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An analytical method is presented for tangent transfers (Hohman type transfers) be-
tween non-coaxial elliptical orbits. Since Hohmann transfers are thought not to apply
to non-coaxial orbits, this method generalizes the Hohmann transfer, typically used
only between circular orbits. Since tangent transfers are less complex, as they require
no change in direction, they offer an alternative to other orbital transfer and rendezvous
methods.

1 Introduction

A profound pioneering effect for space travel came in 1925,
when Walter Hohmann published his book, ”The Attainabil-
ity of Heavenly Bodies” [1]. The book describes many as-
pects of space travel including liftoffs and landings, passen-
ger considerations and destinations. More importantly, he de-
scribes the route taken to these destinations. The route taken
from Earth to Venus, say, is an elliptical path, connecting the
orbit of Earth around the sun, to the orbit of Venus around
the sun, i.e. connecting circular orbits. The points of connec-
tion require, in the words of Walter Hohmann, ”changes in
velocity, but no changes in direction”.

Since then, Hohmann transfers have been considered to
apply only to circular orbits or coaxial elliptical orbits (see [2,
chap. 6], for example). Here, we generalize Hohmann trans-
fers between any two orbits in a plane, coaxial or not - of-
fering an alternative procedure for orbital transfers and ren-
dezvous. The advantages are similar to the standard Hohmann
transfer - a less complex transfer, tangent to both orbits. As
activities in space increase (space tourism, for instance), these
transfers may be of interest.

2 The Hohmann Transfer

A typical Hohmann transfer is shown in Fig. 1. An ellipti-
cal orbit is generated connecting the initial and final orbits
through an impulse velocity at point A. Then, a circular or-
bit is generated through an impulse velocity at point B. At
the apse points of the transfer ellipse, the velocities are tan-
gent to the paths of the orbits. The procedure is listed in the
appendix.

Fig. 1: Hohmann transfer example.

In contrast, two same plane non-coaxial orbits are shown
in Fig. 2. The usual Hohmann transfer will not work. Any
generated intermediate ellipse will not be tangent at the point
on the target orbit that crosses the apse line of the initial orbit.

Fig. 2: Two non-coaxial orbits.

In Table 1 we define parameters for the initial and target
orbits, designated by the subscripts 1 and 2 respectively, used
to generate the plot in Fig. 2. The angle, θ0, is the rotation of
the target orbit apse line relative to the initial orbit apse line.
The data will be used later to calculate the transfer.
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Table 1: Orbital definitions used in
Fig. 2.

Orbit Orbital Parameters Values

e1 1/3.0
1 r1p [km] 8000.0

r1a [km] 16000.0
h1 [km]

√
r1pu(1 + e1)

e2 1/2.0
2 r2p [km] 7000.0

r2a [km] 21000.0
h2 [km]

√
r2pu(1 + e2)

θ0 [rad] 25.0 (π/180)

3 General Transfer Method
There are at least two angles (or true anomalies) that des-
ignate points where the flight path angles of two orbits are
equal, i.e. the orbits are tangent to each other along the ra-
dial line at these angles. If an (transfer) ellipse coincides with
these points, then two orbital equations for the known dis-
tances and a third equation for the known flight angles would
determine the three unknowns of the ellipse: the eccentricity
(e), the angular momentum (h) and the degree of apse line
rotation (ϕ) relative to the initial orbit.

3.1 The Tangent Points
Tangent points between any two orbits with a common focus
can be found analytically by equating the flight path angles as
follows:

tan(γ1) = tan(γ2) (1)

where the flight path angle, γ, is the angle between the orbit-
ing body’s velocity vector (the vector tangent to the instanta-
neous orbit) and the local horizontal, the line perpendicular
to radial line passing through the object in orbit, as shown in
Fig. 3.

Fig. 3: Flight Path Angle (γ)

The equations for the flight path angles can be written

e1
sin(θ)

(1 + e1 cos(θ))
= e2

sin(θ − θ0)
(1 + e2 cos(θ − θ0))

(2)

resulting in
a cos(θ) + b sin(θ) = c (3)

where

e = eccentricity
θ = true anomaly
θ0 = rotation of target apse line
a = e2 sin(θ0)
b = (e1 − e2 cos(θ0))
c = e1e2 sin(θ0)

and we finally solve for two angles where the two orbits are
tangent (77◦ and 224◦ in Fig. 4 below).

θ = tan−1
(b
a

)
± cos−1

(
c

cos
(
tan−1

(
b
a

))
a

)
. (4)

3.2 Analytic Derivation
For convenience, we reference the initial, target and transfer
orbits, orbits 1,2 and 3, respectively. We also reference the
two angles (true anomalies) where the flight path angles are
equal, θ1 and θ2. The distances of orbits 1 and orbit 2 are
known at these angles. Since orbit 3 is tangent and touching
both of these points, we have r3(θ1) = r1(θ1) and r3(θ2) =
r2(θ2). This gives us two of the three equations needed to
solve for orbit 3:

r3(θ1) =
h2

3

µ(1 + e3 cos(θ1 − ϕ))
(5)

and

r3(θ2) =
h2

3

µ(1 + e3 cos(θ2 − ϕ))
(6)

where µ = µearth = GM = 398600 Km3/sec2.
The third equation is obtained by equating flight path an-

gles. First, the flight path angles, γ’s, at θ1 are equal and
known, and the flight path angles at θ2 are equal and known.
Second, a simplification can be obtained by recognizing that
the flight path angles at θ1 are equal and opposite to the flight
path angles at θ2. For example, in Fig. 1, the flight path angles
at θ = 0◦ are equal and opposite to the flight path angles at θ =
180◦. This is not obvious between non-coaxial orbits. How-
ever, it can be demonstrated as a general property by rotating
orbit 2 relative to orbit 1 and evaluating the flight angles at
various angular displacements. This was done at 45o inter-
vals and tabulated in Table 2 from the data in Table 1 .

The flight angle equation (see equation 2) for orbit 3, at
the appropriate true anomalies, θ1 and θ2, can then be placed
in the following relation:

e3
sin(θ1 − ϕ)

(1 + e3 cos(θ1 − ϕ))
= (−)e3

sin(θ2 − ϕ)
(1 + e3 cos(θ2 − ϕ))

(7)
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Table 2: Flight angles (γ) at various rotations are
equal and opposite. (in Deg.)

Apse Line
Rotation θ1 θ2 γ1 γ2

45 106.16 247.28 20.21 -20.21

90 139.79 287.58 16.53 -16.53

135 161.53 323.98 8.84 -8.84
180 180 0 0 0

225 36.01 198.46 8.84 -8.84

270 72.41 220.20 16.53 -16.53

315 112.71 253.83 20.21 -20.21

Using equations 5 and 6 gives us:

e3
r3(θ1)µ sin(θ1 − ϕ)

h2
3

= (−)e3
r3(θ2)µ sin(θ2 − ϕ)

h2
3

(8)

To solve for ϕ, rearrange Eq. 8 using a trig identity and A
= (−)r3(θ2)/r3(θ1):

tan(ϕ) =
A sin(θ2) − sin(θ1)
A cos(θ2) − cos(θ1)

(9)

Using equations 5 and 6 and the definition of A above:

e3 =
(−)(A + 1)

cos(θ1 − ϕ) + A cos(θ2 − ϕ)
(10)

h3 =
√

r3(θ1)µ(1 + e3 cos(θ1 − ϕ)) (11)

The transfer ellipse, plotted in Fig. 4, is now fully defined
and represented by:

r3(θ) =
h2

3

µ(1 + e3 cos(θ − ϕ))
(12)

Fig. 4: Analytically generated transfer ellipse

3.3 Impulse Velocities
We now calculate the impulse velocities to produce the trans-
fer. First, calculate the orbital parameters for the transfer el-
lipse. From eq. 5 and eq. 6, calculate the distances to the
transfer points, used to calculate A in eq. 9 and eq. 10:

at 77◦: r3 = r1 = 9923 Km

at 224◦: r3 = r2 = 19915 Km

A = -(19915/9923) = -2.007

from eq’s 9, 10 and 11 and the data in Table 1:

ϕ3 = 19◦

e3 = 0.429

h3 = 69670 Km2/sec

The tangent velocities at the transfer points are calculated as
follows:

v1 = µ(1 + e1cos(θ))/h1

v2 = µ(1 + e2cos(θ − θ◦))/h2

v3 = µ(1 + e3cos(θ − ϕ))/h3

The impulse velocities are calculated similar to the standard
Hohmann transfer (see appendix 1):

at 77◦: ∆v1 = v3 - v1 = (7.02 - 6.57) Km/sec

at 224◦:∆v2 = v2 - v3 = (3.77 - 3.50) Km/sec

∆vTotal = ∆v1 + ∆v2 = 0.72 Km/sec

4 Discussion
Implementation of the general Hohmann transfer is similar
to the standard Hohmann transfer. The impulse is always in
the direction of the orbits. This makes transfers less com-
plicated. However, the standard Hohmann transfer is also an
optimal transfer [3]. Optimal transfers conserve fuel. General
Hohmann transfers are fuel efficient, but not optimal.

An optimal transfer is a numeric calculation that mini-
mizes fuel (velocities). A comparison between an optimal
and tangent transfer is shown in appendix 2. The optimal
transfer, ∆vTotal = 711 m/sec, is less than the tangent transfer,
∆vTotal = 719 m/sec - a difference of about 1%.

This is a general result. However, the optimal transfer
is not a tangent transfer. The impulse is not in the direction
of the orbits. This makes transfers more complicated. The
tangent transfer offers an alternative, at a minimal increase in
fuel.

The tangent transfer is close to optimal. If there is no
practical difference in velocity between the two transfers, the
tangent transfer should be considered. Conserving fuel is im-
portant, but safety and reliability of transfer may be items of
concern, particularly if space travel becomes popular.
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5 Conclusion
This procedure generalizes the Hohmann transfer. These trans-
fers are less complex and easier to implement than other trans-
fer methods. They are not optimal concerning fuel, but they
are close.

This is a new method of transfer. It should be evaluated
in areas of transfer applications, particularly where optimal
transfers are used. If this method makes a transfer or ren-
dezvous more safe or reliable, it should be considered.

Similar tangent transfers can be generated numerically at
most points on the initial orbit where they exist (for example,
a transfer would not exist at points of intersection). Numeri-
cally we can demonstrate the analytic method shown here is
the lowest energy transfer of these types.

6 Appendix 1: Hohmann Transfer
Calculation of Hohmann transfers for circular orbits, as shown
in Fig. 1, is straightforward. In a circular orbit, the centrifu-
gal force is equal to the gravitational force, and the velocity
can be obtained from the relation

v2

r
=

GM
r2 or v =

√
GM

r
(13)

where

r is the radius of the orbit

v is the velocity of the object in orbit

G is the gravitational constant

M is the mass of the primary

In an elliptical orbit, motion is governed by the equation

r(θ) =
h2

GM(1 + e cos(θ))
(14)

where

θ is the angle of the orbit (true anomaly)

e is the eccentricity, (r2 − r1)/(r2 + r1)

h is the specific angular momentum

At periapsis, the angle is zero, and the velocity, with no
radial component, can be determined by

vellipse@A =

√
GM(1 + e)

r1
(15)

At apoapsis, since the angular momentum of an orbit around
a central force is a constant, the velocity can be determined
by

vellipse@B = r1
vellipse@A

r2
(16)

The impulsive thrusts are then calculated as follows:

∆v1 = vellipse@A − v1 (17)
∆v2 = v2 − vellipse@B (18)

∆vTotal = ∆v1 + ∆v2 (19)

7 Appendix 2: Optimal Transfer

A comparison of impulse velocities, between an optimal and
tangent transfer, is shown below. Optimization minimizes an
item of interest in a set of orbital equations, such as time or
fuel.

The parameters in Table 1, used to generate the orbits in
Fig. 2, were input into optimization software with the results
listed below. The optimization routine is based off the papers
by McCue [4], Lee [5] and Bender and McCue [6].

The ∆vTotal = 710.9 m/sec for the optimal transfer. The
∆vTotal = 719.2 m/sec for the tangent transfer. This is an in-
crease in fuel (velocity) of about 1%.

Fig. 5: Comparison of optimal versus tangent transfers. Op-
timal ellipse (obscured) is dashed black - tangent ellipse is
solid black.

Changes in Velocity
Total ∆V [m/sec] 710.9

∆V1

Total ∆V1 [m/sec] 459.1
∆V1 Along-track 456.2
∆V1 Across-track -0.016
∆V1 Radial 51.570

MA initial Orb [deg] 40.532

∆V2

Total ∆V2 [m/sec] 251.8
∆V2 Along-track -248.7
∆V2 Across-track -0.010
∆V2 Radial 38.917

MA final Orb [deg] 225.476

Table 3: Optimal impulse velocity for Fig. 5
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Transfer Orbit Data
SMA [km] 14914.59851
ECC 0.428353482
Inc [deg] 10.0
Arg of Peri [deg] 19.12800631
RAAN [deg] 359.999
Periapse [km] 2147.73831
Apoapse [km] 14925.17871
MA at Departure [deg] 22.00286475
MA at Arrival [deg] 231.8594478
Transfer Angle [deg] 148.6738861
Transfer Time [min] 176.1153365
Phi 1 [deg] 254.40112862
Phi 2 [deg] 43.07517233

Table 4: Optimal orbit parameters in Fig. 5 (required for
orbit: Arg of Peri, Periapse, Apoapse)
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