SIEVE OF ERATOSTHENES AND WHEEL FACTORIZATION

V. Barbera

Abstract
This paper presents a refinement of the Sieve method of Eratosthenes in conjunction with wheel factorization.

Sieve Wheel

With the sieve of Eratosthenes\(^1\) algorithm in the Boolean vector \textit{SIEVE} of size \(n\) initially all set to \textit{true} all elements associated with multiples of primes \(p\) can be set to \textit{false} using this pseudocode:

```plaintext
for (p=2; p<sqrt(n); p++)
    if ( SIEVE[p] )
        for (m=p*p; m<n; m+=p)
            SIEVE[m]=false;
```

An improvement can be made by using the Wheel factorization\(^2\) which can be associated with modular arithmetic\(^3\).

Given an integer \(bW\), called modulus, two integers \(p\) and \(q\) are congruent modulo \(bW\)
\[p \equiv q \mod(bW) \] if \(bW\) is a divisor of their difference \(p−q\).

We therefore consider the modulo operator \(p \mod bW\) which denotes the unique integer \(r\) such that \(0 \leq r < bW\) and \(r \equiv p \mod(bW)\)

then \(p = r + k \cdot bW\) where \(r\) is the remainder of \(p\) when divided by \(bW\).

In modular arithmetic the set of integers \([0, 1, 2, \ldots, bW−1]\) is called the least residue system modulo \(bW\) so let’s take a specific one residue system modulo \(bW\) set of \(\phi(bW)\) integers, where \(\phi(bW)\) is Euler's totient function\(^4\), that are relatively prime to \(bW\) and mutually incongruent under modulus \(bW\), called a reduced residue system modulo \(bW\), and we store it in a \(RW\) vector of size \(nR = \phi(bW)\).

Example if \(bW = 30\) then \(\phi(30) = 8\) and \(RW = [-23, -19, -17, -13, -11, -7, -1, 1]\) is a reduced residue system modulo \(bW\).

In wheel sieve to find prime numbers less than \(n\) we choose \(bW < \sqrt{n}\) and \(bW\) divisible by a set of prime numbers \([p_1, p_2, \ldots, p_s]\) then we choose an appropriate residue system modulo \(bW\) vector \(RW\) of length \(nR = \phi(bW)\).

In this way we only store the numbers belonging to the congruence class or residue in \(RW\).
To find prime numbers different from \([p_1, p_2, \ldots, p_s]\) we use a Boolean array \(SIEVE\) of size
\[\text{size} = nR \times \lceil \frac{n}{bW} \rceil\]
in order to associate the possible residue in \(RW\) to each row of the array and so all elements associated with multiples of the prime numbers \([p_1, p_2, \ldots, p_s]\) are not stored.

So we want to get after the sieve that \(p = RW[i] + bW \cdot j\) is prime if \(SIEVE[i, j] == \text{true}\).

Example in the case of \(bW=6\) it’s used a Boolean array \(2 \times \lceil \frac{n}{6} \rceil\) or two Boolean vectors of size \(\lceil \frac{n}{6} \rceil\).

In the second for loop of the pseudocode of the sieve of Eratosthenes for set to \(false\) all elements associated multiples of \(p\) the initial index is \(m_{\text{min}}=p \cdot p\) so now we have \(p=r+k \cdot bW\) and \(p \cdot p\) must be replaced by \((r+bW \cdot k) \cdot (s+bW \cdot k)\)

where \(s\) is an integer such that \((r \cdot s) \% bW = t\) and the residue \(t\) is the one associated with the row we are using, then
\[(r+bW \cdot k) \cdot (s+bW \cdot k) = (r \cdot s) \% bW + bW \cdot (bW \cdot k \cdot k + k \cdot r + k \cdot s + \lfloor (r \cdot s)/bW \rfloor)\]

and so for the row associated with remainder \(t\) for multiples of \(p=r+k \cdot bW\) we use \(m_{\text{min}}=bW \cdot k \cdot k + k \cdot r + k \cdot s + \lfloor (r \cdot s)/bW \rfloor\)

Example \(bW = 6\)

for \(p=-1+6k\)
- in the row 0 corresponding to the remainder -1: \(s=1\ r=-1\ r \cdot s=-1\ m_{\text{min}}=6k^2\)
- in the row 1 corresponding to the remainder 1: \(s=-1\ r=-1\ r \cdot s=1\ m_{\text{min}}=6k^2\cdot2\)

for \(p=1+6k\)
- in the row 0 corresponding to the remainder -1: \(s=-1\ r=1\ r \cdot s=-1\ m_{\text{min}}=6k^2\)
- in the row 1 corresponding to the remainder 1: \(s=1\ r=1\ r \cdot s=1\ m_{\text{min}}=6k^2+2k\)

Then in the Boolean array \(SIEVE\) of size \(2 \times (n/6+1)\) initially all set to \(true\) and elements associated with multiples of primes \(-1+6k\) and \(1+6k\) can be set to \(false\) using this pseudocode:

```java
for (k=1; k<=sqrt(n)/6; k++){
    if (SIEVE[0,k]){ 
        for (m=6*k*k; m<n/6+1; m+=-1+6*k) 
            SIEVE[0,m]=false;
        for (m=6*k*k-2*k; m<n/6+1; m+=-1+6*k) 
            SIEVE[1,m]=false; 
    }
    if (SIEVE[1,k]){ 
        for (m=6*k*k; m<n/6+1; m+=1+6*k) 
            SIEVE[0,m]=false;
        for (m=6*k*k+2*k; m<n/6+1; m+=1+6*k) 
            SIEVE[1,m]=false; 
    }
}
```
In general if $p = RW[j] + bW \cdot k$ (for convenience we consider $RW[j] \leq 1$ and $k > 0$) and if $s = RW[x]$ we have:

$$(RW[x] + bW \cdot k) \cdot (RW[j] + bW \cdot k) = (RW[x] \cdot RW[j]) + bW \cdot (bW \cdot k \cdot k + k \cdot RW[x] + k \cdot RW[j]) =$$

$$= (RW[x] \cdot RW[j]) \% bW + bW \cdot (bW \cdot k \cdot k + k \cdot RW[x] + k \cdot RW[j] + \lfloor (RW[x] \cdot RW[j]) / bW \rfloor)$$

and $m_{\min} = bW \cdot k \cdot k + k \cdot (RW[x] + RW[j]) + \lfloor (RW[x] \cdot RW[j]) / bW \rfloor$

or if positive module $(RW[x] \cdot RW[j]) \% bW > 1$ adding and subtracting bW becomes

$$m_{\min} = bW \cdot k \cdot k + k \cdot (RW[x] + RW[j]) + \lfloor (RW[x] \cdot RW[j]) / bW \rfloor + 1$$

we build two array of size $nR \times nR$ for the coefficients C_1 and C_2 then for each $RW[i]$ and for each $RW[j]$ finding $RW[x]$ such that $(RW[x] \cdot RW[j]) \% bW = RW[i]$ then if $(RW[x] \cdot RW[j]) \% bW = RW[i]$ we have $C_1[i, j] = RW[x] + RW[j]$ and if $RW[i] = 1$ then $C_2[i, j] = \lfloor (RW[x] + RW[j]) / bW \rfloor$

otherwise $C_2[i, j] = 1 + \lfloor (RW[x] + RW[j]) / bW \rfloor$

In the row corresponding to the residue $RW[i]$ if $p = RW[j] + bW \cdot k$ then

$$m_{\min} = bW \cdot k \cdot k + k \cdot C_1[i, j] + C_2[i, j]$$

Example $bW = 30$

$nR = 8$ and $RW = [-23, -19, -17, -13, -11, -7, -1, 1]$

$C1 =$

-22, -32, -28, -32, -28, -8, -8, -22
-30, -18, -30, -30, -12, -30, -12, -18
-34, -26, -16, -14, -34, -26, -14, -16
-42, -42, -18, -12, -18, -18, -12
-46, -20, -34, -26, -10, -14, -20, -10
-24, -36, -24, -24, -6, -24, -6
-36, -30, -24, -36, -30, -24, 0, 0
-40, -38, -40, -20, -22, -20, -2, 2

$C2 =$

0, 9, 7, 9, 7, 1, 1, 0
6, 0, 8, 8, 1, 6, 1, 0
9, 5, 0, 1, 9, 5, 1, 0
15, 15, 1, 0, 3, 3, 1, 0
18, 1, 10, 6, 0, 2, 1, 0
1, 11, 11, 5, 5, 0, 1, 0
10, 7, 4, 10, 7, 4, 0, 0
13, 12, 13, 3, 4, 3, 0, 0
In the Boolean array $SIEVE$ of size $nR \times \lceil n/bW \rceil$ initially all set to $true$ all elements associated with multiples of primes $p=RW[j]+bW\cdot k$ can be set to $false$ using this pseudocode:

```
for (k=1; k<=sqrt(n)/bW; k++)
    for (j=0; j<nR ; j++)
        if( SIEVE[j,k] )
            for (i=0; i<nR ; i++)
                { 
                    m_min=bW*k*k + k*C1[i,j] + C2[i,j];
                    for (m=m_min; m<n/bW+1; m+=RW[j]+bW*k)
                        SIEVE[i,m]=false;
                }
```

An improvement obtained is to have numbers smaller than n/bW and the use of a memory equal to $\varphi(bW)\cdot n/bW$.

In addition the possibility of making a segmented version using a bit space $\varphi(bW)\cdot \sqrt{n}/bW$, an example is shown below with the possible choice of the value of the wheel modulus.

Other sieves generally use \sqrt{n} as memory for segmentation instead this wheel sieve uses the product of the prime numbers following the basis $\{p_1, p_2, ..., p_s\}$ with $p_1=2$ and $p_1<p_2<...<p_s$ so that a pre-sieving can be done, in this way the memory used is slightly higher than $\varphi(bW)\cdot \sqrt{n}/bW$ but is always less than \sqrt{n}.

Segmented bit Wheel Sieve
Below is shown the C++ code of a segmented bit wheel sieve with adjustable modulus:

```cpp
#include <iostream>
#include <cmath>
#include <algorithm>
#include <vector>
#include <cstdlib>
#include <cstdint.h>
#include <time.h>

const int64_t n_PB_max = 5;

const int64_t del_bit[8] =
{
    ~(1 << 0),~(1 << 1),~(1 << 2),~(1 << 3),
    ~(1 << 4),~(1 << 5),~(1 << 6),~(1 << 7)
};

const int64_t bit_count[256] =
{
    0, 1, 1, 2, 1, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
};
```
int64_t Euclidean_Diophantine(int64_t coeff_a, int64_t coeff_b)
{
 // return y in Diophantine equation coeff_a x + coeff_b y = 1
 int64_t k = 1;
 std::vector<int64_t> div_t;
 std::vector<int64_t> rem_t;
 std::vector<int64_t> coeff_t;
 div_t.push_back(coeff_a);
 rem_t.push_back(coeff_b);
 coeff_t.push_back((int64_t)0);
 div_t.push_back((int64_t)div_t[0]/rem_t[0]);
 rem_t.push_back((int64_t)div_t[0]%rem_t[0]);
 coeff_t.push_back((int64_t)0);
 while (rem_t[k] > 1)
 {
 k = k + 1;
 div_t.push_back((int64_t)rem_t[k-2]/rem_t[k-1]);
 rem_t.push_back((int64_t)rem_t[k-2]%rem_t[k-1]);
 coeff_t.push_back((int64_t)0);
 }
 k = k - 1;
 coeff_t[k] = -div_t[k + 1];
 if (k > 0)
 coeff_t[k - 1] = (int64_t)1;
 while (k > 1)
 {
 k = k - 1;
 coeff_t[k - 1] = coeff_t[k + 1];
 coeff_t[k] += (int64_t)(coeff_t[k + 1]*(-div_t[k + 1]));
 }
 if (k == 1)
 return (int64_t)(coeff_t[k - 1] + coeff_t[k]*(-div_t[k]));
 else
 return (int64_t)(coeff_t[0]);
}
void segmented_bit_sieve_wheel(uint64_t n, int64_t max_bW)
{
 int64_t sqrt_n = (int64_t) std::sqrt(n);
 int64_t count_p=(int64_t)0;
 int64_t n_PB=(int64_t)3;
 int64_t bW=(int64_t)30;
 //get bW modulus equal to p1*p2*...*pn <=max_bW with n=n_PB
 while(n_PB<n_PB_max&&((bW*PrimesBase[n_PB]<=std::min(max_bW,sqrt_n))))
 {
 bW*=PrimesBase[n_PB];
 n_PB++;
 }
 for (int64_t i=0; i< n_PB; i++)
 {
 if (n>PrimesBase[i])
 count_p++;
 }
 if (n>1+PrimesBase[n_PB-1]){
 int64_t k_end = (n < bW) ? (int64_t)2 : (int64_t)(n/((uint64_t)bW+1));
 int64_t k_sqrt = (int64_t) std::sqrt(k_end/bW)+1;
 //find possible remainder of the congruence class
 std::vector<char> Remainder_i_t(bW+1,true);
 for (int64_t i=0; i< n_PB; i++)
 {
 for (int64_t j=PrimesBase[i]*PrimesBase[i];j< bW+1;j+=PrimesBase[i])
 Remainder_i_t[j]=false;
 }
 std::vector<int64_t> RW;
 for (int64_t j=PrimesBase[n_PB-1]+1;j< bW+1;j++)
 {
 if (Remainder_i_t[j]==true)
 RW.push_back(-bW+j);
 }
 RW.push_back(1);
 int64_t nR=RW.size();
 std::vector<int64_t> C1(nR*nR);
 std::vector<

std::vector<int64_t> C2(nR*nR);
for (int64_t j=0; j<nR-2; j++)
{
 int64_t rW_t,rW_t1;
 rW_t1=Euclidean_Diophantine(bW,-RW[j]);
 for (int64_t i=0; i<nR; i++)
 {
 if (i==j)
 {
 C2[nR*i+j]=0;
 C1[nR*i+j]=RW[j]+1;
 }
 else if(i==nR-3-j)
 {
 C2[nR*i+j]=1;
 C1[nR*i+j]=RW[j]-1;
 }
 else
 {
 rW_t=(int64_t)(rW_t1*(-RW[i]))%bW;
 if (rW_t>1)
 {
 rW_t-=bW;
 }
 else if (i==nR-3-j)
 {
 C2[nR*i+j]=1;
 C1[nR*i+j]=RW[j]-1;
 }
 else
 {
 C2[nR*i+j]=(int64_t)1;
 C1[nR*i+j]=rW_t+RW[j];
 }
 }
 }
 C2[nR*j+nR-2]=(int64_t)1;
 C1[nR*j+nR-2]=-(bW+RW[j])-1;
 C1[nR*j+nR-1]=RW[j]+1;
 C2[nR*j+nR-1]=(int64_t)0;
}
for (int64_t i=nR-2; i<nR; i++)
{
 C2[nR*i+nR-2]=(int64_t)0;
 C1[nR*i+nR-2]=-RW[i]-1;
 C1[nR*i+nR-1]=RW[i]+1;
 C2[nR*i+nR-1]=(int64_t)0;
}
int64_t nB=nR/8;
int64_t segment_size=1;
int64_t p_mask_i=(int64_t)4;
for (int64_t i=0; i<p_mask_i;i++)
 segment_size*=(bW+RW[i]); // if bW=30 =7*11*13*17
while (segment_size<k_sqrt && p_mask_i<7) {
 segment_size*=(bW+RW[p_mask_i]); // if bW=30 max value =7*11*13*17*19*23*29
 p_mask_i++;
}

int64_t segment_size_b=nB*segment_size;
std::vector<uint8_t> Primes(nB+segment_size_b, 0xff);
std::vector<uint8_t> Segment_i(nB+segment_size_b, 0xff);
int64_t pb,mb,mmin,ib,i,jb,j,k,kb;
kmax = (int64_t) std::sqrt(segment_size/bW)+(int64_t)1;
for (k =(int64_t)1; k <= kmax; k++) {
 kb=k*nB;
 for (jb = 0; jb<nB; jb++) {
 for (j = 0; j<8; j++) {
 if(Primes[kb+jb] & (1 << j)) {
 for (ib = 0; ib<nB; ib++) {
 for (i = 0; i<8; i++) {
 pb=nB*(bW*k+RW[j+jb*8]);
mmin=nB*(bW*k*k + k*C1[(i+ib*8)*nR+j+jb*8] + C2[(i+ib*8)*nR+j+jb*8]);
 for (mb =mmin; mb <= segment_size_b && mb>=(int64_t)0; mb +=pb)
 Primes[mb+ib] &= del_bit[i];
 if (pb<nB*(bW+RW[p_mask_i]) && k_end>segment_size) {
 mb=segment_size_b;
 while (mb<(int8_t)0)
 mb+=pb;
 for (; mb <= segment_size_b; mb +=pb)
 Segment_i[mb+ib] &= del_bit[i];
 }
 }
 }
 }
 }
}
for (kb = nB; kb < std::min (nB+segment_size_b,nB*k_end); kb++)
 count_p+=bit_count[Primes[kb]];
if (kb==nB*k_end && kb<=segment_size_b && kb>(int64_t)0)
 for (ib = 0; ib<nB; ib++)
 for (i = 0; i < 8; i++)
 if(Primes[kb+ib] & (1 << i) && RW[i+ib*8]<(int64_t)(n%bW-bW))
 count_p++;;

if (k_end>segment_size)
{
 int64_t k_low, kb_low;
 std::vector<uint8_t> Segment_t(nB+segment_size_b);
 for (int64_t k_low = segment_size; k_low < k_end; k_low += segment_size)
 {
 kb_low=k_low*nB;
 for (kb = (int64_t)0; kb<(nB+segment_size_b); kb++)
 Segment_t[kb]=Segment_i[kb];
 kmax=(std::min(segment_size,(int64_t)std::sqrt((k_low+segment_size)/bW)+2));
 j=p_mask_i;
 for(k=(int64_t)1; k<=kmax;k++)
 {
 kb=k*nB;
 for (jb = 0; jb<nB; jb++)
 {
 for (; j < 8; j++)
 {
 if (Primes[kb+jb] & (1 << j))
 {
 for (ib = 0; ib<nB; ib++)
 {
 for (i = 0; i < 8; i++)
 {
pb=bW*k+RW[j+jb*8];
mmin=-k_low+bW*k+ k*C1[(i+ib*8)*nR+j+jb*8] + C2[(i+ib*8)*nR+j+jb*8];
if (mmin<0)
 mmin=(mmin%pb+pb)%pb;
mmin*=nB;
pb*=nB;
for (mb=mmin; mb <= segment_size_b; mb += pb)
 Segment_t[mb+ib] &= del_bit[i];
}
}
}
}

for (kb=nB+kb_low; kb <std::min (kb_low+segment_size_b+nB,nB*k_end); kb++)
 count_p+=bit_count[Segment_t[kb-kb_low]];
}

if (kb==nB*k_end && kb-kb_low<=segment_size_b && kb-kb_low>(int64_t)0)
 for (ib = 0; ib<nB; ib++)
 for (i = 0; i < 8; i++)
 if(Segment_t[kb-kb_low+ib]& (1 << i) && RW[i+ib*8]<(int64_t)(n%bW-bW))
 count_p++;
}

std::cout << " primes < " << n << ": "<< count_p<< std::endl;
}

int main()
{
 // segmented_bit_sieve_wheel(n, max_bW) with max_bW= 30 , 210 , 2310 for set modulus
 segmented_bit_sieve_wheel(100000000,30);

 return 0;
}
References