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1 Introduction 
 

1.1 Opening 

 
Hello, and welcome to Lectures on Symmetry Optics.  I’m Paul Mirsky.  This is lecture 10, and the 
topic is: information and uncertainty. 
 
It seems ironic that there have already been nine lectures on symmetry optics, and we have not 
yet addressed the topic of symmetry.  In this lecture we finally address it.  Symmetry is described 
in mathematics by the subject of group theory. That’s a very unfortunate name, because the 
word ‘group’ really doesn’t give you any feel for what a mathematical group is.  Perhaps a better 
name might have been ‘symmetry theory’. 
 
The concepts developed in this lecture have been profoundly influenced by a remarkable book 
called Asymmetry: the Foundation of Information, by Scott J. Muller.  The core idea of that book 
is among the deepest, most powerful insights I’ve ever encountered. And yet, Muller’s work is 
virtually unknown.  Note that even though Muller uses the term ‘asymmetry’ to mean something 
distinct from ordinary symmetry, we consider them both to be two aspects of the single concept 
of symmetry, which is more-or-less a synonym for ‘group’. 
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1.2 Definition of a group 

 
In any case, group theory deals with all the ramifications of a very basic concept.  To call it basic, 
though, is not to say that it is easy to grasp.  Compared to most of optics, group theory is almost 
unbearably abstract.  To show you what I mean, here is the definition of a group: 
 

A group is set of elements with a binary operation and: 
1. Closure 
2. Identity element 
3. Inverse 
4. Associativity 

 
Most people find this definition pretty incomprehensible, but it’s pretty typical for definitions in 
higher mathematics.  That discipline uses very strict, formal reasoning and it comes to 
conclusions that are truly airtight.  But, we will do something much looser, which is to apply 
group theory as a mathematical tool to model physical objects.  This will give us an interpretation 
of the math, which hopefully will be more intuitive than the formal axioms given here.  We will 
address these formal axioms only if they arise in the discussion. 
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2 Information and uncertainty subgroups 
 

2.1 Colored triangle 

 

 
__________________________________________________________________ 

 
We’ll start discussing symmetry in terms of a simple example.  Consider an equilateral triangle 
with its 3 vertices colored red, green, and blue.  It can be in any one of these 3 possible 
orientations, or in other words 3 possible states.  For now, we’re assuming that the triangle 
cannot rotate to any other angle, and so these 3 states are the entire state space of the triangle.  
We’ll call the states by the orientation of the red vertex.  Red up, red right, red left. 
 
Now we’ll change our perspective a little.  Rather than thinking in terms of the state space, we’ll 
think in terms of transformations from one state to another.  For example, suppose that we start 
with red up.  If we rotate the triangle around its own center clockwise by 120°, or 1/3 of a full 
rotation, we get red-right.  This 120° rotation is a basic degree of freedom for this object, and we 
will imagine that we can apply that rotation by the click of a button.  In group-theoretical terms, 
this is the generator of the group. 
 
We click a second time, and the net effect is to transform the state by 240° degrees relative to 
the starting orientation.  We will keep a list of all possible net transformations, and we will 
continue clicking as many times as we need until we see what is called closure, which is one of 
the formal axioms of group theory.  Closure occurs when eventually, the transformation gets 
back to where it started.  In the case of rotation, it occurs at 360°.  After closure, no matter how 
many times you click, the list of transformations can never get any longer.  You simply keep 
treading over old ground and you never get anywhere new. 
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The three transformations on this list together constitute a group.  Each transformation is an 
element of the group. The 120° rotation is the transformation that generates the group.  One 
convention for notating groups is to call the group by its generators, written inside chevrons; so, 
this is the group <120°>. 
 
Note that rotating by 360° is the same as rotating by 0°, and so we can re-write the list with 0° at 
the top.  A 0° rotation is the identity transformation, which is the ‘transformation’ of not doing 
anything at all.  Fundamentally, every group must include the identity. 
 
Also: we took red-up as the starting state, so that red-up corresponds to the identity.  But it’s not 
essential to start with red-up.  If we take red-right as the starting state instead, it means that the 
states now correspond differently to the group elements.  But the group is the same in either 
case. 
 
We will be very interested in what can and cannot be observed.  In this example, we are able to 
distinguish the 3 states from one another by the different colors, and so an observation tells us 
precisely the state of the triangle. 
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2.2 Colored triangle, observed in black and white 

 

 
__________________________________________________________________ 

 
But next, let’s consider how the state would appear to an observer who sees only in black and 
white.  In this case, the observer can’t distinguish the different orientations, and perceives only a 
single macrostate, which actually contains the 3 different microstates. 
 
We don’t think of an object as being in just one state.  Rather, we think of a probability 
distribution over some range of possible states.  At a minimum, all physical objects have some 
uncertainty due to thermal motion, unless they are at absolute zero. 
 
The transformations in the group change the triangle from one microstate to another. The 
observer knows that it’s in 1 of these 3 possible states, but doesn’t know which one.  The group 
describes that uncertainty.  An equivalent way of thinking about the group it that the generators 
could act arbitrarily to randomize the state space, without having any effect on what the 
observer perceives. 
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2.3 Group of 6 rotations 

 

 
__________________________________________________________________ 

 
Next, consider a rotation by 60° – 1/6 of a full rotation.  This expands the state space to 6 
different orientations, and it expands the group to 6 different transformations. 
 
What happens when this new state space is observed in black and white? 
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2.4 Group of 6 rotations, observed in black and white 

 

 
__________________________________________________________________ 

 
In this case, the observer can not distinguish colors, but can distinguish vertex-up from vertex-
down.  In other words, the state space is partitioned into two subsets, and each subset 
constitutes a different macrostate, or a different observable state.  An observer is able to 
perceive which macrostate the object is in currently. 
 
The uncertainty from the previous case, <120°>, is now the uncertainty subgroup because it 
changes any vertex-up state into another vertex-up state, and it also changes any vertex-down 
state into another vertex-down state.  However, it preserves the vertex direction.  In other 
words, even if some degrees of freedom are allowed to act randomly, the randomness is 
bounded by the closure of the group transformations.  Even though the state of an object will 
move around within a subspace, it will not leave the subspace. 
 
What about a 60° rotation?  It would turn any vertex-up state into a vertex-down state, and vice-
versa.  In other words it also generates a group, namely <60°>, this one with two elements.  This 
is called the information subgroup.  It describes transformations that are not occurring.   
 
The object is remaining at stasis in one macrostate, and thus it is not undergoing transformations 
into a different macrostate.  Stasis by itself doesn’t necessarily constitute information.  But stasis 
is a precondition for having any ‘information’ about an object, because any change of 
macrostate would mean that the information no longer matches the object.   
 
Uncertainty and information are two subgroups of the full group.  In fact, the same boundary 
determines them both.  All the generators of the group – in this case, rotations by 60° and 120° –
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can be partitioned into two non-overlapping subsets.  One set generates the uncertainty 
subgroup, the other one generates the information subgroup.  This implies that if a generator of 
uncertainty is eliminated – for instance, if a color camera is used – that the same generator then 
becomes a generator of information instead. 
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2.5 Subgroups 

 

 
__________________________________________________________________ 

 
Let’s define the term subgroup, which we have used to describe information and uncertainty.  A 
subgroup is a smaller group that is a subset of the full group.  These 6 elements describe the full 
group.  What subgroups does it have? 
 
These 3 elements form  <120°>, so that is a subgroup of the full group. 
 
There is one more important subgroup.  Try to guess what it is.  Did you guess this?  Wrong.  This 
is not a subgroup.  For one thing, it doesn’t contain the identity element, therefore it’s not a 
group, therefore it’s not a subgroup.  Rather, this is a coset of the subgroup <120°>.  This lecture 
won’t discuss cosets in any more detail; we are introducing this term only to show what a 
subgroup is not and help you to avoid a very natural mistake. 
 
Here is the correct second subgroup.  Its generator is a rotation by 60°.  But when it acts twice, it 
returns the triangle to the starting state.  Therefore it contains only the identity, and 60° 
rotation. 
 
In going from 120° to 60°, we didn’t just enlarge one degree of freedom.  Rather, we added a 
second degree of freedom – another generator.  By the way, there also technically exist a few 
other subgroups which are not relevant to our discussion.  0° and 180° constitute a subgroup.  
Also, the full group is a subgroup of itself.  Finally, the identity by itself is a subgroup. 
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2.6 Muller’s formula for entropy 

 

 
__________________________________________________________________ 

 
In Muller’s thesis, the unifying idea is the concept of entropy.  And, we do need to discuss it. 
But in symmetry optics we avoid this word, because it is so confusing. 
 
The word entropy means: 

• Nothing to most people 
• One thing to educated laypeople 
• Two other things to scientists (and those two are exact opposites) 
• A 1990’s punk-rock band 

 
This is Muller’s formula for entropy.  We won’t study it in detail, but we will make a few 
important points: 
 
First of all, it relates three terms.  The one on the left is the information-theoretic entropy, which 
corresponds to the information subgroup.  The second term corresponds to the number of 
indistinguishable microstates, and the last term is the entropy of the full group. 
 
We’ll start with the first term.  Within mathematics and engineering, the field of information 
theory deals with fundamental questions about data and communication.  The key concept is 
entropy, which in this case essentially comes down to counting the number of distinguishable 
states that an object can be in.  For example, a digital bit can be in one of two states: on or off.  8 
digital bits considered together as a single object can be in 28 or 256 different states.  
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If you double the number of bits to 16, you get 65,536 states, which is a big increase over 256.  A 
more natural thing to count is not the number of states directly, but rather the number of bits. In 
this view, the second set of 8 bits carries the same amount of information as the first set of 8.  
Apart from a scale factor, counting bits is equivalent to taking the logarithm of the number of 
states.  8 bits has about 5.5 units of information entropy, and 16 bits has around 11 units.  
Generators of a group are similar to bits, in the sense that as more generators are added linearly, 
the size of the group increases exponentially. 
 
The state of the object carries a particular message.  For example, suppose that a digital picture 
of a flower is represented by a sequence of a million 0s and 1s, and a picture of a bird is 
represented by a different sequence of a million 0s and 1s.  We can think of a million bits of 
computer memory collectively as a single object, and the two different pictures are two different 
states of that one object.  The more states an object it has, the more different messages it can 
carry. 
 
The second term corresponds to the uncertainty, which is also a type of entropy.  Again, it’s the 
logarithm of the number of states. But here it has the opposite meaning -- it’s the number of 
indistinguishable microstates corresponding to each macrostate.  But actually the main 
application for this concept of entropy isn’t information theory at all, but rather 
thermodynamics.  Considerations of entropy govern many processes in physics and chemistry. 
To convert entropy from information units into physical units of Joules / Kelvin, just multiply by 
Boltzmann’s constant k. 
 
This is the end of the first part of the lecture.  Building on Muller’s work, we have shown how the 
symmetry of an object can be divided into two subgroups – information and uncertainty. 
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3 Slide, Tilt, and Phase 
 

3.1 Overview 

 
Now we’ll begin the next part of the lecture, and we’ll apply the new concepts to optical factors.   
 
We will consider 3 basic transformations:  
 

 Slide 

 Tilt 

 Phase 
 
Each one can be physically implemented by a simple optical device.  Each one is also represented 
by a matrix which acts on state vectors.  These go by various other names – clock and shift, 
Sylvester matrices, and others – but in this context, the terms slide, tilt, and phase are the most 
meaningful ones.  Let’s go through each of these in turn. 
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3.2 Slide 

 

 
__________________________________________________________________ 

 
The slide transformation is physically implemented by an optical slab.  This is a thick piece of 
glass with parallel faces, and it’s oriented at an angle.  For a moment, we’ll briefly think in terms 
of geometrical optics, which means that we model light as a ray, rather than as a wave.  When a 
ray reaches the surface of the slab, the difference in index of refraction causes the ray to be 
refracted according to Snell’s law, and it begins propagating at a different angle inside the glass.  
After it has propagated some distance, the ray reaches the other face of the slab and refracts 
again.  It emerges parallel to the original ray, but shifted over laterally to be at a different 
position. 
 
Mathematically, the starting and ending positions can be represented by two different states of 
a position factor.  The effect of the slab is represented by the slide matrix S.  The slide matrix 
looks a little bit like the identity matrix, which would have 1s along the diagonal and 0s 
everywhere else.  The only difference is, every column is shifted over one to the left, and the 
leftmost column circles around to become the rightmost column.  To see how it works, let’s look 
at the companion code. 
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3.3 Companion code 

 

 
__________________________________________________________________ 

 
To create the transformations in the companion code, open slidePosition.m.  First, we create an 
instance of the factor class, and create a position state.  Then, we create an instance of the 
xforms class.  We assign 5 to the size, and then calcAll().  The xform object contains the slide 
matrix as one of its properties.  We’re rounding here just to make it more legible; in this case 
we’re simply trimming off a bunch of decimal zeros that don’t matter. 
 
The matrix acts on state vectors.  To see this, we’ll assign the zero-eigenvalue state, which has 
the 1 in the center, to a variable called stateNow.  Next, we’ll multiply stateNow times the slide 
matrix, and assign the result back to the variable stateNow.  The new stateNow is shifted over 
one place from the previous; it’s the +1 eigenvalue state.  We can continue this. 
 
Note that when we slide the +2 vector, it circles back around to become the -2.  This is 
unphysical, but for this idealized model it’s OK. 
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3.4 States and Symmetries app (SnS) 
 

 
__________________________________________________________________ 

 
The last lecture introduced the app called States and Symmetries, which is a very useful tool for 
computing states and patterns, and for visualizing them too. 
 
In the lower-right corner of the app screen, there is a box labeled ‘control mode’.  For the entire 
last lecture, we had selected the option ‘by value’.  That let us choose the value for each factor 
from a drop-down menu, like this.  Now we’re going to check ‘by transformation’ and click 
regenerate.  The menu of values disappears, and instead we now see three buttons, which are 
labeled tilt, slide, and phase. 
 
When we click slide, it multiplies the current state vector by the slide matrix.  The reset button 
returns the state to the zero-eigenvalue state. 
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3.5 Tilt 
 

 
__________________________________________________________________ 

 
We have been discussing the slide transformation.  Now we’ll move on to the tilt transformation.  
Tilt is physically implemented by an optical wedge.  This is a piece of glass with two faces.  The 
first face is perpendicular to the optical axis, the second face is at some angle to it.  In terms of 
geometric optics, a ray passes through the first face without changing angle.  But at the second 
face, the ray is refracted and it continues on, propagating off into space at some new angle. 
 
Mathematically, the starting and ending angles can be represented by two different states of an 
angle factor.  The effect of the wedge is represented by the tilt matrix T.  The tilt matrix is 
diagonal, and each diagonal entry is a different power of the unit phase u, which we discussed in 
the last lecture in the context of state vectors. 
 
The companion code file tiltAngle.m shows how the tilt matrix works on an angle factor.  But the 
States-and-symmetries app is the easiest way to view it.  It’s perfectly analogous to the way the 
slide matrix works on a position factor.  Each click of the tilt button applies the tilt matrix, and 
advances the angle state to the next angle.  Actually, in this case it increments the angle in the 
negative direction.  It eventually circles back around to the start, which once again is unphysical 
but works best for this idealization. 
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3.6 Phase 

 

 
__________________________________________________________________ 

 
The final basic transformation is the phase transformation.  Phase is physically implemented by 
an optical window.  This is a thin piece of glass with both faces perpendicular to the optical axis.  
The glass has a higher index of refraction than the air or vacuum around it, and so the window 
shifts the phase by some amount, compared to the case with no window. 
 
Mathematically, the effect of the window is represented by the phase matrix P.  The phase 
matrix is diagonal, and all the diagonal entries are the same, and equal to the unit phase.  
Equivalently, we can say that it’s a scalar, times the identity matrix, or even just a scalar.  When 
the phase matrix acts on a state vector, it multiplies all of the components of the vector by a 
common phase.  
 
For instance, the components of the -1-angle vector have the exponents -2, -1, 0, 1, and 2.  
When we multiply by the phase matrix, we add 1 to each exponent.  This type of state vector 
was not discussed in the previous lecture, but it is another form of the -1 angle vector, not a 
different angle. 
 
The SnS app shows the effect visually and intuitively.  Each application of the phase matrix 
causes the boxes to move vertically by 1/5 of a cycle (for a size-5 factor), and after 5 applications 
it’s back where it began.  It’s the same for any of the angle states.  It’s also the same for any of 
the position states.   
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3.7 Ideal vs actual devices 

 

 
__________________________________________________________________ 

 
These are the 3 basic transformations slide, tilt and phase, and each one corresponds to an 
optical device.  But more precisely, these transformations describe ideal devices.  In practice, 
actual devices behave differently, and the picture becomes more complex. 
 
Firstly, we described the window a moment ago as a thin piece of glass.  The point is, 
wavelengths are very small and only a very short travel through glass is necessary.  For instance, 
to shift the phase by 0.2 cycles might require a glass optic that is a fraction of 1 micron thick.  
This is impractical to fabricate or handle, so in practice a much thicker optic would be used.  
However, the effect would be the same because for a coherent beam it actually doesn’t matter 
whether the phase is shifted by 0.2 cycles, 1.2 cycles, 5.2 cycles, or 1000.2 cycles because the 
integer cycles have no effect.  The only qualification is that the thickness has to be shorter than 
the coherence length of the light.  Also, note that almost nobody actually uses windows to delay 
phase this way, because it has no meaningful effect, as we will discuss later. 
 
Secondly, an actual wedge and an actual slab also have the effect of a phase factor, in addition to 
their primary effect.  Unless extreme care is taken to control the thickness of the optic, it will 
effectively contain a window and will cause an overall phase shift.  In practice, this care is never 
taken because nobody cares. 
 
Thirdly, let’s clarify a confusing point: these illustrations appear to show the light propagating 
some substantial distance, passing through the optic, and then propagating some distance again. 
But for ideal devices, we neglect this distance.  For ideal devices, the input, the device, and the 
output are all in a single plane or at least they are infinitesimally close. 
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By the way, note that this is different from a lens.  We often illustrate the lens-limited 
configuration with a picture which looks very similar to the others but is actually completely 
different.  For the lens, these planes are the front and rear flats, and the spatial separation is a 
necessary part of the principle, even for an ideal device. 
 
At this point, we’ve introduced all of the basic transformations.  Next, we’ll connect these 
transformations to the concepts of information and uncertainty. 
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4 Eigenvectors, eigenvalues, and matrices 
 

4.1 Chart 
 

 
__________________________________________________________________ 

 
In this chart, the columns correspond to the transformations tilt, slide, and phase.  The rows 
correspond to position and angle factors.  Each cell tells the effect of one transformation on one 
type of factor.   
 
As we’ve explained, tilt increments an angle factor from one angle to the next, in the negative 
direction.  Slide works analogously and increments a position factor from one position to the 
next, in the positive direction. 
 
Also phase multiplies anything by a common overall phase.  It’s a number on the unit circle.  
Overall phase means, the same number is applied to all entries of the vector.  Common overall 
phase means, this same number is applied to all of the different state vectors. 
 
Now we’ll discuss the two remaining cells and see that for both, the effect is a state-specific 
eigenvalue phase.  It’s also a number on the unit circle.  It’s also an overall phase, meaning that 
the same number is applied to all entries of the vector.  But in this case it’s not common; instead, 
each state vector gets a different overall phase. 
 
The term eigenvalue is German for ‘characteristic value’.  The idea is, each state corresponds to a 
different number. 
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4.2 Hermitian matrices, Observables 

 

 
__________________________________________________________________ 

 
As an example, here are the position state vectors.  Each one corresponds to a position value.  
Mathematically, a basis of orthogonal vectors and a corresponding set of real eigenvalues are 
the parameters needed to specify a Hermitian matrix.  In other words, if you have these you can 
compute a Hermitian matrix, and also vice-versa.  If you’re interested in the details, check out 
calcHermitianAndUnitary.m in the companion code. 
 
In quantum mechanics, a Hermitian matrix represents an observable.  If you measure or observe 
an object, you find it in one of the eigenstates of the observable matrix, and its value is the 
corresponding real eigenvalue.  But our main interest is actually not observable matrices per se, 
but rather something slightly different. 
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4.3 Real and imaginary phase 

 

 
__________________________________________________________________ 

 
Recall that any number on the unit circle has a complex value, which contains a real and an 
imaginary part.  But because that number is constrained to lie on the unit circle, you can also 
parameterize it with a real number α which is the length of the red arc.  The real number and the 
complex number correspond 1:1; if you know one, you can easily calculate the other.  The only 
qualification is, if the real number exceeds 2π, it becomes 0 again.  So, it’s a real number modulo 
2π. 
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4.4 Unitary matrices, Symmetry, time evolution 

 

 
__________________________________________________________________ 

 
If we apply this to the real eigenvalues of an observable matrix, we can compute complex 
eigenvalues.  Mathematically, the orthogonal vectors and a corresponding set of unit-circle 
eigenvalues specify a unitary matrix, and vice-versa. 
 
Tilt, Slide, and Phase are all unitary matrices. 
 
If you multiply a matrix times an input vector, you get some other vector as an output.  But out 
of all possible vectors, there are a handful of special ones which happen to be eigenvectors.  If 
you happen to choose an eigenvector of the matrix as the input to the matrix, then the output 
will be the same vector as the input, but multiplied by an overall constant.  That constant is the 
eigenvalue which corresponds to that eigenvector. 
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4.5 Slit applied to angle states 

 

 
__________________________________________________________________ 

 
Let’s see an example.  Here’s an angle state.  The phase goes through 3 cycles, so the angle is +3.  
The slide transformation shifts every component to the next position.   
 
The eigenvalue for this angle is u+3.  Here’s one way to understand that number:  If we begin with 
this state and apply slide exactly once, the very first component moves to the phase -4π/5.  To 
show the phase of each component more clearly, we have the center lines temporarily turned 
on.  
 
Next we return to the original state, and this time instead of clicking slide, we click phase – and 
we find that by clicking phase 3 times, we arrive at the same state as when we clicked slide once.  
Each phase click is a factor of u, so the net effect is u+3, which is the eigenvalue.  In other words, 
slide is equivalent to 3 phase shifts, for this angle state.  You can easily generalize this to all the 
other states and their values. 
 
Angle 0 seems like it might have been a natural example to start with, but actually the opposite 
is true – it’s a terrible example.  Because when you apply slide, it appears to have no effect at all.  
But actually, it is having the trivial effect of multiplying the entire state by u^0, which is 1, and 
which does nothing. 
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4.6 Tilt applied to position states 

 

 
__________________________________________________________________ 

 
The situation is perfectly analogous when a tilt is applied to a position state.  Here is a position 
state at position +2, or eigenvalue u+2, and at phase 0.  Next, we apply the tilt matrix.  The phase 
is increased to 4π/7.  If we revert to position +2 at 0 phase, we find that we can reach the same 
end state by clicking the phase button 2 times. 
 
For position -1, tilting is equivalent to -1 phase shifts, etc.  We can extrapolate from these to 
formulate the general rule, which is the same as the rule for angle factors:  the effect of the tilt 
matrix on any position state is to multiply the state vector by the state’s own eigenvalue. 
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5 Subgroups for optical factors 
 

5.1 Info and uncertainty in the chart 
 

 
__________________________________________________________________ 

 
We’ve discussed the three basic transformations, and how they work on different kinds of 
factors.  Now let’s connect them to the topics of information and uncertainty which we 
discussed in the first part of the lecture.  We need to identify which transformations are 
distinguishable, and which are indistinguishable. 
 
The key rule is that an overall phase change cannot be measured and is an indistinguishable 
change.  Overall phase change includes all the cells highlighted in green – the common overall 
phases, and the state-specific eigenvalue phases.  These together constitute the uncertainty.  
Incrementing the state to the next state is distinguishable, and therefore the cells highlighted in 
yellow constitute the information. 
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5.2 Overall phase 

 

 
__________________________________________________________________ 

 
One way to think about indistinguishable phase is that waves of light are passing through a 
stationary plane.  Looking at the amplitude of the wave in that plane, the phase advances linearly 
in time.  Effectively, it is as if the phase transformation is being applied over and over at every 
instant.  This phase change happens at an extremely high frequency, because the numerator is 
the speed of light, which is enormous, and the denominator is the wavelength, which is typically 
tiny.  In practice, there is no way to measure electric or magnetic fields so rapidly and so the 
phase is unobservable. 
 
Even though it is possible to create interference patterns which remain stable, those 
demonstrate relative phase between different waves, rather than overall phase.  And, even that 
stable interference pattern itself has an overall phase that oscillates. 
 
In quantum mechanics, observing phase is not only impossible in practice, but even impossible in 
theory.  It just falls out of the math of quantum mechanics that an overall phase change does not 
affect observables.  It even suggests that ontologically, the overall phase might not even 
physically exist. 
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5.3 Factor information and uncertainty 

 

 
__________________________________________________________________ 

 
This chart summarizes our analysis of optical factors.  For a position factor, slide generates the 
information subgroup, while tilt and phase generate the uncertainty subgroup.  For an angle 
factor, tilt generates the information subgroup, while slide and phase generate the uncertainty 
subgroup. 
 
By the way, from the name ‘observable’, you might assume that quantum-mechanical 
observable matrices correspond to information generators.   But actually, they do not.  The 
observables, or rather their complex-eigenvalue equivalents, are uncertainty generators. 
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5.4 Example: list of information matrices 

 

 
__________________________________________________________________ 

 
We have notated these groups in terms of their generators, but each of these groups can also be 
represented as a table of matrices.  Here’s one example – a position factor, size n = 3.  You can 
easily generalize to angle factors, and to arbitrary sizes. 
 
The information subgroup is generated by slide, so for a size-3 position factor the group is 
represented by these 3 matrices which are various powers of slide.  If we apply slide n times, it 
gets back to the identity, so there are only n transformations in the group.    In this table, the 
exponents are centered around 0, but effectively it’s the same as exponents running from 1 to n. 
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5.5 Example: list of uncertainty matrices 

 

 
__________________________________________________________________ 

 
The uncertainty subgroup has two generators: tilt and phase.  Each of them can be applied 
individually up to n times, and we count their applications independently.  This table lists every 
possible combination of tilt and phase. 
 
What’s very interesting is that in terms of complex numbers, there are only 3 different states.  
But the size of this uncertainty group is n2, or 9 possible net transformations.  This suggests a 
tension between symmetry optics and quantum mechanics, which is not currently understood.  
Indeed, this tension seems likely to deepen before it gets resolved. 
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5.6 Beam in SnS 

 

 
__________________________________________________________________ 

 
Up to this point, we have only discussed groups for a single factor.  But of course, multiple 
factors can combine to make compound systems like beams and gratings. 
 
Here is an example of a beam, which is composed of an angle factor A and a position factor B.  
Each factor has its own individual tilt, slide, and phase transformations.  Each factor transforms 
entirely independently of all the others.  The transformations on A have no effect on B, and vice-
versa. 
 
Tilting Factor A, and sliding factor B change the beam to a different states.  But sliding factor A 
makes only a phase difference.  Same with tilting factor B.  And of course, either of the two 
phases only make a phase difference. 
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5.7 Beam subgroups 

 

 
__________________________________________________________________ 

 
We can write the information and uncertainty subgroups by their generators.   
 
The information subgroup is generated by tilt on factor A and slide on factor B. 
 
The uncertainty is everything else: Slide and Phase on factor A, and Tilt and Phase on Factor B.  
For the example on the last slide, the beam can be at 9 different angles and 5 different positions.  
In other words, the information subgroup consists of all possible combinations of some power of 
tilt on A, times power of slide on B, for a total of 9∙5 or 45 different information transformations. 
 
The uncertainty subgroup consists of all combinations of A’s and B’s uncertainty transformations.  
This means any of 9 possible slides on A, any of 9 possible phases on A, any of 5 possible tilts on 
B, and any of 5 possible phases on B.  This is a total of 9∙9∙5∙5 or 2025 different transformations.  
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5.8 Grating in SnS 

 

 
__________________________________________________________________ 

 
To analyze the grating, we simply extrapolate further to more factors.  A grating is composed of 
an angle factor A, a position factor B, angle factor C, and position factor D. 
 
There are four information transformations: tilt A, slide B, tilt C, and slide D. 
 
There are 8 uncertainty transformations: slide A, tilt B, slide C, and tilt D – plus phase A, phase B, 
phase C, and phase D. 
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5.9 Grating subgroups 

 

 
__________________________________________________________________ 

 
The information transformations generate this subgroup 
 
The uncertainty transformations generate this subgroup. 
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6 Conclusion 
 

6.1 Reviewing key points 

 
That’s all for this lecture, so let’s review the key points: 
 

• The full group of an object consists of all possible net transformations that can be done 
to the object. 

• The uncertainty subgroup consists of those transformations which change the object to a 
different unobservable microstate. 

• The information subgroup consists of those transformations which would change the 
object to a different observable macrostate. 

• For a position factor, the information is generated by slide, while the uncertainty is 
generated by tilt and phase. 

• For an angle factor, the information is generated by tilt, while the uncertainty is 
generated by slide and phase. 
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6.2 Outro 

 
I hope you’ve found this class informative and interesting.  To learn more about symmetry 
optics, please check out www.symmetryoptics.com.  If you have specific questions about this or 
other lectures, please post them on Reddit at www.reddit.com/r/symmetryOptics/, and I’ll try to 
answer them. 
 
This is a new field, and there’s a lot of opportunity to discover new science and develop new 
applications.  I hope you’ll take advantage. 
 
I’m Paul Mirsky, thanks for listening. 
 
 

  

http://www.symmetryoptics.com/
http://www.reddit.com/r/symmetryOptics/
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