A Fractal Belief KL Divergence

Jie Zenga, Fuyuan Xiao\textsuperscript{a,*}

aSchool of Big Data and Software Engineering, Chongqing University, No.55 South University Town Road, Shapingba District, Chongqing 401331, China

Abstract

In this paper, a novel symmetric fractal-based belief KL divergence is proposed to more appropriately measure the conflict between BPAs.

\textit{Keywords:} Dempster–Shafer evidence theory; Fractal Belief KL divergence; Conflict management; Multi-source data fusion; Classification;

1. The proposed method

\textbf{Definition.} (Symmetric fractal-based belief KL divergence measure)

Let \(m_1 \) and \(m_2 \) be two belief functions in the frame of discernment \(\Theta \). The symmetric fractal-based belief KL divergence \(FBD_{SKL}(m_1, m_2) \) is defined as:

\[
FBD_{SKL}(m_1, m_2) = \frac{1}{2} \sum_{i=1}^{2^n-1} \left[m_{F_1}(H_i) \log \frac{m_{F_1}(H_i)}{\sqrt{m_{F_1}(H_i) \times m_{F_2}(H_i)}} + m_{F_2}(H_i) \log \frac{m_{F_2}(H_i)}{\sqrt{m_{F_2}(H_i) \times m_{F_1}(H_i)}} \right],
\]

where \(m_{F_k}(H_i) \) is based on fractal process and is defined as:

\[
m_{F_k}(H_i) = \sum_{H_i \subseteq G_i} \frac{m_k(G_i)}{2^{|G_i|} - 1},
\]

where \(H_i, G_i \subseteq \Theta \).

*Corresponding author: Fuyuan Xiao, School of Big Data and Software Engineering, Chongqing University, No.55 South University Town Road, Shapingba District, Chongqing 401331, China.

Email address: doctorxiaofy@hotmail.com; xiaofuyuan@cqu.edu.cn (Fuyuan Xiao)