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Abstract. The uncertainty in the measurement of a particle’s position and

momentum as the cause of the particle-electron movement is interpreted. Specifically,

the rapid decreasing fluctuation amplitude A, as a function of the distance x from the

electron, is the cause of the uncertainty in the measurement. Therefore, we have to

express Heisenberg’s uncertainty principle ∆p∆x ≥ h̄ with ∆A and ∆x, i.e. replacing

the momentum difference ∆p with the amplitude difference ∆A.

Keywords: Inductive phenomenon; grouping units; fluctuation amplitude.

PACS numbers: 12.10.-g

1. Inductive phenomenon create pressure difference ∆P as motion arrow

According to the unified theory of dynamic space1,2 in a changing motion of an electron

a shift of electric units3 of the proximal space is caused and a difference ∆P of space

cohesive pressure4 is created. This shift of units, at a proximal area of an electron, is

due to the inductive phenomenon.5

The magnetic forces are described as electric ones created by grouping units5 of

the moving electron (Fig. 1), due to the above inductive phenomenon. If Q is a moving

electric charge at speed u, while Q1 is the respective electric charge of its grouping units,

then it is obvious that

Q1 = KQu, (1)

where K is a ratio constant. We put in Eq. 1 the electron speed

u = uaC0, (2)

where ua is the respective timeless speed6 and C0 the light speed,7 then

Q1 = KQuaC0. (3)
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As ua is dimensionless value then, due to Eq. 3, it should obviously apply

KC0 = 1 ⇒ K =
1

C0

(4)

and so Eq. 3, due to Eq. 4, becomes

Q1 = Qua ⇒ ua =
Q1

Q
⇒ u2

a =
Q2

1

Q2
. (5)
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Figure 1. The first grouping units and their reproduction extra grouping units as

second ones

However, the timeless speed has been found as a function of the pressure difference5

∆P on both sides of the formation of the first grouping unit and of the cohesive pressure

P0, namely it is

ua =

√
∆P

P0

⇒ u2
a =

∆P

P0

. (6)

Therefore, due to Eqs 5 and 6, it is

u2
a =

Q2
1

Q2
=

∆P

P0

⇒ ∆P = P0u
2
a ⇒

∆P

2
=

P0

2
u2
a. (7)

2. Decreasing fluctuation amplitude of motion wave

The time and spatial fluctuation of the spherical formation of the first grouping unit

implies a harmonic change in the difference6 ∆P of the cohesive pressure. Therefore,

the first maximum amplitude A1 (Fig. 2) of the pressure fluctuation ∆P/2 = P0u
2
a/2

(Eq. 7) will be

A1 =
∆P

2
=

P0

2
u2
a ⇒ A1 =

P0

2
u2
a (8)

and for u2
a = Q2

1/Q
2 (Eq. 5), then Eq. 8 becomes

A1 =
P0

2
· Q

2
1

Q2
. (9)

The electric charge of the second grouping unit, due to Eq. 5, becomes

Q2 = Q1ua. (10)
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The fluctuation amplitude A2 decreases, keeping in denominator the accelerated electric

charge Q (Eq. 9) as the operative cause of the phenomenon, that is

A2 =
P0

2
· Q

2
2

Q2
. (11)

By replacing the electric charge Q2 = Q1ua (Eq. 10) of the second grouping unit in

Eq. 11, the fluctuation amplitude A2 becomes

A2 =
P0

2
· Q

2
2

Q2
=

P0

2
· Q

2
1

Q2
u2
a ⇒ A2 =

P0

2
· Q

2
1

Q2
u2
a. (12)

Figure 2. Descending change of pressure difference ∆P as motion arrow6 of the

electron with a motion formation diameter d = λ/2, where λ the wavelength of the

decreasing fluctuation amplitude A of motion wave (A1 = P0u
2
a/2, A2 = P0u

4
a/2,

A3 = P0u
6
a/2, where ua < 1 the timeless speed6 of the electron)

However, due to Eq. 9, Eq. 12 becomes

A2 = A1u
2
a, (13)

which results in

A2 = A1u
2
a, A3 = A2u

2
a, A4 = A3u

2
a, ..., An = An−1u

2
a, (14)

where An is the amplitude on either side of the formation and, due to Eq. 8, the Eq. 14

becomes

A1 =
P0

2
u2·1
a , A2 =

P0

2
u2·2
a , A3 =

P0

2
u2·3
a , ..., An =

P0

2
u2n
a . (15)

Therefore, we conclude that the fluctuation amplitude decreases with geometrical

progress and more pronounced for low speeds, since the timeless speed is ua < 1.
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The wavelength of the formation (Fig. 2) is λ = 2d and, of course, the first

fluctuation amplitude of ∆P is A1 = P0u
2
a/2 (Eq. 8) observed at the ends of the half-

wave λ/2. This fluctuation decreases by geometrical progress, as mentioned above.

The fluctuation amplitude of wavelength λ = λ/2 + λ/2 corresponding to the

diameter d = λ/2 of the grouping unit (Fig. 2), and for

x =
λ

4
,
3λ

4
,
5λ

4
, ...,

(2n− 1)λ

4
. (16)

namely for x = (2n− 1)λ/4 (Eq. 16) and for the absolute value of x, it is

n =
2|x|+ λ/2

λ
. (17)

Therefore, due to Eqs 8 and 17, the general equation (Eq. 15) of the amplitude becomes

A = An =
P0

2
u2n
a = A1u

2n−2
a = A1u

4|x|+λ
λ

−2
a ⇒ A = A1u

4|x|+λ
λ

−2
a , (18)

which for |x| > λ/4 decreases continuously.

3. Interpretation of Heisenberg’s uncertainty principle

The unified theory of dynamic space interprets the uncertainty in the measurement of

a particle’s position and momentum, for which Heisenberg’s mathematical expression

exists

∆p∆x ≥ h̄ ⇒ ∆p∆x ≥ h

2π
, (19)

as the cause of the particle-electron movement and specifically in the fluctuation of

the amplitude A (Eq. 18) of the pressure difference ∆P , which is A1 maximum at the

limits +λ/4 and −λ/4 on either side of the electron (Fig. 2). The rapid decrease of

the above amplitude, as a function of the distance x from the electron, is the cause of

the uncertainty in the measurement. Therefore, we have to express the Heisenberg’s

uncertainty principle (Eq. 19) with ∆A and ∆x, i.e. replacing the momentum difference

∆p with the amplitude difference ∆A.

The accumulated force8 Fs of the electron as a function of its timeless speed ua,

where F0 the gravity force9 of the electron, has been calculated as

ua =
Fs√

F 2
0 + F 2

s

⇒ Fs =
F0√
1
u2
a
− 1

(20)

and substituting u2
a = 2A1/P0 (Eq. 8) in Eq. 20, we have the maximum and the general

accumulated forces of the electron formation

Fs1 =
F0√
P0

2A1
− 1

⇒ Fs =
F0√
P0

2A
− 1

. (21)

However, the amplitude A as a function of x is A = A1u
4|x|+λ

λ
−2

a (Eq. 18) and for

x = kλ, (22)
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it is A = A1u
4k−1
a and by replacing in Eq. 21 the accumulated force Fs of the electron,

at a distance x = kλ, is

Fs =
F0√
P0

2A1u
4k−1
a

− 1
. (23)

Dividing by terms equations Eqs 23 and 21, we have

Fs

Fs1

=

√
P0

2A1
− 1√

P0

2A1u
4k−1
a

− 1
⇒ Fs = Fs1

√
1− 2A1

P0√
1− 2A1

P0
u4k−1
a

u2k−1/2
a . (24)

Substituting equation u2
a = 2A1/P0 (Eq. 8) into Eq. 24, it is

Fs = Fs1

√
1− u2

a√
1− u4k+1

a

u2k−1/2
a . (25)

and due to u4k+1
a ≪ 1, it is omitted in the denominator, so it holds

Fs ≥ Fs1

√
1− u2

a · u2k−1/2
a . (26)

Also, it is approximate√
1− u2

a = 1− u2
a

2
(27)

and therefore, the accumulated force Fs (Eq. 26), at a distance x = kλ (Eq. 22) from

the electron, will be then

Fs ≥ Fs1(1−
u2
a

2
)u2k−1/2

a . (28)

The maximum accumulated force Fs1 and the accumulated ones Fs at a distance x = kλ

(Eq. 22) from the electron, as a function of its impulse-momentum10

p = F
L0

C0

, (29)

are

Fs = ps
C0

L0

⇒ Fs1 = ps1
C0

L0

(30)

where L0 the dipole length3 and substituting in Eq. 28, we have

ps ≥ ps1(1−
u2
a

2
)u2k−1/2

a . (31)

Considering the uncertainty of the position ∆x = kλ (Eq. 22) and multiplying the

equations Eqs 31 and 22 by terms, we have

ps∆x ≥ ps1kλ(1−
u2
a

2
)u2k−1/2

a , (32)

where

ps1λ = h (33)

the Planck’s constant11 and so

ps∆x ≥ hk(1− u2
a

2
)u2k−1/2

a (34)
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and due to u2
a ≪ 1, it is

ps∆x ≥ hku2k−1/2
a . (35)

However,

ku2k−1/2
a < 1, (36)

namely it is

ku2k−1/2
a ∼ 1

2π
, (37)

as correspondingly applies to the Heisenberg’s uncertainty principle (Eqs 35 and 19).

Therefore, the rapid decrease of the amplitude A, as a function of the distance

x from the electron (Fig. 2), is the cause A(ps) and ∆x (Eq. 35) to be inversely

proportional, i.e. the cause of the uncertainty in the measurement.
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