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Abstract.

We consider how two (or more) distinct physical realities can coexist within a common spacetime. As an example we will utilize
quantum electrodynamics since this is a familiar  and well-understood theory. We will designate one world the 'red' one and the
other the 'green' one. We will illustrate how they can interact in a physically plausible way. The result is, in fact, a rather strange
kind of Kaluza-Klein theory. If there are other such realities they could provide a possible explanation for dark matter.
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Introduction. 

Were  there  to  exist  a  sector,  or  sectors,  of  particles  that  gravitated  normally  but  could  seldom  or  never  be
observed by us we might have an excellent candidate for dark matter. Indeed, Foot (1, 2, 3, 4) has suggested
that  'Mirror  Matter'  –  originally proposed by Lee and  Yang –  could be such a candidate.  We will  examine a
different  theory of  multiple  realities,  mostly using  quantum electrodynamics (QED) as  a  simple and  familiar
example (although we intend it to apply to the full Standard Model). We can imagine one reality – call it the
'red' one – populated with 'red' electrons and 'red' photons. We will suppose that there is another, 'green,' reality
populated with 'green' electrons and photons. They share the same spacetime. If we are observers living in the
'red' reality we will imagine that the 'green' reality exists all around us and is defined over whatever spacetime
coordinate system we decide to use. Ordinarily, we just  cannot see this 'green' reality because its particles do
not interact with our 'red' ones (except gravitationally). We will introduce a new function, c(x, t), which reflects
the degree to which the 'red' and 'green' realities interact with one another. It is considered to be a real, dimen-
sionless, scalar field.  We will  assume that  the laws of physics are the same in  both realities and that the two
kinds of electrons have the same mass and charge in their respective realities. 

QED in Two Realities.

We start out by writing the Lagrangian as it would look if these realities were always completely independent:

1) Lem = ΨR [ΓΜ[ä ¶Μ - e AR Μ] - m]ΨR  - 1
4

FR
ΜΝFR ΜΝ 

                  + ΨG [ΓΜ[ä ¶Μ - e AG Μ] - m]ΨG - 1
4

FG
ΜΝFG ΜΝ.

        
The  objects  ΨR,  AR,  are  understood  to  pertain  to  the  'red'  reality. The  'G'  subscript  means they belong to  the

'green' reality. FRΜΝ  is the electromagnetic field strength tensor appropriate to the 'red' world (¶Μ AR Ν - ¶Ν AR Μ).

FGΜΝ  pertains to  the  'green'  one. Now an interaction between these realities could occur if  there were to take

place a mixing of AR and AG in their interaction with the electron fields according to:

2) ARΜ � I1 + cHx, tL2M -1�2
[ARΜ +  cHx, tL  AGΜ]  and

            AGΜ � I1 + cHx, tL2M -1�2
 [AGΜ +  cHx, tL  ARΜ] .

           
Note that this mixing of quantum fields is confined to the photon fields. It is not applied to the electron fields.

Nor is it applied within the - 1
4

FΜΝFΜΝ terms. When cHx, tL = 0 there is no interaction. As cHx, tL becomes larger

'red'  observers begin  to  experience some of  the  'green'  reality and  vice-versa. I1 + cHx, tL2M -1�2
functions  as  a

kind of normalization factor. Under the influence of this transformation the Lagrangian becomes:
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     We will  assume,  for  the  moment,  that  cHx, tL  is  roughly constant  over  the  spacetime volume of  interest.
While this new Lagrangian maintains local gauge invariance only under circumstances where cHx, tL is constant
it has the advantage of resulting, under these circumstances, in simple Feynman rules and a physics which, in
many respects,  corresponds with  that  we would  like  to  see  for  a  theory that  doesn't  grossly violate observed
reality. In situations where c(x, t) varies things become more complicated. 
     These new Feynman rules are similar to the familiar ones but with two important differences: Firstly, the
vertices  connecting  an  incoming  and  outgoing  'red'  electron  (or  positron)  line  with  a  'red'  photon  contribute

with  a  coupling  constant  e I1 + cHx, tL2M -1�2
.  It  is  likewise  for  the  'green'  particles.  Secondly,  new  vertices

appear which connect incoming and outgoing 'red' electron (or positron) lines with a 'green' photon and incom-
ing and outgoing 'green' electron (or positron) lines with a 'red' photon (fig.1).  (In the first two cases we omit
drawing the graphs with the outgoing electrons exchanged. But we know they are there.) These contribute with

a coupling constant which is e cHx, tL I1 + cHx, tL2M -1�2
.  
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      Consider the scattering of one 'red' electron off another in the presence of an interaction. To find the proba-
bility amplitude for this process (to second order in the coupling constant) we will sum the amplitudes corre-
sponding to the usual Feynman diagrams and new diagrams in which it is a 'green' virtual photon that is being
exchanged.  Straightforward  arithmetic  shows  that  the  overall  coupling  constant  is  still  e.  Thus  the  resulting
amplitude  is  unchanged  by  the  presence  of  the  interaction.  The  contribution  from  the  'green'  virtual  photon
compensates exactly for the reduction in the coupling strength of the normal interaction. This is encouraging –
as long as we are dealing with interactions between 'red'  electrons and other 'red' electrons, electromagnetism
should continue to work normally in the 'red' world even if cHx, tL were different from zero. The same situation
would obtain in the 'green' world. Suppose, instead, that we try to scatter 'red' electrons off of 'green' electrons.
Now things are different.  In each of the two relevant Feynman diagrams would be a vertex connecting either
'green'  fermions  with  a  virtual  'red'  photon  or  'red'  fermions  with  a  'green'  virtual  photon.  Arithmetic  again
yields  a  simple  result.  If  we  are  'red'  observers  looking  at  the  behavior  of  'red'  electrons,  we  would  have  to

conclude  that  the  'green'  electrons  had  a  charge  that  was  only  2 cHx, tL I1 + cHx, tL2M -1
e.  We  would  always

assume that our 'red' electrons have charge e. If the 'green' electrons scatter abnormally it must be because they
have a reduced charge. Also, since there are no vertices connecting an incoming 'red' electron with an outgoing
'green'  electron, the scattering would be the same as that  produced by two non-identical  particles; this  makes
sense as we would not want to say that  'green' and 'red'  particles are indistinguishable. There would be other
consequences as well. If, for instance, we consider the Compton scattering of a 'red' photon off a 'red' electron
in a high-c(x, t) region there will be some chance of seeing a 'green' photon emerge. 
      What we have done with our AR  and AG  is reminiscent of what Foot (4) has done with his 'photons' and

'mirror  photons'  although  the  mathematics  is  not  quite  the  same.  And,  for  us,  the  realities  interact  through
cHx, tL, which we regard as a function of spacetime. For Foot their interaction is mediated through what he calls
'Ε ' and considers a small physical constant. Also, we do not suppose that our 'red' and 'green' worlds differ as to
their parity. We can have as many 'colored' worlds as we might want – we are not limited to two (vide infra).
Foot (3) has, however, broadened his theory to encompass 'dissipative matter' which can also come in multiple
forms. 
     These ideas can be easily generalized to the Standard Model. 'Red' vector bosons and gluons would mix as
above with their  'green'  counterparts. And this  is,  of course, what we  really are  proposing. We are not inter-
ested in simply producing a strange new version of QED. As has been mentioned, QED is utilized here only as
an illustrative example in order to keep the math to a minimum. It is, however, a good example in that it allows
us to easily investigate the large-scale phenomena potentially associated with our theory.
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The Classical Limit.

We want to know what the physics resulting from this would look like to an ordinary, macroscopic, observer.
And it is not clear how much more we can do in a quantum mechanical way. There, if we do not regard c(x, t)
as a constant, we have no easy way of doing the math. Let us look at Equation 3) from a semi-classical point of

view. We recall that, according to Dirac theory, the 4-current density in the 'red' world is given by e ΨR ΓΜΨR,

and by e ΨG ΓΜΨG in the 'green' one. Varying Equation 3) by ARΜ we find:

4) FR
ΜΝ

,Ν =  J Μ � I1 + cHx, tL2M1�2
+ J

� Μ
cHx, tL � I1 + cHx, tL2M1�2

 

where J Μ  denotes the 4-current density in the 'red' world and J
� Μ

 that in the 'green' world. Varying by AGΜ, we

find a corresponding equation for things in the 'green' world. Let us now vary Equation 3) by ΨR  so as to get

the Dirac equation for the behavior of  'red' electrons. We find:

5)  [ΓΜ[i ¶Μ - e I1 + cHx, tL2M -1�2AARΜ + cHx, tL AGΜE] - m]ΨR = 0.

This tells us what effective "4-potential" the 'red' electron is responding to. We can perform the same exercise
for the 'green' Dirac equation. We obtain, as a practical matter, a Lorentz force law for a 'red'  electron which
reads:

6)        m x
..

R
Μ
 = e JFR

Μ
Ν � I1 + cHx, tL2M1�2

+ FG
Μ

Ν cHx, tL � I1 + cHx, tL2M1�2
-

I1 + cHx, tL2M-3�2AcHx, tL Ic Hx, tL, Μ ARΝ - cHx, tL, Ν AR
ΜM -

Ic Hx, tL, Μ AGΝ - cHx, tL, Ν AG
ΜMEN x

 
R

Ν.

And we will obtain a reversed version for a 'green' electron, having the 'R's and 'G's interchanged.
     Equation 6) is actually rather remarkable as it shows that we can deduce useful things by not trying to use
the quantized theory. Equation 6) follows from 5) in the most simple way. We know that Dirac's equation – the
one  with  AΜ  as  we  are  used  to  seeing  it  –  gives  us  the  familiar  Lorentz  force  law  when  translated  into  the

classical  world.  (It  is  actually  rather  hard  to  deduce  this  mathematically.  But  it  is  certainly  true.)  Thus  by
treating the strange term that appears in Equation 5) exactly as if  it were AΜ  (i.e. constructing an FΜΝ  from it)

we arrive at Equation 6). And it must be true. 
     It will be observed that this equation of motion does not respect local gauge invariance, nor should it. Gauge
invariance  requires  the  constancy of  cHx, tL.  And  simply specifying a  gauge will  not  help  us  here.  We could
require, for example, ¶Μ AR,G

Μ = 0. But this, alone, is insufficient. We could imagine adding a 4-vector, L,Μ, to

either AΜ and this would not disturb the gauge condition so long as L ,Μ
Μ = 0. It would, however, change Equa-

tion 6). The AR,G
Μ  in this theory must be definite, unambiguous, and not subject to the addition of any factors.

We would be better off endowing both of our photons with a vanishingly small mass. In effect we add terms Ε2

AR,G
Μ AR,GΜ

 to the Lagrangians for our two photons (understanding that Ε is so small that it can be taken to zero

at the end of any practical calculation). The dynamical equations for the two A fields become Proca equations.
This  is  invaluable  both  because it  automatically ensures  ¶Μ AR,G

Μ  =  0  and  also  rules  out  the  addition  of  any

intrusive gradients to our A fields. We assume AR and AG go to zero in areas very far from any currents.

     No assumptions regarding the  constancy of cHx, tL  have been made in  deriving Equations 4)  and 6)  (and
their two 'green' counterparts). We suspect that, under many circumstances, cHx, tL can be treated as, more-or-
less, a constant. This allows us to make some simplifications to the mathematics. Since all we are interested in
is the effective field that 'red' or 'green' electrons respond to, let us simplify matters by writing:

7)     FΜΝ =  FR
ΜΝ � I1 + cHx, tL2M1�2

+ FG
ΜΝ cHx, tL � I1 + cHx, tL2M1�2

and

8)     F
� ΜΝ

 =  FG
ΜΝ � I1 + cHx, tL2M1�2

+ FR
ΜΝ cHx, tL � I1 + cHx, tL2M1�2

.

It now becomes possible to write Maxwell's equations and the Lorentz force law, in the presence of an interac-
tion, in a more compact form:

9) FΜΝ
,Ν =  J Μ + 2 J

� Μ
cHx, tL � I1 + cHx, tL2M 

10) FΑΒ,Γ + FΒΓ,Α  + FΓΑ,Β = 0

11) F
� ΜΝ

,Ν = J
� Μ

+ 2 J Μ cHx, tL � I1 + cHx, tL2M
12) F

�
ΑΒ,Γ + F

�
ΒΓ,Α  + F

�
ΓΑ,Β = 0

13) m xR
.. Μ

 = e FΜ
Ν xR

  Ν

14) m xG
.. Μ

 = e F
� Μ

Ν xG
  Ν.

where  FΜΝdenotes  the  classical  electromagnetic field  strength  tensor  measured  by the  'red'  physicist  and  F
� ΜΝ

that measured similarly by the 'green' one. 
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for the 'green' Dirac equation. We obtain, as a practical matter, a Lorentz force law for a 'red'  electron which
reads:

6)        m x
..

R
Μ
 = e JFR

Μ
Ν � I1 + cHx, tL2M1�2

+ FG
Μ

Ν cHx, tL � I1 + cHx, tL2M1�2
-

I1 + cHx, tL2M-3�2AcHx, tL Ic Hx, tL, Μ ARΝ - cHx, tL, Ν AR
ΜM -

Ic Hx, tL, Μ AGΝ - cHx, tL, Ν AG
ΜMEN x

 
R

Ν.

And we will obtain a reversed version for a 'green' electron, having the 'R's and 'G's interchanged.
     Equation 6) is actually rather remarkable as it shows that we can deduce useful things by not trying to use
the quantized theory. Equation 6) follows from 5) in the most simple way. We know that Dirac's equation – the
one  with  AΜ  as  we  are  used  to  seeing  it  –  gives  us  the  familiar  Lorentz  force  law  when  translated  into  the

classical  world.  (It  is  actually  rather  hard  to  deduce  this  mathematically.  But  it  is  certainly  true.)  Thus  by
treating the strange term that appears in Equation 5) exactly as if  it were AΜ  (i.e. constructing an FΜΝ  from it)

we arrive at Equation 6). And it must be true. 
     It will be observed that this equation of motion does not respect local gauge invariance, nor should it. Gauge
invariance  requires  the  constancy of  cHx, tL.  And  simply specifying a  gauge will  not  help  us  here.  We could
require, for example, ¶Μ AR,G

Μ = 0. But this, alone, is insufficient. We could imagine adding a 4-vector, L,Μ, to

either AΜ and this would not disturb the gauge condition so long as L ,Μ
Μ = 0. It would, however, change Equa-

tion 6). The AR,G
Μ  in this theory must be definite, unambiguous, and not subject to the addition of any factors.

We would be better off endowing both of our photons with a vanishingly small mass. In effect we add terms Ε2

AR,G
Μ AR,GΜ

 to the Lagrangians for our two photons (understanding that Ε is so small that it can be taken to zero

at the end of any practical calculation). The dynamical equations for the two A fields become Proca equations.
This  is  invaluable  both  because it  automatically ensures  ¶Μ AR,G

Μ  =  0  and  also  rules  out  the  addition  of  any

intrusive gradients to our A fields. We assume AR and AG go to zero in areas very far from any currents.

     No assumptions regarding the  constancy of cHx, tL  have been made in  deriving Equations 4)  and 6)  (and
their two 'green' counterparts). We suspect that, under many circumstances, cHx, tL can be treated as, more-or-
less, a constant. This allows us to make some simplifications to the mathematics. Since all we are interested in
is the effective field that 'red' or 'green' electrons respond to, let us simplify matters by writing:

7)     FΜΝ =  FR
ΜΝ � I1 + cHx, tL2M1�2

+ FG
ΜΝ cHx, tL � I1 + cHx, tL2M1�2

and

8)     F
� ΜΝ

 =  FG
ΜΝ � I1 + cHx, tL2M1�2

+ FR
ΜΝ cHx, tL � I1 + cHx, tL2M1�2

.

It now becomes possible to write Maxwell's equations and the Lorentz force law, in the presence of an interac-
tion, in a more compact form:

9) FΜΝ
,Ν =  J Μ + 2 J

� Μ
cHx, tL � I1 + cHx, tL2M 

10) FΑΒ,Γ + FΒΓ,Α  + FΓΑ,Β = 0

11) F
� ΜΝ

,Ν = J
� Μ

+ 2 J Μ cHx, tL � I1 + cHx, tL2M
12) F

�
ΑΒ,Γ + F

�
ΒΓ,Α  + F

�
ΓΑ,Β = 0

13) m xR
.. Μ

 = e FΜ
Ν xR

  Ν

14) m xG
.. Μ

 = e F
� Μ

Ν xG
  Ν.

where  FΜΝdenotes  the  classical  electromagnetic field  strength  tensor  measured  by the  'red'  physicist  and  F
� ΜΝ

that measured similarly by the 'green' one. 

General Relativity and the Physics of c(x, t). 

From Equation 4) and its 'green' counterpart we can deduce that cHx, tL, Μ J Μ = 0 and cHx, tL, Μ J
� Μ

 = 0. Other-

wise, our theory can tell us nothing about the behavior of cHx, tL. This problem can be addressed if we recog-
nize that we are, in fact, dealing with a (rather peculiar) sort of Kaluza-Klein theory. Following Kerner's conven-
tion (5) we will say i, j, ... run from 1 to 4 (where 4 denotes the time coordinate). Our ansatz differs from that of
Kerner, however. Consider a 6X6 metric having the form:
     

15)       gij =  gij

16)       gij = gij - (AR i AR j + AG i AG j) /Γ

17)       g5 i = - I1 + cHx, tL2M -1�2
[AR

i +  cHx, tL  AG
i] /Γ

18)   g6 i = - I1 + cHx, tL2M -1�2
[AG

i +  cHx, tL  AR
i] /Γ

!9)       g5 i  = - I1 + cHx, tL2M 1�2
(AR i - c(x, t) AG i) / (1- cHx, tL2)

20)       g6 i  = - I1 + cHx, tL2M 1�2
(AG i - c(x, t) AR i) / (1- cHx, tL2)

21)       g55 = g66 = - Γ I1 + cHx, tL 2M2
/ I1 - cHx, tL 2M2

22)   g56 = g65 = 2 Γ IcHx, tL + cHx, tL 3M / I1 - cHx, tL 2M2
.

Γ = 1
16 Π G Ε0

 and is introduced to keep the units correct and to ensure our results come out in a familiar form.

This ansatz works only if c(x, t) = constant. If such is not the case we can still write down our metric although

the  mathematics  becomes  far  more  complex  (see  Supplementary  Material).We  note  that  -det@gD =

Γ -det@gD É I1 + cHx, tL 2) / I1 - cHx, tL 2M |. This result is true even if c(x, t) varies. We assume that the

physically real quantities (gij, AR, AG, and c(x, t)) depend only on xi, not on x 5or x6. 

     gij is the 4-metric that would be measured by 'red' and 'green' physicists using rulers and clocks. gij is its

contravariant counterpart (its 4X4 matrix inverse). Gothic letters will be used to designate quantities belonging
only to the 4-dimensional base space. We see that the above metric gives us exactly the theory we have out-

lined above. From -R we obtain the  - 1
4

FR
ijFR ijΝ and -

1
4

 FG
ij FG ij terms present in Equation 3). (The indices in

AR,G
i  and FR,G

ij  are lowered using gij.) If c(x, t) is constant, and supposing a 'red' test particle having 'red'

charge QR to have a 6-momentum with p5 = QR and p6 = 0, the geodesic equation gives us Equation 13). For

an analogous 'green' test particle we obtain Equation 14). ( p5 and p6 are constants if the particle moves along a

geodesic.) The Lagrangian density we set to (Lem  -  R/16 Π  G)  -det@gD � Γ.  We find that - R  = - Â   -

1
4 Γ

FR
ijFR ijΝ -

1
4 Γ

 FG
ij FG ij. This result is always true regardless whether c(x, t) changes or not.

     To find the Einstein's equations appropriate to our system we follow the example of Kerner (5). Varying the

Lagrangian density by gij we obtain a result proportional to:

     

23)       Rij - 
1
2

gij R + [g5 i + 
2 cHx,tL

1 + cHx,tL 2 g6 i] R5 j/Γ + [g j5 + 
2 cHx,tL

1 + cHx,tL 2 g j6] Ri 5/Γ + [g6 i + 
2 cHx,tL

1 + cHx,tL 2 g5 i] R6 j/Γ + [g j6 +

2 cHx,tL
1 + cHx,tL 2 g j5] Ri 6/Γ +  [g5 i + 

2 cHx,tL
1 + cHx,tL 2 g6 i] [g5 j + 

2 cHx,tL
1 + cHx,tL 2 g6 j] R55/Γ2 +  [g6 i + 

2 cHx,tL
1 + cHx,tL 2 g5 i] [g6 j + 

2 cHx,tL
1 + cHx,tL 2 g5 j]

R66/Γ2 +  [g5 i + 
2 cHx,tL

1 + cHx,tL 2 g6 i][Ig6 j + 
2 cHx,tL

1 + cHx,tL 2 g5 j] R56/Γ2 +  [g j5 + 
2 cHx,tL

1 + cHx,tL 2 g j6][gi6 + 
2 cHx,tL

1 + cHx,tL 2 gi5] R65/Γ2.

Varying by g5 i and g6 i we find:

24)       R5 i + [g5 i + 
2 cHx,tL

1 + cHx,tL 2 g6 i] R55/Γ +  [g6 i + 
2 cHx,tL

1 + cHx,tL 2 g5 i] R56/Γ 

25)       R6 i + [g6 i + 
2 cHx,tL

1 + cHx,tL 2 g5 i] R66/Γ +  [g5 i + 
2 cHx,tL

1 + cHx,tL 2 g6 i] R56/Γ .

Expression 23) is valid only if c(x, t) is constant. Otherwise it becomes more complicated. When currents exist

expressions 24) and 25) are set to Ji

2 Ε0
 and J

�
i

2 Ε0
 respectively. (We can consider the simple example of a 'red'

Reissner-Nordstrom metric having c(x, t) = AG = 0 and AR4 = 1
4 Π Ε0 r

. We see that all of the above three expres-

sions vanish. This is as it should be and provides a bit of a "reality-check" on our mathematics.)
       The complicated-looking expression 23) can be rewritten as:
     

23')      Âij - 
1
2

 gij Â - 8 Π G Oij where the latter term represents all the contributions from AR, AG, and c(x, t).

We interpret this as the stress-energy tensor of the EM fields(s) and c(x, t) in the base space. We can then write:
  
26)      Gij = 8 Π G (Oij + Tij) where Tij is the stress-energy tensor corresponding to any matter fields that may

be present.
  
     The Lagrangian density must also be varied by c(x, t). Setting the result to zero provides an equation of
motion for c(x, t). Since R is (formally) independent of c(x, t) our work becomes somewhat easier. Suppose AR

= AG = 0 and that we are in Minkowski space. R = 0 and there is no restriction on the behavior of c(x, t). Of

course, our actual base space has a complicated geometry; Â ¹ 0 in many places. Where this condition exists,

and remembering that the Lagrangian density contains the term I1 + cHx, tL 2M / I1 - cHx, tL 2M, we find:

       
27)      c(x, t) = 0 or ± ¥.
  
The latter solutions are no cause for concern. They simply represent a situation in which we have exchanged
the names of AR and AG. Our solutions are not very interesting, however. But we must not forget Equation 3).

From it comes 'source terms' for c(x, t). The mathematics quickly becomes difficult. There are, however, a few
very simple cases that yield results. Suppose there were a small sphere of uniform 'red' charge density, ΡR, and

a similar green one with ΡG, both centered at the origin (ΡR ¹ ±ΡG). Suppose the spheres are so small that c(x,

t)  within  them  can  be  treated  as  a  constant.  The  quantity  to  be  varied  by  c(x,  t)  is  proportional  to

IΡR
2 + ΡG

2M + 4 ΡR ΡG cH0 , tL � I1 + cH0 , tL2M  X

-det@gD since the electric fields depend only on the value of cHx, tL inside the spheres.  We  find  c(x,  t)   =  -

ΡR/ΡG  or - ΡG/ΡR  inside the spheres. The latter is, actually, the same solution with the names of AR  and AG

interchanged. Outside we, again, find Equation 27). If ΡR = ΡG and c(x, t) = -1 inside the spheres there are no

electric fields anywhere. Outside, c(x, t) is unrestricted.
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nize that we are, in fact, dealing with a (rather peculiar) sort of Kaluza-Klein theory. Following Kerner's conven-
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.

Γ = 1
16 Π G Ε0

 and is introduced to keep the units correct and to ensure our results come out in a familiar form.

This ansatz works only if c(x, t) = constant. If such is not the case we can still write down our metric although

the  mathematics  becomes  far  more  complex  (see  Supplementary  Material).We  note  that  -det@gD =

Γ -det@gD É I1 + cHx, tL 2) / I1 - cHx, tL 2M |. This result is true even if c(x, t) varies. We assume that the

physically real quantities (gij, AR, AG, and c(x, t)) depend only on xi, not on x 5or x6. 

     gij is the 4-metric that would be measured by 'red' and 'green' physicists using rulers and clocks. gij is its

contravariant counterpart (its 4X4 matrix inverse). Gothic letters will be used to designate quantities belonging
only to the 4-dimensional base space. We see that the above metric gives us exactly the theory we have out-

lined above. From -R we obtain the  - 1
4

FR
ijFR ijΝ and -
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4

 FG
ij FG ij terms present in Equation 3). (The indices in

AR,G
i  and FR,G

ij  are lowered using gij.) If c(x, t) is constant, and supposing a 'red' test particle having 'red'

charge QR to have a 6-momentum with p5 = QR and p6 = 0, the geodesic equation gives us Equation 13). For

an analogous 'green' test particle we obtain Equation 14). ( p5 and p6 are constants if the particle moves along a

geodesic.) The Lagrangian density we set to (Lem  -  R/16 Π  G)  -det@gD � Γ.  We find that - R  = - Â   -
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4 Γ

 FG
ij FG ij. This result is always true regardless whether c(x, t) changes or not.

     To find the Einstein's equations appropriate to our system we follow the example of Kerner (5). Varying the

Lagrangian density by gij we obtain a result proportional to:

     

23)       Rij - 
1
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gij R + [g5 i + 
2 cHx,tL
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Varying by g5 i and g6 i we find:
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�
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 respectively. (We can consider the simple example of a 'red'

Reissner-Nordstrom metric having c(x, t) = AG = 0 and AR4 = 1
4 Π Ε0 r

. We see that all of the above three expres-

sions vanish. This is as it should be and provides a bit of a "reality-check" on our mathematics.)
       The complicated-looking expression 23) can be rewritten as:
     

23')      Âij - 
1
2

 gij Â - 8 Π G Oij where the latter term represents all the contributions from AR, AG, and c(x, t).

We interpret this as the stress-energy tensor of the EM fields(s) and c(x, t) in the base space. We can then write:
  
26)      Gij = 8 Π G (Oij + Tij) where Tij is the stress-energy tensor corresponding to any matter fields that may

be present.
  
     The Lagrangian density must also be varied by c(x, t). Setting the result to zero provides an equation of
motion for c(x, t). Since R is (formally) independent of c(x, t) our work becomes somewhat easier. Suppose AR

= AG = 0 and that we are in Minkowski space. R = 0 and there is no restriction on the behavior of c(x, t). Of

course, our actual base space has a complicated geometry; Â ¹ 0 in many places. Where this condition exists,

and remembering that the Lagrangian density contains the term I1 + cHx, tL 2M / I1 - cHx, tL 2M, we find:

       
27)      c(x, t) = 0 or ± ¥.
  
The latter solutions are no cause for concern. They simply represent a situation in which we have exchanged
the names of AR and AG. Our solutions are not very interesting, however. But we must not forget Equation 3).

From it comes 'source terms' for c(x, t). The mathematics quickly becomes difficult. There are, however, a few
very simple cases that yield results. Suppose there were a small sphere of uniform 'red' charge density, ΡR, and

a similar green one with ΡG, both centered at the origin (ΡR ¹ ±ΡG). Suppose the spheres are so small that c(x,

t)  within  them  can  be  treated  as  a  constant.  The  quantity  to  be  varied  by  c(x,  t)  is  proportional  to
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-det@gD since the electric fields depend only on the value of cHx, tL inside the spheres.  We  find  c(x,  t)   =  -

ΡR/ΡG  or - ΡG/ΡR  inside the spheres. The latter is, actually, the same solution with the names of AR  and AG

interchanged. Outside we, again, find Equation 27). If ΡR = ΡG and c(x, t) = -1 inside the spheres there are no

electric fields anywhere. Outside, c(x, t) is unrestricted.
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ij FG ij terms present in Equation 3). (The indices in
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�
i

2 Ε0
 respectively. (We can consider the simple example of a 'red'

Reissner-Nordstrom metric having c(x, t) = AG = 0 and AR4 = 1
4 Π Ε0 r

. We see that all of the above three expres-

sions vanish. This is as it should be and provides a bit of a "reality-check" on our mathematics.)
       The complicated-looking expression 23) can be rewritten as:
     

23')      Âij - 
1
2

 gij Â - 8 Π G Oij where the latter term represents all the contributions from AR, AG, and c(x, t).

We interpret this as the stress-energy tensor of the EM fields(s) and c(x, t) in the base space. We can then write:
  
26)      Gij = 8 Π G (Oij + Tij) where Tij is the stress-energy tensor corresponding to any matter fields that may

be present.
  
     The Lagrangian density must also be varied by c(x, t). Setting the result to zero provides an equation of
motion for c(x, t). Since R is (formally) independent of c(x, t) our work becomes somewhat easier. Suppose AR

= AG = 0 and that we are in Minkowski space. R = 0 and there is no restriction on the behavior of c(x, t). Of

course, our actual base space has a complicated geometry; Â ¹ 0 in many places. Where this condition exists,

and remembering that the Lagrangian density contains the term I1 + cHx, tL 2M / I1 - cHx, tL 2M, we find:

       
27)      c(x, t) = 0 or ± ¥.
  
The latter solutions are no cause for concern. They simply represent a situation in which we have exchanged
the names of AR and AG. Our solutions are not very interesting, however. But we must not forget Equation 3).

From it comes 'source terms' for c(x, t). The mathematics quickly becomes difficult. There are, however, a few
very simple cases that yield results. Suppose there were a small sphere of uniform 'red' charge density, ΡR, and

a similar green one with ΡG, both centered at the origin (ΡR ¹ ±ΡG). Suppose the spheres are so small that c(x,

t)  within  them  can  be  treated  as  a  constant.  The  quantity  to  be  varied  by  c(x,  t)  is  proportional  to

IΡR
2 + ΡG

2M + 4 ΡR ΡG cH0 , tL � I1 + cH0 , tL2M  X

-det@gD since the electric fields depend only on the value of cHx, tL inside the spheres.  We  find  c(x,  t)   =  -

ΡR/ΡG  or - ΡG/ΡR  inside the spheres. The latter is, actually, the same solution with the names of AR  and AG

interchanged. Outside we, again, find Equation 27). If ΡR = ΡG and c(x, t) = -1 inside the spheres there are no

electric fields anywhere. Outside, c(x, t) is unrestricted.

Dark Matter?

Let us assume, for simplicity, that AR  = AG  = 0 and c(x, t) is negligible. Suppose we can write the matter

Lagrangian as LR + LG. The physics would derive equally from both the 'red' and 'green' worlds according to

Gij = 8 Π G (TRij + TGij). Now the amount of dark matter that seems to be present exceeds the obvious matter

by at least an order of magnitude. We could explain this by saying that the 'green' universe contained quite a bit
of matter. We could, equally well, suppose that there are multiple other universes, each similar to our own. We
can readily incorporate other 'colored' worlds into our theory (although the algebra becomes more tedious).
(See Supplementary Material.) If there were 'red', 'green', and 'blue' realities we would require three c(x, t)s,
and more if there were additional ones. These differently colored particles would share many of the attributes
of WIMPS as far as we were concerned. 
     The distribution of these types of matter would depend on conditions existing at the Big Bang. If we sup-
pose that the 'red'  matter originally existed as localized concentrations an interesting situation might arise.
These concentrations would rapidly condense into 'red' galaxies. Suppose the other kind(s) of matter began
very uniformly distributed. This matter would be drawn towards any 'red' galaxies in its vicinity. It might well
remain too uniform and diaphanous to support star formation. But, as it collapsed, its pressure would increase.
A stable state would result when it satisfied the Lane-Emden equation. We would end up with a dark matter
halo. Indeed, galaxy rotation curves have been interpreted as suggesting that something like this may, actually,
be the case (7, 8, 9, 10). Since particles can feel pressure only from others of their own color, a "multicolored"
halo would be smaller and denser than an otherwise similar one consisting of a single color. Given the average
mass of a 'red' galaxy, and its average distance from its nearest neighbors, we can (very roughly) estimate that
the process of coalescence would require no more than about a billion years, probably considerably less. This is
not cosmologically unreasonable.
      If a roughly stellar-mass (or somewhat larger) gas cloud consisting of variously colored particles were to
collapse fusion would be an inefficient process – nuclei can only fuse with others of their own color. The result
might be an anomalously hot and dense star or large Jupiter-like planet. If fusion were unable to arrest the
collapse, and the cloud sufficiently massive, the result would be a black hole. Such objects would not be easy
to detect and could, in fact, be fairly common within galaxies (11). We also note that black holes are expected
to evaporate through Hawking radiation. The process would be the same for the production of 'red' Hawking
radiation, 'green' radiation, etc. If there were N other realities black holes would evaporate N + 1 times faster
than Hawking predicts (ignoring the contribution from any gravitons that may be radiated since these come in
only one color).
     We note that Foot has already come a long way toward demonstrating that his theory is able to explain the
cosmological data. This encourages the hope that the present idea, which (depending on how it is construed)
would afford a similar cosmological phenomenology, might also accommodate the data.
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Let us assume, for simplicity, that AR  = AG  = 0 and c(x, t) is negligible. Suppose we can write the matter

Lagrangian as LR + LG. The physics would derive equally from both the 'red' and 'green' worlds according to

Gij = 8 Π G (TRij + TGij). Now the amount of dark matter that seems to be present exceeds the obvious matter

by at least an order of magnitude. We could explain this by saying that the 'green' universe contained quite a bit
of matter. We could, equally well, suppose that there are multiple other universes, each similar to our own. We
can readily incorporate other 'colored' worlds into our theory (although the algebra becomes more tedious).
(See Supplementary Material.) If there were 'red', 'green', and 'blue' realities we would require three c(x, t)s,
and more if there were additional ones. These differently colored particles would share many of the attributes
of WIMPS as far as we were concerned. 
     The distribution of these types of matter would depend on conditions existing at the Big Bang. If we sup-
pose that the 'red'  matter originally existed as localized concentrations an interesting situation might arise.
These concentrations would rapidly condense into 'red' galaxies. Suppose the other kind(s) of matter began
very uniformly distributed. This matter would be drawn towards any 'red' galaxies in its vicinity. It might well
remain too uniform and diaphanous to support star formation. But, as it collapsed, its pressure would increase.
A stable state would result when it satisfied the Lane-Emden equation. We would end up with a dark matter
halo. Indeed, galaxy rotation curves have been interpreted as suggesting that something like this may, actually,
be the case (7, 8, 9, 10). Since particles can feel pressure only from others of their own color, a "multicolored"
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mass of a 'red' galaxy, and its average distance from its nearest neighbors, we can (very roughly) estimate that
the process of coalescence would require no more than about a billion years, probably considerably less. This is
not cosmologically unreasonable.
      If a roughly stellar-mass (or somewhat larger) gas cloud consisting of variously colored particles were to
collapse fusion would be an inefficient process – nuclei can only fuse with others of their own color. The result
might be an anomalously hot and dense star or large Jupiter-like planet. If fusion were unable to arrest the
collapse, and the cloud sufficiently massive, the result would be a black hole. Such objects would not be easy
to detect and could, in fact, be fairly common within galaxies (11). We also note that black holes are expected
to evaporate through Hawking radiation. The process would be the same for the production of 'red' Hawking
radiation, 'green' radiation, etc. If there were N other realities black holes would evaporate N + 1 times faster
than Hawking predicts (ignoring the contribution from any gravitons that may be radiated since these come in
only one color).
     We note that Foot has already come a long way toward demonstrating that his theory is able to explain the
cosmological data. This encourages the hope that the present idea, which (depending on how it is construed)
would afford a similar cosmological phenomenology, might also accommodate the data.

Conclusion.

This theory is not unique in proposing the existence of other realities. It is, however, rather unusual in that it
provides a mechanism whereby two or more realities could actually interact in such a manner that none would
see any fatal disruption to its own physics but might, on occasion, encounter intrusions from the other(s). Now
c(x, t) does not seem to get very large in very many places very often. But it could do so, here and there occa-
sionally, and go pretty-much unnoticed. And it has never been looked for at all. 

References.

1)  Foot, R., Lieu, H., Volkas, R.R. (1991). A model with fundamental improper spacetime symmetries. Phys-
ics Letters B. 272 (1– 2),  67– 70.  Bibcode: 1991PhLB..272...67F. doi:10.1016/0370-2693(91)91013-L. 

2)  Foot, R. (2004). Implications of the DAMA and CRESST experiments for mirror matter-type dark matter.
Physical Review D. 69 (3), 036001. arXiv:hep-ph/0308254. Bibcode:2004PhRvD..69c6001F. doi:10.1103/Phys-
RevD.69.036001.

3)   Foot,  R.  (2018).  Resolution of the  small  scale structure  issues with dissipative dark matter from multiple
Standard Model sectors. Phys. Rev. D. 98, 123015. doi.org/10.1103/PhysRevD.98.123015.

4)   Foot,  R.,  Ignatiev,  A.  Y.,  Volkas,  R.  R.  (2001).  Physics  of  mirror  photons.  Phys.  Lett.  B503,  355
[astroph/0011156].

5)  Kerner, R. (1968). Generalization of the Kaluza-Klein Theory for an Arbitrary Non-abelian Gauge Group.
Ann. Inst. Henri Poincaré. 9, 143-152.

6)   Apparent gravitational lensing from dark matter has, however, been reported: Natarajan, P. et. al. (2017).
Monthly  Notices  of  the  Royal  Astronomical  Society,  468,  Issue  2,  1962,
https://doi.org/10.1093/mnras/stw3385.

7)    Saxton,  C.,  J.,  Ferraras,  I.  (2010).  Polytropic  dark  haloes  of  elliptical  galaxies.  Monthly  Notices  of  the
Royal Astronomical Society, 405, Issue 1, 77– 90,  https://doi.org/10.1111/j.1365-2966.2010.16448.x.

8)   Visinelli, L. (2016). Condensation of Cold Dark Matter. arXiv:1509.05871v3.

9)   Harko, T., Lobo, F. S. N., Mak, M. K., Shushkov, S. V. (2013).  Dark matter density profile and galactic
metric in Eddington-inspired Born-Infeld gravity. arXiv:1305.0820. 

10)   Riazi,  N.,  Borbar,  M.  R.  (2006).  Generalized Lane-Emden Equation and  the  Structure  of  Galactic Dark
Matter. International Journal of Physics, 45, 483-498.

11)   Bird,  S.,  Cholis,  I.,  Muñoz,  J.  B.,  Ali-Haïmoud,  Y.,  Kamionkowski,  M.,  Kovetz,  E.  D.,  Raccanelli,  A.,
Riess, A. G. (2016). Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301.

8  MIR.nb



1)  Foot, R., Lieu, H., Volkas, R.R. (1991). A model with fundamental improper spacetime symmetries. Phys-
ics Letters B. 272 (1– 2),  67– 70.  Bibcode: 1991PhLB..272...67F. doi:10.1016/0370-2693(91)91013-L. 

2)  Foot, R. (2004). Implications of the DAMA and CRESST experiments for mirror matter-type dark matter.
Physical Review D. 69 (3), 036001. arXiv:hep-ph/0308254. Bibcode:2004PhRvD..69c6001F. doi:10.1103/Phys-
RevD.69.036001.

3)   Foot,  R.  (2018).  Resolution of the  small  scale structure  issues with dissipative dark matter from multiple
Standard Model sectors. Phys. Rev. D. 98, 123015. doi.org/10.1103/PhysRevD.98.123015.

4)   Foot,  R.,  Ignatiev,  A.  Y.,  Volkas,  R.  R.  (2001).  Physics  of  mirror  photons.  Phys.  Lett.  B503,  355
[astroph/0011156].

5)  Kerner, R. (1968). Generalization of the Kaluza-Klein Theory for an Arbitrary Non-abelian Gauge Group.
Ann. Inst. Henri Poincaré. 9, 143-152.

6)   Apparent gravitational lensing from dark matter has, however, been reported: Natarajan, P. et. al. (2017).
Monthly  Notices  of  the  Royal  Astronomical  Society,  468,  Issue  2,  1962,
https://doi.org/10.1093/mnras/stw3385.

7)    Saxton,  C.,  J.,  Ferraras,  I.  (2010).  Polytropic  dark  haloes  of  elliptical  galaxies.  Monthly  Notices  of  the
Royal Astronomical Society, 405, Issue 1, 77– 90,  https://doi.org/10.1111/j.1365-2966.2010.16448.x.

8)   Visinelli, L. (2016). Condensation of Cold Dark Matter. arXiv:1509.05871v3.

9)   Harko, T., Lobo, F. S. N., Mak, M. K., Shushkov, S. V. (2013).  Dark matter density profile and galactic
metric in Eddington-inspired Born-Infeld gravity. arXiv:1305.0820. 

10)   Riazi,  N.,  Borbar,  M.  R.  (2006).  Generalized Lane-Emden Equation and  the  Structure  of  Galactic Dark
Matter. International Journal of Physics, 45, 483-498.

11)   Bird,  S.,  Cholis,  I.,  Muñoz,  J.  B.,  Ali-Haïmoud,  Y.,  Kamionkowski,  M.,  Kovetz,  E.  D.,  Raccanelli,  A.,
Riess, A. G. (2016). Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301.

Supplementary Material.

1L Below we construct the ansatz for a 6 X 6 metric where c Hx, tL varies. CRG is what we have

called c Hx, tL and we will allow it to vary with x1. We could vary it otherwise but this

is just a "simple" example. We omit the spatial components of AR,G to keep the arithmetic

to a minimum. We really should include curvature of the base space as well. We will,

however, not do this. We start with the contravariant metric where CRG is zero :

-1 0 0 0 0 0

0 -1 0 0 0 0

0 0 -1 0 0 0

0 0 0 1 -AR@x1D � Γ -AG@x1D � Γ

0 0 0 -AR@x1D � Γ -1 � Γ + AR@x1D^2 � Γ^2 AR@x1D AG@x1D � Γ^2

0 0 0 -AG@x1D � Γ AR@x1D AG@x1D � Γ^2 -1 � Γ + AG@x1D^2 � Γ^2

:8-1, 0, 0, 0, 0, 0<, 80, -1, 0, 0, 0, 0<, 80, 0, -1, 0, 0, 0<,
:0, 0, 0, 1, -

AR@x1D
Γ

, -
AG@x1D

Γ
>, :0, 0, 0, -

AR@x1D
Γ

, -
1

Γ
+
AR@x1D2

Γ2
,
AG@x1D AR@x1D

Γ2
>,

:0, 0, 0, -
AG@x1D

Γ
,
AG@x1D AR@x1D

Γ2
, -

1

Γ
+
AG@x1D2

Γ2
>>

Here is its covariant counterpart.

Inverse@%D �� Simplify

:8-1, 0, 0, 0, 0, 0<, 80, -1, 0, 0, 0, 0<, 80, 0, -1, 0, 0, 0<,
:0, 0, 0, -

-Γ + AG@x1D2
+ AR@x1D2

Γ
, -AR@x1D, -AG@x1D>,

80, 0, 0, -AR@x1D, -Γ, 0<, 80, 0, 0, -AG@x1D, 0, -Γ<>
We recognize that Equation 2L actually represents a rotation in the internal space :

Xo = 8x1, x2, x3, x4, x5, x6<
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Xn = :x1, x2, x3, x4,
x5 + x6 CRG@x1D
1 + CRG@x1D2

,
x6 + x5 CRG@x1D
1 + CRG@x1D2

>

Below is the new contravariant metric.

TableBâ
m=1

6 â
n=1

6 H¶Xo@@mDD Xn@@iDDL H ¶Xo@@nDD Xn@@jDD L %1@@m, nDD, 8i, 1, 6<, 8j, 1, 6<F �� FullSimplify

::-1, 0, 0, 0,
H-x6 + x5 CRG@x1DL CRG¢@x1D

I1 + CRG@x1D2M3�2 ,
H-x5 + x6 CRG@x1DL CRG¢@x1D

I1 + CRG@x1D2M3�2 >, 80, -1, 0, 0, 0, 0<,

80, 0, -1, 0, 0, 0<, :0, 0, 0, 1, -
AR@x1D + AG@x1D CRG@x1D

Γ 1 + CRG@x1D2

, -
AG@x1D + AR@x1D CRG@x1D

Γ 1 + CRG@x1D2

>,

: H-x6 + x5 CRG@x1DL CRG¢@x1D
I1 + CRG@x1D2M3�2 , 0, 0, -

AR@x1D + AG@x1D CRG@x1D
Γ 1 + CRG@x1D2

, -
1

Γ2 I1 + CRG@x1D2M3

JI1 + CRG@x1D2M2 IΓ - AR@x1D2
- 2 AG@x1D AR@x1D CRG@x1D + IΓ - AG@x1D2M CRG@x1D2M +

Γ
2 Hx6 - x5 CRG@x1DL2 CRG¢@x1D2N, 1

Γ2 I1 + CRG@x1D2M3
 

JI1 + CRG@x1D2M2 H-2 Γ CRG@x1D + HAR@x1D + AG@x1D CRG@x1DL HAG@x1D + AR@x1D CRG@x1DLL +

Γ
2 Hx6 - x5 CRG@x1DL H-x5 + x6 CRG@x1DL CRG¢@x1D2N>,

: H-x5 + x6 CRG@x1DL CRG¢@x1D
I1 + CRG@x1D2M3�2 , 0, 0, -

AG@x1D + AR@x1D CRG@x1D
Γ 1 + CRG@x1D2

,
1

Γ2 I1 + CRG@x1D2M3
 

JI1 + CRG@x1D2M2 H-2 Γ CRG@x1D + HAR@x1D + AG@x1D CRG@x1DL HAG@x1D + AR@x1D CRG@x1DLL +

Γ
2 Hx6 - x5 CRG@x1DL H-x5 + x6 CRG@x1DL CRG¢@x1D2N, -

1

Γ2 I1 + CRG@x1D2M3

JI1 + CRG@x1D2M2 IΓ - AG@x1D2
- 2 AG@x1D AR@x1D CRG@x1D + IΓ - AR@x1D2M CRG@x1D2M +

Γ
2 Hx5 - x6 CRG@x1DL2 CRG¢@x1D2N>>

The reader may be alarmed to see x5 and x6 appear. This is, however,

perfectly normal. They will drop out of our physical calculations later.

Inverse@%D �� FullSimplify;

We have to re - express x5 and x6 in their rotated form

SolveB:x5 + x6 CRG@x1D
1 + CRG@x1D2

� xn5,
x6 + x5 CRG@x1D
1 + CRG@x1D2

� xn6>, 8x5, x6<F

::x5 ® -
xn5 1 + CRG@x1D2

- xn6 CRG@x1D 1 + CRG@x1D2

-1 + CRG@x1D2
,

x6 ® -
xn6 1 + CRG@x1D2

- xn5 CRG@x1D 1 + CRG@x1D2

-1 + CRG@x1D2
>>
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%% �. %@@1DD �� FullSimplify;

Below we write gΜΝ :

%8 �. xn5 ® x5 �. xn6 ® x6

::-1 -
1

I-1 + CRG@x1D2M4 I1 + CRG@x1D2M
 Γ Ix52 + x62 - 12 x5 x6 CRG@x1D + 15 Ix52 + x62M CRG@x1D2

-

40 x5 x6 CRG@x1D3
+ 15 Ix52 + x62M CRG@x1D4

- 12 x5 x6 CRG@x1D5
+ Ix52 + x62M CRG@x1D6M CRG¢@x1D2

,

0, 0, IIAR@x1D Ix6 - 3 x5 CRG@x1D + 3 x6 CRG@x1D2
- x5 CRG@x1D3M +

AG@x1D Ix5 - 3 x6 CRG@x1D + 3 x5 CRG@x1D2
- x6 CRG@x1D3MM

CRG¢@x1DM � I-1 + CRG@x1D2M2
1 + CRG@x1D2 ,

-

Γ Ix6 - 4 x5 CRG@x1D + 6 x6 CRG@x1D2
- 4 x5 CRG@x1D3

+ x6 CRG@x1D4M CRG¢@x1D
I-1 + CRG@x1D2M3

,

-

Γ Ix5 - 4 x6 CRG@x1D + 6 x5 CRG@x1D2
- 4 x6 CRG@x1D3

+ x5 CRG@x1D4M CRG¢@x1D
I-1 + CRG@x1D2M3

>,
80, -1, 0, 0, 0, 0<, 80, 0, -1, 0, 0, 0<,
:IIAR@x1D Ix6 - 3 x5 CRG@x1D + 3 x6 CRG@x1D2

- x5 CRG@x1D3M +

AG@x1D Ix5 - 3 x6 CRG@x1D + 3 x5 CRG@x1D2
- x6 CRG@x1D3MM CRG¢@x1DM �

I-1 + CRG@x1D2M2
1 + CRG@x1D2 , 0, 0, -

-Γ + AG@x1D2
+ AR@x1D2

Γ
,

HAR@x1D - AG@x1D CRG@x1DL 1 + CRG@x1D2

-1 + CRG@x1D2
,

HAG@x1D - AR@x1D CRG@x1DL 1 + CRG@x1D2

-1 + CRG@x1D2
>,

:-

Γ Ix6 - 4 x5 CRG@x1D + 6 x6 CRG@x1D2
- 4 x5 CRG@x1D3

+ x6 CRG@x1D4M CRG¢@x1D
I-1 + CRG@x1D2M3

,

0, 0,
HAR@x1D - AG@x1D CRG@x1DL 1 + CRG@x1D2

-1 + CRG@x1D2
,

-

Γ I1 + CRG@x1D2M2

I-1 + CRG@x1D2M2
,
2 Γ CRG@x1D I1 + CRG@x1D2M

I-1 + CRG@x1D2M2
>,

:-

Γ Ix5 - 4 x6 CRG@x1D + 6 x5 CRG@x1D2
- 4 x6 CRG@x1D3

+ x5 CRG@x1D4M CRG¢@x1D
I-1 + CRG@x1D2M3

,

0, 0,
HAG@x1D - AR@x1D CRG@x1DL 1 + CRG@x1D2

-1 + CRG@x1D2
,

2 Γ CRG@x1D I1 + CRG@x1D2M
I-1 + CRG@x1D2M2

, -

Γ I1 + CRG@x1D2M2

I-1 + CRG@x1D2M2
>>

We can verify that our metric gives us what we desire :
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g = %;

X = 8x1, x2, x3, x4, x5, x6<;
e = Simplify@Inverse@gDD;
c =

1

2
TableA¶XPjTgPi, kT + ¶XPiTgPj, kT - ¶XPkTgPi, jT, 8i, 1, 6<, 8j, 1, 6<, 8k, 1, 6<E;

d = TableBâ
l=1

6

cPi, j, lT ePk, lT, 8i, 1, 6<, 8j, 1, 6<, 8k, 1, 6<F;

Ricci = TableBâ
a=1

6 I¶XPaTdPi, j, aT - ¶XPjTdPi, a, aTM +

â
a=1

6 â
b=1

6 HdPb, a, aT dPi, j, bT - dPb, j, aT dPi, a, bTL, 8i, 1, 6<, 8j, 1, 6<F;

R = SimplifyBâ
i=1

6 â
j=1

6

RicciPi, jT ePi, jTF;

We see that R is exactly what we want. x5 and x6 have disappeared.

R

-
AG¢@x1D2

+ AR¢@x1D2

2 Γ

Det@gD �� Simplify

-

Γ2 I1 + CRG@x1D2M2

I-1 + CRG@x1D2M2

2L Below we write the Lagrangian where we have three colors H' red, ' ' green, ' and ' blue'L. CRG,
CRB, and CGB mix the three vector potentials.

Lem = ΨR BΓΜBä ¶Μ - e I1 + CRG2
+ CRB2M -1�2AARΜ + CRG AGΜ + CRB ABΜEF - mF ΨR -

1

4
 FR

ΜΝ
 FR ΜΝ

+ ΨG BΓΜBä ¶Μ - e I1 + CRG2
+ CGB2M -1�2AAGΜ + CRG ARΜ + CGB ABΜEF - mF ΨG -

1

4
 FG

ΜΝ
 FG ΜΝ

+ ΨB BΓΜBä ¶Μ - e I1 + CGB2
+ CRB2M -1�2AABΜ + CRB ARΜ + CGB AGΜEF - mF ΨB -

1

4
 FB

ΜΝ
 FB ΜΝ.

Below we write the 7 X 7 gΜΝ.

:8-1, 0, 0, 0, 0, 0, 0<, 80, -1, 0, 0, 0, 0, 0<, 80, 0, -1, 0, 0, 0, 0<, :0, 0, 0,

-
AB2 + AG2 + AR2 - Γ

Γ
,

1 + CRB2 + CRG2 IAR - AR CGB2 + AG CGB CRB - AG CRG + AB H-CRB + CGB CRGLM
-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2

,

1 + CGB2 + CRG2 IAG + AR CGB CRB - AG CRB2 - AR CRG + AB H-CGB + CRB CRGLM
-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2

,

1 + CGB2 + CRB2 IAB - AG CGB - AR CRB + AR CGB CRG + AG CRB CRG - AB CRG2M
-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2

>,
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:0, 0, 0,
1 + CRB2 + CRG2 IAR - AR CGB2 + AG CGB CRB - AG CRG + AB H-CRB + CGB CRGLM

-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2
,

-

I1 + CRB2 + CRG2M I1 + CGB4 + CRB2 - 4 CGB CRB CRG + CRG2 + CGB2 I-2 + CRB2 + CRG2MM Γ

I-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2M2
,

1 + CGB2 + CRG2 1 + CRB2 + CRG2 ICGB3 CRB + 2 CRG + CGB CRB I-3 + CRB2 - CRG2MM Γ

I-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2M2
,

1 + CGB2 + CRB2 1 + CRB2 + CRG2 I2 CRB - CGB CRB2 CRG + CGB CRG I-3 + CGB2 + CRG2MM Γ

I-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2M2
>,

:0, 0, 0,
1 + CGB2 + CRG2 IAG + AR CGB CRB - AG CRB2 - AR CRG + AB H-CGB + CRB CRGLM

-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2
,

1 + CGB2 + CRG2 1 + CRB2 + CRG2 ICGB3 CRB + 2 CRG + CGB CRB I-3 + CRB2 - CRG2MM Γ

I-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2M2
,

-

I1 + CGB2 + CRG2M I1 + CRB4 + CGB2 I1 + CRB2M - 4 CGB CRB CRG + CRG2 + CRB2 I-2 + CRG2MM Γ

I-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2M2
,

-

1 + CGB2 + CRB2 1 + CGB2 + CRG2 I-2 CGB + CGB2 CRB CRG - CRB CRG I-3 + CRB2 + CRG2MM Γ

I-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2M2
>,

:0, 0, 0,
1 + CGB2 + CRB2 IAB - AG CGB - AR CRB + AR CGB CRG + AG CRB CRG - AB CRG2M

-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2
,

1 + CGB2 + CRB2 1 + CRB2 + CRG2 I2 CRB - CGB CRB2 CRG + CGB CRG I-3 + CGB2 + CRG2MM Γ

I-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2M2
,

-

1 + CGB2 + CRB2 1 + CGB2 + CRG2 I-2 CGB + CGB2 CRB CRG - CRB CRG I-3 + CRB2 + CRG2MM Γ

I-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2M2
,

-

I1 + CGB2 + CRB2M J-4 CGB CRB CRG + I-1 + CRG2M2
+ CGB2 I1 + CRG2M + CRB2 I1 + CRG2MN Γ

I-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2M2
>>

Det@%D �� Simplify

I1 + CGB2 + CRB2M I1 + CGB2 + CRG2M I1 + CRB2 + CRG2M Γ3

I-1 + CGB2 + CRB2 - 2 CGB CRB CRG + CRG2M2
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