+𝛺𝑏𝑎−3+𝛺𝑐𝑎−3

𝛺𝑏𝑎−3 )    (24) 

Total mass 𝑀′ = 6.313M at z = 0 and increases to 𝑀′= 8.336M at z = 1089.  The reader may be curious as to why ΩΛ 

wasn’t included in the calculation of 𝑀′.  It’s an artifact of ΛCDM arising from isoentropic development and is 

unrelated to the gravitational effect of mass. 

The energy lost to gravity upon expansion of the sphere is: 

𝑈𝑟 = 𝑈1 − 𝑈2 = −3𝐺𝑀′2

5
(

1

𝑟1
−

1

𝑟2
)      (25) 

Where U1 and U2 are the before and after gravitational potential energies, respectively. 

Atoms can freely expand without colliding.  At scale they can perform work without colliding.  When the atoms of a 

model sphere move away from its central atom, they are climbing out of a gravity well caused by the reduced 

density resulting from their movement, and Ek diminishes accordingly.  It is this loss of radial kinetic energy to 

gravity, not PV work, which is responsible for the “isoentropic” portion of thermal loss -ΔUi. 

3.2.3 Release equals loss:  the adiabatic sphere 

Combining (10), (15), and (25) gives a finite differential expression of thermal loss → entropic gain: 

𝐸𝑘 = (
3

2
) 𝑃1𝑉1 ((

𝑉2

𝑉1
)

−
2

3
− 1) − 3𝐺𝑀′2

5
(

1

𝑟1
−

1

𝑟2
)      (26) 

 A finite expression of conserved total energy is given by (27): 
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𝐸1 − 𝐸2 = [
(𝑀𝑏𝑐2 + 𝑀𝑒𝑐2 + 𝑀𝑐𝑐2 + 𝐸𝐶𝑀𝐵1

+ 𝑈𝑖1
+ 𝑈1) −

(𝑀𝑏𝑐2  + 𝑀𝑒𝑐2 + 𝑀𝑐𝑐2 + 𝐸𝐶𝑀𝐵2
+ 𝛥𝐸𝑆𝛥𝜆

+  𝑈𝑖2
+ 𝑈2 +  𝐸𝑘  )

] = −𝛥𝑈𝑖 + 𝑈𝑟 − 𝐸𝑘 = 0   (27) 

Where E1 and E2 are the total energies of the before and after sphere.  The CMB gain 𝛥𝐸𝑆𝛥𝜆
= 𝐸𝐶𝑀𝐵1

− 𝐸𝐶𝑀𝐵2
, 

discussed in section 5.3.2, is decoupled from Ek at z < 1089 and separately expressed.  The nucleon rest mass Mb, 

electron mass Me, and CDM mass Mc are unchanged at last scatter so their rest energies Mc2 cancel.  Thermal energy 

Ui is nonrelativistic at 2971K so special effects are negligible and the gas laws are presumed accurate. 

When Ek = 0 we get an adiabatic sphere.  Energy is conserved within; it obeys (1).  The radius re is its adiabatic 

radius or endpoint, found by convergence of r around -ΔUi/Ur = 1.  If we use the value H0 = 67.70 km/sec/Mpc, then 

at last scatter, re = 9.691 x 1016 m (about 10 ly).  The sphere’s imaginary boundary is its adiabatic surface.  In 

today’s variegated Universe, the adiabatic surface around a central atom isn’t always spherical due to density 

variance and anisotropic stress near the cosmic web.  In these regions Ek must be expressed with tensors.  Deep in 

the IGM the surfaces are near spherical.  At last scatter, it’s all spheres. 

For an adiabatic sphere, the postulate connecting classic to cosmic gas behavior is clearly seen.  The thermal loss in 

the sphere just balances gravity, like a piston’s expansion just holding up a weight.  The postulate holds for lesser, 

medium spheres, where Ek > 0 and thermal loss is partitioned into potential and entropic gain.  These medium 

spheres aren’t adiabatic since kinetic energy is escaping from them. 

Spheres larger than adiabatic result in gravitational contraction.  Although quite interesting, treatment of these large 

spheres as a description of gravitational collapse lies outside the scope of the present paper. 

 

3.2.4 The thermal equation, HG = Kvi/re  

The adiabatic sphere contains medium spheres which all have Ek > 0.  To find d(re)/dt = v, we have to figure out how 

fast these medium spheres are expanding (28)-(37), and add up their combined radial speeds (38). 

The finite differential Ek of a medium sphere gives the increment radial velocity 𝑣𝑠
′: 

𝑣𝑠
′ = √

2𝐸𝑘

𝑀
      (28) 
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The term 𝑣𝑠
′ is best visualized as each and every atom in the sphere moving away from the center at the same speed.  

We follow 𝑣𝑠
′ as a function of r, using a constant 

Δ𝑟𝑖

𝑟
 = 10-9.  The small cutoff radius rc = 0.003re is important.  Below 

rc, loss to gravity is negligible and all these small spheres have the same Ek/M value to within 5 ppm (Figure 2): 

𝐸𝑘

𝑀
=

𝛥𝐸

𝑀
=

𝑑𝐸

𝑑𝑀
=

𝑑𝑉

𝑑𝑀

𝑑𝐸

𝑑𝑉
= (

𝑅𝑇

Ж𝑃
)

𝑑𝐸

𝑑𝑉
=

𝑅𝑇

Ж
(

𝑑𝐸

𝑃𝑑𝑉
) =

𝑅𝑇

Ж
    (29) 

For a thermal system dE =-PdV at the instant isoentropic limit.  The minus sign is omitted.  Combining (28) and 

(29) gives the initial radial velocity vi: 

𝑣𝑖 = √
2𝑅𝑇

Ж
      (30) 

 We can determine if energy is conserved within (30) by examining the partition error (31): 

1

2
𝑀[(𝑣𝑖(𝑇1)

)
2

−(𝑣𝑖(𝑇2)
)

2
]−𝛥𝐸

𝛥𝐸
       (31) 

We increment a small sphere (r1 = 1 x 1012 m) giving P2 and T2.  The pressure drop from thermal loss of our gas is 

given by: 

𝑃2 = 𝑃1 (
𝑉2

𝑉1
)

−
5

3
      (32) 

And the temperature drop by: 

𝑇2 = 𝑇1 (
𝑃2

𝑃1
)

2/5

        (33) 

Which for (30) gives a large error.  Development in (29) uses the ideal gas law (16) and not thermal energy (5).  We 

rearrange (5): 

𝑈𝑖

𝑀
=

3𝑅𝑇

2Ж
      (34) 

Substituting 
𝑈𝑖

𝑀
 for 

𝐸𝑘

𝑀
 in (28) gives: 

𝑣𝑖 = √
2𝑈𝑖

𝑀
= √

3𝑅𝑇

Ж
= √

3(8.3145)(2971)

(0.00123988)
 = 7731 m/s    (35) 

By use of (35) the partition error (31) is only 2 x 10-8, likely its minimum.  Since vi is the fastest rate at which any 

sphere can expand, increment of a small sphere should not affect its vi.  This error is: 

(𝑣𝑖(𝑇2)
+𝑣𝑠

′)−𝑣𝑖(𝑇1)

𝑣𝑖(𝑇1)

= 4.5 x 10-5    (36) 

As (29) - (36) indicate, thermal E = Ui.  Einstein’s E = Mc2 isn’t thermally variable (27).  These E terms are 

conflated within the fluid equation (74) and discussed in section 5.2. 

Now that we have what appears to be a proper value of 𝑣𝑖, I propose the radial velocity 𝑣𝑠 of a medium sphere as: 
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𝑣𝑠 =
𝑣𝑠

′

𝑣𝑠
′

0

𝑣𝑖       (37) 

Where 𝑣𝑠
′
0
 is the constant 𝑣𝑠

′ at r < rc.  Equation (37) gives zero at the endpoint, and vi for r < rc.  My guess is 𝑣𝑠/𝑣𝑠
′ 

is constant for rc < r < re. 

The radial velocity v of the adiabatic sphere is the sum of its contained shells, plus the small core: 

𝑣 = (𝑣𝑖) (
𝑟𝑐

𝑟𝑒
) + ∑ (

𝑟

𝑟𝑒
𝑣𝑠)

𝑟𝑒
𝑟𝑐

    (38) 

When normalized as vs/vi vs. r/re and numerically integrated, the value v/vi is 0.79210 = K.  This K shows little 

change with any of 𝑀′, ρ, T, or Ж; it’s constant to the 5th decimal place.2  For an adiabatic sphere with baryon mass 

M, Ek = ½Mv2 = ½KMvi
2.  This adiabatic Ek is integral, not differential (26). 

A normalized plot, (vs/vi)2 vs. (r/re) (Figure 3) shows thermal loss distribution within an instant sphere as a function 

of its radius.  Its integral value at (r/re) = 1 is the entropic partition KS = d(Es)/-d(Ui), exactly 2/3.3  Only 1/3 of 

released energy -d(Ui) is lost to gravity as dU. 

A line of adiabatic spheres, connected at their tangent points, can be constructed in the Euclidean space of last 

scatter.  Anywhere along this line, for any two atoms separated by a distance r, their recession rate 𝑣𝑟  is: 

𝑣𝑟 = 𝐾
𝑟

𝑟𝑒
𝑣𝑖      (39) 

Rearrangement of (39) gives the fundamental equation: 

𝐻𝐺 = 𝐾
𝑣𝑖

𝑟𝑒
      (40) 

Where 𝐻𝐺 = 𝑣𝑟 𝑟⁄  is the Hubble parameter of the thermal model.  At last scatter, HG = 6.319 x 10-14 sec-1, or 

28,804H0.  The ΛCDM model gives HΛ = 5.045 x 10-14 sec-1, or 22,995H0; HG/HΛ = 1.253 (125%).  These differing 

results unambiguously distinguish the two models. 

Deployment of (40) at varying T from 10K to 50,000K at z = 1089, or any other dark z value, gives the same HG(z) 

to seven decimal places every time.  The thermal model is zero-order in temperature.  It’s also zero-order in Ж.  A 

universe made of xenon atoms (0.131 kg/mole) at the same ρ returns 100.000% of our primordial mix’s HG.  The 

mass density ρ is the only independent variable in the thermal model.  This sole dependence of H on ρ means that at 

z = 1089, HG/H0 = 28,804 for any H0 the reader may prefer.  If we move H0 from 67.70 → 74.40 Km/sec/Mpc, we 

get at z = 1089 HG = 6.944 x 10-14 sec-1, again 28,804 H0.  In contrast, at z = 1089 HΛ/H0 is always 22,995.  The 

Hubble tension arises from these differing H/H0 values:  HΛ at last scatter is 33% too low. 

 

 

2 Most calculations used 997 steps of linearly increasing r/re, beginning at rc/re and ending with r/re = 0.999999 or 1 at step 997.  Derived K 

values at a 997-point refinement were invariant to 5 decimal places.  A 9970-point plot gave K = 0.792104 (9969 steps) and 0.792094 (9970 

steps); the value v/vi = K = 0.79210 was selected. 

3 A 9,970-point plot of y (vs/vi)
2 vs. x (r/re) when numerically integrated gave a curve with third-order coefficients x0 = -0.00299999, x = 

1.0000000, x2 = -1.5 x 10-9, and x3 = -0.33333333.  Correlation = 1.  When cutoff x = 0.003 is added to x0, y = 1-x3/3 = 2/3 @ x = 1. 
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4 VARIANCE BETWEEN THE ΛCDM AND GCDM MODELS AT z < 1089 

    

The GCDM H values at lower z have a complex relationship with both ρ and vi, occurring in distinct z ranges.  The 

end of one is the start of the other:  First, the cosmos partially accreted and formed the cosmic web, affecting H 

through ρ.  Second, light from the web flooded the IGM with free electrons, affecting H through vi. 

4.1 The thermal model at z = 1089 to 10:  Partition of mass 

We interpret the differences between ΛCDM and GCDM for 10 < z < 1089 as arising from the partition of mass into 

gravitationally bound and unbound regions of the Universe (the web and IGM respectively).  “Dark energy” 

interferes with accurate visualization of this process at low z values, so we remove the ΩΛ term in (21): 

(𝐻𝛬
′ )2 = (𝐻0)2[𝛺𝜆𝑎−4 + 𝛺𝑏𝑎−3 + 𝛺𝑐𝑎−3]    (41) 

Where 𝐻𝛬
′  is the ΛCDM H parameter, without dark energy:  A “CDM-only” model.  Both HG (40) and 𝐻𝛬

′  (41) are 

purely density-dependent functions and we can look at their evolution without interference from extraneous 

repulsive effects.  Their relative behavior is shown in Figures 4-5. 

First looking at z > 10 (Figure 4), we presume that at z = 1089, HG = 28,804H0 and ρ = ρcrit are both accurate.  From 

z = 1089→10, accretion began at some indeterminate z.  An important assumption is made here:  Cold dark matter 

proportionately coaccretes with the baryons and its IGM density remains constant with respect to baryon density.  

By z = 10, the accretion process came to an end and the mass partition 𝜌′ has been near-constant ever since (Figure 

5): 

𝜌′ =
𝜌𝑔

𝜌𝑏
= 0.840 ± 0.002      (42) 

Where ρg is the mean gas density:  Baryon mass in the IGM alone divided by total volume, web included.  Since 

𝜌𝑔 = 0.84𝜌𝑏, we may conclude there’s 5¼ times as much baryon mass in the IGM which separates the tendrils of 

the cosmic web as there is in the tendrils themselves, which at present comprise only ≈10% of total volume.  It’s the 

84% of mass in the IGM that’s doing the expanding; the mass in the web is mostly just going along for the ride.  A 

classic analogy would be a bound, adiabatic, and idle small sphere of helium.  Some 16% of the helium’s rest mass 

is then converted to bismuth dust which floats around with the same rest mass.  The sphere retains its M, V, and T, 

but its 𝜌′ drops so its P also drops, by 16%.  At scale, accretion similarly reduces 𝑃𝑉′ and gravity comes into play.  

In a hypothetical Universe which has 100% accretion, Friedmann kinetics (70) would be accurate and not (40).   We 
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treat this “Friedmann effect” at 16% accretion through 𝜌′.  Such treatment of web mass’s effect on H may be 

reductive in volume, and sidesteps a proper analysis the web’s contribution to H, but the fit of 𝜌′ with 𝐻𝐺 𝐻𝛬
′⁄  is 

good (Figure 5) and we’ll use 𝜌′ to get thermal values of H when we examine z < 10. 

The variance of HG/HΛ due to added repulsive energy remains, as shown by the circles in Figure 5.  This author has 

found three additional unresolved issues; doubtless there are others. 

4.1.1 The accretion parameter 

How did accretion (1- 𝜌′) evolve during the dark age?  An analytic expression H(z) can be derived and used to 

estimate ρ’(z).  In this subsection, H0 = 67.70 km/sec/Mpc is used to get both HG(z) and HΛ(z). 

The redshift z2 can be obtained from any starting value z1 by changing the increment 
𝛥𝑟𝑖

𝑟
: 

𝑧2 =
𝑧1+1
𝛥𝑟𝑖

𝑟
+1

− 1      (43) 

The temperature 𝑇𝑧 is found from (32) and (33) using (43) to get V2.  Given T(z’=1090) = 2971K, we find from the 

spreadsheet that 𝑇𝑧′ = 𝑇(𝑧+1) is exactly:4 

𝑇𝑧′ = 𝑇′(𝑧′)2      (44) 

Where the root temperature 𝑇′ = 0.0025 is expressed as degrees K.  If treated as an abrupt decoupling at z = 1089, 

then at z = 60, T = 9.3K; at z = 10, T = 0.3K.  These are lower than other estimates [29] but since HG is temperature-

independent, dark thermal heating by the CMB doesn’t affect H.  We just need the root temperature. 

We insert (44) into (35), giving: 

𝑣𝑖 = √3𝑅𝑇′𝑧′2

Ж
      (45) 

The endpoint re is adjusted for both T and ρ. 

For the T adjustment, the thermal radius change 𝑟𝑒2
/𝑟𝑒1

 vs. T at constant ρ and Ж is found exactly: 

𝑟𝑒2
= 𝑟𝑒1√

𝑇2

𝑇1
      (46) 

For the ρ adjustment, the thermal radius change 𝑟𝑒2
/𝑟𝑒1

 vs. ρ at constant T and Ж is found exactly: 

𝑟𝑒2
= 𝑟𝑒1√

𝜌1

𝜌2
      (47) 

For nonrelativistic mass,  

𝜌1

𝜌2
=

(𝑧1
′ )

3

(𝑧2
′ )

3      (48) 

Combining these gives: 

 
4 210 points from z’ = 1090 to 10; median z’ = 350.  Found:  T = 2 x 10-9 + 5 x 10-11(z’) + 0.002500631 (z’)2; correlation = 1. 
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𝑟𝑒2
= 𝑟𝑒1

√
𝑧1

′

𝑧2
′      (49) 

Inserting (45) and (49) into (40) gives:5 

𝐻𝐺 = 𝐾
𝑣𝑖2

𝑟𝑒2

=
𝐾

𝑟𝑒2

√3𝑅𝑇′(𝑧2
′ )

2

Ж
=

𝐾

𝑟𝑒1

√3𝑅𝑇′

Ж

(𝑧2
′ )

3

𝑧1
′      (50) 

At last scatter, 𝑧1
′  = 1090.  We adjust for relativistic mass with ɱ′: 

ɱ′ =
ɱ𝑧′2

ɱ𝑧′1

     (51) 

Where ɱ𝑧′1
= 8.336 is the multiplier at last scatter.   A linear dependence of H on ɱ′ is found from the spreadsheet: 

𝐻𝐺 =
𝐾

𝑟𝑒1

ɱ′√
3𝑅𝑇′

Ж

(𝑧2
′ )

3

𝑧1
′      (52) 

When 𝜌′ is set to 1, the deviance of (52) from the manually calculated values of HG (40) is < 0.1 ppm for all z = 

1089 to 0.  In this ideal case, we only need to calculate 𝑟𝑒  at last scatter to get thermal H values at lower z.  However, 

mass accretion is untreated in (52) so a partition term 𝜌𝑧′
′  must be inserted, from (47) as the square root: 

𝐻 = 𝐻𝐺√𝜌𝑧′
′ =

𝐾

𝑟𝑒1

ɱ′√3𝑅𝑇′

Ж

(𝑧2
′ )

3

𝑧1
′ 𝜌𝑧′

′     (53) 

Rearrangement of (53) gives: 

𝜌𝑧′
′ = 𝐻2 (𝑟𝑒1)

2

𝐾2(ɱ′)
2

Ж

3𝑅𝑇′

𝑧1
′

(𝑧2
′ )

3     (54) 

For z > 10, “dark energy” is minimal (ΩΛ < 0.002), and 𝜌𝑧′
′ = 𝜌(𝑧+1)

′  might be estimable from the H values of any 

luminous bodies we are fortunate enough to see.  This depends on whether or not star formation and accretion are 

coevolving phenomena.   For z > 10, if accretion ends before starlight begins, then 𝜌′= 0.84 applies and the value of 

H/HΛ will remain close to one.  However, if accretion and starlight coevolve, then H/HΛ > 1 may be significant 

enough to measure, and (54) can be applied.  For example, the newly found galaxy JADES-GS-z13-0 [30-31] has a 

spectroscopic redshift of 13.2, so ΩΛ = 0.0007, a minimal dark energy value, and 𝐻𝛬
′ ≈ 𝐻𝛬.  If 𝜌′ = 0.84 at this 

redshift then H/HΛ = 1.002, not significant.  If 𝜌′ = 0.9 then H/HΛ = 1.036 which if true ought to be detectable.  In a 

coevolving Universe, observed H/HΛ differences should get more pronounced at higher z values.  This author 

believes that star formation and accretion do coevolve, and I predict upwardly-trending deviance of H from HΛ in the 

z >10 range now accessible from the James Webb telescope.  This trend should be observable regardless of which 

H0 is chosen.  For H0  = 67.70 km/sec/Mpc,  the upper limit of H/HΛ is 1.253, the last-scatter value, which can’t be 

seen since there’s no stars at 0% accretion.  When more data from Webb comes in, we should be able to follow the 

progress of accretion through the parameter (1-𝜌′). 

 

 
5 Use of (44) to get re2 in (50) indicates that the adiabatic mass Me isn’t constant with Uk, but is instead a roughly colinear function of z’.   This is 

a somewhat counterintuitive result. 
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4.1.2 Cold dark matter 

Cold dark matter can be supposed to have its own Ui which undergoes loss from work dU.  Any such loss is 

discounted by the thermal model:  At last scatter, gas does all the work.  Consistency with (1) dictates that within 

GCDM, CDM was and is so cold that its Ui, Uk, and Ek are all zero.  These unusual premises are questionable and 

presently inconclusive.  In this context the reader may wish to reexamine the rate of accumulation of old neutrinos in 

the very early Universe, more properly accounting for the irreversible nature of their large entropy of formation, and 

of their similarly large present-day Compton wavelength. 

4.1.3 Are the Friedmann and thermal models analytically equivalent? 

The “CDM-only” model (41) and thermal model (40) converge for z < 10 if accretion 𝜌′ is included.  Their 

equivalence is likely but unproven.  To do so, the effects of CMB mass and “dark energy” must be parsed out.  The 

former of these is low enough to be neglected for z < 9 and in any event a simple function of z.  “Dark energy” is 

herein proposed as neither constant nor a directly dependent function of z, and proper resolution of its effects must 

rely on observed H values. 

4.2 The light model, z = 10 to 0:  Suprathermal energy 
 

None of the above expressions come any closer to explaining the source of the repulsive “dark energy” term ΩΛ in 

the ΛCDM model.  I propose that suprathermal kinetic energy in the IGM is responsible.  It arises mostly from 

Compton scattering, reliant in turn on photon flux 𝑑𝐸𝛾 𝑑𝑡⁄ .  There are partial flux estimates available [32-33] but the 

process of connecting these and other sources to produce a definitive “light model” is an undertaking of considerable 

magnitude.  The present paper is merely an introduction. 

Suprathermal kinetic energy adds pressure to the IGM: 

𝑃𝑉′ = 𝑃𝑉𝑡
′ + 𝑃𝑉𝑠

′      (55) 

Where 𝑃𝑉𝑡
′ and 𝑃𝑉𝑠

′ are thermal and suprathermal pressures respectively. 

The thermal model (40) has three terms: K, vi, and re.  If we want to express suprathermal content within that 

framework, we need to increase vi or K, decrease re, or some combination.  We express vi (35) as a sum: 

𝑣𝑖 = √
2(𝑈𝑖𝑡

+𝑈𝑖𝑠)

𝑀
      (56) 

where 𝑈𝑖𝑡
 and 𝑈𝑖𝑠

 are thermal and suprathermal kinetic energies in the adiabatic sphere. 

 

The total nucleon kinetic energy Ub is: 

 

𝑈𝑏 = 𝑈𝑏𝑡
+ 𝑈𝑏𝑠

      (57) 

 

Where 𝑈𝑏𝑡
 is the thermal value of Ub, and 𝑈𝑏𝑠

 is cosmic radiation. 

 

The total electron kinetic energy Uβ is: 

 

𝑈ß = 𝑈ß𝑏
+ 𝑈ß𝑡

+ 𝑈ß𝑠
     (58) 
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Where 𝑈ß𝑏
 is the thermal energy of atomically bound electrons, 𝑈ß𝑡

 is the thermal energy of free electrons, and 𝑈ß𝑠
 

is their suprathermal energy. 

 

Inserting (57) and (58) into (56) gives: 

 

𝑣𝑖 = √2[(𝑈𝑏𝑡
+𝑈ß𝑏

+𝑈ß𝑡
)+(𝑈𝑏𝑠+𝑈ß𝑠)]

𝑀
     (59) 

We neglect cosmic radiation 𝑈𝑏𝑠
 for now as its omission doesn’t substantially affect the logic of the following 

expressions.  This means 𝑈𝑏𝑡
= 𝑈𝑏, so: 

𝑣𝑖 = √2(𝑈𝑏+𝑈ß𝑏
+𝑈ß𝑡

+𝑈ß𝑠)

𝑀
     (60) 

We examine the thermal energies 𝑈ß𝑏
 (bound) and 𝑈ß𝑡

 (free).  Thermal free electrons are held to behave at very low 

densities as a monatomic gas.  Treatment as such reduces the mean atomic weight Ж.  The thermal model is 

independent of both Ж and T and dependent only on the mean gas density ρg.  The result of thermal ionization is 

thus an increase in both vi and re without affecting H or K.  If vi is doubled, so is re, as is the case with pure hydrogen 

plasma which will serve as our example. 

 

In a thermal system with no ionized H1: 

 

𝑈𝑖 = 𝑈𝑏 + 𝑈ß𝑏
≈ 1.0005𝑈𝑏     (61) 

 

so 𝑈𝑖 = 𝑈𝑏 is reasonably accurate.  When H1 is 100% ionized at e.g. 4000K, the number of gas particles is doubled, 

the atomic weight halved, and energy equipartitioned: 𝑈ß𝑏
= 0, 𝑈ß𝑡

= 𝑈𝑏, and Ж’ = ½Ж, where Ж’ is the mean 

atomic weight of the plasma.  Making these substitutions into (35) and (60) with no 𝑈ß𝑠
 gives: 

 

𝑣𝑖 = √2(𝑈𝑏+𝑈ß𝑡
)

𝑀
= √

2(2𝑈𝑏)

𝑀
≈ √

4𝑈𝑖

𝑀
= √

6𝑅𝑇

Ж′ = √
6𝑅𝑇
Ж

2⁄
= √

12𝑅𝑇

Ж
= 2√

3𝑅𝑇

Ж
   (62) 

 

The added 𝑈ß𝑡
= 𝑈𝑏 gives twice the old value of vi from (35); more generally, added 𝑈ß𝑡

 gives a linear increase in vi 

and we can expect the same for re.  This all means that for thermal plasmas, (40) is better expressed using the 

nucleon kinetic energy alone: 

 

𝐻𝐺 = 𝐾
(

(𝑈𝑏+𝑈ß𝑡
)

𝑈𝑏
)𝑣𝑖

(
(𝑈𝑏+𝑈ß𝑡

)

𝑈𝑏
)𝑟𝑒

= 𝐾
√

2𝑈𝑏
𝑀

𝑟𝑒
      (63) 

 Where vi and re have their non-ionized values.  The mass partition ρ’ = 0.84 is now folded into HG.  The 

denominator term associated with re in (63) is inserted to comply with the thermal model’s zero-order dependencies.  

In (63), vi remains close to (35): Ub ≈ 0.9995Ui, so the effect of thermal ionization on H is minimal. 

 

We proceed by assuming that suprathermal energy 𝑈ß𝑠
 has no effect on either K or re.  It may have some effect but 

we will say it doesn’t.  Removal of 𝑈ß𝑏
and 𝑈ß𝑡

from (60) gives: 
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𝑣𝑖(𝑏+𝛽𝑠)
= √

2(𝑈𝑏+𝑈ß𝑠)

𝑀
= 𝑣𝑖√(1 +

𝑈ß𝑠

𝑈𝑏
)    (64) 

Where 𝑣𝑖(𝑏+𝛽𝑠)
 is the initial radial velocity of the light adiabatic sphere, 𝑣𝑖 is the thermal value, and 𝑈ß𝑠

𝑈𝑏⁄  is the 

suprathermal ratio. 

Inserting (64) into (40) gives: 

𝐻 = 𝐻𝐺√(1 +
𝑈ß𝑠

𝑈𝑏
)    (65) 

Use of (63)-(64) to get (65) presupposes thermal plasma, a safe bet 

for a reionized Universe.  We fit the light model (65) to the ΛCDM 

model (21) by convergence of 𝑈ß𝑠
𝑈𝑏⁄  around H/HΛ = 1 for each 

datum.  To get HG, we use 𝜌′ (42) to get P1 in (26), giving re when 

Ek = 0, then getting thermal vi from (35) and finally HG from (40).  

The suprathermal ratio 𝑈ß𝑠
𝑈𝑏⁄  is, like HG, zero-order in T,6 so (65) 

is completely temperature-independent.  These results are shown in 

Figure 6.  A ln-ln line is found7 for z = 0→2, giving (66): 

 

𝑈ß𝑠

𝑈𝑏
= 𝑒

(0.8045−2.9915𝑙𝑛(𝑧′))
≈

2.236

(𝑧′)
3      (66) 

   

At z = 0, 𝑈ß𝑠
𝑈𝑏⁄  = 2.2397 gives H/HΛ = 1; the regressed value is 2.236.  This is close to the ratio  𝛺𝛬/(𝛺𝑏 + 𝛺𝑐) in 

the ΛCDM model, 2.235, and a simple restatement of the source of “dark energy” repulsion.  At higher z, 𝑈ß𝑠
𝑈𝑏⁄  

drops steadily to 0.01 at z = 5.  A modest deviance from linearity in the plot occurs above z = 2; these are shown in 

Figure 6 but not included in the regression.  The crossover to 𝑈ß𝑠
dominance is found at z = 0.309.  Equation (66) 

derives from ΛCDM and accordingly gives the suprathermal ratio as proportionate to (𝑧′)−3. 

 

Using the same data, a ln-ln regression of re vs. z’ gives (67):8 

 

𝑟𝑒 = 𝑟0𝑒[0.00006−1.5006𝑙𝑛(𝑧′)] ≈ 𝑟0(𝑧′)−
3

2    (67) 

 

Where r0 = re at z = 0.  From (67) we see that the adiabatic volume Ve/V0 varies as (𝑧′)
−9

2 , not (𝑧′)−3.  A constant 

“dark energy density” expressed as [𝑈ß𝑠
𝑈𝑏⁄ ] (𝑧′)3⁄  might be accurate, but within GCDM, isn’t proper. 

   

From (65) – (67) we arrive at an expression of H for z = 0 to 2: 

 

𝐻 = 𝐻𝐺 0
𝑧′

3

2√1 +
2.2397

𝑧′3       (68) 

 

 
6 T = 4,000-50,000K gave the same results for all z. 
7 For the ln-ln regression of H(z) from z = 0 to 2, 101 data points were used with 3+ significant figures for all calculated 𝑈ß𝑠

𝑈𝑏⁄ . Found: y  = 

0.80455-2.99154x; Correlation  0.9999996; std. error 0.0007.  The y intercept gives z = 0.30852.  
8 Found for ln-ln: y = 0.00006 - 1.500563x; correlation 0.99999999.  The endpoint is temperature-dependent so a constant T must be used. 
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If H0 = 74.40 km/sec/Mpc, then 𝐻𝐺0
= 1.339 x 10-18 sec-1 is the thermal value at z = 0. The term 𝑧′ = 𝑧 + 1 is given 

by (19).  Equation (68) gives 100.00%→99.90% of the ΛCDM value (21) for z = 0 to 2.  The exponents in (66) – 

(68) are shown as rounded to the nearest fraction.  The rounding excises CMB mass 𝛥ɱ′ (51) from re/r0 (67) which 

may contribute to the observed -0.1% deviance at z = 2. 

 

At z = 0, the models closely converge: 

 
𝑈ß𝑠

(𝑈𝑏+𝑈ß𝑠)
= 𝛺𝛬 = 0.691      (69) 

 

If we include thermal electrons in the denominator of (69), we get 
𝑈ß𝑠

(𝑈𝑏+𝑈ß𝑠+𝑈ß𝑡)
= 0.53, still more than half of all 

kinetic energy in the IGM today. 

 

If one considers that 𝑈ß𝑠
 may persist indefinitely then a “pumped Universe” scenario is plausible.  In a pumped 

Universe, suprathermal energy in the IGM accumulates.  If 𝑈ß𝑠
 persists, then 𝑑(𝑈ß𝑠

) 𝑑𝑡⁄  can be estimated through 

lookback dz/dt at a constant T and compared to known 𝐸𝛾 sources:  Type “O” stars, active galactic nuclei, etc.  A 

constant [𝑈ß𝑠
𝑈𝑏⁄ ] (𝑧′)3⁄  should result for z = 0 to 2.  Those calculations are more involved and lie outside the scope 

of the present paper. 

 

4.2.1 Origin of suprathermal electrons in the IGM 
 

By z ≈ 6 the Universe was fully reionized, so Compton scattering from neutral IGM atoms isn’t a significant source 

of suprathermal energy after that.  A second source is Compton scattering of free electrons in the IGM, which would 

taper off to a steady state if the energy profiles of the electrons and photons were to converge.  Cosmic radiation 𝑈𝑏𝑠
 

from the web is a third source.  The reader is asked to consider a fourth source, electron escape from the web, as a 

present-day contributor to the IGM’s suprathermal content.  Electrons move faster than protons, and any resulting 

IGM charge buildup is presently untreated.  This author estimates these electrostatic effects as minor compared to 

𝑈𝛽𝑠
. 

4.2.2 Suprathermal effects on re, K, and KS 
 

Suprathermal electrons do not obey the gas laws which underpin the thermal model.  Many thermal electrons may 

not either as they can travel at relativistic speeds when hot enough.  I can’t offer much insight here; all we can say 

with certainty is that for a given 𝑈𝑖𝑠
, 𝛥𝑈𝑖𝑠

 isn’t found from (15).  The presumption that re and K are unaffected by 

𝑈𝑖𝑠
 is purely conjectural, necessary for development of (65) – (69).  Equation (68) does give the same results as (21), 

so whatever the suprathermal ratio actually describes, it works well.  For special effects, the thermal model’s re 

dependence follows (47); relativistic mass increase would cause a decrease in re.  The entropic partition KS and v/vi 

= K may also change with introduction of highly relativistic kinetic energy.  Any such effects on (K/re) would be 

reflected at z = 0 giving 𝑈ß𝑠
𝑈𝑏⁄ − 𝛺𝛬 𝛺(𝑏+𝑐)⁄ > 0.  This happens to be true but the difference is small, about 0.2%, 

so I believe such changes in K and re aren’t large.  Even if (K/re) is theoretically shown to change by as much as 1%, 

the light model still allows us to use known and conserved energy sources, in compliance with (1), to account for H. 

5 DISCUSSION: GCDM VERSUS ΛCDM  

The ΛCDM model is a benchmark, giving the most accurate empirical fit to date.  It closely converges with the 

GCDM model at z = 0.  The models have different theoretical foundations and their predictions diverge at last 

scatter. 
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The ΛCDM model (21) combines three formulas: 

1) The Friedmann equation gives a relation between H and rest energy density ϵ(b+c). 

2) The fluid equation adds a term “P” and describes covariant (ϵ(b+c) + “P”) vs. H. 

3) The equation of state divides “P” into three different constituents. 

We use H(t) below.  It’s connected to H(a) in (21) by lookback ∫(𝑑𝑡/𝑑𝑎)𝑑𝑎. 

5.1 The Friedmann equation 

 
The question of Universal curvature is historically important and extensively treated in modern texts [34-35].  That 

debate is largely settled now.  Most of us believe in a flat Universe, so the Friedmann equation can be simply 

expressed: 

𝐻2 =
8𝜋𝐺𝜖(𝑏+𝑐)

3𝑐2 ≈
8𝜋𝐺𝜌

3
      (70) 

In (70), ρ doesn’t include the equivalent mass of kinetic energy density 𝜖𝑈𝑖
, hence the “≈”.  Equation (70) in its 

Newtonian form ρ describes what happens when a model sphere of rocks within CDM expands in Euclidean space.  

The rocks and CDM have a primordial Ek which diminishes as they work against gravity dU.  If CDM has no 

internal kinetic energy then the rocks do all the work. 

Both models use the critical density (22) as a key parameter.  The ΛCDM model uses ϵ(z) = ϵcrit.  It’s a flat fulcrum 

between a positively curved Universe, where the rocks slow down too much and end up collapsing, vs. a negatively 

curved Universe, where the rocks possess Ek >> 0 forever.  At the fulcrum, the rocks’ Ek is exactly spent by work, 

and Ek → 0 asymptotically at infinite time.  The word “critical” in “critical density” reflects this seemingly 

miraculous knife-edge balance.  The GCDM model uses ρ(z) = ρcrit.  Its value reflects the perpetual 2:1 dominance 

of IGM gain d(ES) over total dU.  The critical density is simply and exactly a monotonic consequence of the 

progress of entropy and time (2)-(3). 

The Friedmann equation (70) underestimates Ek arising from 𝑃𝑉′ at higher z.  This is most evident at last scatter:  

Atomic radial movement of the gas’s acoustic oscillation is ironically treated as nongaseous.  This neglects the 

positive effect of CMB energy on the gas’s instant pressure.  The CMB’s equivalent mass reduces the endpoint, 

shrinks the adiabatic sphere, and increases the baryon density.  The resulting increase in instant pressure is proposed 

as the cause of the Hubble tension (Figure 4).  When CMB energy is removed from the thermal model, HG/HΛ at last 

scatter drops from 1.25 to 0.95. 

The acoustic oscillation calculations underlying the last-scatter HΛ value derive in part from (70).  Friedmann in turn 

derived (70) using general relativity which neglects entropic gain.  Einstein’s field equation has no provision for this 

gain.  Einstein added Λ to the field equation to offset the noncomoving or “static” model of the Universe then 

prevalent. The concept of Λ fell out of favor due in part to its unbound static instability.  The contemporaneous 1917 

observations of Vesto Slipher [40], followed later by Edwin Hubble in 1929 [41], then by Penzias and Wilson in 

1965 [1] all led to a comoving model.  Within this comoving model, Λ was reinserted, as it was then consistent with 

the model, and Einstein was Einstein. The value of ΩΛ, however, was long thought be zero.  In 1998, two groups of 

researchers [36-39] gave ΩΛ a nonzero value, 0.69, as this was consistent with their observations.  Our Universe 

became filled with mysterious repulsive energy. 

Einstein’s Λ was a proper addition to the field equation in 1917.  It kept a “balloon” inflated in a static Universe.  

Einstein, along with the authors of [36-39], didn’t consider the possibility of gas pressure as a repulsive force.  The 

baryon content of the IGM wasn’t estimated until well after 1917. 
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At very low redshifts, the CMB’s Ωλ in the “CDM-only” (41) is negligible and (41) ≡ (70).   The Friedmann 

equation and the thermal model (53) give near-identical results from z = 0 to 10 (figure 5).  The remaining 

differences between the ΛCDM and light models emerge from the fluid and acceleration equations, our next subject. 

5.2 The fluid and acceleration equations 

If all the energy in the Universe was CDM and accreted mass, its expansion would follow (70).  CMB photons also 

have energy and mass equivalence which drops off faster than that of nonrelativistic mass.  To reconcile these 

differing rates, the fluid equation (74) was devised.  Its derivation starts with (71), the engineer’s preferred 

expression of (1), describing gas in a bound vessel: 

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉      (71) 

Where dE = d(Ui) is thermal change in the vessel.  Also in this vessel, 

𝑑𝑄 = 𝑇𝑑𝑆       (72) 

Where dQ is heat flow to or from the vessel.  A restriction is placed on (72), dQ = 0.  So far, so good:  The system is 

adiabatic, like the Universe.  If dQ = 0 in (72), then dS = 0 as well.  This precept is used to set dS in (71) to 0.   A 

vessel’s boundary is required for (72).  A vessel isn’t required for (71), but if dS in (71) is differentiated over time, 

an entropic term TdS/dt arises which at scale shouldn’t be set to zero since that is inconsistent with the second law 

(2).  This issue is skirted by removal of (71)’s TdS prior to time differentiation, giving: 

 

𝑃𝑑𝑉/𝑑𝑡 =  −𝑑𝐸/𝑑𝑡      (73) 

Equation (73) is an isoentropic special case of (71) which describes the rate of thermal energy leaving an adiabatic 

vessel and performing work (e.g. dU).  This is suitable for a bound system.  When the “vessel” is the unbound 

Universe, (73) means that thermal loss in excess of dU is leaving the Universe.  Absent any additional dimensions, 

or perhaps a Λ field which acquires the energy, that is not a conclusion to which this author can subscribe.  

Isoentropy, i.e. neglect of (2), leads to inconsistency with (1).  If you neglect the second law, you are going to 

violate the first law.  Insofar as Λ is concerned, energy is purported to come from it, not add to it.  The consistent 

destination for any unbound thermal loss not taken up by gravity is d(TS), giving 𝑃𝑉′ from (4) and (12), and Ek from 

(4) and (10).  At scale, in (71) it’s dE that’s zero, not dS. 

Equation (73) is used to derive the fluid equation (74), which redefines pressure P → ”P”: 

𝑑𝜖(𝑏+𝑐)

𝑑𝑡
+ 3𝐻(𝜖(𝑏+𝑐) + ”𝑃”) = 0     (74) 

The terms P and “P” are both expressed as J/m3, but “P” takes on a different meaning:  Equivalent mass density.  

This redefinition cleared the way for inclusion of relativistic energy as one of “P”’s mass equivalent components.  

However, the repulsive nature of unbound P (= 𝑃𝑉′) is expunged since entropic gain TdS has been excised.  The 

term “𝑃𝑉′” now means only the differential change in equivalent mass density arising from thermal loss −𝑑 (𝜖𝑈𝑖𝑡
).  

All of 𝜖𝑈𝑖𝑡
 lies within “P” and is so small as to be practically nonexistent within (74). 

The Newtonian expression of (74) is: 

𝑑𝜌

𝑑𝑡
+ 3𝐻(𝜌(𝑏+𝑐) + "𝑃"/𝑐2) = 0     (75) 
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Equation (75) better shows why thermal energy density is thought to be insignificant.  Its equivalent mass density 

𝜌𝑈𝑖𝑡
= 𝜖𝑈𝑖𝑡

/𝑐2 is dwarfed by the rest density of either the comoving atoms ρb or cold dark matter ρc. 

The Friedmann equation (70) is differentiated and combined with (74) to give the acceleration equation (76): 

𝑑𝐻

𝑑𝑡
= − [

4𝜋𝐺

𝑐2 (𝜖(𝑏+𝑐) + "𝑃")] =
−4𝜋𝐺𝜖

𝑀′

𝑐2 = −4𝜋𝐺𝜌𝑀′     (76) 

In ΛCDM, total and critical densities are the same thing:  𝜖𝑀′  = 𝜖𝑐𝑟𝑖𝑡.  Equation (76), like its progenitor (70), treats 

all mass as accreted, so (76) doesn’t properly express entropic 𝑃𝑉′.  Partly neglected by (70), 𝑃𝑉′ is then excised 

altogether by (74).  The repulsive effects of the suprathermal portion of 𝑃𝑉′ are instead expressed by Einstein’s 

resurrected Λ, whose attendant density (-𝜖𝛬) is added to “P”. 

The expressions in (76) are arbitrarily parsed and better seen as a sum of densities, now including -𝜖𝛬: 

𝑑𝐻

𝑑𝑡
=

−4𝜋𝐺𝜖
𝑀′

𝑐2 =
−4𝜋𝐺

𝑐2 [𝜖𝑏 + 𝜖𝑐 + 𝜖𝐶𝑀𝐵 + 𝜖𝑈𝑖
+ 𝜖𝛾 + 𝜖𝐸𝑖

− 𝜖𝛬]   (77) 

Where ϵγ is emitted photons and 𝜖𝐸𝑖
 is ionization.  In GCDM, ϵΛ doesn’t exist, and 𝜖𝑀′  is: 

𝜖𝑀′ = (𝜖𝑏 + 𝜖𝑐 + 𝜖𝐶𝑀𝐵 + 𝜖𝑈𝑖
+ 𝜖𝛾 + 𝜖𝐸𝑖

) ≈ 𝜖𝑏 + 𝜖𝑐 + 𝜖𝐶𝑀𝐵  (78) 

At last scatter, relativistic mass from the CMB was important: 𝜖𝐶𝑀𝐵 = 0.24𝜖𝑀′.  By z = 9 it was only 0.003𝜖𝑀′ .  

That was more than ten billion years ago.  Today at z = 0, the GCDM model gives CMB energy as 0.0003𝜖𝑀′ .  If 

we make an ad hoc 1% allowance for special effects and the remainders 𝜖𝛾 + 𝜖𝑈𝑖
+ 𝜖𝐸𝑖

, then rest density ρ(b+c) can 

be seen as 99% of 𝜖𝑀′/c2 for most of the Universe’s history.  Baryons behave as an 84% unbound gas with 

unchanged rest mass, whose replenished thermal loss drives expansion through entropic gain.  The spacetime 

curvatures from stars and galaxies in the cosmic web are only local perturbations in a much more voluminous, 

massive, and Euclidean IGM. 

The instant IGM is, I contend, effectively Euclidean.  Equivalent mass density 𝜌𝑀′ was scalar in xyz at last scatter, 

so U was too, and it remained so in the IGM during and after accretion.  The IGM’s density ρ over all z = 0→1089 is 

so low, and its mass fraction 𝜌′ so large, that particle movement within can be fairly described using Euclidean 

momentum tensors in a covariant scalar U field.  Add up the tensors’ kinetic energy, and you get 𝑈𝑖.  Progress of 

time in the IGM is linear for this entire z range: clocks at z = 0 and 1089 differ by less than a year in a million.  A 

flat instant Universe ought to be Euclidean ad infinitum,9 which is consistent with the IGM’s treatment as such. 

GCDM’s suprathermal pressure 𝑃𝑉𝑠
′ ≡ 𝜖𝑈𝑖𝑠

 is expressed within ΛCDM by -ϵΛ, whose 0.69 dominance of 𝜖𝑐𝑟𝑖𝑡 at z = 

0 arises from another inconsistency:  Conflation. 

Conflation of meaning between thermal and rest energies in (71) and (73) contributes to ΛCDM’s theoretical 

inconsistency.  A single symbol, E, is used to describe them behaving the same way.  They don’t.  The fluid 

equation (74) is derived from a thermal law (71) and treats rest energy E = Mc2 as thermally variable.  It isn’t.  Rest 

mass M is constant (27) and no more related to thermal change than the Mc2 of a pendulum is to its apogee.  The 

fluid equation’s improper inclusion of these enormous amounts of variable and fictitious rest energy into what is 

properly minor thermal change gives substantial inconsistency with (1) and alters every downstream calculation.  

This is why ΛCDM’s ΩΛ = ϵΛ/ϵcrit = 0.69 is found to be so large today [36-39].  Such “dark energy” arises because 

 
9 This concept of an instant Euclidean Universe can be extended all the way back to the end of the inflationary period, when the vi of an adiabatic 

sphere fell below c. 
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dE ≠ 0 in (71).  If energy is conserved and entropy gained, then the observed stellar movement attributed to -ϵΛ is 

more properly expressed as arising from +𝑃𝑉𝑠
′. 

The Jeans model of star formation [25] is relevant to our discussion here.  At last scatter, both (76) and the Jeans 

model operated concurrently within any given volume.  The Jeans model treats P as repulsive, an offset against 

gravitational collapse.  The acceleration equation (76) treats “P” as attractive and is inconsistent with the Jeans 

model.  The GCDM model treats P as repulsive, which is consistent with the Jeans model’s treatment of P. 

5.3 The equation of state 

The ΛCDM equation of state (79) describes the components comprising “pressure P” and has three terms: baryonic, 

relativistic, and Λ: 

"𝑃" = 𝑤𝑏𝜖𝑏 + 𝑤𝜆𝜖𝜆 + 𝑤𝛬𝜖𝛬     (79) 

The w terms are dimensionless numbers: wb << 1,  wλ = 1/3, and wΛ = -1.  Equation (79) is combined with (76) to 

complete the ΛCDM model (21). 

5.3.1 Baryonic mass 

Baryonic matter comprises stars, rocks, and helium balloons, and is treated by ΛCDM as 100% attractive.  This 

might disturb a vendor watching his balloons implode.  In GCDM, baryon mass is mostly repulsive, a gas:  The 

balloon vendor feels better.  At last scatter, baryon mass was 100% gas:  Helium and H1.  Presently, the repulsive : 

attractive ratio of baryon mass in the Universe is about 5¼ : 1. 

The ΛCDM term 𝑤𝑏𝜖𝑏 is expressed as: 

𝑤𝑏𝜖𝑏 ≈ (
𝑘𝑇

𝜇𝑐2) 𝜖𝑏 = (
𝑘𝑇

𝜇𝑐2) (𝜌𝑏𝑐2) =
𝑘𝑇𝜌𝑏

𝜇
   (80) 

Where μ is the mean atomic mass and k is Boltzmann’s constant.  Equations (80) and (16) give the same thermal 

kinetic energy density 𝜖𝑈𝑖𝑡
=

3

2
 𝑃𝑉𝑡

′.  This is negligible compared to ϵcrit, as is suprathermal pressure 𝑃𝑉𝑠
′ which is 

instead treated by ΛCDM (21) as the conflated term ΩΛ.  In GCDM, there is no ΩΛ, and 𝑃𝑉′ provides both thermal 

and suprathermal repulsive force. 

5.3.2 Relativistic mass; entropy of a photon 

Relativistic mass, expressed as 𝑤𝜆𝜖𝜆 in the ΛCDM model, is attractive in both models and arises from photon and 

neutrino energy.10  However, relativistic mass has opposite effects on the models’ behavior.  In ΛCDM, H is reduced 

by added relativistic mass.  In GCDM, H is increased, as relativistic mass’ gravitational pull increases baryon 

density and thus its instant pressure.  Instant pressure always exceeds differential gravity loss by at least 2:1 (figure 

3), so the more dense the gas becomes, the faster it expands.  Of course, at some sufficiently large density, antinode 

formation from acoustic resonance causes collapse into accreted bodies, but at the low densities in the regions of the 

Universe that we have examined in the present paper, this is not something we need to worry about. 

We now examine photon energy more closely.  An expanding sphere of CMB light has an r-4 dependence of energy 

density.  Volume increases as r3, so there appears to be a 1/r loss of CMB energy upon expansion.  During the dark 

age there was minimal CMB energy transfer to the IGM’s baryons [29].  Most of the CMB’s energy vanished; we 

 
10 Neutrinos are believed to have had relativistic kinetic energy at last scatter but became nonrelativistic in the dark age.  This affects their 

temporal mass density dependence, which is untreated in the present paper. 
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get inconsistency with (1).  I see no escape from this conundrum except to apply (3):  CMB light yields gain through 

wavelength stretch Δλ.  Any one CMB photon’s wavelength increases with time and their combined lost energy is 

gain 𝛥𝐸𝑆𝛥𝜆
: 

𝛥𝐸𝑆𝛥𝜆
= 𝐸𝐶𝑀𝐵1

− 𝐸𝐶𝑀𝐵2
= ∑ 𝑛𝜆ℎ𝑐∞

𝜆1≈0 (
1

𝜆1
−

1

𝜆2
)    (81) 

where 𝐸𝐶𝑀𝐵1
 and 𝐸𝐶𝑀𝐵2

 are the before and after photon energies during the dark age, h is Planck’s constant, λ1 and 

λ2 are the before and after wavelengths of the stretched photon, and 𝑛𝜆 is the number of photons at a wavelength λ1.  

The distribution 𝑛𝜆 vs. λ is observed in the CMB as a blackbody curve, and extrapolated to give 𝑛𝜆 vs. λ1 at last 

scatter. 

The above analysis gives an individual photon’s entropy 𝑆𝜆 as equal to Planck’s constant: 

𝑆𝜆 = ℎ       (82) 

Entropy is expressed as J/Hz rather than the more conventional J/K.11 Unbound photon energy 𝐸𝜆 is potentially 

100% entropic, in that all of it is eventually lost to time. 

During the dark age 𝐸𝜆= ECMB and the photon energy density 𝜖𝜆 =
𝐸𝜆

𝑉
 followed (83): 

𝜖𝜆 = ∫
𝑛ʄℎʄ

𝑉

∞

ʄ=0
= 7.566 ∗ 10−16𝑇4

     (83) 

Where 𝑛ʄ is the number of photons of frequency ʄ at a given blackbody T.  After stars began to flood the Universe 

with photon energy Eγ, 𝐸𝜆= (ECMB + Eγ).  Photons Eγ also stretch and gain. 

From (82), photons are isoentropic, so the second law as applied to them is expressed with gain (3) rather than 

simple entropy increase (2).  Gain d(ES) is connected to Ek (10), hence volume (13).  The rate of volume increase 

𝑑𝑉𝜆/𝑑𝑡 of radial light in a model sphere is: 

𝑑𝑉𝜆

𝑑𝑡
=

4𝜋𝑐3

3
      (84) 

which far outpaces nonrelativistic Ek. 

Current treatment of CMB energy also begins isoentropically (73).  While the present paper concurs with isoentropic 

photon treatment, photon gain 𝛥𝐸𝑆𝛥𝜆
 is neglected, and light energy is purported to expand more slowly than 

baryonic matter.  A different result might be found if 𝛥𝐸𝑆𝛥𝜆
 is included in an ab initio derivation.  In the observable 

Universe, 𝛥𝐸𝑆𝛥𝜆
 may affect H at z ≈ 1089, as free electrons were still present at z > 1089 along with residual ionizing 

radiation, and photons were more strongly coupled to baryon movement. 

Free electron gain at scale resembles that of photons as it’s also a function of wavelength. 

5.3.3 Dark energy 

The remaining term, 𝑤𝛬𝜖𝛬, describes repulsion.  In the ΛCDM model, Λ is used to account for the behavior of stars 

in the more recent Universe, e.g. [36-39].  The term wΛ = -1 arises because (79) treats “P” as attractive, so wΛϵΛ has 

to have negative “pressure”.  Its predominance, ϵΛ = 0.69ϵcrit at z = 0, arises from (74)’s dual inconsistencies of 

isoentropic expansion and variable rest energy.  In the GCDM model, expansion is entropic, rest mass is constant, 

 
11 An alternate treatment of photon entropy using J/K instead of J/Hz is given by Kirwan [42]. 
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and the behavior described by wΛϵΛ arises from suprathermal pressure 𝑃𝑉𝑠
′ in the IGM, mostly carried by electrons.  

These electrons do create a repulsive in toto scalar field, but unlike Λ its value is covariant and can be locally 

nonscalar.  A noncovariant Λ means a constant ϵΛ.  This creates more and more energy over time, which is 

inconsistent with (1).  If (1) is obeyed, the field must be able to acquire energy from a conserved source.  

Suprathermal energy 𝑈𝑖𝑠
 meets this requirement. 

6 CONCLUSIONS 
 

The present paper proposes a fundamental change in the way the Universe is viewed: As an unbound 

thermodynamic system in which a freely expanding gas has partly coalesced into stars.  A model which adheres to 

the second law of thermodynamics is achieved through the gas laws at last scatter and applied to the more recent 

plasmonic Universe.  The Universe contains a repulsive field, IGM kinetic energy, scalar in xyz at last scatter.  It’s 

now locally variable in xyz but still behaves in toto as a covariant scalar in the flat Universe we see.  The IGM’s 

kinetic energy field has both thermal and suprathermal components; the former gives the Hubble tension and the 

latter causes “dark energy” Λ. 

There are presently considered to be four fundamental forces of Nature:  Strong, weak, electromagnetic, and 

gravitational.  Entropic force should be added to this list.  It can’t be derived from the other four forces, it pushes 

apart distant galaxies, and it keeps a child’s birthday balloon inflated.  Entropic force operates over a wide range of 

scale.  The balloon, and child, give us perspective. 

DATA AVAILABILITY 

An annotated .XLSX workbook containing the model and its output is available from the author.  It has easy, step-

by-step instructions for the interested reader. 
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