Heisenberg's uncertainty principle

Michael Tzoumpas

Mechanical and Electrical Engineer
National Technical University of Athens
Irinis 2, 15234 Athens, Greece
E-mail: m.tzoumpas@gmail.com
October 2022

Abstract

The uncertainty in the measurement of a particle's position and momentum as the cause of the particle-electron movement is interpreted. Specifically, the rapid decreasing fluctuation amplitude A, as a function of the distance x from the electron, is the cause of the uncertainty in the measurement. Therefore, we have to express Heisenberg's uncertainty principle $\Delta p \Delta x \geq \hbar$ with ΔA and Δx, i.e. replacing the momentum difference Δp with the amplitude difference ΔA.

Keywords: Inductive phenomenon; grouping units; fluctuation amplitude.

PACS numbers: 12.10.-g

1. Inductive phenomenon create pressure difference ΔP as motion arrow

According to the unified theory of dynamic space ${ }^{1,2}$ in a changing motion of an electron a shift of electric units ${ }^{3}$ of the proximal space is caused and a difference ΔP of space cohesive pressure ${ }^{4}$ is created. This shift of units, at a proximal area of an electron, is due to the inductive phenomenon. ${ }^{5}$

The magnetic forces are described as electric ones created by grouping units ${ }^{5}$ of the moving electron (Fig. 1), due to the above inductive phenomenon. If Q is a moving electric charge at speed u, while Q_{1} is the respective electric charge of its grouping units, then it is obvious that

$$
\begin{equation*}
Q_{1}=K Q u \tag{1}
\end{equation*}
$$

where K is a ratio constant. We put in Eq. 1 the electron speed

$$
\begin{equation*}
u=u_{a} C_{0} \tag{2}
\end{equation*}
$$

where u_{a} is the respective timeless speed ${ }^{6}$ and C_{0} the light speed, ${ }^{7}$ then

$$
\begin{equation*}
Q_{1}=K Q u_{a} C_{0} . \tag{3}
\end{equation*}
$$

As u_{a} is dimensionless value then, due to Eq. 3, it should obviously apply

$$
\begin{equation*}
K C_{0}=1 \Rightarrow K=\frac{1}{C_{0}} \tag{4}
\end{equation*}
$$

and so Eq. 3, due to Eq. 4, becomes

$$
\begin{equation*}
Q_{1}=Q u_{a} \Rightarrow u_{a}=\frac{Q_{1}}{Q} \Rightarrow u_{a}^{2}=\frac{Q_{1}^{2}}{Q^{2}} . \tag{5}
\end{equation*}
$$

Figure 1. The first grouping units and their reproduction extra grouping units as second ones

However, the timeless speed has been found as a function of the pressure difference ${ }^{5}$ ΔP on both sides of the formation of the first grouping unit and of the cohesive pressure P_{0}, namely it is

$$
\begin{equation*}
u_{a}=\sqrt{\frac{\Delta P}{P_{0}}} \Rightarrow u_{a}^{2}=\frac{\Delta P}{P_{0}} \tag{6}
\end{equation*}
$$

Therefore, due to Eqs 5 and 6, it is

$$
\begin{equation*}
u_{a}^{2}=\frac{Q_{1}^{2}}{Q^{2}}=\frac{\Delta P}{P_{0}} \Rightarrow \Delta P=P_{0} u_{a}^{2} \Rightarrow \frac{\Delta P}{2}=\frac{P_{0}}{2} u_{a}^{2} \tag{7}
\end{equation*}
$$

2. Decreasing fluctuation amplitude of motion wave

The time and spatial fluctuation of the spherical formation of the first grouping unit implies a harmonic change in the difference ${ }^{6} \Delta P$ of the cohesive pressure. Therefore, the first maximum amplitude A_{1} (Fig. 2) of the pressure fluctuation $\Delta P / 2=P_{0} u_{a}^{2} / 2$ (Eq. 7) will be

$$
\begin{equation*}
A_{1}=\frac{\Delta P}{2}=\frac{P_{0}}{2} u_{a}^{2} \Rightarrow A_{1}=\frac{P_{0}}{2} u_{a}^{2} \tag{8}
\end{equation*}
$$

and for $u_{a}^{2}=Q_{1}^{2} / Q^{2}$ (Eq. 5), then Eq. 8 becomes

$$
\begin{equation*}
A_{1}=\frac{P_{0}}{2} \cdot \frac{Q_{1}^{2}}{Q^{2}} \tag{9}
\end{equation*}
$$

The electric charge of the second grouping unit, due to Eq. 5, becomes

$$
\begin{equation*}
Q_{2}=Q_{1} u_{a} \tag{10}
\end{equation*}
$$

The fluctuation amplitude A_{2} decreases, keeping in denominator the accelerated electric charge Q (Eq. 9) as the operative cause of the phenomenon, that is

$$
\begin{equation*}
A_{2}=\frac{P_{0}}{2} \cdot \frac{Q_{2}^{2}}{Q^{2}} \tag{11}
\end{equation*}
$$

By replacing the electric charge $Q_{2}=Q_{1} u_{a}$ (Eq. 10) of the second grouping unit in Eq. 11, the fluctuation amplitude A_{2} becomes

$$
\begin{equation*}
A_{2}=\frac{P_{0}}{2} \cdot \frac{Q_{2}^{2}}{Q^{2}}=\frac{P_{0}}{2} \cdot \frac{Q_{1}^{2}}{Q^{2}} u_{a}^{2} \Rightarrow A_{2}=\frac{P_{0}}{2} \cdot \frac{Q_{1}^{2}}{Q^{2}} u_{a}^{2} \tag{12}
\end{equation*}
$$

Figure 2. Descending change of pressure difference ΔP as motion arrow ${ }^{6}$ of the electron with a motion formation diameter $d=\lambda / 2$, where λ the wavelength of the decreasing fluctuation amplitude A of motion wave $\left(A_{1}=P_{0} u_{a}^{2} / 2, A_{2}=P_{0} u_{a}^{4} / 2\right.$, $A_{3}=P_{0} u_{a}^{6} / 2$, where $u_{a}<1$ the timeless speed ${ }^{6}$ of the electron)

However, due to Eq. 9, Eq. 12 becomes

$$
\begin{equation*}
A_{2}=A_{1} u_{a}^{2} \tag{13}
\end{equation*}
$$

which results in

$$
\begin{equation*}
A_{2}=A_{1} u_{a}^{2}, A_{3}=A_{2} u_{a}^{2}, A_{4}=A_{3} u_{a}^{2}, \ldots, A_{n}=A_{n-1} u_{a}^{2} \tag{14}
\end{equation*}
$$

where A_{n} is the amplitude on either side of the formation and, due to Eq. 8, the Eq. 14 becomes

$$
\begin{equation*}
A_{1}=\frac{P_{0}}{2} u_{a}^{2 \cdot 1}, A_{2}=\frac{P_{0}}{2} u_{a}^{2 \cdot 2}, A_{3}=\frac{P_{0}}{2} u_{a}^{2 \cdot 3}, \ldots, A_{n}=\frac{P_{0}}{2} u_{a}^{2 n} \tag{15}
\end{equation*}
$$

Therefore, we conclude that the fluctuation amplitude decreases with geometrical progress and more pronounced for low speeds, since the timeless speed is $u_{a}<1$.

The wavelength of the formation (Fig. 2) is $\lambda=2 d$ and, of course, the first fluctuation amplitude of ΔP is $A_{1}=P_{0} u_{a}^{2} / 2$ (Eq. 8) observed at the ends of the halfwave $\lambda / 2$. This fluctuation decreases by geometrical progress, as mentioned above.

The fluctuation amplitude of wavelength $\lambda=\lambda / 2+\lambda / 2$ corresponding to the diameter $d=\lambda / 2$ of the grouping unit (Fig. 2), and for

$$
\begin{equation*}
x=\frac{\lambda}{4}, \frac{3 \lambda}{4}, \frac{5 \lambda}{4}, \ldots, \frac{(2 n-1) \lambda}{4} . \tag{16}
\end{equation*}
$$

namely for $x=(2 n-1) \lambda / 4$ (Eq. 16) and for the absolute value of x, it is

$$
\begin{equation*}
n=\frac{2|x|+\lambda / 2}{\lambda} . \tag{17}
\end{equation*}
$$

Therefore, due to Eqs 8 and 17, the general equation (Eq. 15) of the amplitude becomes

$$
\begin{equation*}
A=A_{n}=\frac{P_{0}}{2} u_{a}^{2 n}=A_{1} u_{a}^{2 n-2}=A_{1} u_{a}^{\frac{4|x|+\lambda}{\lambda}-2} \Rightarrow A=A_{1} u_{a}^{\frac{4 x \mid+\lambda}{\lambda}-2} \tag{18}
\end{equation*}
$$

which for $|x|>\lambda / 4$ decreases continuously.

3. Interpretation of Heisenberg's uncertainty principle

The unified theory of dynamic space interprets the uncertainty in the measurement of a particle's position and momentum, for which Heisenberg's mathematical expression exists

$$
\begin{equation*}
\Delta p \Delta x \geq \hbar \Rightarrow \Delta p \Delta x \geq \frac{h}{2 \pi} \tag{19}
\end{equation*}
$$

as the cause of the particle-electron movement and specifically in the fluctuation of the amplitude A (Eq. 18) of the pressure difference ΔP, which is A_{1} maximum at the limits $+\lambda / 4$ and $-\lambda / 4$ on either side of the electron (Fig. 2). The rapid decrease of the above amplitude, as a function of the distance x from the electron, is the cause of the uncertainty in the measurement. Therefore, we have to express the Heisenberg's uncertainty principle (Eq. 19) with ΔA and Δx, i.e. replacing the momentum difference Δp with the amplitude difference ΔA.

The accumulated force ${ }^{8} F_{s}$ of the electron as a function of its timeless speed u_{a}, where F_{0} the gravity force ${ }^{9}$ of the electron, has been calculated as

$$
\begin{equation*}
u_{a}=\frac{F_{s}}{\sqrt{F_{0}^{2}+F_{s}^{2}}} \Rightarrow F_{s}=\frac{F_{0}}{\sqrt{\frac{1}{u_{a}^{2}}-1}} \tag{20}
\end{equation*}
$$

and substituting $u_{a}^{2}=2 A_{1} / P_{0}$ (Eq. 8) in Eq. 20, we have the maximum and the general accumulated forces of the electron formation

$$
\begin{equation*}
F_{s 1}=\frac{F_{0}}{\sqrt{\frac{P_{0}}{2 A_{1}}-1}} \Rightarrow F_{s}=\frac{F_{0}}{\sqrt{\frac{P_{0}}{2 A}-1}} \tag{21}
\end{equation*}
$$

However, the amplitude A as a function of x is $A=A_{1} u^{\frac{4|x|+\lambda}{\lambda}-2}$ (Eq. 18) and for

$$
\begin{equation*}
x=k \lambda, \tag{22}
\end{equation*}
$$

it is $A=A_{1} u_{a}^{4 k-1}$ and by replacing in Eq. 21 the accumulated force F_{s} of the electron, at a distance $x=k \lambda$, is

$$
\begin{equation*}
F_{s}=\frac{F_{0}}{\sqrt{\frac{P_{0}}{2 A_{1} u_{a}^{4 k-1}}-1}} . \tag{23}
\end{equation*}
$$

Dividing by terms equations Eqs 23 and 21, we have

$$
\begin{equation*}
\frac{F_{s}}{F_{s 1}}=\frac{\sqrt{\frac{P_{0}}{2 A_{1}}-1}}{\sqrt{\frac{P_{0}}{2 A_{1} u_{a}^{4 k-1}}-1}} \Rightarrow F_{s}=F_{s 1} \frac{\sqrt{1-\frac{2 A_{1}}{P_{0}}}}{\sqrt{1-\frac{2 A_{1}}{P_{0}} u_{a}^{4 k-1}}} u_{a}^{2 k-1 / 2} . \tag{24}
\end{equation*}
$$

Substituting equation $u_{a}^{2}=2 A_{1} / P_{0}$ (Eq. 8) into Eq. 24, it is

$$
\begin{equation*}
F_{s}=F_{s 1} \frac{\sqrt{1-u_{a}^{2}}}{\sqrt{1-u_{a}^{4 k+1}}} u_{a}^{2 k-1 / 2} \tag{25}
\end{equation*}
$$

and due to $u_{a}^{4 k+1} \ll 1$, it is omitted in the denominator, so it holds

$$
\begin{equation*}
F_{s} \geq F_{s 1} \sqrt{1-u_{a}^{2}} \cdot u_{a}^{2 k-1 / 2} \tag{26}
\end{equation*}
$$

Also, it is approximate

$$
\begin{equation*}
\sqrt{1-u_{a}^{2}}=1-\frac{u_{a}^{2}}{2} \tag{27}
\end{equation*}
$$

and therefore, the accumulated force F_{s} (Eq. 26), at a distance $x=k \lambda$ (Eq. 22) from the electron, will be then

$$
\begin{equation*}
F_{s} \geq F_{s 1}\left(1-\frac{u_{a}^{2}}{2}\right) u_{a}^{2 k-1 / 2} \tag{28}
\end{equation*}
$$

The maximum accumulated force $F_{s 1}$ and the accumulated ones F_{s} at a distance $x=k \lambda$ (Eq. 22) from the electron, as a function of its impulse-momentum ${ }^{10}$

$$
\begin{equation*}
p=F \frac{L_{0}}{C_{0}} \tag{29}
\end{equation*}
$$

are

$$
\begin{equation*}
F_{s}=p_{s} \frac{C_{0}}{L_{0}} \Rightarrow F_{s_{1}}=p_{s_{1}} \frac{C_{0}}{L_{0}} \tag{30}
\end{equation*}
$$

where L_{0} the dipole length ${ }^{3}$ and substituting in Eq. 28, we have

$$
\begin{equation*}
p_{s} \geq p_{s 1}\left(1-\frac{u_{a}^{2}}{2}\right) u_{a}^{2 k-1 / 2} \tag{31}
\end{equation*}
$$

Considering the uncertainty of the position $\Delta x=k \lambda$ (Eq. 22) and multiplying the equations Eqs 31 and 22 by terms, we have

$$
\begin{equation*}
p_{s} \Delta x \geq p_{s 1} k \lambda\left(1-\frac{u_{a}^{2}}{2}\right) u_{a}^{2 k-1 / 2} \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{s 1} \lambda=h \tag{33}
\end{equation*}
$$

the Planck's constant ${ }^{11}$ and so

$$
\begin{equation*}
p_{s} \Delta x \geq h k\left(1-\frac{u_{a}^{2}}{2}\right) u_{a}^{2 k-1 / 2} \tag{34}
\end{equation*}
$$

and due to $u_{a}^{2} \ll 1$, it is

$$
\begin{equation*}
p_{s} \Delta x \geq h k u_{a}^{2 k-1 / 2} \tag{35}
\end{equation*}
$$

However,

$$
\begin{equation*}
k u_{a}^{2 k-1 / 2}<1 \tag{36}
\end{equation*}
$$

namely it is

$$
\begin{equation*}
k u_{a}^{2 k-1 / 2} \sim \frac{1}{2 \pi}, \tag{37}
\end{equation*}
$$

as correspondingly applies to the Heisenberg's uncertainty principle (Eqs 35 and 19).
Therefore, the rapid decrease of the amplitude A, as a function of the distance x from the electron (Fig. 2), is the cause $A\left(p_{s}\right)$ and Δx (Eq. 35) to be inversely proportional, i.e. the cause of the uncertainty in the measurement.

4. References

[1] N.I.Gosdas, The Unified Theory of Dynamic Space, Greek Edition (Trohalia, Athens, 1999).
[2] M.Tzoumpas, Hubble's Law and antigravity - Higgs boson and gravity, http://viXra.org/abs/1710.0082 [Quantum Gravity and String Theory].
[3] M.Tzoumpas, Hubble's Law and antigravity - Higgs boson and gravity, http://viXra.org/abs/1710.0082 (subsection 2.1) [Quantum Gravity and String Theory].
[4] M.Tzoumpas, Hubble's Law and antigravity - Higgs boson and gravity, http://viXra.org/abs/1710.0082 (subsection 2.2) [Quantum Gravity and String Theory].
[5] M.Tzoumpas, What is de Broglie's wave-particle?, http://viXra.org/abs/1806.0248 (section 1) [Quantum Gravity and String Theory].
[6] M.Tzoumpas, The timeless Universe, http://viXra.org/abs/1804.0408 (section 1) [Astrophysics].
[7] M.Tzoumpas, Hubble's Law and antigravity - Higgs boson and gravity, http://viXra.org/abs/1710.0082 (subsection 2.5) [Quantum Gravity and String Theory].
[8] M.Tzoumpas, Time as motion phenomenon - Physics Laws do not apply to inertial systems, http://viXra.org/abs/1802.0372 (section 4) [Relativity and Cosmology].
[9] M.Tzoumpas, Hubble's Law and antigravity - Higgs boson and gravity, http://viXra.org/abs/1710.0082 (subsection 3.1) [Quantum Gravity and String Theory].
[10] M.Tzoumpas, Time as motion phenomenon - Physics Laws do not apply to inertial systems, http://viXra.org/abs/1802.0372 (section 5) [Relativity and Cosmology].
[11] M.Tzoumpas, Time as motion phenomenon - Physics Laws do not apply to inertial systems, http://viXra.org/abs/1802.0372 (sections 2 and 3) [Relativity and Cosmology].

