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Abstract

It is shown here that the currently accepted solution in general rel-
ativity predicting black holes and an event horizon is unphysical. The
spacetime outside a point mass is entirely regular, the e�ective gravita-
tional mass decreases to zero as a test object comes into close proximity
with it, and free-fall velocities do not exceed the speed of light.

1 Gravitational �eld due to a point mass
A solution using Albert Einstein's theory of general relativity (GR) [1]
for the gravitational �eld due to a point mass was �rst obtained by
Karl Schwarzschild [2] in 1916. A year later Droste [3] and Weyl [4]
independently obtained a further variant of the solution. Subsequently,
Hilbert [5] extended Droste and Weyl's solution in such a way that it
showed a discontinuity in spacetime which is now interpreted as an
event horizon obscuring the central mass, which is called a black hole.

The procedure for obtaining the solution is summarised, as follows.
A metric line element in a curved 4D spacetime (t, r, θ, φ) with spherical
spatial symmetry about the origin may be written as

ds̃2 = c2dt′2 = A(r) c2dt2 −B(r) dr2 − C(r) dΩ2 (1)

where ds̃ is a spacetime increment, c the speed of light, dt′ an increment
of proper time, dt an increment of coordinate time, dr an increment of
radial coordinate distance r, and dΩ2 = dθ2+sin2 θ dφ2; A,B and C are
radially dependent functions describing the curvature of the time, radial
and angular metric coe�cients, respectively. Lagrangian formalism
is then used to obtain the geodesic equations in t, r, θ, φ, and from
these the Christo�el curvature coe�cients and Ricci tensor components
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are found. The Ricci tensor components are then set equal to zero
(Rab = 0), in order to satisfy Einstein's GR �eld equations for the
vacuum outside the point mass. This leads to the following pair of
simultaneous equations relating A, B and C:

A′

A
+

B′

B
=

2C ′′

C ′ −
C ′

C
;

A′

A
− B′

B
= −2C ′′

C ′ +
4B

C ′ (2)

where A′ = dA/dr, B′ = dB/dr, C ′ = dC/dr and C ′′ = d2C/dr2.
There are two independent equations here for the three functions, A,B,
and C, which means they cannot be solved explicitly, without some
additional condition or assumption.

To proceed, it is customary to de�ne a new radial coordinate which
I shall denote as r̃ in terms of C, where

r̃ =
√

C(r) (3)

and then the metric becomes

ds̃2 = c2A(r̃) dt2 −B(r̃) dr̃2 − r̃2dΩ2 (4)

With this coordinate transformation, Equations 2 can be solved in
terms of (t, r̃, θ, φ), often called Schwarzschild coordinates (like substi-
tuting C = r2), resulting in the solution

ds̃2 = c2
(
1− α

r̃

)
dt2 −

(
1− α

r̃

)−1

dr̃2 − r̃2dΩ2 (5)

i.e.
A(r̃) =

1

B(r̃)
= 1− α

r̃
; C = r̃2 (6)

α is a positive, real constant of integration that is found by comparing
the solution with known physics (to be discussed later). In addition,
since A(r̃)B(r̃) = 1, we have

A(r)B(r) =

(
dr̃

dr

)2

(7)

The exact relationship between r̃ and r is not speci�ed or deducible
from the spherical geometry alone, so the above procedure merely ex-
presses A and B in terms of C (or the coordinate r̃). Many teachers
of relativity ignore any di�erence between r̃ and r, and regard r̃ as
the "true" radial coordinate distance r from the mass M .1 This opens

1By "true" is meant here the distance according to an observer in a �at frame of
reference a very long way from the mass causing gravitation, or in a �at frame that would
have existed if the e�ect of the gravitational mass M were somehow removed.
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the door to the idea of a black hole, since the function form (1− α/r)
changes sign if r could go from above to below α.

In his original solution, Schwarzschild [2] had already realised that
(1 − α/r̃) becomes negative if r̃ < α. However, he regarded this as
unphysical, and to prevent it happening de�ned the auxiliary radial
coordinate r̃ by the function

r̃ = (r3 + α3)1/3

so that as r → 0, r̃ → α, and the discontinuity is forced to occur at
the origin. Thus, Schwarzschild himself rejected the idea of A or B
changing sign or becoming in�nite in free space, and he therefore did
not predict black holes, even though current popular science suggests
he did.

Soon afterwards, both Droste and Weyl published a di�erent vari-
ant, essentially in which r̃ = r, but they avoided the discontinuity by
limiting the range of r̃ to α < r̃ < ∞. Subsequently, Hilbert extended
Droste and Weyl's solution to the range r̃ < α, i.e. into the region
where the functions A and B become negative, and then spacetime
is discontinuous. In modern language this is called an event horizon,
behind which a black hole is obscured. Hilbert has a good argument
for extending the solution to r̃ → 0, even if r̃ is not equal to r, on
the grounds that GR is intended to be a generally covariant theory,
implying that a change of coordinates should not alter the physics of
the situation.

Although this extension by Hilbert is currently the generally ac-
cepted solution, several mathematicians have questioned it. According
to Abrams [6] and Crothers [7], the complete set of possible solutions
for r̃ as a function of r is given by

r̃ = (|r − r0|n + αn)1/n (8)

where n is a positive integer, r0 an arbitrary constant, and α a real
positive constant. Schwarzschild's original solution is represented here
by n = 3 and r0 = 0. Droste and Weyl's solution has n = 1, r0 =
α, r > r0, and in a paper by Brillouin [8], there is a solution with
n = 1, r0 = 0. Crothers [7] points out that Hilbert's extension of Droste
and Weyl's solution does not belong to this set, since the modulus of
(r − r0) ≥ 0, and therefore r̃ ≥ α. The function (1 − α/r̃) then
cannot become negative, and so black holes are not actually predicted
mathematically. However, this objection has not been accepted by the
scienti�c community to date, and so Hilbert's extension to r̃ < α is
still regarded as correct.
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2 Relating GR to the physical world
The quantity α relates the geometrical scale of GR to gravitational
forces in the real world. To obtain this connection, one considers the
equation of motion of a test object free-falling from rest at in�nity
along a radial path towards the central mass at the coordinate origin.
The required equation is obtained from the geodesic in r and given by

r̈ +
A′

2B
c2ṫ2 +

B′

2B
ṙ2 = 0 (9)

where r̈ ( = d2r/dt′2) is the proper acceleration and ṙ (= dr/dt′) is
the proper velocity. Using the metric to eliminate ṫ ( = dt/dt′), this
becomes

r̈ +
A′

2AB
c2 +

1

2

(
A′

A
+

B′

B

)
ṙ2 = 0 (10)

This expression in terms of the curved geometry of spacetime is then
compared with Newton's law of gravitation in the regime where New-
ton's law is valid, which is considered to be at large r or in the weak-�eld
region. Newton's law may be written:

a +
GM

r2
= 0 (11)

where a is the classical acceleration, G Newton's gravitational constant
and M the mass causing gravity. Super�cially there is no obvious
agreement, but if one temporarily ignores any di�erence between r̃ and
r, it follows from Equation 7 that B = 1/A, and then by eliminating
B Equation 10 would become

r̈ +
1

2
c2A′ = 0 (12)

Equating the proper acceleration r̈ to the Newtonian acceleration a,
would then give

1

2
c2A′ =

GM

r2
(13)

and by integrating this di�erential equation one obtains

A = 1− 2GM/c2

r
(14)

where the constant of integration is obtained by setting A = 1 for
r →∞. This then gives

α =
2GM

c2
(15)
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However, the above step that leads to A changing sign at r = α in Equa-
tion 14, which leads to the the black-hole prediction, is fundamentally
incorrect, for the following reason. The radial equation of motion in
GR (Equation 10) describes gravity as a combination of time curvature
(A, A′) and radial space curvature (B, B′), whereas the spatial geom-
etry of Newton's inverse square law of gravitation is strictly Euclidean
or �at, i.e. in Newton's law there is by de�nition no space curvature.

This needs to be repeated. Newton's inverse-square law of gravita-
tion does not involve any space curvature. Thus, in order to compare
Equation 10 rigorously with Newton's law, we must set B = 1 (not
B = 1/A). The following di�erential equation is then obtained:

r̈ +
1

2
(c2 + ṙ2)

A′

A
= 0 [Newton; B = 1] (16)

This di�ers crucially from Equation 12. Inserting Newtonian expres-
sions for the acceleration and free-fall velocity then gives

−GM

r2
+

1

2

(
c2 +

2GM

r

)
A′

A
= 0 (17)

and after some rearrangement one obtains
A′

A
=

α/r

(α + r)
(18)

where α = 2GM/c2, as before. Integrating this �nally delivers the
correct expression for A(r), viz.

A =
(
1 +

α

r

)−1

=
r

r + α
(19)

The curvature function A is now completely regular for 0 < r < ∞.
Newton's inverse-square law of gravity can thus be thought of as

describing that aspect of gravity caused exclusively by the curvature
of the time coordinate - which is dominant for most cases we consider,
such as planetary motion. However, space curvature becomes signif-
icant when speeds approach the speed of light, and distances to the
central mass become small, and this will modify gravity from being
purely Newtonian.

There is no reason to suppose that the time curvature (determined
by Newton's law) would deviate from Equation 19 even in strong �elds,
but in order to obtain the space curvature (not described by Newton's
law at all) we must now satisfy Einstein's GR �eld equations for the
vacuum, viz.

A =
1

B
= 1− α

r̃
=

(
1 +

α

r

)−1

(20)
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which gives the following relationship between r̃ and r:

r̃ = r + α (21)

and C = r̃2 = (r + α)2. We see that it does turn out that A(r) =
1/B(r), since r̃ and r are linearly related by Equation 7, and so the
proper velocity of free-fall may be written:

ṙ2

c2
= 1− A =

r

r + α

or
ṙ = c

√
α

r + α
(22)

This means that ṙ → c for r → 0. On the other hand, the far less
intuitive (black-hole) analysis predicts

ṙ2

c2
= 1− A =

α

r

or
ṙ = c

√
α

r
(23)

which implies ṙ → c for r → α, and r →∞ for r → 0.
In the correct analysis (Equations 21 and 22) there is only a small

di�erence between r̃ and r, but this di�erence becomes crucially signif-
icant the smaller r becomes. The coordinate r̃ never becomes smaller
than α as r → 0, meaning that A and B do not change sign at r = α.
Put another way, the spacetime manifold does not exist for r̃ < α, so
Hilbert's extension into that region is invalid, and therefore an event
horizon and black hole do not occur.

Finally, the free-fall acceleration may be written

r̈ = −1

2
c2 α

(r + α)2
= − GM

(r + 2GM/c2)2
(24)

which shows modi�ed inverse-square law behaviour for r of the order
of α, and classical Newtonian behaviour for r À α. We see from
this expression that the acceleration does not increase as 1/r2, but as
1/(r + α)2 as r → 0. From this, an e�ective gravitational mass Meff

may be de�ned as

Meff

M
=

r2

(r + α)2
=

(
1 +

α

r

)−2

(25)

For large r, Newton's law is obeyed, but as r → 0, Meff → 0.
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3 Conclusion

Newton's law of gravitation relates solely to the contribution to gravity
made by time curvature, space being Euclidean, and this fact must be
used to link GR with classical physics. This means that the currently
accepted black-hole solution is �awed in an almost trivial way. Replac-
ing it with a solution �rst mentioned in a paper by Brillouin, which I
have expounded here, satis�es Einstein's vacuum �eld equations and
agrees with all the usual predictions of GR, such as the bending of
starlight and the perihelion rotation of Mercury - but not the false pre-
diction relating to black holes. The solution shows there is no horizon
in spacetime, because the Schwarzschild radial coordinate r̃ is o�set
from the radial coordinate r by a distance α = 2GM/c2. It also pre-
dicts that the velocity of a free-falling test object cannot exceed the
speed of light, which is a result that would also be intuitively expected
from the kinematics of special relativity.

The deductions outlined in this short paper deviate markedly from
the current paradigm. It would be satisfying if existing observations
and calculations of trajectories that have previously led to the alleged
presence of black holes could be re-examined on the basis of the model
presented here, where there is no event horizon or black hole, and where
gravity is modi�ed in a speci�c way from Newtonian behaviour.
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