How to prove experimentally that $\infty=3$ in my definition

August 26, 2022 Yuji Masuda
y_masuda0208@yahoo.co.jp

Abstract

In this chapter, I describe how to prove my definition, in particular, $\infty=3$, using random functions in

EXCEL.

VERIFICATION METHOD

The random function in Windows and Excel generates random numbers greater than 0 and less than 1 .
The inverse of the random number is used in this study.
In this study, we displayed $100,000 \mathrm{f}(\mathrm{x})=1 /$ RAND () and checked its average value $\mathrm{A}(\mathrm{x})$. Then, we continued to refresh all 100,000 random numbers at the same time and continued the operation of observing the variation of the average value $\mathrm{A}(\mathrm{x})$.
As a result of refreshing 100 times, $\mathrm{A}(\mathrm{x})>10$ with a probability of 99%. From this result, it is thought that as the number of $\mathrm{f}(\mathrm{x})$ is increased as much as possible, the probability of $\mathrm{A}(\mathrm{x})>10$ will approach 100% as much as possible.

The probability that $10 \times \operatorname{RAND}()$ is $\mathrm{n} \leq 10 \times \operatorname{RAND}()<\mathrm{n}+1(0 \leq \mathrm{n}<9)$ is $1 / 10$.

$$
\begin{array}{|l|l}
C=\frac{1}{10} \times\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right) \\
\text { from my definition } \\
=\frac{2}{10} \times\left(\frac{1}{1}+\frac{6}{2}+\frac{6}{3}+\frac{16}{4}+\frac{1}{0}\right)=\frac{1}{0} \times\left(1+3+2+4+\frac{1}{0}\right) \\
=\infty(\infty+10)
\end{array} \quad \begin{aligned}
& D=\frac{1}{10} \times\left(\frac{1}{0}+\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right) \\
& \text { from my definition } \\
& =\frac{2}{10} \times\left(\frac{1}{1}+\frac{6}{2}+\frac{6}{3}+\frac{16}{4}+\frac{1}{0}\right)=\frac{1}{0} \times\left(1+3+2+4+\frac{1}{0}\right) \\
& =\infty(\infty+10)
\end{aligned}
$$

PROOF

$$
\begin{aligned}
& \frac{C \times\left(\frac{\infty-3}{5}\right)+1+2+3}{\infty} \leq A(x) \leq \frac{D \times\left(\frac{\infty-3}{5}\right)+1+2+3}{\infty} \\
& \frac{C \times\left(\frac{\infty-3}{5}\right)}{\infty}+\alpha \leq A(x) \leq \frac{D \times\left(\frac{\infty-3}{5}\right)}{\infty}+\alpha \\
& \frac{\infty(\infty+10) \times\left(\frac{\infty-3}{5}\right)}{\infty}+\alpha \leq A(x) \leq \frac{\infty(\infty+10) \times\left(\frac{\infty-3}{5}\right)}{\infty}+\alpha \\
& \therefore A(x)=(\infty+10)\left(\frac{\infty-3}{5}\right)+\alpha \\
& A(x)=(\infty+10)\left(\frac{\infty-3}{5}\right)+\alpha \geq 10 \\
& \therefore(\infty+10)\left(\frac{\infty-3}{5}\right)=10 \\
& \therefore \infty^{2}+7 \infty-80=\infty^{2}+7 \infty=\infty^{2}+2 \infty=0 \\
& \therefore \infty=-2=3
\end{aligned}
$$

