Elementary proof of Fermat-Wiles’ Theorem
by Ahmed Idrissi Bouyahyaoui

Fermat-Wiles’ Theorem :
(1) « the equality \(x^n + y^n = z^n \), with \(n, x, y, z \in \mathbb{N}^* \), is impossible for \(n > 2 \). »

**

Abstract of proof :
Let \(x^n = z^n - y^n \) and \(x^{n-1} = az^{n-1} - by^{n-1} \), \((a, b) \in \mathbb{Z}^2 \).
In the Euclidean division of \(ab(z^n - y^n) \) by \(az^{n-1} - by^{n-1} \), it exists one and only one remainder which can be zero implying the equality \(b^2 y^{n-2} = a^2 z^{n-2} \) which is impossible for \(n > 2 \) since \(x^{n-1} = az^{n-1} - by^{n-1} \) and \(x, y, z \) are coprim integers.

**

Equivalence in the Euclidean-division :
We suppose \(x, y \) and \(z \) are coprim integers.
Given \(\gcd(y,z)=1 \) and the corollary of the Bachet’s theorem (1624), it exists two relative integers \(a \) and \(b \) such that :
(2) \(x^{n-1} = az^{n-1} - by^{n-1} \)
We have the division :
(3) \((z^n - y^n) = (az^{n-1} - by^{n-1})(z/a + y/b) + (b/a)zy^{n-1} − (a/b)yz^{n-1}\)
normalized to obtain Euclidean-division :
(4) \(ab(z^n - y^n) = (az^{n-1} - by^{n-1})(bz + ay) + b^2 z y^{n-1} − a^2 y z^{n-1}\)

As \((z^n - y^n) = (az^{n-1} - by^{n-1})x \), the integer division is possible in (4).
In Euclidean-division \(D = dq + r \), we have the equivalence :
(5) \(D = dq \) (integer division) \(\iff \) \(r = 0 \) (remainder zero)
So, in order that division :
(6) \(ab(z^n - y^n) = (az^{n-1} - by^{n-1})(bz + ay) + b^2 z y^{n-1} − a^2 y z^{n-1}\)
is integer, it suffices that remainder is zero.
By applying Euclidean-equivalence (5) :
(7) \(b^2 z y^{n-1} − a^2 y z^{n-1} = 0 \iff \) \(ab(z^n - y^n) = (az^{n-1} - by^{n-1})abx \) (dq) \(abx = bz + ay \) (q)
we obtain the equality :
(8) \(b^2 y^{n-2} = a^2 z^{n-2} \) which is impossible for \(n > 2 \) since \(x^{n-1} = az^{n-1} - by^{n-1} \)
and \(x, y, z \) are coprim integers.
For \(n = 2 \), we have \(a^2 = b^2 \).

Therefore, the equalities:

\[
(9) \quad b^2 y^{n-2} - a^2 z^{n-2} = 0 \quad (R), \quad x^{n-1} = az^{n-1} - by^{n-1} \quad (d), \quad x^n = z^n - y^n \quad (D)
\]
such as \(D = dx \) are impossible for \(n > 2 \).

Setting of the Euclidean-division:

We suppose \(x, y \) and \(z \) are coprim integers.

Given \(\gcd(y, z) = 1 \) and the corollary of the Bachet’s theorem (1624), it exists two relative integers \(a \) and \(b \) such that:

\[
(1) \quad x^{n-1} = az^{n-1} - by^{n-1}
\]

We have the division

\[
(2) \quad ab(z^n - y^n) : (az^{n-1} - by^{n-1})
\]

which must have only one remainder equal to zero and valid.

Let us put the division and carry out the operations until obtaining a remainder already obtained (end of the operations cycle) and then obtain the candidate remainders to be equal to zero. For that, we must carry out a method of reduction of the power \(n \) which is to remove the monomials with the power \(n \).

This method optimizes the research (in the division tree) of the unique remainder which can be equal to zero by discarding the remainders equal to zero and not interesting or not valid.

Setting of the Euclidean-division:

\[
\begin{align*}
\text{ab} \ast z^n - y^n &= \text{abz}^n - \text{aby}^n \quad (D_1) \quad |az^{n-1} - by^{n-1} \quad (d) \\
- \text{abz}^n + b^2zy^{n-1} &= \text{bz} + ay -bz + bz \\
\end{align*}
\]

Evaluation of remainders and partial quotients:

\[
\begin{align*}
R_1 &= \text{aby}^n - a^2yz^{n-1} \quad \text{pgcd}(x, z) = 1 \\
\text{R}_1 &= 0 \Rightarrow q_1 = abx = bz \Rightarrow ax = z \Rightarrow R_1 \neq 0 \\
\text{pgcd}(y, a) > 1, \text{ pgcd}(z, b) > 1 \text{ and } x^{n-1} = az^{n-1} - by^{n-1} \\
&\Rightarrow \text{pgcd}(x, y) > 1, \text{ pgcd}(x, z) > 1 \text{ for } n > 2.
\end{align*}
\]

ahmed.idissi@free.fr

Sept2022

INPI - Paris
\[R_3 = abz^n - a^2yz^{n-1} \]
\[b^2zy^{n-1} - abz^n \]

\[\text{pgcd}(x, y) = 1 \]

\[b^2zy^{n-1} - a^2yz^{n-1} \]

end of the operations cycle.

**

The evaluation of remainders and partial quotients allowed obtaining the remainder which can be equal to zero and obtained by deduction: two remainders out of the three obtained cannot be equal to zero.

So, only the remainder \(R_2 \) obtained in the division above can be equal to zero:

\(R_2 = b^2zy^{n-1} - a^2yz^{n-1} = 0 \) implies the equality

\(b^2y^{n-2} = a^2z^{n-2} \) which is impossible for \(n > 2 \) since \(x^{n-1} = az^{n-1} - by^{n-1} \)
and \(x, y, z \) are coprim integers.

For \(n = 2 \), we have \(a^2 = b^2 \).

Therefore, the equalities

\(b^2y^{n-2} - a^2z^{n-2} = 0 \) (R), \(x^{n-1} = az^{n-1} - by^{n-1} \) (d), \(x^n = z^n - y^n \) (D)
such that \(D = xd \) are impossible for \(n > 2 \).

**

Remark:

Let the system:

\(a^x + b^y = c^z \), \((a, b, c, x, y, z) \in \mathbb{N}^6 \) and \(a, b, c \) are coprim integers.

\(a^x = c^z - b^y \)

\(a^{x-1} = uc^{z-1} - vb^{y-1} \), \((u, v) \in \mathbb{Z}^2 \)

As described above for the division \((z^n - y^n) : (az^{n-1} - by^{n-1})\), the remainder of the division \((c^z - b^y) : (uc^{z-1} - vb^{y-1})\) which can be zero implies the equality:

\(v^2b^{y-2} = u^2c^{z-2} \),
which is impossible for \((y > 2 \text{ or } z > 2)\) or, by symmetry, for \((x > 2 \text{ or } z > 2)\), or \((x > 2 \text{ or } y > 2)\).