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Abstract

In search of a phenomenological model that would describe physics from Big
Bang to the Standard Model (SM), we propose a model with the following
properties (i) above an energy about Λcr > 1016 GeV there are Wess-Zumino
supersymmetric preons and Chern-Simons (CS) �elds, (ii) at Λcr ∼ 1016 GeV
spontaneous gauge symmetry breaking takes place in the CS sector and the
generated topological mass provides an attractive interaction to equal charge
preons, (iii) well below 1016 GeV the model reduces to the standard model with
essentially pointlike quarks and leptons, having a radius ∼ 1/Λcr ≈ 10−31 m.
The baryon asymmetry turns out to have a fortuitous ratio nB/nγ ≪ 1.
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1 Introduction

The observation of expanding baryon asymmetric universe is about 100 years
old. The concordance (standard) model [1] has been developed explaining obser-
vations though not with the same precision and extension as in particle physics
[2]. Even missing pieces exist like dark matter, baryon asymmetry and quantum
gravity.

In this note we take a �rst step to draft a model for both particles and
cosmology with simplicity as the main principle of uni�cation. It is commonly
understood that the quark electric charges and running interaction coupling
constants in the standard model (SM) imply a large uni�ed gauge group with
rich spectra of particles. We take an alternative position of keeping number of
elementary particles small, determined by global supersymmetry, and fermions
obeying Dirac equation with SM gauge interactions. In addition, we reinforce
our previous model by topological concepts of Chern-Simons model. On the
other hand, we do not exclude any current structure, like string theory, loop
quantum gravity, etc. but we want to start from certain, in our opinion, simpler
concepts and see how far they can take us.

So we split quarks and leptons in three pointlike constituents, called in this
note chernons (synonym for preon1 or superon). The reason for doing so is
disclosed in section 7. Of the many preon models in the literature there are
two of them which are like ours. One of them was proposed by Harari, and

1The term was coined by Pati and Salam in 1974 [3].
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independently by Shupe [4, 5]. The model of Finkelstein [6] was developed
from a di�erent basis, including the quantum symmetry group SLq(2) and knot
theory. It turned out, however, to agree with [4, 5]. The major di�erence
between the above models and our model [7, 8] is that ours has its basis in
unbroken global supersymmetry where superpartners are in the model initially,
not as new sparticles to be found in the future.

The scale where three chernon bound states form, making the standard
model particles in 1+2 dimensions, is assumed to be near the usual grand uni-
�ed theory (GUT) scale, about 1016 GeV, denoted here by Λcr. Below Λcr all
the four preon scenarios of the previous paragraph revert to the standard model
at accelerator energies. Above Λcr in the early universe chernons were mo-
mentarily located nearly �xed in the comoving frame of the rapidly expanding
universe making the 1+2 dimensional potential energy description a reasonable
approximation.

Chern-Simons-Maxwell (CSM) models (3.1) have been studied in condensed
matter physics papers, e.g. [9, 10, 11]. In this note we apply the CSM model
in particle physics phenomenology at high energy in the early universe.

We construct the visible matter of two fermionic chernons: (i) one charged
m−, (ii) one neutral m0

V , V = R, G, B, carrying quantum chromodynamics
(QCD) color, and the photon A. The action is C symmetric. The chernons
have zero (or small) mass. Weak interactions operate below Λcr between quarks
and leptons, just as in SM. The chernon baryon (B) and lepton (L) numbers
are zero. Given these quantum numbers, quarks consist of three chernons, as
indicated in table 1. There could be more composite states like those containing
m+m− pair. This annihilates immediately into other particles, which form later
leptons and quarks.

SM quark chernon state
uR m+m+m0

R

uG m+m+m0
G

uB m+m+m0
B

dR m−m0
Gm

0
B

dG m−m0
Bm

0
R

dB m−m0
Rm

0
G

Table 1: Quark-chernon correspondence. The upper index of m is charge zero or ± 1
3 . The lower

index is color R,G or B.

The article is organized as follows. In section 2 we recap the Wess-Zumino
model kinetic terms of the supersymmetric chernons and some scalars. The full
Chern-Simons-QED3 action is given in section 3. The chernon-chernon inter-
action potential is disclosed in 4. The transformation from chernons to quarks
and leptons takes place during in�ation, which is brie�y reviewed in section
5. Sakharov conditions are discussed in sectionsakharov. Our mechanism for
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baryon asymmetry is proposed in section 7. Conclusions are given in section 9.
In the appendix A a table of visible and dark matter is displayed.

2 Wess-Zumino action kinetic terms

We brie�y recap our chernon (superon) scenario of [7, 8], which turned out to
have close resemblance to the simplest N = 1 globally supersymmetric 1+3
model, namely the free, massless Wess-Zumino model [12, 13] with the kinetic

Lagrangian including three neutral �elds m, s, and p with JP = 1
2

+
, 0+, and

0−, respectively

LWZ = −1

2
m̄�∂m− 1

2
(∂s)2 − 1

2
(∂p)2 (2.1)

where m is a Majorana spinor, s and p are real �elds (metric is mostly plus).

We assume that the pseudoscalar p is the axion [14], and denote it below
as a. It has a fermionic superparther, the axino n, and a bosonic superpartner,
the saxion s0.

In order to have visible matter we assume the following charged chiral �eld
Lagrangian

L− = −1

2
m−

�∂m
− − 1

2
(∂s−i )

2, i = 1, 2 (2.2)

3 Chern-Simons-QED3 action

A number of 1+2 dimensional models have properties close to 1+3 dimensional
world as can be found in [9, 15, 16], see also [17]. Our choice here is 1+2
dimensional Chern-Simons (CS) action is [18, 19]

S =
k

4π

∫
M

tr(A ∧ dA +
2

3
A ∧A ∧A) (3.1)

where k is the level of the theory and A the connection. (The compatibility of
di�erent dimensions is discussed in section 5.)

The action for a Chern-Simons-QED3 model [11, 20] including two polariza-
tion ± fermionic �elds (ψ+, ψ−), a gauge �eld Aµ and a complex scalar �eld φ
with spontaneous breaking of local U(1) symmetry is

SCS−QED3 =

∫
d3x{−1

4
FµνFµν + iψ+γ

µDµψ+ + iψ−γ
µDµψ−

+
1

2
θϵµvαAµ∂vAα −me(ψ+ψ+ − ψ−ψ−)

−y(ψ+ψ+ − ψ−ψ−)φ
∗φ+Dµφ∗Dµφ− V (φ∗φ)}, (3.2)

where the covariant derivatives are Dµψ± = (∂µ + ie3Aµ)ψ± and Dµφ =
(∂µ + ie3Aµ)φ. θ is the important topological parameter and e3 is the coupling
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constant of the U(1) local gauge symmetry, here with dimension of (mass)1/2.
V (φ∗φ) represents the self-interaction potential,

V (φ∗φ) = µ2φ∗φ+
ζ

2
(φ∗φ)2 +

λ

3
(φ∗φ)3 (3.3)

which is the most general sixth power renormalizable potential in 1+2 dimen-
sions [21]. The parameters µ, ζ, λ and y have mass dimensions 1, 1, 0 and 0,
respectively. For potential parameters λ > 0, ζ < 0 and µ2 ≤ 3ζ2/(16λ) the
vacua are stable.

In 1+2 dimensions, a fermionic �eld has its spin polarization �xed up by the
sign of mass [22]. The model includes two positive-energy spinors (two spinor
families). Both of them obey Dirac equation, each one with one polarization
state according to the sign of the mass parameter.

The vacuum expectation value v of the scalar �eld φ is given by:

⟨φ∗φ⟩ = v2 = −ζ/ (2λ) +
[
(ζ/ (2λ))2 − µ2/λ

]1/2
(3.4)

The condition for its minimum is µ2 + ζ
2v

2 + λv4 = 0. After the sponta-
neous symmetry breaking, the scalar complex �eld can be parametrized by
φ = v +H + iθ, where H represents the Higgs scalar �eld and θ the would-be
Goldstone boson. For manifest renormalizability one adopts the 't Hooft gauge
by adding the gauge �xing term Sgt

Rξ
=
∫
d3x[− 1

2ξ (∂
µAµ −

√
2ξMAθ)

2] to the
broken action. Keeping only the bilinear and the Yukawa interaction terms one
has the following action

SSSB
CS−QED =

∫
d3x

{
−1

4
FµνFµν +

1

2
M2

AA
µAµ

− 1

2ξ
(∂µAµ)

2 + ψ+(i�∂ −meff )ψ+

+ ψ−(i�∂ +meff )ψ− +
1

2
θϵµvαAµ∂vAα

+ ∂µH∂µH −M2
HH

2 + ∂µθ∂µθ −M2
θ θ

2

− 2yv(ψ+ψ+ − ψ−ψ−)H − e3
(
ψ+��Aψ+ + ψ−��Aψ−

)}
(3.5)

where the mass parameters

M2
A = 2v2e23, meff = me + yv2, M2

H = 2v2(ζ + 2λv2), M2
θ = ξM2

A (3.6)

depend on the SSB mechanism. The Proca mass, M2
Aoriginates from the Higgs

mechanism. The Higgs mass, M2
H , is associated with the real scalar �eld. The

Higgs mechanism also contributes to the chernon mass, resulting in an e�ective
mass meff . There are two photon mass-terms in (3.5), the Proca and the
topological one.
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4 Chernon-Chernon interaction

The chernon-chernon scattering amplitude in the non-relativistic approximation
is obtained by calculating the t-channel exchange diagrams of the Higgs scalar
and the massive gauge �eld. The propagators of the two exchanged particles
and the vertex factors are calculated from the action (3.5) [11].

The gauge invariant e�ective potential for the scattering considered is ob-
tained in [23, 24]

VCS(r) =
e2

2π

[
1− θ

me

]
K0(θr) +

1

mer2

{
l − e2

2πθ
[1− θrK1(θr)]

}2

(4.1)

where K0(x) and K1(x) are the modi�ed Bessel functions and l is the angular
momentum (l = 0 in this note). In (4.1) the �rst term [ ] corresponds to the
electromagnetic potential, the second one { }2 contains the centrifugal barrier(
l/mr2

)
, the Aharonov-Bohm term and the two photon exchange term.

One sees from (4.1) the �rst term may be positive or negative while the
second term is always positive. The function K0(x) diverges as x → 0 and
approaches zero for x → ∞ and K1(x) has qualitatively similar behavior. For
our scenario we need negative potential between equal charge chernons. Being
embarrassed of having no data points for several parameters in (4.1) we can
give one relation between these parameter values for a negative potential. We
must have the condition2

θ ≫ me (4.2)

The potential (4.1) also depends on v2, the vacuum expectation value, and
on y, the parameter that measures the coupling between fermions and Higgs
scalar. Being a free parameter, v2 indicates the energy scale of the spontaneous
breakdown of the U(1) local symmetry.

5 In�ation and Supergravity

We discuss brie�y, and in simple terms, the question of di�erent dimensions
of CS theory and gravity. We assume that the universe at t ∼ 0 included a
subspace of one dimension less than the manifold of general relativity MGR.

3

A promising example of such a theory is Chern-Simons gauge theory de�ned
in a smooth, compact three-manifold MCS ⊂ MGR, having a gauge group G,
which is semi-simple and compact, and an integer parameter k. The Chern-
Simons �eld equations (3.1) require that A be �at [19]. The curvature tensor
may be decomposed, in any spacetime dimension, into a curvature scalar R,
a Ricci tensor Rµν , and a conformally invariant Weyl tensor C σ

µνρ . In 1+2

2For applications to condensed matter physics, one must require θ ≪ me, and the scattering
potential given by (4.1) then comes out positive [11].

3A line is one dimensional when looked from a distance but by getting very close to it one sees,
or rather knows, it consists of zero dimensional points, that is numbers.
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dimensions the Weyl tensor vanishes identically, and the Riemann curvature
tensor Rµνρσ is determined algebraically by the curvature scalar and the Ricci
tensor. Therefore any solution of the vacuum Einstein �eld equations is �at and
any solution of the �eld equations with a cosmological constant Rµν = 2Λgµν
has constant curvature. Physically, a 1+2 dimensional spacetime has no local
degrees of freedom. There are no gravitational waves in the classical theory,
and no gravitons in the quantum theory

CS theory, de�ned earlier by the action (3.1), is a topological, quantizable
gauge �eld theory [19]. The appropriate observables lead to vevs which cor-
respond to topological invariants. The observables have to be gauge invariant.
Secondly, they must be independent of the metric. Wilson loops verify these two
properties [19], and they are therefore the key to observables to be considered in
Chern-Simons theory. Independence of metric gives CS theories the desireable
property of background independence. The CS interaction (3.1) is e�ective only
at energy scales near and above Λcr. This we interpret as chernons living (mod
3) on surfaces of spheres with diameter of the order of 1/Λcr. These composite
states are quarks and leptons of the standard model in 1+3 dimensions.

In summary, the potential (4.1) dominates over general relativity, and Coulomb
repulsion, at distances below 1/Λcr in the 1+2 dimensional manifoldMCS while
at larger distances gravity is stronger.

At the beginning of in�ation, t = ti ∼ 10−36 s, the universe is modeled by
1+3 dimensional classical gravity, and Chern-Simons theory as long as T ≥ Λcr.
The Einstein-Hilbert action is

S =

∫
d4x

√
−g
(1
2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
(5.1)

The E-H action dominates rapidly leading in�ation to end at tR ≈ 10−32 s.
Then the in�aton, which is actually coherently oscillating homogeneous �eld, a
Bose condensate, reaches the minimum of its potential. There it oscillates and
decays to SM particles produced from chernons in the earlier phase of in�ation.
This causes the reheating phase, or the Bang, giving visible matter particles
more kinetic energy than dark matter particles have.

The CMB measurements of in�ation can be well described by a few simple
slow-roll single scalar potentials in (5.1). One of the best �ts to Planck data
[25] is obtained by one of the very oldest models, the Starobinsky model [26].
The action is

S =
1

2

∫
d4x

√
−g
(
R+

R2

6M2

)
(5.2)

where M ≪ MPl is a mass scale. Current CMB measurements indicate scale
invariant spectrum with a small tilt in scalar density ns = 0.965± 0.004 and an
upper limit for tensor-to-scalar ratio r < 0.06. These values are fully consistent
with the Starobinsky model (5.2) which predicts r ≃ 0.003.

The model (5.2) has the virtue of being based on gravity only physics. Fur-
thermore, the Starobinsky model has been shown to correspond to no-scale
supergravity coupled to two chiral supermultiplets. Some obstacles have to be
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sorted out �rst before reaching supergravity. To do that we follow the review
by Ellis et al. [27].

The �rst problem with generic supergravity models with matter �elds is that
their e�ective potentials do not provide slow-roll in�ation as needed. Secondly,
they may have anti-deSitter vacua instead of deSitter ones. Thirdly, looking
into the future, any new model of particles and in�ation should preferably be
consistent with some string model properties. These problems can be overcome
by no-scale supergravity models. No-scale property comes from their e�ective
potentials having �at directions without speci�c dynamical scale at the tree
level. This has been derived from string models, whose low energy e�ective
theory supergravity is.

Other authors have studied other implications of superstring theory to in�a-
tionary model building focusing on scalar �elds in curved spacetime [28] and the
swampland criteria [29, 30, 31]. These studies point out the inadequacy of slow
roll single �eld in�ation. We �nd it important to establish �rst a connection
between the Starobinsky model and (two �eld) supergravity.

The bosonic supergravity Lagrangian includes a Hermitian function of com-
plex chiral scalar �elds ϕi which is called the Kähler potential K(ϕi, ϕ∗j ). It
describes the geometry of the model. In minimal supergravity (mSUGRA)
K = ϕiϕ∗i . Secondly the Lagrangian includes a holomorphic function called the
superpotential W (ϕi). This gives the interactions among the �elds ϕi and their
fermionic partners. K andW can be combined into a function G ≡ K+ln |W |2.
The bosonic Lagrangian is of the form

L = −1

2
R+Kj

i ∂µϕ
i∂µϕ∗j − V − 1

4
Re(fαβ)F

α
µνF

βµν − 1

4
Im(fαβ)F

α
µνF̃

βµν (5.3)

where Kj
i ≡ ∂2K/∂ϕi∂ϕ∗j and Im(fαβ) is the gauge kinetic function of the chiral

�elds ϕi. In mSUGRA the e�ective potential is

V (ϕi, ϕ∗j ) = eK
[
|Wi + ϕ∗iW |2 − 3|W |2

]
(5.4)

where Wi ≡ ∂W/∂ϕi. It is seen in (5.4) that the last term with negative sign
may generate AdS holes with depth −O(m2

3/2M
2
Pl) and cosmological instability.

Solution to this and the slow-roll problem is provided by no-scale supergravity
models. The simplest such model is the single �eld case with

K = −3 ln(T + T ∗) (5.5)

where T is a volume modulus in a string compacti�cation.
The single �eld (5.5) model can be generalized to include matter �elds ϕi

with the followng Kähler potential

K = −3 ln(T + T ∗ − 1

3
|ϕi|2) (5.6)

The no-scale Starobinsky model is now obtained with some extra work from
the potential (5.4) and assuming ⟨T ⟩ = 1

2 . For the superpotential the Wess-
Zumino form is introduced [32]

W =
1

2
Mϕ2 − 1

3
λϕ3 (5.7)
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which is a function of ϕ only. Then WT = 0 and from V ′ = |Wϕ|2 the potential
becomes as

V (ϕ) =M2 |ϕ|2|1− λϕ/M |2

(1− |ϕ|2/3)2
(5.8)

The kinetic terms in the scalar �eld Lagrangian can be written now

L = (∂µϕ
∗, ∂µT

∗)
( 3

(T + T ∗ − |ϕ|2/3)2
)( (T + T ∗)/3 −ϕ/3

−ϕ∗/3 1

)(
∂µϕ
∂µT

)
(5.9)

Fixing T to some value one can de�ne the canonically normalized �eld χ

χ ≡
√
3 tanh−1

(
ϕ√
3

)
(5.10)

By analyzing the real and imaginary parts of χ one �nds that the potential (5.8)
reaches its minimum for Imχ = 0. Reχ is of the same form as the Starobin-
sky potential in conformally transformed Einstein-Hilbert action [33] with a
potential of the form

V =
3

4
M2(1− e−

√
2/3ϕ)2 (5.11)

when

λ =
M√
3

(5.12)

Most interestingly, λ/M has to be very accurately 1/
√
3, better than one part

in 10−4, for the potential to agree with measurements.
This is brie�y the basic mechanism behind in�ation in the Wess-Zumino

mSUGRA model, which foreruns reheating of visible matter. But only the
particles containing m chernons, i.e. the visible matter gets reheated. The dark
sector is going through reheating una�ected and is distributed smoothly all over
space. The quantum �uctuations of the dark �elds are enhanced by gravitation
and provide a clumpy underlay for visible matter to form objects of various
sizes, from stars to large scale structures.

6 Sakharov conditions

Sakharov suggested [34] three necessary conditions that must satis�ed to pro-
duce matter and antimatter at di�erent rates. They are (i) baryon number B
violation, (ii) C-symmetry and CP-symmetry violation and (iii) interactions out
of thermal equilibrium.

Baryon number violation is clearly needed to reach baryon asymmetry. This
is valid in our model because baryon number is not de�ned conventionally.
C-symmetry violation is needed so that the interactions which produce more
baryons than anti-baryons will not be counterbalanced by interactions which
produce more anti-baryons than baryons. This is discussed in section 8. CP-
symmetry violation is required because otherwise equal numbers of left-handed
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baryons and right-handed anti-baryons would be produced, as well as equal
numbers of left-handed anti-baryons and right-handed baryons. The observed
pattern of CP-violation [1] remarkably con�rms the Cabibbo�Kobayashi�Maskawa
(CKM) description of three fermionic generations of particles [35, 36]. CP-
violation phenomenology is discussed in detail in [37, 38]. Our present one
generation "skeleton" model cannot satisfy this condition but in principle, by
completing the model and deriving the low energy limit, it could be explained.
In the SM, the CKM model gives an explanation of why the breaking is so small,
despite the phase associated to it being of order one. Thirdly, interactions are
out of thermal equilibrium in a rapidly expanding universe.

7 Baryon asymmetry

We now examine the potential (4.1) in the early universe. Consider large number
of groups of twelve chernons each group consisting of fourm+, fourm− and four
m0 particles. Any bunch may form only electron and proton (hydrogen atoms
H), only positron and antiproton (H̄) or some combination of both H and H̄
atoms [7, 8]. This is achieved by arranging the chernons appropriately (mod
3) using table 2. This way the transition from matter-antimatter symmetric
universe to matter-antimatter asymmetric one happens straightforwardly.

Because the Yukawa force (4.1) is the strongest force the light e−, e+ and
the neutrinos are expected to form �rst at the very onset of in�ation. To obey
conditionB−L = 0 of baryon-lepton balance and to sustain charge conservation,
for one electron made of three chernons, nine other chernons have to be created
simultaneously, these form a proton. Accordingly for positrons. One neutrino
requires a neutron to be created. The m0 carries in addition color enhancing
neutrino formation. This makes neutrinos di�erent from other leptons and the
quarks.

Later, when the protons were formed, because chernons had the freedom
to choose whether they are constituents of H or H̄ there are regions of space
of various sizes dominated by H or H̄ atoms. Since the universe is the largest
statistical system it is expected that there is only a very slight excesses of H
atoms (or H̄ atoms which only means a charge sign rede�nition) which remain
after the equal amounts of H and H̄ atoms have annihilated. The ratio nB/nγ
is thus predicted to be ≪ 1. The ratio nB/nγ is a multiverse-like concept.

Fermionic dark matter has in this scenario no mechanism to become "baryon"
asymmetric like visible matter. Therefore we expect that part of fermionic dark
matter has annihilated into bosonic dark matter. Secondly, we predict there
should exist both dark matter and anti-dark matter clumps attracting visible
matter in the universe. Collisions of anti-dark matter and dark matter celes-
tial bodies would give us a new source for wide spectrum gravitational wave
production (the lunar mass alone is ∼ 1049 GeV).
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8 Nucleon isospin violation

The topological mass works in favor of heavier d-quark and neutron [39], in
qualitative agreement with lattice calculations. Care must be taken not to
do double counting for d/u-quark mass di�erence with respect to CS-QED3

calculations and QCD/QED lattice results. It is plausible that the topological
terms in action (3.2) are very small on scales ≪ Λcr in 1+3 dimensions and
therefore QCD/QED only contribute to the mass di�erence.

9 Conclusions and Outlook

Above Λcr the fermionic chernons are C symmetric with equal masses and
charges symmetrically around zero: {-1/3, 0, 1/3}. Below the transition en-
ergy Λcr fractional charge chernon composites form quarks while charge zero
and one states are leptons as shown in table 2. These composite states behave
to a good approximation like pointlike particles: the composite radius being
of the order of 10−31 m corresponding to a photon energy of Λcr ∼ 1016 GeV.
Below this energy the standard model is obtained [4, 5, 6, 8] and photons lose
their resolving power to di�erentiate the Yukawa trapped chernons inside SM
particles.

The main results of this note are the Chern-Simons-QED3 extension of the
Wess-Zumino Lagrangian (2.1), (2.2) and the viable mechanism for baryon
asymmetry with the ratio nB/nγ ≪ 1. Large scale cosmological simulations
are needed to obtain detailed information of the properties of the model pro-
posed above. The central experimental test of our scenario is �nding no broken
supersymmetry (MSSM) superpartners [40] in the universe.

On the theoretical side mathematical work is needed extensively. But the
situation is interesting. When the Chern-Simons, or Kodama, state

ψ(A) = N exp
(
− 3

2l2PlΛ
YCS

)
(9.1)

where lPl is the Planck length and Λ the cosmological constant and

YCS =

∫
AIdAI +

1

3
ϵIJKA

IAJAK (9.2)

is reduced to mini-superspace it becomes, with some reservations, the Fourier
dual of the Hartle-Hawking wave function of the universe [41, 42, 43].

Another interesting matter, though likewise troubled, is the possible con-
nection of the Kodama state to quantum gravity [44].

A Chernon-particle correspondence

The table 2 gives the chernon content of SM matter and a proposal for dark
matter.
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SM Matter Chernon state
νe m0

Rm
0
Gm

0
B

uR m+m+m0
R

uG m+m+m0
G

uB m+m+m0
B

e− m−
Rm

−
Gm

−
B

dR m−m0
Gm

0
B

dG m−m0
Bm

0
R

dB m−m0
Rm

0
G

Dark Matter Chernon state
boson (or BC) axion(s), s0

e′ axino n
meson, baryon o nn̄, 3n
nuclei (atoms with γ′) multi n
celestial bodies any dark stu�
black holes any chernon

Table 2: Visible and Dark Matter with corresponding particles. m0 is color triplet, m± are
color singlets. e′ and γ′ refer to dark electron and dark photon, respectively. BC stands for Bose
condensate. Identical chernon state antisymmetrization not shown.
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