Bipolariton Axion-like Generation in Ruby

V.S. Gorelik^{1, 2}, V.V. Filatov^{1, 2, a)} and I.S. Alimkina¹

¹Lebedev Physical Institute of Russian Academy of Sciences, Moscow, Russia ²Bauman Moscow State Technical University, Moscow, Russia

a) Corresponding author: vvfilatov@bmstu.ru

Abstract. Axion is a hypothetical elementary particle introduced to solve the strong CP-problem of quantum chromodynamics. Nowadays, it is a best candidate for a role of a lightweight dark matter quantum. Axion also helps to solve various astrophysical problems, such as Hubble Space Telescope anomaly (extra-transparency of the Universe), PAMELA one (extra positron flux in cosmic rays), Super-Kamiokande one (traces of a new neutral particle) etc. The paper proposes a way to obtain axion-like particles, bipolaritons, in a crystalline solid by coupling of two polariton into the axion-like bipolariton during Bose-Einstein condensation of light in a transparent crystal (ruby).

INTRODUCTION

Crystalline ruby is a well-known optical medium widely used in lasing. Earlier [1] we reported observation of a polariton Bose-Einstein condensation (BEC) in ruby (Al_2O_3 : Cr^{3+}) at the resonance of its dielectric function. Since a local electromagnetic field at BEC rises resonantly, Zeeman splitting overlaps medium's dielectric function nearest resonances' ($\lambda_1 = 694.3$ nm and $\lambda_2 = 632.8$ nm) BECs resulting to BECs' crossover allowing the pairing

 $\gamma +$

$$\gamma \rightarrow a$$
.

(1)

Here γ is a BEC polariton, *a* is an axion-like bipolariton.

ANALYSIS

When bipolariton occurs, the dielectric function of a media changes. The total dielectric function ε_{Σ} becomes

$$\epsilon_{\Sigma} = \epsilon + \epsilon_a$$
, (2)
c permittivity of a crystal without bipolaritons [2] and ϵ_a is a bipolariton addition. The last one

where ε is dielectric pe systal without bipolaritons [2] and ε_a is a bipolariton addition. ttivity of a can be calculated by a following way [3]:

$$\varepsilon_a(k,\,\omega) = \varepsilon_\infty - |g_k|^2 D_a^R(k,\,\omega),\tag{3}$$

where retarded Green's function

$$D_a^{\ R}(k,\,\omega) = (\omega - \omega_a(k))^{-1} + (\omega + \omega_a(k))^{-1},\tag{4}$$

interaction force factor

$$|g_k|^2 = \frac{1}{2} \left(\varepsilon_0 - \varepsilon_\infty \right) \omega_a(k) \tag{5}$$

and bipolariton self-dispersion

$$\omega_a^2(k) = \omega_{0a}^2 + c^2 k^2. \tag{6}$$

In these equations, $\varepsilon_0 = \varepsilon(\omega \to 0)$ is a low-frequency dielectric function, $\varepsilon_\infty = \varepsilon(\omega \to \infty)$ is a high-frequency one and $c = 3 \times 10^8$ m/s is speed of light in a vacuum.

Because of (4) and (6), bipolaritons result to the additional peak of a refractive index of a crystal

$$n_{\Sigma}(\omega) = (\varepsilon_{\Sigma}(\omega) \times \mu)^{\nu_{2}} = |\varepsilon_{\Sigma}(\omega)|^{\nu_{2}}$$
(7)

to be registered in a secondary emission spectrum of medium

$$(\omega) = (n_{\Sigma}(\omega) - 1)^2 / (n_{\Sigma}(\omega) + 1)^2$$
(8)

at the unitary polartion spectral line of maximal transparency of a crystal.

RESULTS

In ruby, we observe this bipolariton peak at $\lambda = 532.5$ nm when a ruby crystal is irradiated by a powerful nitrogen laser ($\lambda = 337$ nm) at liquid nitrogen temperature (T = 77 K).

CONCLUSION

The results makes possible to get axion-like particles at a lab.

REFERENCES

- 1. I.S. Alimkina, V.V. Filatov and V.S. Gorelik, J. Phys.: Conf. Ser. 1348, 012081 (2019).
- 2. T. Kurosawa, J. Phys. Soc. Jpn 16(7), 1298-1308 (1961).
- 3. J. Ruwalds and A. Zawadowski, Phys. Rev. B 2(4), 1172 (1970).