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Abstract

We present a different formulation of the Kochen-Specker theorem that relies on the properties
of the Kronecker delta notation. This greatly simplifies the Kochen-Specker theorem into a scenario
where the Kochen-Specker contradiction can occur with only two measurements. The main result
of this paper extends this result into noisy measurements and shows that the contradiction can still
be observed. This results to an experimentally accessible version for their simple Kochen-Specker
theorem. The results presented here are an interesting and different investigation to the typical
Kochen-Specker theorem and we believe they would be of an interest to the community. The report is
presented satisfactorily and is rather concise and to the point. We hope gently our discussions could
contribute for formulating the Kochen-Specker theorem using the measurement theory based on the
truth values into an experimentally accessible theory in terms of a finite precision measurement.
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1 Introduction

The great success of quantum mechanics is recognized by the scientific community of physical theories.
Einstein, Podolsky, and Rosen discuss the incompleteness argument for quantum mechanics [1]. Many
scientists research a hidden-variable interpretation of quantum mechanics. The no-hidden-variable
theorem of Bell, Kochen, and Specker is proposed [2, 3]. A strengthened Kochen-Specker theorem,
i.e., the free will theorem is discussed by Conway and Kochen [4]. It is begun to research the Kochen-
Specker theorem by using inequalities (see Refs. [5, 6, 7, 8, 9, 10]). Such inequalities for testing the
Kochen-Specker theorem are useful for experimental investigations [11].

Meyer discusses that a finite precision measurement nullifies the Kochen-Specker theorem [12].
Cabello discusses that a finite precision measurement does not nullify the Kochen-Specker theorem
[7]. Barrett and Kent give an opinion for the debate [13]. Commutativity, comeasurability, and
contextuality in the Kochen-Specker arguments are discussed by Hofer-Szabó [14]. Experimental
approach to demonstrating contextuality for qudits is discussed by Sohbi, Ohana, Zaquine, Diamanti,
and Markham [15].

The Kochen-Specker theorem based on the Kronecker delta notation is discussed by Nagata, Patro,
and Nakamura [16]. Nagata and Nakamura also discuss how quantum mechanics might be when
measuring commuting observables based on the property of the Kronecker delta notation [17]. The
Kronecker delta notation seems to be necessary for quantum mechanics when using Matrices and
Vectors. The Kronecker delta notation is explained as follows: The two-variable function δll′ that
takes the value 1 when l = l′ and the value 0 otherwise. If the elements of a square matrix are defined
by the delta function, the matrix produced will be the identity matrix. The name of Kronecker is also
used in the Kronecker product. However, in this paper, we dare to use the concept of the Kronecker
delta notation.

On the other hand, Nagata and Nakamura propose [18] the measurement theory, in qubits handling,
based on the truth values, i.e., the truth T (1) for true and the falsity F (0) for false. The results
of measurements are either 0 or 1. They discuss also a classical probability space exists for the
measurement theory based on the truth values [19]. We note here this fact is very important for
justifying the supposition that the results of measurements 1 and 0 are predetermined “hidden”
results of measurements. The Kochen-Specker inequality is violated on the basis of binary logic using
the measurement theory based on the truth values [10].

The motivation of the paper is of connecting the measurement theory based on the truth values
into an experimentally accessible Kochen-Specker theorem in terms of a finite precision measurement.
The number of the necessary results of measurements is only two times. We do not use any Kochen-
Specker inequalities. We establish the Kochen-Specker theorem using the measurement theory based
on the truth values when the first result is 1 and the second result is 0. Two times are enough. So the
proposed theory in this paper is quite simple. How do we perform the experiment of the very simple
Kochen-Specker theorem?

Recently, Nagata and Nakamura discuss a novel inconsistency within quantum mechanics when
accepting we use the property of the Kronecker delta notation without extra assumptions about the
reality of observables [17]. Based on the argumentations, here, we propose an experimentally accessible
Kochen-Specker theorem in terms of imperfect sources and detectors.

In more detail, we encounter an imperfect quantum state, the dark count, and the quantum
efficiency, which cannot be avoidable from a real experimental situation. If we use the quantum
predictions by 2N trials, then the Kochen-Specker contradiction increases by an amount that grows
linearly with 2N . In fact, such an error of the number of particles becomes less and less important as
we increase trials more and more by using the strong law of large numbers.

We review the definition of the Kochen-Specker contradiction as follows [16], when considering only
two measurements. We can depict the predetermined “hidden” results r1 and r2 as follows: r1 = +x
and r2 = −x. Let us write V as follows:

V =

2�

l=1

rl. (1.1)
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We evaluate the following value:

V × V =

�
2�

l=1

rl

�2
=

�
2�

l=1

rl

�

×

�
2�

l′=1

rl′

�

. (1.2)

We cannot define V × V as zero as shown below:
Without the property of the Kronecker delta notation, we have

V × V × δll′ =

�
2�

l=1

rl

�2
δll′

= ((+x) + (−x))2δll′ = 0× δll′ = 0, (1.3)

where only the first multiplication is very important. The product does not include the property of
the Kronecker delta notation. We derive a necessary condition of the product (V × V × δll′) of the
value V without the property of the Kronecker delta notation. In this case, we have the calculation
result as

(V × V × δll′) = 0. (1.4)

This is the necessary condition without the property of the Kronecker delta notation.
In the following, we evaluate the other value of (V × V × δll′) and derive the other necessary

condition within the property of the Kronecker delta notation.
We introduce the property of the Kronecker delta notation then we have

V × V × δll′

=

�
2�

l=1

rl

�2
× δll′

=

�
2�

l=1

rl

�

×

�
2�

l′=1

rl′

�

× δll′

= (+x)2 + (−x)2 = 2x2, (1.5)

where the first and second multiplications are important. The product does include the property of
the Kronecker delta notation. Clearly, we have the calculation result as

(V × V × δll′) = 2x2, (1.6)

These argumentations are possible for the case that we utilize the property of the Kronecker delta
notation. We cannot assign simultaneously the same two values (“1” and “1”) or (“0” and “0”) for
the two suppositions (1.4) and (1.6). Thus, we are in the Kochen-Specker contradiction using two
measurements x,−x. We symbolize our result as KS(+x,−x)

When including observables matters in quantum mechanics analyses, even von Neumann might not
mention smoothly the whole analyses that are not always simple in holding consistency of quantum
mechanics. There might be representations of some limitation of his analyses as long as he drew his
concept even in some too beautiful but difficult way to handle. On the other hand, our trial looks easier
to analyze the whole quantum mechanics by virtue of the Kronecker delta notation. This way seems
to be easier than his in interpretation. The key point of this paper is to introduce the “Kronecker
delta” toward more interpretation-easier analytic power for quantum mechanics itself. Therefore, we
are forced to use the same expressions/representations in our writing, in order to make a series of our
papers to show our willing opinion.

2 Kochen-Specker theorem using the measurement theory based

on the truth values

We connect the published result of the Kochen-Specker theorem based on the Kronecker delta notation
[16] with the measurement theory based on the truth values. We use the quantum mechanics results,
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that is, ±1. Here it is worth noting Ref. [17] that the result is again based on the Kronecker delta
notation.

We consider the measurement theory, in qubits handling, based on the truth values, i.e., the truth
T (1) for true and the falsity F (0) for false. The results of measurements are either 0 or 1 in an ideal
case. The first result is 1 and the second result is 0. Surprisingly two results of measurements (1 and
0) are enough to derive our result. We suppose the results of measurements 1 and 0 are predetermined
“hidden” results of measurements.

We introduce the map as follows:

g(x) = eiπx. (2.1)

The map changes the truth value results into the quantum mechanics results, that is, from {0, 1} to
{1,−1}. Then the possible values of the measured results are mapped into either 1 or −1 (quantum
mechanics) from either 1 or 0 (the truth values).

Clearly, the quantum mechanics results 1 and −1 must be also predetermined “hidden” results
of measurements because the map does not change the classical feature of the truth value results of
measurements. However the Kochen-Specker theorem by using the quantum mechanics results 1 and
−1 says the quantum mechanics results cannot be predetermined “hidden” results. Therefore, we
cannot suppose the truth value results of measurements 1 and 0 are predetermined “hidden” results of
measurements. Thus, the Kochen-Specker theorem using the measurement theory based on the truth
values is established. We have KS(+1,−1).

Result: We propose the quite simple Kochen-Specker theorem, where the first result is 1 and then

the second result is 0, and vice versa, by virtue of the Kronecker delta notation. The number of the

necessary results of measurements is only two times, i.e., 1 and 0.

We derive the Kochen-Specker theorem using the measurement theory based on the truth values.

3 Experimentally accessible Kochen-Specker theorem using

the measurement theory based on the truth values

In this section, we discuss the main result in this paper. Again, we consider the measurement theory,
in qubits handling, based on the truth values, i.e., the truth T (1) for true and the falsity F (0) for
false. The results of measurements are either 0 or 1 in an ideal case. The first result is 1 and the
second result is 0. Surprisingly two results of measurements (1 and 0) are enough to derive our result.
We suppose the results of measurements 1 and 0 are predetermined “hidden” results of measurements.

We introduce the map as follows:

f(x) = (−1 + ǫ)x − (1− x)ǫ. (3.1)

The map changes the truth value results into the noisy quantum mechanics results, that is, from {0, 1}
to {1 − ǫ,−1 + ǫ}, where ǫ(< 1) is interpreted as the reduction factor of the contrast observed in an
experiment. Then the possible values of the measured results are mapped into either 1− ǫ or −1 + ǫ
(quantum mechanics with noise) from either 1 or 0 (the truth values).

Clearly, the noisy quantum mechanics results 1− ǫ and −1 + ǫ must be also predetermined “hid-
den” results of measurements because the map does not change the classical feature of the truth
value results of measurements. Then we discuss the Kochen-Specker theorem by using the noisy
quantum mechanics results 1 − ǫ and −1 + ǫ. We see this version of the Kochen-Specker theorem is
experimentally accessible. It turns out the noisy quantum mechanics results cannot be predetermined
“hidden” results. Therefore, we cannot suppose the truth value results of measurements 1 and 0
are predetermined “hidden” results of measurements. Thus, the experimentally accessible Kochen-
Specker theorem using the measurement theory based on the truth values is established. We have
KS(+1− ǫ,−1 + ǫ).

Result: We propose the quite simple experimentally accessible Kochen-Specker theorem, where

the first result is 1 and then the second result is 0, and vice versa, by virtue of the Kronecker delta

notation. The number of the necessary results of measurements is only two times, i.e., 1 and 0.

We derive the experimentally accessible Kochen-Specker theorem using the measurement theory
based on the truth values.
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4 Optical experiments of the Kochen-Specker theorem based

on the Kronecker delta notation

We discuss the result of the Kochen-Specker theorem based on the Kronecker delta notation [16] using
the noisy quantum mechanics results, i.e., KS(+1− ǫ,−1 + ǫ) in terms of quantum optics.

Let σz be the z-component Pauli observable. It could be defined as follows:

σz ≡

�
1 0
0 −1

�
. (4.1)

Let | ↑	 and | ↓	 be eigenstates of σz such that σz| ↑	 = +1| ↑	 and σz| ↓	 = −1| ↓	. The measured
results of trials are either +1 or −1 in the ideal case.

When we consider a quantum optical experiment, we have the following relation with the photon
polarization states:

| ↑	 ↔ |H	,

| ↓	 ↔ |V 	, (4.2)

where |H	 is a quantum state interpreted by a horizontally polarized photon and |V 	 is a quantum
state interpreted by a vertically polarized photon.

Let us introduce the random noise admixture ρnoise(=
1

2
I) into the quantum states, where I is the

two-dimensional identity operator. We consider the noisy quantum states emerged from an imperfect
source as follows:

ρ1 = (1− ǫ)| ↑	�↑ |+ ǫ× ρnoise,

ρ2 = (1− ǫ)| ↓	�↓ |+ ǫ× ρnoise. (4.3)

The value of ǫ(< 1) is interpreted as the reduction factor of the contrast observed in the single-particle
experiment. Then we have tr[ρ1σz ] = +1− ǫ and tr[ρ2σz ] = −1 + ǫ.

Result: We have been in the Kochen-Specker contradiction when the first result is +1 − ǫ by

measuring the Pauli observable σz in the quantum state ρ1, the second result is −1 + ǫ by measuring

the same Pauli observable σz in the quantum state ρ2.

5 Dark count, quantum efficiency, and strong law of large

numbers

In a real experiment, a perfect detector is not feasible. There is an unforeseen effect that an imperfect
detector does not count even though the particle indeed passes through the detector (the quantum
efficiency). There is also an unforeseen effect that an imperfect detector counts even though the
particle does not pass through the detector (the dark count). In this case, we increase measurement
outcomes to 2N(≫ 1) and then we change such errors into trivial things. If we use the quantum
predictions by 2N trials, then the Kochen-Specker contradiction increases by an amount that grows
linearly with 2N . In fact, such an error of the number of particles becomes less and less important as
we increase trials more and more by using the strong law of large numbers.

We introduce a value V which is the sum of 2N data in an experiment. The measured results of
trials are either +1− ǫ or −1+ ǫ. We suppose the number of trials of obtaining the result −1+ ǫ is N
that is equal to the number (N) of trials of obtaining the result +1− ǫ. We can depict experimental
data r1, r2, r3, ... as follows: r1 = +1 − ǫ, r2 = −1 + ǫ, r3 = +1 − ǫ and so on. Let us write V as
follows:

V =
2N�

l=1

rl. (5.1)
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Notice the following value:

V × V =

�
2N�

l=1

rl

�2

=

�
2N�

l=1

rl

�

×

�
2N�

l′=1

rl′

�

. (5.2)

Again, we cannot define V × V as zero as shown below.
Without using the property of the Kronecker delta notation, we have

V × V × δll′ =

�
2N�

l=1

rl

�2

δll′

= ((+1− ǫ) + (−1 + ǫ) + ...+ (−1 + ǫ))2δll′

= 0× δll′ = 0, (5.3)

where only the first multiplication is very important. The product does not include the property of
the Kronecker delta notation. We derive a necessary condition of the product (V × V × δll′) of the
value V . In this case, we have the calculation result as

(V × V × δll′) = 0. (5.4)

This is the necessary condition without using the property of the Kronecker delta notation.
In the following, we derive the other necessary condition for (V ×V ×δll′) when we use the property

of the Kronecker delta notation. We introduce the property of the Kronecker delta notation then we
have

V × V × δll′

=

�
2N�

l=1

rl

�2

× δll′

=

�
2N�

l=1

rl

�

×

�
2N�

l′=1

rl′

�

× δll′

= (+1− ǫ)2 + (−1 + ǫ)2 + ...+ (−1 + ǫ)2

= 2N(+1− ǫ)2, (5.5)

where the first and second multiplications are important. The product does include the property of
the Kronecker delta notation. Clearly, we have the calculation result as

(V × V × δll′) = 2N(+1− ǫ)2. (5.6)

We cannot assign simultaneously the same two values (“1” and “1”) or (“0” and “0”) for the two
suppositions (5.4) and (5.6). We derive the Kochen-Specker contradiction when we utilize the property
of the Kronecker delta notation. If we use the quantum predictions by 2N trials, then the Kochen-
Specker contradiction increases by an amount that grows linearly with 2N . In fact, such an error of
the number of particles becomes less and less important as we increase trials more and more by using
the strong law of large numbers.

Result: We have been in the Kochen-Specker contradiction when the odd number results are +1−ǫ
by measuring the Pauli observable σz in the quantum state ρ1, the even number results are −1 + ǫ by
measuring the same Pauli observable σz in the quantum state ρ2.

6 Conclusions

In conclusions, we have proposed an experimentally accessible Kochen-Specker theorem using the
measurement theory based on the truth values. We have introduced the measurement theory, in
qubits handling, based on the binary logic, i.e., the truth T (1) for true and the falsity F (0) for false.
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We have supposed the results of measurements 1 and 0 are predetermined “hidden” results of
measurements. Then we have introduced a map that changes the ideal results into the noisy results,
that is, {0, 1} to {1 − ǫ,−1 + ǫ}, where the value of ǫ(< 1) is interpreted as the reduction factor of
the contrast observed in an experiment. Clearly, the noisy results 1 − ǫ and −1 + ǫ must have been
also predetermined “hidden” results of measurements because the map does not change the classical
feature of the results of measurements.

Then we have discussed the Kochen-Specker theorem by using the noisy results 1 − ǫ and −1 +
ǫ. It has turned out the noisy results cannot be predetermined “hidden” results. Therefore, we
cannot have been supposed the results of measurements 1 and 0 are predetermined “hidden” results
of measurements. Thus, the Kochen-Specker theorem using the measurement theory based on the
truth values has been established. And the theorem has been experimentally feasible because we can
use the noisy results.

The number of the necessary results of measurements has been only two times. We do not have
used any Kochen-Specker inequalities. We have established the Kochen-Specker theorem using the
measurement theory based on the truth values when the first result is 1 and the second result is 0.
Two times have been enough. So the proposed theory in this paper has been quite simple. Moreover,
we can have performed the experiment of the very simple Kochen-Specker theorem.

We have hoped gently our discussions could contribute for formulating the Kochen-Specker theorem
using the measurement theory based on the truth values into an experimentally accessible theory in
terms of a finite precision measurement.

It would be interesting to expand upon the possible experimentation aspect of this result. Namely,
if the two measurements can be described with POVMs in an explicit manner, and the qubit’s state,
that together can lead to the expected measurement result in interest.
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[14] G. Hofer-Szabó, “Commutativity, Comeasurability, and Contextuality in the Kochen-Specker
Arguments,” Philosophy of Science, Volume 88, Issue 3, Published online by Cambridge Uni-
versity Press: 483 (2021).

[15] A. Sohbi, R. Ohana, I. Zaquine, E. Diamanti, and D. Markham, “Experimental approach to
demonstrating contextuality for qudits,” Phys. Rev. A 103, 062220 (2021).

[16] K. Nagata, S. K. Patro, and T. Nakamura, “The Kochen-Specker Theorem Based on the Kro-
necker Delta,”, Int. J. Theor. Phys. 58, 1311 (2019).

[17] K. Nagata and T. Nakamura, “How quantum mechanics might be when measuring commuting
observables,” Applied Physics A, Volume 129, Issue 11, Article number: 760 (2023).

[18] K. Nagata and T. Nakamura, “Measurement Theory in Deutsch’s Algorithm Based on the Truth
Values,” Int. J. Theor. Phys. 55, 3616 (2016).

[19] K. Nagata and Tadao Nakamura, “A classical probability space exists for the measurement theory
based on the truth values,” Quantum Studies: Mathematics and Foundations, Volume 4, Issue
1, 7 (2017).

8


