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Abstract

Although the phenomenon of neutrino oscillations is confirmed in many experi-
ments, the theoretical explanation of this phenomenon in the literature is essentially
model dependent and is not based on rigorous physical principles. We propose an ap-
proach where the neutrino is treated as a massless elementary particle in anti-de Sitter
(AdS) invariant quantum theory. In contrast to standard Poincare invariant quantum
theory, an AdS analog of the mass squared changes over time even for elementary par-
ticles. Our approach naturally explains why, in contrast to the neutrino, the electron,
muon and tau lepton do not have flavors changing over time and why the number of
solar neutrinos reaching the Earth is around a third of the number predicted by the
standard solar model.

1 Problem statement

The phenomenon of neutrino oscillations is discussed in a vast literature and, as noted by
most authors, the theory of this phenomenon contains essential uncertainties (see e.g., [1, 2]).
We first describe the crucial difference between this theory and standard particle theory.

The goal of standard Poincare invariant particle theory is to find the S-matrix describing
transitions between different sets of elementary particles. By definition, an elementary par-
ticle is described by an irreducible representation (IR) of the Poincare algebra. If P0 is the
energy operator and P is the momentum operator then W = P 2

0 −P2 is the Casimir operator
of the Poincare algebra, i.e., it commutes with all operators defining the representation of the
algebra for the system under consideration. As follows from the Schur lemma, all elements
in the representation space of an IR are eigenvectors of W with some eigenvalue w. The
existence of tachyons (for which w < 0) is a problem while for known elementary particles,
their mass m is defined as a positive number m such that m2 = w.

In standard particle theory, all processes are described by Feynman diagrams involv-
ing only elementary particles. In particular, in standard theory of weak interactions, the
electron, muon and tau neutrinos with different flavors (νe, νµ, ντ )=(f1, f2, f3) are treated
as elementary particles, and the processes of their creation/annihilation are described by
Feynman diagrams involving the (W, e, νe), (W,µ, νµ) and (W, τ, ντ ) vertices.

In standard particle theory, the electron, muon and tau lepton quantum numbers are
conserved physical quantities. However, the phenomenon of neutrino oscillations shows that
conservation of those quantum numbers can be only approximate. For explaining this phe-
nomenon, a fundamentally new property was introduced into the theory: now the neutrinos
with definite flavors are treated not as elementary particles but as direct superpositions of
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neutrino states (ν1, ν2, ν3) such that νi (i=1,2,3) is an elementary particle with a definite
mass mi, i.e.,

fi =
3∑
j=1

⊕Uijνj (i = 1, 2, 3) (1)

where Uij are elements of a complex 3 × 3 matrix. The mathematical meaning of this
expression is as follows. Each state νj belongs to a Hilbert space Hj of an IR with the
mass mj while fi belongs to the direct sum of Hilbert spaces Hj. Although the principle
of superposition in quantum theory does not prohibit the existence of states belonging to
direct sums of IRs, such states have not been used in quantum theory till the discussion of
neutrino oscillations.

The concept of direct sum of Hilbert spaces crucially differs from the concept of tensor
product of Hilbert spaces which is a standard concept in quantum theory. In particular, if H1

and H2 are representation spaces for IRs with the masses m1 and m2 then the tensor product
of H1 and H2 describes a system of two elementary particles while the direct sum of H1 and
H2 describes one particle which is not elementary because it is a quantum superposition of
two elementary particles.

The new treatment of neutrinos implies that in the Feynman diagrams involving the
(W, e, νe), (W,µ, νµ) and (W, τ, ντ ) vertices, the neutrinos are not elementary particles, but
nontrivial direct sums defined by Eq. (1). The theory of such diagrams has been proposed
in [3] and here the neutrinos are superpositions of not plane waves but wave packets. As
noted in [3], in this approach several problems should be solved.

In view of the current status of the neutrino theory, the following questions arise:

• Why only neutrinos have such an unusual status while the other leptons in these
vertices (e±, µ±, τ±) are still treated as elementary particles.

• Why, in contrast to all other particle theories, the theory involving neutrinos is formu-
lated not in terms of Feynman diagrams involving the elementary particles (ν1, ν2, ν3)
but in terms of (νe, νµ, ντ ) which are now treated not as elementary particles.

• It is not clear whether the numbers Uij should be defined by a new theory or they can
be defined only by fitting experimental data.

Let us stress again that Eq. (1) does not imply that each neutrino is a composite state
of states (ν1, ν2, ν3). This expression shows that each neutrino can be detected only in
one of the states (ν1, ν2, ν3) with the probabilities defined by the numbers Uij. In theories of
entanglement, it is explained that, as follows from the principle of the wave function collapse,
a measurement of the first entangled particle automatically reduces the wave functions of
other particles entangled with the first one, even if they are very far from the first particle.
Analogously, after a neutrino takes part in any interaction, the remaining wave function
cannot be a superposition Eq. (1) anymore and only one of the wave functions νj (if any)
can survive.

In view of the fact that, in the processes of neutrino oscillations, neutrinos can travel
long distances during a long time, a question arises why, in spite of the phenomenon of
the wave function collapse, those neutrinos remain superpositions of the states (ν1, ν2, ν3)
during all this time. Even if those neutrinos do not interact with matter, they necessarily
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interact with the background gravitational field, and, as follows from the principle of the
wave function collapse, the wave functions of such neutrinos must collapse even after very
weak interactions.

The above discussion poses a problem whether the phenomenon of neutrino oscillations
can be explained if neutrinos are still treated as elementary particles. We believe that
standard particle theories are not quite natural in view of the following. Those theories
are based on Poincare symmetry where elementary particles are described by IRs of the
Poincare group or its Lie algebra. In his famous paper ”Missed Opportunities” [4] Dyson
notes that de Sitter (dS) and anti-de Sitter (AdS) theories are more general (fundamental)
than Poincare one even from pure mathematical considerations because dS and AdS groups
are more symmetric than Poincare one. The transition from the former to the latter is
described by a procedure called contraction when a parameter R (see below) goes to infinity.
At the same time, since dS and AdS groups are semisimple, they have a maximum possible
symmetry and cannot be obtained from more symmetric groups by contraction.

The paper [4] appeared in 1972 (i.e., more than 50 years ago) and, in view of Dyson’s
results, a question arises why general theories of elementary particles (QED, electroweak
theory and QCD) are still based on Poincare symmetry and not dS or AdS ones. Probably,
physicists believe that, since the parameter R is much greater than even sizes of stars, dS
and AdS symmetries can play an important role only in cosmology and there is no need to
use them for describing elementary particles. We believe that this argument is not consistent
because usually more general theories shed a new light on standard concepts. The discussion
in our publications and, in particular, in this paper is a good illustration of this point.

In [5] it has been proposed the following
Definition: Let theory A contain a finite nonzero parameter and theory B be obtained

from theory A in the formal limit when the parameter goes to zero or infinity. Suppose that,
with any desired accuracy, theory A can reproduce any result of theory B by choosing a value
of the parameter. On the contrary, when the limit is already taken, one cannot return to
theory A, and theory B cannot reproduce all results of theory A. Then theory A is more
general than theory B and theory B is a special degenerate case of theory A.

As argued in [5, 6], in contrast to Dyson’s approach based on Lie groups, the approach to
symmetry on quantum level should be based on Lie algebras. Then it has been proved that,
on quantum level, dS and AdS symmetries are more general (fundamental) than Poincare
symmetry, and this fact has nothing to do with the comparison of dS and AdS spaces with
Minkowski space. It has been also proved that classical theory is a special degenerate case of
quantum one in the formal limit h̄→ 0 and nonrelativistic theory is a special degenerate case
of relativistic one in the formal limit c→∞. In the literature the above facts are explained
from physical considerations but, as shown in [5, 6], they can be proved mathematically by
using properties of Lie algebras.

The goal of the present paper is to investigate whether the phenomenon of neutrino
oscillations can be explained in the framework of the AdS quantum theory by treating
neutrinos as elementary particles. In Sec. 2 we describe problems in treating neutrino
oscillations in the framework of current approaches. In Sec. 3 we explain why quantum
theory based on de Sitter symmetries is more general and natural than standard quantum
theory. In Secs. 4 and 5 we describe a formalism for describing the massless neutrino as an
elementary particle in AdS invariant quantum theory. In Sec. 6 we discuss how the problem
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of neutrino flavors is treated in our approach and explain that the solar neutrino problem
has a natural explanation.

2 Direct sum of Hilbert spaces in neutrino oscillations

In the present treatments of neutrino oscillations, it is assumed that all the masses mj are
different. Then the states νj are mutually orthogonal even without the requirement that
they belong to different Hilbert spaces Hj. So, the states νj (j=1,2,3) can be chosen as a
basis in a full Hilbert space H, and the sign ⊕ in Eq. (1) is obsolete. The states νj are not
characterized by flavor and they cannot have different quantum numbers except mj because
in that case their superpositions will be prohibited.

Since the neutrino flavor quantum numbers are not conserved anymore, there are no
quantum numbers distinguishing the states (νe, νµ, ντ ) and they differ only because they
are defined by different decompositions in Eq. (1). The phenomenon of neutrino oscil-
lations shows that the states (νe, νµ, ντ ) can transform to each other and those states do
not have definite masses. The existing quantum theory does not specify physical criteria
which should be used for constructing the matrix U , and currently the numbers Uij are
defined only from fitting the experimental data. Wikipedia says: ”Uαi represents the Pon-
tecorvo–Maki–Nakagawa–Sakata matrix (also called the PMNS matrix, lepton mixing matrix,
or sometimes simply the MNS matrix). It is the analogue of the CKM matrix describing the
analogous mixing of quarks. If this matrix were the identity matrix, then the flavor eigen-
states would be the same as the mass eigenstates. However, experiment shows that it is not.”
In [2] it is discussed in detail which numbers Uij are well defined by experimental data, which
of them are defined with uncertanties and which of those numbers are not known yet.

Since there should be a one-to-one relation between the states (νe, νµ, ντ ) and (ν1, ν2, ν3),
the matrix U should be invertable and then, as follows from Eq. (1),

νi =
3∑
j=1

(U−1)ijfj (i = 1, 2, 3) (2)

There are no physical criteria requiring that each νj in Eq. (1) has the same momentum
but usually it is assumed that the components (ν1, ν2, ν3) are ultrarelativistic, their energies
Ej can be written as Ej = (p2j + m2

j)
1/2 ≈ p + m2

j/2p, where p is the same for all the
components. Suppose that all the νj are moving along the x axis. Then the dependence of
the wave function of νj on t and x can be written as νj(t, x) = exp[−i(p2 +m2

j)
1/2t+ ipx]νj.

Then, since each neutrino state is strongly ultrarelativistic, it follows from Eq. (1) that

fj(t, x) = exp[−i(t− x)p]
3∑

k=1

exp(−im
2
k

2p
t)Ujkνk (j = 1, 2, 3) (3)

Finally, as follows from this expression and Eq. (2), in units h̄ = c = 1

fj(t, x) = exp[−i(t− x)p]
3∑

k,l=1

exp(−im
2
k

2p
t)Ujk(U

−1)klfl (j = 1, 2, 3) (4)
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If all the mk are the same and equal m, it follows from Eq. (4) that fj(t, x) = exp[−i(t−
x)p − im2

2p
t]fj, i.e., fj is moving as a particle with the mass m and neutrino oscillations do

not take place. However, if the masses mk are different, the oscillations are possible and
their quantitative details depend on the model for Ujk.

The problem of the mass-squared differences ∆m2
jk = m2

j − m2
k has been discussed in

many publications and typical fitting procedures give for those quantities values of the order
of 10−4ev2 (see e.g., [2]). In view of this observation, consider the following problem.

Neutrinos emitted by distant stars fly to Earth for many years. What are typical states
of those neutrinos when they reach the Earth, i.e., to what extent their interaction with the
interstellar medium is important? An analogous problem was widely discussed for photons
emitted by stars. The approach where the interaction of such photons with the interstellar
medium is important was called ”tired light”. However, after numerous discussions, physi-
cists have come to the conclusion that the phenomenon ”tired light” does not explain the
available data, and that photons reaching the Earth practically do not interact with the
interstellar medium. Since the interaction of neutrinos emitted by stars with the interstel-
lar medium is much weaker than the interaction of the photons, the major part of those
neutrinos practically do not interact with the interstellar medium.

Then the following problem arises. Since the masses (m1,m2,m3) are different and the
momentum p of those masses is the same, the velocities of those masses are different. Since
the masses are ultrarelativistic, the differences of velocities are ∆vjk = ∆m2

jk/2p
2 and, if

p is of the order of Mev/c then after a year, the distances between the masses will be of
the order of 1m. So, for example, neutrinos coming from Sirius (which is ”only” 8 light
years from the Earth) will be superpositions of elementary particles the distances between
which will be of the order of 8m but the major part of neutrinos which reach the Earth will
be quantum superpositions of elementary particles the distances between which can be of
the order of kilometers or more. A problem arises whether interactions of such neutrinos
with detectors on Earth can be still described in terms of (νe, νµ, ντ ). This problem is of
high theoretical interest, but the experimental investigation of this problem is problematic.
Most of neutrinos detected by neutrino observatories are either solar neutrinos or neutrinos
produced when energetic particles from space, crash into Earth’s atmosphere. So, it is very
difficult to select cases when a detected neutrino came to Earth from a distant star.

We conclude that, although the phenomenon of neutrino oscillations is well confirmed in
many experiments, the discussion in Sec. 1 and in this section shows that the theoretical
explanation of this phenomenon in the literature is essentially model dependent and is not
based on rigorous physical principles.

3 Poincare invariance and de Sitter invariance

As already noted, the main goal of the present paper is to investigate whether the phe-
nomenon of neutrino oscillations can be explained in the framework of de Sitter invariant
particle theory.

Standard particle theory is based on Poincare symmetry where elementary particles are
described by IRs of the Poincare group or its Lie algebra. The representation operators of
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the Poincare algebra commute according to the commutation relations

[P µ, P ν ] = 0, [P µ,Mνρ] = −i(ηµρP ν − ηµνP ρ),

[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (5)

where µ, ν = 0, 1, 2, 3, P µ are the operators of the four-momentum, Mµν are the operators of
Lorentz angular momenta and ηµν is such that η00 = −η11 = −η22 = −η33 = 1 and ηµν = 0
if µ 6= ν.

Although the Poincare group is the group of motions of Minkowski space, the description
in terms of relations (5) does not involve Minkowski space at all. It involves only represen-
tation operators of the Poincare algebra, and those relations can be treated as a definition of
relativistic invariance on quantum level (see the discussion in [5, 6]). In particular, the fact
that ηµν formally coincides with the metric tensor in Minkowski space does not imply that
this space is involved.

Since W is the Casimir operator of the Poincare algebra, the mass m of an elementary
particle remains the same during the lifetime of this particle, and, since the momentum,
energy and angular momentum operators commute with the Hamiltonian, for any free el-
ementary particle (i.e., the particle which does not interact with other particles and with
external fields), these physical quantities are conserved.

By analogy with relativistic quantum theory, the definition of quantum dS symmetry
should not involve dS space. If Mab (a, b = 0, 1, 2, 3, 4, Mab = −M ba) are the operators
describing the system under consideration, then, by definition of dS symmetry on quantum
level, they should satisfy the commutation relations of the dS Lie algebra so(1,4), i.e.,

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (6)

where ηab is such that η00 = −η11 = −η22 = −η33 = −η44 = 1 and ηab = 0 if a 6= b. The
definition of AdS symmetry on quantum level is given by the same equations but η44 = 1.

The procedure of contraction from dS and AdS symmetries to Poincare one is defined
as follows. If we define the operators P µ as P µ = M4µ/2R, where R is a parameter with
the dimension length, then in the formal limit when R→∞, M4µ →∞ but the quantities
P µ are finite, Eqs. (6) become Eqs. (5). This procedure is the same for the dS and AdS
symmetries.

By analogy with relativistic quantum theory, in theories with dS and AdS symmetries,
elementary particles can be defined as objects described by IRs of the dS and AdS alge-
bras. The contraction procedure shows that M40 is the dS or AdS analog of the relativistic
Hamiltonian and the operators M4i (i = 1, 2, 3) are the de Sitter analogs of the relativistic
momentum operators Pi. However, as follows from Eq. (6), the operators M4i do not com-
mute with M40. Therefore, if, by analogy with the relativistic case, the evolution over time is
defined by M40 then the physical quantities corresponding to the M4i are not conserved even
for free particles. Also, since the operator W̃ = M2

04 −
∑3
i=1M

2
0i is not the Casimir operator

for the dS and AdS algebras, the eigenvalues of this operator cannot be treated as the mass
squared which remains the same during the lifetime of the free elementary particle. On the
other hand, since the operators (M12,M31,M23) commute with M40, the angular momentum
operators in de Sitter theories are conserved.
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The Casimir operator of the second order for the representation of the so(2,3) algebra is

I2 =
1

2

∑
ab

MabM
ab (7)

Therefore, states of elementary particles in the AdS invariant theory are eigenvectors of I2
with the eigenvalues m2

AdS, i.e., mAdS is the AdS analog of m and remains the same during
the lifetime of the particle.

The procedure of contraction has a physical meaning only if R is rather large. In that
case, mAdS and m are related as mAdS = 2Rm, and the relation between the AdS and
Poincare energies is analogous. Since AdS symmetry is more general (fundamental) then
Poincare one then mAdS is more general (fundamental) than m. In contrast to the Poincare
masses and energies, the AdS masses and energies are dimensionless. From cosmological
considerations (see e.g., [5]), the value of R is usually accepted to be of the order of 1026m.
Then the AdS masses of the electron, the Earth and the Sun are of the order of 1039, 1093 and
1099, respectively. The fact that even the AdS mass of the electron is so large might be an
indication that the electron is not a true elementary particle. In addition, the accepted upper
level for the photon mass is 10−17ev. This value seems to be an extremely tiny quantity.
However, the corresponding AdS mass is of the order of 1016, and so, even the mass which is
treated as extremely small in Poincare invariant theory might be very large in AdS invariant
theory. As noted in Sec. 1, it has been proved in [4, 5, 6] that quantum theory based on
the dS and AdS symmetries is more general (fundamental) than quantum theory based on
Poincare symmetry: the latter is the special degenerate case of the former in the formal limit
R→∞.

4 Massless neutrino in AdS theory

Before the discovery of neutrino oscillations, the neutrino was treated as the massless el-
ementary particle with the spin 1/2. In this section we discuss how massless elementary
particles should be described in AdS theory. Our consideration is based on the results of
[5, 7, 8, 9].

Let (a′j, a
′′
j , hj) (j = 1, 2) be two independent sets of operators satisfying the commutation

relations for the sp(2) algebra

[hj, a
′
j] = −2a′j, [hj, a

′′
j ] = 2a′′j , [a′j, a

′′
j ] = hj (8)

The sets are independent in the sense that for different j they mutually commute with each
other.

Since the AdS algebra is 10-dimensional, as well as the Poincare algebra, in addition
to the six operators (a′j, a

′′
j , hj), we should also define four operators which we denote as

b′, b′′, L+, L−. The operators L3 = h1 − h2, L+, L− satisfy the commutation relations of the
su(2) algebra

[L3, L+] = 2L+, [L3, L−] = −2L−, [L+, L−] = L3 (9)

and the other commutation relations are as follows

[a′1, b
′] = [a′2, b

′] = [a′′1, b
′′] = [a′′2, b

′′] = [a′1, L−] = [a′′1, L+] =
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[a′2, L+] = [a′′2, L−] = 0, [hj, b
′] = −b′, [hj, b

′′] = b′′

[h1, L±] = ±L±, [h2, L±] = ∓L±, [b′, b′′] = h1 + h2

[b′, L−] = 2a′1, [b′, L+] = 2a′2, [b′′, L−] = −2a′′2, [b′′, L+] = −2a′′1
[a′1, b

′′] = [b′, a′′2] = L−, [a′2, b
′′] = [b′, a′′1] = L+

[a′1, L+] = [a′2, L−] = b′, [a′′2, L+] = [a′′1, L−] = −b′′ (10)

At first glance these relations might seem rather chaotic but in fact they are very natural in
the Weyl basis of the so(2,3) algebra.

The relation between the above set of ten operators and Mab is

M10 = i(a′′1 − a′1 − a′′2 + a′2), M14 = a′′2 + a′2 − a′′1 − a′1
M20 = a′′1 + a′′2 + a′1 + a′2, M24 = i(a′′1 + a′′2 − a′1 − a′2)
M12 = L3, M23 = L+ + L−, M31 = −i(L+ − L−)

M04 = h1 + h2, M34 = b′ + b′′, M30 = −i(b′′ − b′) (11)

and therefore the sets are equivalent.
We work in the system of units h̄/2 = c = 1. Then s = 1 for particles with spin 1/2 in

the usual units where h̄ = 1. We use the basis in which the operators (hj, Kj) (j = 1, 2) are
diagonal. Here Kj is the Casimir operator

Kj = h2j − 2hj − 4a′′ja
′
j = h2j + 2hj − 4a′ja

′′
j (12)

for the algebra (a′j, aj”, hj). For constructing IRs we need operators relating different rep-
resentations of the sp(2)×sp(2) algebra. By analogy with [5, 7, 8, 9], one of the possible
choices is:

A++ = b′′(h1 − 1)(h2 − 1)− a′′1L−(h2 − 1)− a′′2L+(h1 − 1) + a′′1a
′′
2b
′

A+− = L+(h1 − 1)− a′′1b′, A−+ = L−(h2 − 1)− a′′2b′, A−− = b′ (13)

We consider the action of these operators only on the space of minimal sp(2)×sp(2) vectors,
i.e., such vectors x that a′jx = 0 for j = 1, 2, and x is the eigenvector of the operators
hj. If x is a minimal vector such that hjx = αjx then A++x is the minimal eigenvector
of the operators (h1, h2) with the eigenvalues (α1 + 1, α2 + 1), A+−x - with the eigenvalues
(α1+1, α2−1), A−+x - with the eigenvalues (α1−1, α2+1), and A−−x - with the eigenvalues
(α1 − 1, α2 − 1).

In the theory of IRs of Lie algebras, it is known that each nonzero vector e0 in the space
of IRs is cyclic, i.e., that any vector in the representation space can be obtained by acting
by representation operators on e0 and taking all possible linear combinations of the results.
We choose as e0 the vector e0 satisfying the conditions

a′je0 = b′e0 = L+e0 = 0, hje0 = qje0 (j = 1, 2) (14)

where qj are positive integers. Then, as shown in [5], for the massless IR with the spin s = 1,
q2 = 1 and q1 = q2 + s = 2. The reasons why such IRs are called massless will be explained
below.
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As follows from Eqs. (8-11)

I2 = 2(h21 + h22 − 2h1 − 4h2 − 2b′′b′ + 2L−L+ − 4a′′1a
′
1 − 4a′′2a

′
2) (15)

Then, in the IR characterized by (q1, q2), all the nonzero elements of the representation space
are the eigenvectors of the operator I2 with the eigenvalue

I2 = 2(q21 + q22 − 2q1 − 4q2) (16)

In particular, for the massless neutrino, I2 = −6. One of the reasons why such an IR is
called massless, is that, as follows from the contraction procedure, the Casimir operator W
in the Poincare invariant theory is a formal limit of I2/4R

2 when R → ∞ and this limit
obviously equals zero.

As follows from Eqs. (8) and (10), the operators (a′1, a
′
2, b
′) reduce the AdS energy (h1+h2)

by two units. Therefore e0 is an analog of the state with the minimum energy which can be
called the rest state. In standard classification [7], the massive case is characterized by the
condition q2 > 1 and the massless one — by the condition q2 = 1.

We define the vectors

e(0, 0, 1) = [b”(h1−1)−a1”L−]e0, f(0, 0, 0) = L−e0, f(0, 0, 1) = [b′′(h2−1)−a′′2L+]f0 (17)

Then, as shown in Chapter 8 of [5], the basis of the massless IR of the so(2,3) algebra with
s = 1 consists of e0, the vectors defined by Eq. (17), the vectors

e(n1, n2, n) = (a1”)n1(a2”)n2e(0, 0, n), f(n1, n2, n) = (a1”)n1(a2”)n2f(0, 0, n) (18)

if n <= 1 and the vectors

e(n1, n2, n) = (a1”)n1(a2”)n2(A++)n−1e(0, 0, 1)

f(n1, n2, n) = (a1”)n1(a2”)n2(A++)n−1f(0, 0, 1) (19)

if n > 1. Here n1 and n2 are any positive integers.
One might think that, as follows from the definition of the operators A+− and A−+,

A+−e(0, 0, n) should be proportional to f(0, 0, n) and A−+f(0, 0, n) should be proportional
to e(0, 0, n). However, a direct calcullation using Eq. (10) shows that, in the massless case,
A+−e(0, 0, n) = 0 and A−+f(0, 0, n) = 0.

In Poincare invariant theory without spatial reflections, massless particles are charac-
terized by the condition that they have a definite helicity. The operator M04 is the AdS
energy, and its minimum eigenvalue for massless IRs with positive energy is Emin = 3 for the
neutrino. In contrast to the situation in Poincare invariant theory, where massless particles
cannot be in the rest state, the massless particles in the AdS theory do have rest states
and, for s = 1, the values of the z projection of the spin can be -1 or 1. However, since
A+−e(0, 0, n) = 0 and A−+f(0, 0, n) = 0 for n ≥ 1, for any value of the energy greater than
Emin, the spin state is characterized only by helicity, which can take the values either 1 or
-1, i.e., we have the same result as in Poincare invariant theory. Note that, in contrast to
IRs of the Poincare algebra, IRs describing particles in AdS invariant theory belong to the
discrete series of IRs and the energy spectrum in them is discrete: E = Emin, Emin + 2, ...∞.
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Therefore, strictly speaking, the rest states do not have measure zero as in Poincare invariant
theories.

Nevertheless, although the probability that the energy is exactly Emin is extremely small,
as a consequence of existence of rest states, one IR now contains states with both helicities,
1 and -1. Indeed, the states e(0, 0, n) for n ≥ 1 have the energy E = Emin + 2n and helicity
1. By acting by the operator (b′)n on e(0, 0, n) we obtain the element proportional to the rest
state e0. Then L−e0 is the rest state f(0, 0, 0). Finally, as explained above, one can obtain
f(0, 0, 1) from f(0, 0, 0) and, if n > 1, f(0, 0, n) can be obtained as (A++)n−1f(0, 0, 1). This
state has the energy E = Emin+ 2n and helicity -1. Therefore, as a consequence of existence
of rest states, states with the same energies but opposite helicities belong to the same IR.

A known case in Poincare invariant theory is that if neutrino is massless then neutrino
and antineutrino are different particles with opposite helicities. However, in AdS theory,
neutrino and antineutrino can be only different states of the same particle. In experiment
they manifest as different particles because the probability to be in the rest state is extremely
small and in weak reactions only states with definite helicities can take part. Note also that
in Poincare invariant theory, the photon is a massless elementary particle which does not
have a definite helicity because it is described by an IR in the theory where, in addition to
Poincare invariance, invariance under spatial reflections is required.

5 Matrix elements of representation operators

The states e(n1, n2, n) are not normalized to one. A direct calculation using Eqs. (10,13,14,17)
gives that the norm of the state e(n1, n2, n) is

N(n1, n2, n) = (e(n1, n2, n), e(n1, n2, n)) = n1!n2!(1 + n+ n1)!(n+ n2)![n!(n− 1)!]2 (20)

Therefore, the basis vectors normalized to one are ẽ(n1, n2, n) = N(n1, n2, n)−1/2e(n1, n2, n).
Then, as follows from Eqs. (10,13,14,17), the matrix elements of the representation operators
in the normalized basis are given by

b′ẽ(n1, n2, n) = (n1n2)
1/2ẽ(n1 − 1, n2 − 1, n+ 1) +

[(n+ n1 + 1)(n+ n2)]
1/2ẽ(n1, n2, n+ 1)

b”ẽ(n1, n2, n) = [(n+ n1 + 2)(n+ n2 + 1)]1/2ẽ(n1, n2, n+ 1) +

[(n1 + 1)(n2 + 1)]1/2ẽ(n1 + 1, n2 + 1, n− 1)

a′1ẽ(n1, n2, n) = [n1(n+ n1 + 1)]1/2ẽ(n1 − 1, n2, n)

a1”ẽ(n1, n2, n) = [(n1 + 1)(n+ n1 + 2)]1/2ẽ(n1 + 1, n2, n)

a′2ẽ(n1, n2, n) = [n2(n+ n2 + 1)]1/2ẽ(n1, n2 − 1, n)

a2”ẽ(n1, n2, n) = [(n2 + 1)(n+ n2 + 2)]1/2ẽ(n1, n2 + 1, n)

L+ẽ(n1, n2, n) = [n2(n+ n1 + 2)]1/2ẽ(n1, n2 − 1, n+ 1) +

[(n1 + 1)(n+ n2)]
1/2ẽ(n1 + 1, n2, n− 1)

L−ẽ(n1, n2, n) = [n1(n+ n2 + 1)]1/2ẽ(n1 − 1, n2, n+ 1) +

[(n+ n1 + 1)(n2 + 1)]1/2ẽ(n1, n2 + 1, n− 1)

h1ẽ(n1, n2, n) = (2 + n+ n1)ẽ(n1, n2, n), h2ẽ(n1, n2, n) = (1 + n+ n2)ẽ(n1, n2, n) (21)
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At the present stage of the universe, the value of R is very large. Therefore, in situations
where Poincare limit is valid with a high accuracy, the quantum numbers (n1, n2, n) are
very large since in the formal limit R → ∞ the quantities (n1/2R, n2/2R, n/2R) become
continuous momentum variables. For this reason, we can neglect the probability for the
neutrino to be in the rest state. Then the wave function of the neutrino with positive
helicity can be written as

Ψ =
∑
n1n2n

c(n1, n2, n)ẽ(n1, n2, n) (22)

where the minimum value of n is very large. The wave function of the neutrino with the
negative helicity can be defined analogously.

Since the current theory of weak interactions is based on Poincare invariance, the form of
the neutrino wave function in Eq. (22) is a problem. In standard particle theory, particles in
Feynman diagrams have definite four-momenta and such state states are not even normalized.
When it is said that a neutrino has the momentum p0, it is assumed that the state of the
neutrino is described by a wave function

∫
c(p)|p > d3p where c(p) has a sharp maximum at

p0 and the width of the maximum is much less than |p0|. As noted above, in the approach
proposed in [3] the neutrinos are described by wave packets.

However, in the AdS case, the situation is more complicated. The AdS analogs of the
momentum operators are M4i (i = 1, 2, 3) and these operators do not commute with each
other. In addition, IRs of the AdS algebra belong to the discrete series. However, when the
quantum numbers (n1, n2, n) are very large, one might expect that semiclassical approxima-
tion will work with a high accuracy because, as follows from Eqs. (21), the operators of the
IR of the AdS algebra can change these numbers only by one.

A typical form of the semiclassical wave function is

c(n1, n2, n) = a(n1, n2, n)exp[i(n1ϕ1 + n2ϕ2 + nϕ)] (23)

where the amplitude a(n1, n2, n) has a sharp maximum at semiclassical values of (n1, n2, n).
Since these numbers are very large, when some of them change by one, the major change of
c(n1, n2, n) comes from the rapidly oscillating exponent and in semiclassical approximation
the change of a(n1, n2, n) can be neglected. As a consequence, in semiclassical approximation,
each representation operator becomes the operator of multiplication by a function and, as
follows from Eqs. (11) and (21), if ϕ1 = π + χ1 then

M04 = 2(n+ n1 + n2), M14 = 2[n1(n+ n1)]
1/2cosχ1 + 2[n2(n+ n2)]

1/2cosϕ2

M24 = −2[n1(n+ n1)]
1/2sinχ1 + 2[n2(n+ n2)]

1/2sinϕ2

M34 = 2[(n+ n1)(n+ n2)]
1/2cosϕ− 2(n1n2)

1/2cos(χ1 + ϕ2 − ϕ)

M10 = −2[n1(n+ n1)]
1/2sinχ1 − 2[n2(n+ n2)]

1/2sinϕ2

M20 = −2[n1(n+ n1)]
1/2cosχ1 + 2[n2(n+ n2)]

1/2cosϕ2

M30 = −2[(n+ n1)(n+ n2)]
1/2sinϕ+ 2(n1n2)

1/2sin(χ1 + ϕ2 − ϕ)

M12 = 2(n1 − n2), M31 = 2[n1(n+ n2)]
1/2sin(χ1 − ϕ)− 2[n2(n+ n1)]

1/2sin(ϕ2 − ϕ)

M23 = 2[n1(n+ n2)]
1/2cos(χ1 − ϕ) + 2[n2((n+ n1)]

1/2cos(ϕ2 − ϕ) (24)

W̃ = 4{[(n+ n1)(n+ n2)]
1/2sinϕ+ (n1n2)

1/2sin(χ1 + ϕ2 − ϕ)}2
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N2 = M2
10 +M2

20 +M2
30 =

4n2
1 + 4n2

2 + 4n(n1 + n2)− 8[n1n2(n+ n1)(n+ n2)]
1/2cos(χ1 + ϕ2 − 2ϕ) +

4{[(n+ n1)(n+ n2)]
1/2sinϕ+ (n1n2)

1/2sin(χ1 + ϕ2 − ϕ)}2

M2 = M2
12 +M2

31 +M2
23 =

4n2
1 + 4n2

2 + 4n(n1 + n2)− 8[n1n2(n+ n1)(n+ n2)]
1/2cos(χ1 + ϕ2 − 2ϕ) (25)

Since I2 = W̃ −N2 + M2, it follows from Eq. (25) that I2 = 0. This is in agreement with
the exact result I2 = −6 obtained from Eq. (16) because in semiclassical approximation, the
numbers (n1, n2, n) are much greater than 1.

At the present stage of the universe, the value of R is very large and Poincare approx-
imation works with a very high accuracy. Then, as noted in Sec. 3, the four-momentum
Pν = Mν4/2R should be finite in the formal limit R→∞ and then, as follows from Eq. (24),
the numbers (n1, n2, n) should be very large because (n1/R, n2/R, n/R) should be finite in
this limit. At the same time, even when R is very large, the Lorenz algebra operators Mab

(a, b 6= 4) should be finite because they should be the same as in Poincare approximation.
Then, as follows from the expression for M12 in Eq. (24), the numbers n1 and n2 should
be close to each other because n1 − n2 should be finite in the formal limit R → ∞ and, as
follows from other expressions for Mab, the angles (χ1, ϕ2, ϕ) should be very small because
they should be of the order of O(1/R).

In Poincare approximation, i.e., when R is very large, W̃/4R2 should become m2. Since
we treat neutrino as a particle which in Poincare approximation becomes massless then
W̃/4R2 should become zero in the formal limit R → ∞, and as follows from the first
expression in Eq. (25) and from the above remarks about the quantities (n1, n2, n) and
(χ1, ϕ2, ϕ), this is the case. Since n1 ≈ n2 and (χ1, ϕ2, ϕ)� 1, the expression for W̃ in Eq.
(25) can be written as

W̃ = 4(n1χ1 + n2ϕ2 + nϕ)2 (26)

In Poincare theory, the evolution is defined by the operator exp(−iHt) where H is the
Hamiltonian and t is time. Since M04 is the AdS analog of the Poincare Hamiltonian, and
M04/2R should become H when R is very large, the evolution in AdS theory is defined by
exp(−iM04τ) where τ = t/2R. Then, as follows from Eq. (23) and the first expression in
Eq. (24), the evolution of the angles (χ1, ϕ2, ϕ) is defined by

χ1(t) = χ10 − t/R, ϕ2(t) = ϕ20 − t/R ϕ(t) = ϕ0 − t/R (27)

and then, as follows from Eq. (26)

W̃ = 4(n1χ10 + n2ϕ20 + nϕ0 − Et)2

because, as follows from the first expression in Eq. (24), the Poincare energy E equals
(n1 + n2 + n)/R. Experimental data on neutrino oscillations are usually described in terms
of the neutrino energy and the oscillation distance l = ct. Hence, inserting h̄ and c, we finally
get

W̃ = 4(A− El

h̄c
)2 (28)

where
A = A(n1, n2, n, χ10, ϕ20, ϕ0) = n1χ10 + n2ϕ20 + nϕ0 (29)
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6 Neutrino flavors in AdS theory

As noted in Sec. 3, in the famous Dyson’s paper [4] and in our publications it has been proved
that quantum theory based on dS and AdS symmetries is more general (fundamental) than
quantum theory based on Poincare symmetry. We believe that it is rather strange that,
although the paper [4] appeared more than 50 years ago, standard particle theories (QED,
QCD and electroweak theory) are still based on Poincare symmetry, and possible reasons for
such a situation have been mentioned in Sec. 3.

In Poincare invariant theory, the representation operators Mµν (µ, ν = 0, 1, 2, 3) of the
Lorentz algebra are dimensionless (in units h̄ = c = 1) while the momentum operators P µ

have the dimension 1/length. As noted in Sec. 3, the AdS invariant theory also contains the
operators Mµν but, instead of the four operators P µ, it contains the dimensionless operators
M4µ. Poincare invariant theory is a special degenerate case of AdS invariant theory such
that the operators P µ can be treated as a formal limit of M4µ/2R when R→∞.

In Poincare invariant theory, the operator W = (P 0)2 −P2 is the Casimir operator and
elementary particles are eigenstates of W with eigenvalues m2 where m is called the mass. In
this theory, the energy, the momentum and the mass of a free particle do not change during
the whole lifetime of the particle.

In AdS theory, there are two analogs of W — the Casimir operator I2 defined by Eq. (7)
and the operator W̃ defined in Sec. 3. States of elementary particles are eigenvalues of I2
which remain the same over the whole lifetime of the particle but even for a free particle,
the spectrum of W̃ changes over time.

The eigenvalues of W̃ are dimensionless and, in Poincare approximation, they are related
to the eigenvalues of W as W = W̃/4R2 when R is very large. As shown in Sec. 4, in
semiclassical approximation, the neutrino is a state with the eigenvalue of W̃ given by Eq.
(26), and this eigenvalue changes over time. As follows from Eq. (28), in general, the
eigenvalues w̃ of W̃ are rather large numbers but, when R→∞, the formal limit of w̃/4R2

equals zero, in agreement with treating the neutrino as the massless particle in Poincare
approximation.

The phenomenon of neutrino oscillations shows that when free neutrinos fly a long dis-
tance, they can change their flavor. As noted above, in the current treatment of neutrino
oscillations, such neutrinos are treated as quantum superpositions of elementary particles
with different masses (m1,m2,m3) and, depending on the coefficients of the superpositions
and the neutrino helicities, the neutrinos are treated as one of the particles (νe, νµ, ντ ) or
their antiparticles. As noted in Sec. 2, such a treatment is highly problematic from the
theoretical point view.

The goal of the present paper is to investigate whether AdS quantum theory can shed a
new light on the neutrino oscillation phenomenon. We treat the neutrino not as a superposi-
tion of three elementary particles but as a particle which in AdS quantum theory is treated
as elementary and massless, and the meaning of such a treatment is explained in Sec. 4.

As follows from Eq. (26), for neutrinos, eigenvalues of W̃ are rather large but a formal
limit of the operator W̃/4R2 when R→∞ is zero, in agreement with the fact that this limit
equals m2 and, in our approach, the Poincare neutrino mass equals zero. It will be clear
from our discussion that the neutrino is a quantum superposition of states with essentially
different eigenvalues w̃ of the operator W̃ . Our conjecture is that the neutrino flavor is
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defined by the most probable range of w̃ in the neutrino wave function. As noted in Sec. 5,
computing the neutrino wave function in the AdS theory is a problem and so, our conjecture
will be proved or disproved when this theory is constructed.

However, for the electron, muon and tau lepton, the situation is drastically different. For
example, for the electron, typical eigenvalues of W̃ are of the order of 4m2

eR
2 where me is

the electron mass. As follows from cosmological data (see e.g., the discussion in [5]), the
value of R is of the order of 1026m. Then all the eigenvalues of the operator W̃ are very
close to 4m2

eR
2 ∼ 1077. For the muon and tau lepton, almost all the eigenvalues are close to

4m2
µR

2 ∼ 1081 and 4m2
τR

2 ∼ 1084, respectively. Therefore, our conjecture naturally explains
the fact that the electron, muon and tau lepton do not have flavors changing over time.

The author of [10] summarizes the present experimental status of neutrino oscillations as
follows:

• Atmospheric νµ and ν̄µ disappear most lickely converting to νe and ν̄e. The results show
an energy and distance dependence perfectly described by mass-induced oscillations.

• Accelerator νµ and ν̄µ disappear over distances of ∼ 200 to 800 km. The energy
spectrum of the results show a clear oscillatory behavior also in accordance with mass-
induced oscillations with wavelength in agreement with the effect observed in atmo-
spheric neutrinos.

• Accelerator νµ and ν̄µ appear as νe and ν̄e at distances ∼ 200 to 800 km.

• Solar νe convert to νµ and/or ντ . The observed energy dependence of the effect is well
described by massive neutrino conversion in the Sun matter according to the MSW
effect.

• Reactor ν̄e disappear over distances of ∼ 200km and ∼ 1.5km with different prob-
abilities. The observed energy spectra show two different mass-induced oscillation
wavelengths: at short distances in agreement with the one observed in accelerator νµ
disappearance, and a long distance compatible with the required parameters for MSW
conversion in the Sun.

Here, for example, the word ”disappear” means not that all neutrinos in the given experiment
disappear but only a part of them disappears, and the words ”appear” and ”convert” should
be understood analogously. We will describe the results of experiments where the energies
and flavors of initial and final neutrinos are known without model assumptions.

In the K2K experiment [11], 56 νµ neutrinos with the energies E ≈ 1.3Gev have been
observed at Super-Kamiokande, the far detector at 250 km distance while the expectation
was 80.6+7.3

−8.0. For this case, El/(h̄c) = 1.6 · 1018.
In the KamLAND experiment [12], ν̄e reactor neutrinos with the energies in the range

(2.6 − 6)Mev flew the distance 180km and, although 365 events were predicted, only 258
were observed. For this case, if E = 3Mev then El/(h̄c) ≈ 2 · 1015.

In the RENO experiment [13], ν̄e reactor neutrinos with the energies E ≈ 3Mev flew the
distance 1183m. The ratio of observed to expected numbers of antineutrinos was 0.920 ±
0.009(stat.)± 0.014(syst.). For this case, El/(h̄c) = 2 · 1013.
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In the NOvA experiment [14], νµ neutrinos with the energies in the range (2 − 20)Gev
flew from Fermilab 810km. 720 cases were expected without oscillations but only 126 νµ
cases and 66 νe cases were observed. For this range of energies, El/(h̄c) is in the range
(0.8− 8) · 1019.

In the OPERA experiment [15], νµ neutrinos with the energies E ≈ 17Gev flew from
CERN toward the Gran Sasso underground laboratory, 730 km away. 5603 neutrino inter-
actions were fully reconstructed, 10 of them were identified as conversions to ντ and 35 —
as conversions to νe. In this experiment, El/(h̄c) ≈ 6.2 · 1019.

Those experiments confirm that the phenomenon of neutrino oscillation does take place.
At the same time, in all those experiment except [14], most neutrinos did not change their
flavor. In the framework of the approach described in Sec. 5, the description of the above
experiments is model dependent because, in semiclassical approximation, the values of the
angles (χ10, ϕ20, ϕ0) in Eq. (29) are not known. We noted that those values should be very
small. Since in the above experiments, the phenomenon of neutrino oscillation does take
place, it follows from Eq. (28) and from the above values of the quantity El/(h̄c) that W̃
essentially depends on l. Therefore the quantity A is of the order of 1019 or less. Since the
AdS neutrino energy equals 2(n1 + n2 + n) then, even if Poincare energy is of the order of
Mev, the AdS energy is of the order of 2R ·Mev ∼ 1039, i.e., the quantities (n1, n2, n) in A
are of the order of 1039 and the angles (χ10, ϕ20, ϕ0) are indeed very small.

As noted in Sec. 2, the current theory of neutrino oscillations cannot describe the data
without fitting parameters in the Pontecorvo–Maki–Nakagawa–Sakata matrix. Analogously,
as noted in Sec. 5, in the absence of AdS theory of weak interactions, the details of the initial
neutrino wave function are not known. We proposed to consider this function in semiclassical
approximation. Then one can treat (n1, n2, n, χ10, ϕ20, ϕ0) as fitting fitting parameters which
can be found from experimental values of the quantities Mµν by using Eq. (24) but these
quantities are not measured in neutrino experiments.

However, there is a case which can be described without fitting parameters. Historically,
the problem of neutrino oscillations first appeared in view of the solar neutrino problem.
In 2002, Ray Davis and Masatoshi Koshiba won part of the Nobel Prize in Physics for
experimental work which found the number of solar neutrinos to be around a third of the
number predicted by the standard solar model.

The result [16] of the Sudbury Neutrino Observatory is that the νe survival probability
at 10Mev is 0.317 ± 0.016(stat) ± 0.009(syst), and this number is very close to 1/3. If we
take for l the distance from Sun to Earth then for E = 10Mev, El/(h̄c) = 7.5 · 1021. Since
the quantity A is of the order of 1019 or less, one can neglect A in Eq. (28) and get

W̃ = 4(
El

h̄c
)2 (30)

Since most neutrinos created in the Sun are created in the reaction

p+ p→ d+ e+ + νe

and their typical energies are in the range (1 − 20)Mev, the values of W̃ are in the range
(2 ·1042−9 ·1044). These values should not be treated as anomalously large. Indeed, as noted
above, even for the electron, which is the lightest massive particle, the AdS mass squared is
4m2

eR
2 and this quantity is of the order of 1077.
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As noted above, our conjecture is that the neutrino flavor is defined by the most probable
range of w̃ in the neutrino wave function. So, if we assume that the range (2 · 1042− 9 · 1044)
is partitioned into equal pieces such that each piece corresponds to one of the neutrino
flavors, then the νe neutrinos created on the Sun can be detected on the Earth with equal
probabilities 1/3 as νe, νµ or ντ . So, our conjecture naturally explains that the survival
probability for νe equals 1/3.

7 Conclusion

In the current approach to neutrino oscillations, the neutrino is treated not as an elementary
particle but as a superposition of three elementary particles with different masses. In Sec.
2 we note that this approach is essentially model dependent and is not based on rigorous
physical principles.

We propose an approach where the neutrino is treated as a massless elementary particle
in AdS invariant quantum theory. The fact that this theory is more general (fundamental)
than standard Poincare invariant quantum theory, has been proved in the famous Dyson’s
paper ”Missed Opportunities” [4] and in our publications [5, 6]. We believe that it is rather
strange that, although the Dyson’s paper has appeared more than 50 years ago, standard
particle theories (QED, QCD and electroweak theory) are still based on Poincare symmetry,
and in Sec. 1 we describe possible reasons for such a situation.

If P0 and P are the operators of standard energy and momentum then, in standard theory,
elementary particles are eigenstates of W = P 2

0 − P2 with the eigenvalue w = m2 where m
is called the mass. In this theory, the value of m remains the same during the whole lifetime
of the particle. The operator W̃ defined in Sec. 3 is an AdS analog of W . In contrast to
the situation in Poincare invariant theory, the spectrum of W̃ changes over time even for
elementary particles. If the spectrum of W̃ consists of the values w̃ then our conjecture
is that the neutrino flavor is defined by the most probable range of w̃ in the neutrino wave
function.

In this approach, it becomes clear why, in contrast to the neutrino, the electron, muon
and tau lepton do not have flavors changing over time. Since the current theory of weak
interactions is based on Poincare invariance, the calculation of the most probable range of
w̃ in the neutrino wave functions is a problem but, as explained in Sec. 6, the solar neutrino
problem has a natural explanation.
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