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Abstract

Protein folding has been one of the most difficult problems for over a half-century,The
random thermal motions causing conformational changes that lead energetically
downhill towards the native structure, a principle captured in funnel-shaped energy
landscapes.Unfolded polypeptides have a wide range of possible conformations. The
search problem becomes intractable for classical computers due to the exponential
growth of potential conformations with chain length. So far, there is theoretical and
experimental evidence that solving such optimization problems using Quantum
Computing approaches such as Quantum Annealing, VQE, and QAOA has an
advantage. Although Google's DeepMind-AlphaFold has accomplished much,But we
can go even further with the quantum approach.Here we show how to predict structure
of protein as well as RNA folding using the Variational Quantum Eigensolver with
Conditional Value at Risk (CVaR) expectation values for the solution of the problem and
for finding the minimum configuration energy and our task is to identify a protein's
minimal energy structure. The protein's structure is optimized to reduce energy. Also
making sure that all physical constraints are met and encoding the protein folding
problem into a qubit operator.

Introduction

Life can’t exist without Proteins, and knowing their structures helps use large-scale experiments
to mechanically understand how they work, The molecular biologist Cyrus Levinthal figured out
in 1969 that if proteins were taking this plodding, check-each-possible-fold approach in our
bodies, their folding process would take longer than the entire lifetime of the universe. This is
called Levinthal’s Paradox. About 100,000 different protein structures have been identified.This
is a small fraction of the billions of known protein sequences. Accurate computational methods
are needed to fill this gap and support comprehensive structural bioinformatics. Estimates the
three-dimensional structure of proteins determined only by amino acids. We can determine the
total number 𝑁(n) of unique lattice conformations that separate diverse protein intermediate
structures for a protein with n amino acid residues. For illustration, N(4) = 4 and N(6) = 22. This
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gives us a set of N(n)-items, which we refer to as the structure set and expressed by S(n) =
{s1,s2,....,sN(n)}.
Let denotes the state of protein structure in the a-th confirmation we have Hamiltonian in -𝑁

𝑛

dimension Hilbert space, so that ,

(1)

According to their contact interaction, the n amino acids are divided into hydrophobic and
hydrophilic (also known as polar) groups from a coarse-grained perspective. Since H and P are
traditionally used to denote the hydrophobic and polar amino acids, respectively, a sequence of
n amino acids can be labeled by q = {q1, q2, , q(n)} where q(k) with k = [1, 2, , n] denotes either

H or P. As a result, there will be a total of potential sequences. Let's refer to the collection of2𝑛

all random sequences as the sequence set denoted by . We may getδ
𝑛

=  {[ν]|ν = 1, 2,..., 2𝑛}

the total contact energy for each structure in delta for any particular sequence-[ ] specified by aν
q.

(2)

Quantum Dynamics, We consider the energy dissipation brought on by the medium in which the
folding takes place in order to reach a quantum mechanical understanding. The Lindblad
equation governs this situation.

(3)

Where reflects the effect of dissipation;

(4)

According to analyses of random walks with sticky vertices, and are referred to as the𝐿 𝐿 †
Lindblad operators in this context. This operator = ∑ 𝑎𝑏 Γ𝑎𝑏|𝑠𝑎⟩⟨𝑠𝑏|. is provided by the off𝐿 †
diagonal part discussed before. For a two-level system that can be thought of as the two vertex
graphs with a sticky vertex, actual equation.4 provides a general expression that becomes the
standard one in terms of Pauli matrices.

The Folding Time



Now that we have the idea of the mean first passage time, we can develop a definition for the
protein folding time. The first passage probability vanishes, 𝐹𝑎,𝑏(𝜏0 ) = 0, which really happens
for the aforementioned quantum walk, throughout the mean first-passage time from a starting
state |𝑠a⟩ to a destination state |𝑠b⟩ , which is given by

(5)

(6)

Here denotes the probability of state |b> at time period t starting from the state |a> at𝑃
𝑎,𝑏

(𝑡)

initial time t=0.
Protein folding, which gives proteins their native structure, takes place when the starting state is
chosen to be |s1⟩ and the target states are those that are the most compact. For any positive n,
they are for instance, |s(n)⟩. The following is the formula for calculating the folding time:

(7)

Lattice conformational model

We call the backbone bead of index i ∈ {1, . . . , N} in the polymer's primary sequence and
denote the beads constituting its side chain by i (1), i(2), ..., i(s). Discussions about the locality
of the Hamiltonian in relation to the sparser encoding are held in the absence of additional
information.

Encoding(sparse and dense)

Encoding with Sparser The polymer sequence is generated by specifying the series of lattice
turns beginning with bead i = 1. Each turn is encoded on n qubits q4i3q4i2q4i1q4i, each of
which represents a tetrahedral lattice direction. Only one of the n qubits will have a value of one

(the others will be set to zero). We encode side chain turns in , where the upper index𝑖 𝑎𝑠 𝑞(𝑘−1)
𝑘

in parenthesis labels n qubits describing the turn of side chain bead i(k), and the lower indices of
the form i(k) label the bead k along the side chain at main chain position i.
This encoding requires 4(N − 3) qubits to totally define a conformation.



Encoding Denser The turn is represented by n qubits. As a result, we will encode the turns in a
given side chain using . Without losing generality, we choose qubit state function as the firstΨ
nth turns. If the main chain's bead does not bear a side chain, another qubit can be saved
without breaking any symmetry. The side chains can be encoded using the same rules as the
sparser encoding. The general form of a string of bits defining the entire conformation will have
the side chain qubits in parentheses. To completely define a conformation, this encoding
requires 2(N - 3) qubits.

Fig. 1

Tetrahedral lattice polymer model

Interaction qubits

To describe the interactions, we introduce a new qubit register , which is made up of for𝑞
𝑖𝑛

𝑞𝑙
𝑖,𝑗

each nearest neighbor (l-NN) interaction on the lattice (see red and green dashed lines for i= 1
and i = 2 in Fig. 1, b). The application of these registers will be discussed in conjunction with the
definition of interaction energy terms. The number of qubits comprising the interaction register, ,
is entirely determined by the polymer skeleton (i.e., including the side chains), regardless of the
color of the beads, and scales as . It is worth noting that two 1-NN beads occupy different
sub-lattices (A or B). For i > 1, however, all beads in both sub-lattices have the potential to
interact.The pairwise interaction energies i;j between the beads at distance l can be randomly



chosen given a basic sequence or they can be modified from pre-existing models, such as the
one proposed by Miyazawa and Jernigan (MJ) for 1-NN interactions, to produce an unique fold.

Fig.2

Results of an experiment on the folding of a neuropeptide of seven amino acids
For the creation of the protein configurations, a parametrized quantum circuit
is used. The ideal fold is reconstructed using the best possible set of qubit gate
Rotations.

The Hamiltonian

The second process is to create the qubit Hamiltonian that characterizes the energy of a
specific fold determined by a fixed bead sequence and encoded turns. Physical interactions
(attractive or repulsive in nature) are applied when two beads occupy neighboring sites or are at
a distance l > 1, where l is the length of the shortest lattice path connecting them. Penalty terms
are applied when physical constraints are violated (for example, when beads occupy the same
position on the lattice or overlap). Therefore, for (with q = {q(cf), (qin)}) the different
contributions to the polymer Hamiltonian are,"

(8)𝐻(𝑞) =  𝐻
𝑔𝑐

(𝑞
𝑐𝑓

) +  𝐻
𝑐ℎ

(𝑞
𝑐𝑓

) +  𝐻
𝑖𝑛

(𝑞)

The definitions of the chirality constraint (Hch), which enforces the correct stereochemistry of
the side chains if present, and the geometrical constraint (Hgc), which governs the expansion of
the primary sequence without splitting or say bifurcation.
Also the number of terms (or Pauli strings) in the n-qubit Hamiltonian H is what we use to
determine the algorithm's scaling (q) given by,

(9)



Where; is real coeff. is the Z-Pauli matrix, ∈ {0, 1}, and is theℎ
γ

𝑞
𝑖 

=  (1 − α
𝑖
𝑧)/2, α

𝑖
𝑧 γ(𝑖) 𝑁

𝑡

total number of terms.
The variational quantum algorithm

For the 128 shots (iter=1024 shots) simulation with an "fulll" entangling scheme on Qiskit, the
noisy simulations were carried out with = 1% (resp. = 0.1%). Every circuit was built with aα α
VQE depth of m = 2. Given a run of n qubits, the suggested method, dubbed CVaR-VQE, is a
hybrid quantum-classical algorithm that functions similarly to all hybrid schemes proposed for
upcoming quantum processors. At every single VQE iteration, the genetic algorithm creates a
"population" of parameters (i.e., an offspring), which preserves the memory of previous
generations and introduces a degree of stochasticity (through mutation rates) in a process
where analytic gradients are very ineffective at directing the minimization process.

Fig. 3, Convergence of VQE energy per iterations

Fig. 4 Stable 7 beads protein structure
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