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Abstract 

It is known that large-scale dynamical systems can sustain a rich variety of collective 

phenomena. This brief note argues that the cosmology of the early Universe can be 

viewed as critical behavior in continuous dimensions. We find that the self-similar 

properties of the metric near the Big Bang singularity are comparable to the effects 

produced by minimal fractality of spacetime far above the electroweak scale.    
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According to [1], the behavior of the spatial metric   near the time 

singularity 0t =  can be studied starting from   
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 2 2 2a l l b m m c n n      = + +  (1) 

where 2 2 2, ,a b c  represent the diagonal elements of the matrix ( )
ab

t  and 

, ,l m n  are unit vectors. Introducing the time-like variable ( )t  divides the 

evolution of (1) into a couple of distinct regimes:  

1) at large times 1  , the metric coefficients a  and b  oscillate, while the 

coefficient c  varies exponentially according to  
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 2
0 0exp[ ( )]c c A  = − −  (2c) 

in which A  is a constant. As   falls off from   to about 1  , the oscillations 

(2a) and (2b) occur with a slow reduction of their average values ( ( )O  ) 

and the functions a  and b  stay close in magnitude. On the other hand, the 

function (2c) is monotonically decreasing during all this time. Relations (2a) 
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– (2c) no longer apply as the parameter   drops below 1 and shifts towards 

1  . 

2) at ultrashort times ( 1  ), metric coefficients and the original time 

variable t  evolve as power law functions, namely,       
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where the arbitrary parameter k  lies in the interval 1 1k−  + . Using the 

notation 

     ( , , )ih a b c= ;  1,2,3i =   

renders (3a) - (3c) in the condensed form 
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 ( )i k
ih   (4) 

Unlike the regime of 1   determined by (2a) - (2c), the coefficients a  and 

b  start to fall off while the magnitude of c  ramps up. 

These considerations suggest that, passing from early times near the 

singularity ( 0t = ) to far later times ( 0t  ), generates a transition from a 

Universe having a single space dimension to a Universe with two space 

dimensions. This behavior is consistent with the dimensional reduction 

conjecture [2-3], according to which spacetime near the Big Bang singularity 

is effectively two dimensional, having one space and one time dimension 

only.  

The power law relationships (3) and (4) bear a striking resemblance to the 

scaling of parameters in classical critical phenomena [4 – 5]. A textbook 

example of such phenomena is provided by spin systems approaching 

criticality in four spacetime dimensions ( 4d = ), where the correlation length 

  diverges with the reduced temperature   as in 
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   −  (5) 

Here,   is a positive critical exponent and 

 ( 1)
c

T

T
 = −  (6) 

The overall magnetization M  of the system assumes the role of the order 

parameter and scales with   according to 

 M   (7) 

Here, the critical exponent   also depends on the number of spacetime 

dimensions and on the critical exponent of the correlation function  , i.e.   

 
1

( ) [ 2 ]
2

d d   = − +  (8) 

The perturbative treatment of the system is based on the dimensionless spin 

coupling constant  

 4( ) ddg g −=  (9) 
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It is seen from (9) that, near the phase transition at cT T= , the correlation 

length diverges in less than four spacetime dimensions ( 4d  ) and the 

perturbative treatment breaks down. On the other hand, the perturbation 

analysis is enabled again when 4d  , as (9) is bounded to stay finite. Solving 

the tension between 4d   and 4d   stems from the so-called epsilon 

expansion method, whereby spacetime dimension flows in a continuous range 

of non-integer (fractal) values defined by [2] 

 4d = −     (10) 

These remarks indicate that there is a natural analogy between critical 

behavior of spin systems described by (5) - (10) and the scaling of metric 

coefficients described by (3) and (4). Replacing (10) in (8) yields 

 ]
1

( ) [2
2i i     = − +  (11) 

where the dimensional deviation is taken to be coordinate dependent, that 

is, 4i id = − , with 1,2,3i = . 
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In this context, a reasonable assumption is that the metric coefficients 

( , , )ih a b c=  are analogs of the magnetization parameter (7), the time variable 

  an analog of the reduced temperature (6), and the exponents entering (3) 

and (4) are analogs of (11). The side-by-side comparison is captured below, 

 ih M  (12a) 

    (12b) 

 ( ) ( )ii k    (12c) 

Furthermore, to make (11) compatible with both the + and −  signs of (3a) -

(3d), forces one to assume that, in the crossover region 1→ , the metric 

oscillation regime (2a) – (2b) induces large variations of the correlation 

length (5) and its exponent  . A possible form of this expected behavior for 

  is supplied by 
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  It follows from (13) that (8) turns into 

 
1

( ) ( )[2 ]
2i i i     = − +  (14) 

Piecing everything together, relations (3) – (14) link the metric coefficients ih

to the dimensional deviations i , as summarized below 

 )( ) ( ii k
i ih M       (15) 

This is our main result. In closing, we note that the approach developed here 

is in alignment with the content of [6 – 10].  
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