The Symmetry of N-domain, Prime Conjectures and Unified Theory

Liu Yajun Liu Yurui
(South China University of Technology, Guangzhou P.R. China 510640)
E-mail: yajun@scut.edu.cn

Abstract

In this paper, we discuss the symmetry of N-domain and we find that using the symmetry characters of Natural Numbers we can give proofs of the Prime Conjectures: Twins Prime Conjecture, Goldbach Conjecture and Reimann Hypothesis. and only give this domain the unit h (Plank constant), C (the velocity of light) and t (time), when considering the intensity of field $1 / \mathrm{aF}$ as the curvature of the Quantum Time-Space with energy, then we get a Unified theory.

Keywords N domain Prime Conjectures
We have
$N \sim(0,1,2,3,4, \ldots \ldots \ldots)$ all the natural numbers
$\mathrm{n} \sim(1,2,3,4, \ldots \ldots \ldots)$ all the natural numbers excepted 0
$P \sim(2,3,5,7, \ldots \ldots \ldots)$ all the prime numbers
$\mathrm{p} \sim(3,5,7, \ldots \ldots \ldots)$ all the odd prime numbers
We notice that

$$
\begin{aligned}
& N \sim(0, n) \\
& P \sim(2, p)
\end{aligned}
$$

Fig.1. N domain as $2 n \times 2 n$

We can define a N domain as $2 \mathrm{n} \times 2 \mathrm{n}$ with the center point of this square is

$$
p 0=<n, n>\text { and } n \in p
$$

show as on figure.1.
We have a square with the vertexes are

$$
0,<0,2 n>,<2 n, 2 n>, 2 n
$$

The area of this domain is $S_{2 n}=2 n \times 2 n$
And we can constructure a N, n, P coordinate system:
The N number axis have 4 points :

$$
0,1,2,2 n
$$

The n number axis have five points:

$$
p 0-2, p 0-1, p 0, p 0+1, p 0+2
$$

And at the P number axis:
Prime number 2 is the point 2.
All the odd prime number can be indicated as:

$$
p=n \text { and } n \in p
$$

we can get a square with a center point $p 0$ and the vertexes are

$$
p 0-2, ~ p, ~ p 0+2, ~ 2
$$

The area of this domain $S_{p 0}=2 \times(2+2)$
we can also get a square with a center point $p 0$ and the vertexes are

$$
p 0-1, p 2, p 0+1, p 1 \quad p 1, p 2 \in p
$$

The area of this domain $S_{0}=2 \times 2$

And we have a projection vertical to $S_{0}, p 0$ is the point at infinity and show as on figure 2 .

Fig2. P domain

We have

$$
\begin{gathered}
p 0 \rightarrow n \\
p 1 \rightarrow n-1 \\
p 2 \rightarrow n+1 \\
p 2-p 1=<n+1>-<n-1>=2
\end{gathered}
$$

Because we have infinite prime numbers. This mean that we have infinite twin primes in N domain. This is the proof of Twin Primes Conjecture.

$$
p 2+p 1=n+1+n-1=2 n
$$

And $n-1 \geq 2 \quad n \geq 3 \quad$ So $2 n \geq 6$
This mean that every even number bigger than six can be divided into two odd prime numbers in N domain. This is the proof of Goldbach conjecture.

We notice the squares with the vertexes

$$
0, ~ p 0-2, ~ p 0, ~ 2
$$

And

$$
p 0, ~ p,<2 n, 2 n>, p 0+2
$$

And we can get points $1 / 2, Z P 1, Z P 2, Z P 3$, and $Z P 4$ show as on figure.1.:

Fig.3. The symmetry of zero-points of on the N-P domain
And we have a projection vertical to $S_{2 n}, p 0$ is the point at infinity show as on figure 2.
We find ZP1, ZP2, ZP3, ZP4 have a symmetry with $p 0-(n, n)$. Just as show on Fig. 2

$$
\begin{aligned}
& Z p 1=\frac{1}{2}+\frac{1}{3}\left(p 0-\frac{1}{2}\right) \\
& Z p 2=\frac{1}{2}+\frac{2}{3}\left(p 0-\frac{1}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& Z p 3=2 p 0-\left[\frac{1}{2}+\frac{2}{3}\left(p 0-\frac{1}{2}\right)\right]=\frac{1}{2}+\frac{4}{3}\left(p 0-\frac{1}{2}\right) \\
& Z p 4=2 p 0-\left[\frac{1}{2}+\frac{1}{3}\left(p 0-\frac{1}{2}\right)\right]=\frac{1}{2}+\frac{5}{3}\left(p 0-\frac{1}{2}\right)
\end{aligned}
$$

Because

$$
1 / 2=(1 / 2+1 / 2 \cdot i)(1 / 2-1 / 2 \cdot i)
$$

We can get circles with $1 / 2$ and the intersections with the axis are:

$$
Z p 1, Z p 2, Z p 3, Z p 4
$$

All of them on the symmetry of $1 / 2$ points.
We can get circles with $p 0$ and the intersections with the axis are:

$$
1, Z p 1, p 0, z p 3,2
$$

We can get circles with $\boldsymbol{p} \mathbf{0} \in \boldsymbol{p}$ and the intersections with the axis are

$$
p 0+1 / 2, ~ Z p 2, ~ p 0, ~ Z p 4, ~ p 0-1 / 2
$$

Just show as the figure.3.

Figure.4. Zero points with a symmetry of $1 / 2$ point

Riemann Zeta-Function is

$$
\xi(s)=\sum_{n=1} \frac{1}{n^{s}}=\prod \frac{1}{1-p^{s}} \quad(s=a+b i)
$$

Riemann Hypothesis: all the Non-trivial zero-point of Zeta-Function $\operatorname{Re}(s)=1 / 2$.
In fact, we have

$$
1+\left[\begin{array}{llr}
1+i & 1 & 0 \\
0 & \frac{1}{2} & 1 \\
1 & 0 & 1-i
\end{array}\right]\left[\begin{array}{lll}
1 / 2 & 1-\frac{1}{2 \pi i} & \cdots \cdots \cdots n-\frac{1}{2 \pi n i} \\
1+\frac{1}{2 \pi i} & 1 / 2 & \cdots \cdots \cdots \cdots \cdots \cdot \\
\cdots \cdots \cdots \cdots \cdots \cdot 1 / 2 & \cdots \cdots \cdots \cdots \cdot \cdot \\
n+\frac{1}{2 \pi n i} & \cdots \cdots \cdots \cdots \cdots \cdots \cdot 1 / 2
\end{array}\right]=0
$$

The $\operatorname{tr}(\mathrm{A})=1 / 2 * \mathrm{~N}$

We think this is the Proof of Riemann Hypothesis.

In fact, we have

$$
1+\frac{e^{i p \pi}-e^{i 2 n \pi}}{\sum \frac{1}{2^{N}}=2}=0
$$

$N \sim(0,1,2,3,4, \ldots \ldots \ldots)$ all the natural numbers.
$\mathrm{p} \sim(3,5,7, \ldots \ldots \ldots)$ all the odd prime numbers.
this equation gives a structure of all N and P and a $1 / 2$ fixed point.
$1 / 2, Z p 1, Z p 2$ quartier line $00-0$ and

$$
\begin{aligned}
& p 0-Z p 2=Z p 3-p 0 \\
& p 0-Z p 1=Z p 4-p 0
\end{aligned}
$$

we can constructure a Time-Space with energy coordinate system just give:
horizontal ordinate $\mathrm{t}-<\frac{C}{a_{F}}>$ is the time (s)
longitudinal coordinates $\langle h c\rangle$, h is plank constant (J.s) c is the velocity of light (m / s)

Fig.5. Time-Space with Energy
In Fig.2, And we notice that We have a square with the vertexes are

$$
0, ~ P 0+2, ~ P 0, ~ P 0-2
$$

The area of this domain is $S_{2 n}=2 n \times 2 n$, this we can define this as graviton field.
The rectangle with a center point 2 and the vertexes are

$$
Z P 1, ~ Z P 3, ~ P 0-1 / 2, ~ P 0+1 / 2
$$

The area of this domain $S_{E M}$ we can define this as electromagnetic field The square with a center point 2 and the vertexes are

$$
Z p 2, ~ Z p 4, ~ p 0-1, ~ p 0+1
$$

The area of this domain we can define this as strong interaction field
The line with a center point 2 and the vertexes are

$$
p 0+1, ~ p 0-1
$$

we can define this as weak-interaction
and

$$
\begin{aligned}
& S_{0} \sim h C \\
& \frac{1}{a_{F}} \sim \frac{h}{C}
\end{aligned}
$$

$1 / a_{F}$ can be considered as the curvature of the Space-Time with Energy $S_{2 n}=2 n \times$ $2 n$. We should call it gravitation.

