SIEVE OF ERATOSTHENES AND WHEEL FACTORIZATION

V. Barbera

Abstract
This paper presents a refinement of the Sieve method of Eratosthenes in conjunction with wheel factorization. The result is to use less memory.

Sieve Wheel

With the sieve of Eratosthenes\(^1\) algorithm in the Boolean vector \(SIEVE\) of size \(n\) initially all set to \(true\) all elements associated with multiples of primes \(p\) can be set to \(false\) using this pseudocode:

\[
\begin{array}{l}
\text{for (p=2; p<sqrt(n); p++)} \\
\text{if (SIEVE[p])} \\
\text{for (m=p*p; m<n; m+=p)} \\
\text{SIEVE[m]=false;}
\end{array}
\]

An improvement can be made by using the Wheel factorization\(^2\) which can be associated with modular arithmetic\(^3\).

Given an integer \(bW\), called modulus, two integers \(p\) and \(q\) are congruent modulo \(bW\)
\(p \equiv q \ (mod \ bW)\) if \(bW\) is a divisor of their difference \(p−q\).

We therefore consider the modulo operator \(p \ mod \ bW\) which denotes the unique integer \(r\) such that \(0 \leq r < bW\) and \(r \equiv p \ (mod \ bW)\)

then \(p=r+k\cdot bW\) where \(r\) is the remainder of \(p\) when divided by \(bW\).

In modular arithmetic the set of integers \(\{0, 1, 2, ..., bW−1\}\) is called the least residue system modulo \(bW\) so let’s take a specific one residue system modulo \(bW\) set of \(\varphi(bW)\) integers, where \(\varphi(bW)\) is Euler’s totient function\(^4\), that are relatively prime to \(bW\) and mutually incongruent under modulus \(bW\), called a reduced residue system modulo \(bW\).

To make a sieve wheel for the purpose to find prime numbers less than \(n\) we choose \(bW<\sqrt{n}\) and \(bW\) divisible by a set of prime numbers \(\{p_1, p_2, ..., p_s\}\) then we choose an appropriate reduced residue system modulo \(bW\) stored in the vector \(RW\) of length \(nR=\varphi(bW)\).

In this way we only store the numbers belonging to the congruence class or residue in \(RW\) and therefore multiples of \(\{p_1, p_2, ..., p_s\}\) are automatically excluded.
Example if $bW=30$ then $\varphi(30)=8$ and $RW=[-23, -19, -17, -13, -11, -7, -1, 1]$ is a reduced residue system modulo bW.

Analyzing the graph to describe the wheel factorization, it can be seen that, excluding 2, 3 and 5, if $p=RW[i]+30\cdot k$ with $k>0$ we can only store the useful areas in gray equal to a matrix with a number of rows equal to $nR=\varphi(30)=8$.

To find prime numbers different from $\{p_1, p_2, \ldots, p_s\}$ then we use a Boolean array $SIEVE$ of size $nR \times \lceil n/bW \rceil$ in order to associate the possible residue in RW to each row of the array and so all elements associated with multiples of the prime numbers $\{p_1, p_2, \ldots, p_s\}$ are not stored.

So we want to get after the sieve that $p = RW[i] + bW \cdot j$ is prime if $SIEVE[i, j] == \text{true}$.

Example in the case of $bW=6$ it’s used a Boolean array $2 \times \lceil n/6 \rceil$ or two Boolean vectors of size $\lceil n/6 \rceil$.

In the second for loop of the pseudocode of the sieve of Eratosthenes for set to false all elements associated multiples of p the initial index is $m_{\text{min}}=p \cdot p$ so now we have $p=r+k \cdot bW$ and $p \cdot p$ must be replaced by $(r+bW \cdot k) \cdot (s+bW \cdot k)$

where s is a remainder such that $(r \cdot s) \% bW = t$ and the residue t is the one associated with the row we are using, then

$$(r+bW \cdot k)(s+bW \cdot k) = (r \cdot s) \% bW + bW \cdot (bW \cdot k + k \cdot r + k \cdot s + \lfloor (r \cdot s)/bW \rfloor)$$

and so for the row associated with remainder t for multiples of $p=r+k \cdot bW$ we use $m_{\text{min}}=bW \cdot k \cdot k + k \cdot r + k \cdot s + \lfloor (r \cdot s)/bW \rfloor$.
Example $bW = 6$

for $p=-1+6^k$
 in the row corresponding to the remainder -1: $s=-1$ $r=1$ $m_{\text{min}}=6^k k$
 in the row corresponding to the remainder 1: $s=1$ $r=-1$ $m_{\text{min}}=6^k k-2^k$

for $p=1+6^k$
 in the row corresponding to the remainder -1: $s=-1$ $r=1$ $m_{\text{min}}=6^k k$
 in the row corresponding to the remainder 1: $s=1$ $r=-1$ $m_{\text{min}}=6^k k+2^k$

Then in the Boolean array SIEVE of size $2*(n/6+1)$ all initially set to true and elements associated with multiples of primes $-1+6^k$ and $1+6^k$ can be set to false using this pseudocode:

```
for (k=1; k<=\sqrt{n}/6; k++){
  if (\text{SIEVE}[0,k]){
    for (m=6^k k; m<=n/6+1; m+=1+6^k)
      \text{SIEVE}[0,m]=false;
  }
  if (\text{SIEVE}[1,k]){
    for (m=6^k k; m<=n/6+1; m+=1+6^k)
      \text{SIEVE}[1,m]=false;
  }
}
```

In general if $p=RW[j]+bW \cdot k$ (for convenience we consider $RW[j]\leq1$ and $k>0$) and if $s=RW[x]$ we have:

$$(RW[x]+bW \cdot k) \cdot (RW[j]+bW \cdot k) = (RW[x] \cdot RW[j]) + bW \cdot (bW \cdot k \cdot k + k \cdot RW[x] + k \cdot RW[j]) =$$

$$= (RW[x] \cdot RW[j]) \cdot bW + bW \cdot (bW \cdot k \cdot k + k \cdot RW[x] + k \cdot RW[j] + \lfloor(RW[x] \cdot RW[j])/bW\rfloor)$$

and $m_{\text{min}} = bW \cdot k \cdot k + k \cdot (RW[x] + RW[j]) + \lfloor(RW[x] \cdot RW[j])/bW\rfloor + 1$

we build two array of size $nR \cdot nR$ for the coefficients C_1 and C_2 then for each $RW[i]$ and for each $RW[j]$ finding $RW[x]$ such that $(RW[x] \cdot RW[j]) \cdot bW = RW[i]$ then if $(RW[x] \cdot RW[j]) \cdot bW = RW[i]$ we have $C_1[i,j] = RW[x] + RW[j]$ and if $RW[i]=1$ or $RW[j]=1$ or $RW[i]=RW[j]$ then $C_2[i,j] = \lfloor(RW[x] + RW[j])/bW\rfloor$ otherwise $C_2[i,j] = 1 + \lfloor(RW[x] + RW[j])/bW\rfloor$

In the row corresponding to the residue $RW[i]$ if $p=RW[j]+bW \cdot k$ then $m_{\text{min}} = bW \cdot k \cdot k + k \cdot C_1[i,j] + C_2[i,j]$
In the Boolean array $SIEVE$ of size $nR \times \left\lceil \frac{n}{bW} \right\rceil$ initially all set to true all elements associated with multiples of primes $p = RW[j] + bW \cdot k$ can be set to false using this pseudocode:

```c
for (k=1; k<=sqrt(n)/bW; k++)
    for (j=0; j<nR; j++)
        if (SIEVE[j,k])
            for (i=0; i<nR; i++)
                {  
                    m_min=bW*k*k + k*C1[i,j] + C2[i,j];
                    for (m=m_min; m<n/bW+1; m+=RW[j]+bW*k)
                        SIEVE[i,m]=false;
                }
```

An improvement obtained is to have numbers smaller than n/bW and the use of a memory equal to $\varphi(bW) \cdot n / bW$.

In addition the possibility of making a segmented version using a bit space $\varphi(bW) \cdot \sqrt{n} / bW$, an example is shown below with the possible choice of the value of the wheel modulus.

Other sieves generally use \sqrt{n} as memory for segmentation instead this wheel sieve uses the product of the prime numbers following the basis $\{p_1, p_2, \ldots, p_s\}$ with $p_1=2$ and $p_1 < p_2 < \ldots < p_s$ so that a pre-sieving can be done, in this way the memory used is slightly higher than $\varphi(bW) \cdot \sqrt{n} / bW$ but is always less than \sqrt{n}.
Segmented bit Wheel Sieve

Below is shown the C++ code of a segmented bit wheel sieve with adjustable modulus:

```cpp
/// This is an implementation of the bit wheel segmented sieve
/// with max modulus wheel choice 30, 210, 2310

#include <iostream>
#include <cmath>
#include <algorithm>
#include <vector>
#include <cstdlib>
#include <stdint.h>

const int64_t n_PB_max = 5;

const int64_t del_bit[8] =
{
    ~(1 << 0),~(1 << 1),~(1 << 2),~(1 << 3),
    ~(1 << 4),~(1 << 5),~(1 << 6),~(1 << 7)
};

const int64_t bit_count[256] =
{
    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 3, 4,
    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 4, 3, 4, 4, 5,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 4, 4, 5, 4, 5, 4,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 5, 4, 5, 5, 6,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 4, 4, 5, 4, 5, 4,
    2, 3, 3, 4, 3, 4, 5, 3, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 6, 5, 6, 6, 7,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 5,
    2, 3, 3, 4, 3, 4, 5, 3, 4, 5, 4, 5, 5, 6,
    2, 3, 3, 4, 3, 4, 5, 3, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 6, 5, 6, 6, 7,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 5,
    2, 3, 3, 4, 3, 4, 5, 3, 4, 5, 4, 5, 5, 6,
    2, 3, 3, 4, 3, 4, 5, 3, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 6, 5, 6, 6, 7,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 5,
    2, 3, 3, 4, 3, 4, 5, 3, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 6, 5, 6, 6, 7,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 5,
    2, 3, 3, 4, 3, 4, 5, 3, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 6, 5, 6, 6, 7,
    2, 3, 3, 4, 3, 4, 5, 3, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 6, 5, 6, 6, 7,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 6, 5, 6, 6, 7,
    4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};
```
int64_t Euclidean_Diophantine(int64_t coeff_a, int64_t coeff_b)
{
 // return y in Diophantine equation coeff_a x + coeff_b y = 1
 int64_t k=1;
 std::vector<int64_t> div_t;
 std::vector<int64_t> rem_t;
 std::vector<int64_t> coeff_t;
 div_t.push_back(coeff_a);
 rem_t.push_back(coeff_b);
 coeff_t.push_back(0);
 div_t.push_back((int64_t)div_t[0]/rem_t[0]);
 rem_t.push_back((int64_t)div_t[0]%rem_t[0]);
 coeff_t.push_back(0);
 while (rem_t[k]>1)
 {
 k=k+1;
 div_t.push_back((int64_t)rem_t[k-2]/rem_t[k-1]);
 rem_t.push_back((int64_t)rem_t[k-2]%rem_t[k-1]);
 coeff_t.push_back(0);
 }
 k=k-1;
 coeff_t[k]=-div_t[k+1];
 if (k>0)
 coeff_t[k-1]=(int64_t)1;
 while (k > 1)
 {
 k=k-1;
 coeff_t[k-1]=coeff_t[k+1];
 coeff_t[k]+=(int64_t)(coeff_t[k+1]*(-div_t[k+1]));
 }
 if (k==1)
 return (int64_t)(coeff_t[k-1]+coeff_t[k]*(-div_t[k]));
 else
 return (int64_t)(coeff_t[0]);
}
```cpp
int64_t segmented_bit_sieve_wheel(uint64_t n, int64_t max_bW) {

    int64_t sqrt_n = (int64_t) std::sqrt(n);
    int64_t count_p=(int64_t)0;
    int64_t n_PB=(int64_t)3;
    int64_t bW=(int64_t)30;

    //get bW modulus equal to p1*p2*...*pn <=max_bW with n=n_PB
    while(n_PB<n_PB_max && (bW*PrimesBase[n_PB]<=std::min(max_bW,sqrt_n)))
    {
        bW*=PrimesBase[n_PB];
        n_PB++;
    }

    for (int64_t i=0; i< n_PB; i++)
    {
        if (n>PrimesBase[i])
            count_p++;
    }

    if (n>1+PrimesBase[n_PB-1]){  

        int64_t k_end = (n < bW) ? (int64_t)2 : (int64_t) (n/(uint64_t)bW+1);
        int64_t k_sqrt = (int64_t) std::sqrt(k_end/bW)+1;

        //find reduced residue system modulo bW
        std::vector<char> Remainder_t(bW, true);
        for (int64_t i=0; i< n_PB; i++)
            for (int64_t j=PrimesBase[i]; j< bW; j+=PrimesBase[i])
                Remainder_t[j]=false;
        std::vector<int64_t> RW;
        for (int64_t j=2; j< bW; j++)
            if (Remainder_t[j] == true)
                RW.push_back(-bW+j);
        RW.push_back(1);
        int64_t nR=RW.size();   // nR=phi(bW)
    }
```

std::vector<int64_t> C1(nR*nR);
std::vector<int64_t> C2(nR*nR);
for (int64_t j=0; j<nR-2; j++)
{
 int64_t rW_t,rW_t1;
 rW_t1=Euclidean_Diophantine(bW,-RW[j]);
 for (int64_t i=0; i<nR; i++)
 {
 if (i==j)
 {
 C2[nR*i+j]=0;
 C1[nR*i+j]=RW[j]+1;
 }
 else if(i==nR-3-j)
 {
 C2[nR*i+j]=1;
 C1[nR*i+j]=RW[j]-1;
 }
 else
 {
 rW_t=(int64_t)(rW_t1*(-RW[i]))%bW;
 if (rW_t>1)
 rW_t-=bW;
 C1[nR*i+j]=rW_t+RW[j];
 C2[nR*i+j]=(int64_t)(rW_t*RW[j])/bW+1;
 if (i==nR-1)
 C2[nR*i+j]=-1;
 }
 }
 C2[nR*j+nR-2]=(int64_t)1;
 C1[nR*j+nR-2]=-(bW+RW[j])-1;
 C1[nR*j+nR-1]=RW[j]+1;
 C2[nR*j+nR-1]=(int64_t)0;
}
for (int64_t i=nR-2; i<nR; i++)
{
 C2[nR*i+nR-2]=(int64_t)0;
 C1[nR*i+nR-2]=-RW[i]-1;
 C1[nR*i+nR-1]=RW[i]+1;
 C2[nR*i+nR-1]=(int64_t)0;
}
int64_t nB=nR/8;
int64_t segment_size=1;
int64_t p_mask_i=(int64_t)4;
for (int64_t i=0; i<p_mask_i;i++)
 segment_size*=((bW+RW[i]); // if bW=30 =7*11*13*17
while (segment_size<k_sqrt && p_mask_i<7)
{
 segment_size*=(bW+RW[p_mask_i]); // if bW=30 max value =7*11*13*17*19*23*29
 p_mask_i++;
}

int64_t segment_size_b=nB*segment_size;
std::vector<uint8_t> Primes(nB+segment_size_b, 0xff);
std::vector<uint8_t> Segment_i(nB+segment_size_b, 0xff);
int64_t pb,mb,mmin,ib,jb,j,k,kb;
kmax = (int64_t) std::sqrt(segment_size/bW)+(int64_t)1;
for (k =(int64_t)1; k <= kmax; k++)
{
 kb=k*nB;
 for (jb = 0; jb<nB; jb++)
 {
 for (j = 0; j<8; j++)
 {
 if(Primes[kb+jb] & (1 << j))
 {
 for (ib = 0; ib<nB; ib++)
 {
 for (i = 0; i<8; i++)
 {
 pb=nB*(bW*k+RW[j+ib*8]);
 mmin=nB*(bW*k*k + k*C1[(i+ib*8)*nR+j+jb*8] + C2[(i+ib*8)*nR+j+jb*8]);
 for (mb =mmin; mb <= segment_size_b && mb>=(int64_t)0; mb +=pb)
 Primes[mb+ib] &= del_bit[i];
 if (pb<nB*(bW+RW[p_mask_i]) && k_end>segment_size)
 {
 mb=segment_size_b;
 while (mb<(int8_t)0)
 mb+=pb;
 for (; mb <= segment_size_b; mb +=pb)
 Segment_i[mb+ib] &= del_bit[i];
 }
 }
 }
 }
 }
 }
}
for (kb = nB; kb < std::min (nB+segment_size_b,nB*k_end); kb++)
 count_p+=bit_count[Primes[kb]];
if (kb==nB*k_end && kb<=segment_size_b && kb>(int64_t)0)
 for (ib = 0; ib<nB; ib++)
 for (i = 0; i < 8; i++)
 if(Primes[kb+ib]& (1 << i) && RW[i+ib*8]<(int64_t)(n%bW-bW))
 count_p++;

if (k_end>segment_size)
{
 int64_t k_low, kb_low;
 std::vector<uint8_t> Segment_t(nB+segment_size_b);
 for (int64_t k_low = segment_size; k_low < k_end; k_low += segment_size)
 {
 kb_low=k_low*nB;
 for (kb = (int64_t)0; kb<(nB+segment_size_b); kb++)
 Segment_t[kb]=Segment_i[kb];
 kmax=(std::min(segment_size,(int64_t)std::sqrt((k_low+segment_size)/bW)+2));
 j=p_mask_i;
 for(k=(int64_t)1; k<=kmax; k++)
 {
 kb=k*nB;
 for (jb = 0; jb<nB; jb++)
 {
 for (; j < 8; j++)
 {
 if (Primes[kb+jb]& (1 << j))
 {
 for (ib = 0; ib<nB; ib++)
 {
 for (i = 0; i < 8; i++)
 {
 pb=bW*k+RW[j+ib*8];
 mmin=-k_low+bW*k+k*C1[(i+ib*8)*nR+j+jb*8] + C2[(i+ib*8)*nR+j+jb*8];
 }
if (mmin < 0)
 mmin = (mmin % pb + pb) % pb;

mmin *= nB;
pb *= nB;

for (mb = mmin; mb <= segment_size_b; mb += pb)
 Segment_t[mb + ib] &= del_bit[i];

j = (int64_t) 0;

for (kb = nB + kb_low; kb < std::min(kb_low + segment_size_b + nB, nB * k_end); kb++)
 count_p += bit_count[Segment_t[kb - kb_low]];

if (kb == nB * k_end && kb - kb_low <= segment_size_b && kb - kb_low > (int64_t) 0)
 for (ib = 0; ib < nB; ib++)
 for (i = 0; i < 8; i++)
 if (Segment_t[kb - kb_low + ib] & (1 << i) && RW[i + ib * 8] < (int64_t) (n % bW - bW))
 count_p++;

return count_p;

int main()
{
 int64_t count_p;

 // segmented_bit_sieve_wheel(n, max_bW) with max_bW = 30, 210, 2310 for set modulus
 count_p = segmented_bit_sieve_wheel(100000000, 30);

 std::cout << count_p << " prime numbers found " << std::endl;
 return 0;
}
References