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1 Intuitive Geometric Significance of the Rota-
tion Transformation Matrces of Spin 1

2,Why
Half Angles in SU(2)

The transformation of any point on a four-dimensional unit sphere is bounded
by the formular x2 + y2 + z2 + w2 = 1.

 

As shown in the figure above, a unit four-dimensional sphere can be repre-
sented by unit three-dimensional balls. The three-dimensional sphere is at the
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origin of the w-axis, the center of the three-dimensional sphere is located at
one unit distance away from origin along w-axix and at origin on the x, y, and
z axes respectively. The transformation of points on the four-dimensional unit
sphere corresponds to the transformation of points in the three-dimensional unit
ball(surface included).

It is also possible to project the potential vector of any point on a four-
dimensional sphere onto two complex planes to produce two complex numbers,
then map these two complex numbers onto one complex plane. The sum of
the squares of the modulo lengths of these two complex numbers is a constant.
Changing the value of this constant corresponds to the three-dimensional Euler
rotation.

 

As shown in the figure above, the three-dimensional Euler rotation is not
just a three-dimensional vector rotation, but in nature it represents a rigid
body rotation. The rotation of axis vector R of a rigid body in 3D space can be
captured by two angle parameters, while the rigid body can also rotate on its
axis R, which produce another angle parameter. Usually, the sequence of Euler
rotation is as follows assuming there is a fixed follow-up Cartesian coordinate
system xyz on the rigid body:the rigid body firstly rotates around its z-axis by
α angle, then around its y-axis by β angle, and finally rotates around its x-axis
by γ angle. Thus the rigid body is able to reach any specified orientation state
from its initial orientation state by rotation.

First, project the axis unit vector of a three-dimensional rigid body onto
the z-axis and the xy plane to get Rz and Rxy. Note that Rz can be positive
or negative, while Rxy can only be positive. Draw them on a complex plane,
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denoted by Cz and Cxy respectively:

 

As shown in the figure above, the modulus of Cz is equal to that of Rz, and
the modulus of Cxy is equal to that of Rxy. First let’s find out the relationship
between Rz and Rxy in three-dimensional space, and assume that Cz and Cxy

is orthogonal. If Rz is positive,it points to the left side of Cxy, and if Rz is
negative, it is points to the right side of Cxy.

Now, lets remove the assumption that Cz and Cxy must be orthogonal,but
keep the rule–”If Rz is positive it points to the left side of Cxy, if Rz is negative
it points to right side of Cxy side” unchanged. Otherwise, it will be impossible
to disginguish whether Rz is positive or negative

Now, lets denote Cxy by C1, and Cz by C2.
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As shown in the figure above, let’s draw an auxiliary vector C on the complex
plane with the arrow pointing downword of the semi-complex plane.That is, its
phase angle is between -π and 0. Next, draw C1 on the right side of C, and
C2 on the left side of C under mirror-symmetrically (corresponding to Rz being
positive). The angle between C2 and C is α

2 , because the angle is constrainted
to change between 0 and π, which corresponds to the rotation of the three-
dimensional Euler rotation around the z-axis——ranging from 0 to 2π. If the
Rz corresponding to C2 is negative, then C2 points to the same side of C1 (ie,
the right side of C). At this time, C2 and C1 are mirror-symmetrical about the
vertical line passing through the origin of C.

The following matrix acts on C1 and C2 at the same time while keeping the
modulo of C1 and C2 unchanged, and rotate them line up as C. This rotation cor-
responds to the rotation of Euler rotation around the z-axis in three-dimensional
space, which means just half-angle is required instead of full-angle:(

ei
α
2 0
0 e−iα

2

)(
c1
c2

)
. (1)
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After C1 and C2 line up as C, now change the lengths of C1 and C2 but
keep the square sum of their modulo unchanged in order for them to reach to
the same direction and the same modulo 1√

2
:

5



 

This is equivalent to keep the phase between C ′
1 and C ′

2, but the former
modulo changes from positive to 1√

2
, and the latter change from positive or

negative modulo to 1√
2
, the sum of the squares of the two modulo remains at 1.

This is equivalent to the former being the value of sine of an angle between 0 and
π (always positive), the latter being that of cosine (positive or negative), and
the changing range of the angle (set to β

2 ) is π (otherwise no way to guarantee
that the range is still between 0 and π after the transformation), which just
corresponds to the range of change of β is 2π, that is, the Euler rotation of a
rigid body in three-dimensional space around the y-axis.(

cos β
2 sin β

2

− sin β
2 cos β

2

)(
C ′

1

C ′
2

)
=

(
1√
2
1√
2

)
e−i γ

2

(2)

(
C ′

1

C ′
2

)
=

(
Rxy

Rz

)
e−i γ

2 (3)

Now, the two vectors are completely coincident. Their phases are the same as

that of C– e−
iγ
2 , and the modulo of both are 1√

2
. Lastly, they rotate γ

2 angle

counterclockwise and reach the real axis simultaneously:(
cos γ

2 i sin γ
2

i sin γ
2 cos γ

2

)( 1√
2
1√
2

)
e−i γ

2 =

(
1√
2
1√
2

)
(4)

The changing range of angle −γ
2 is between −π ∼ 0, because we agreed from

the beginning that the complex number C is in the lower half complex plane.
So the changing range of the angle γ is 0 ∼ 2π, which just corresponds to the
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Euler angle of rotation around x-axis in three-dimensional space. If we use the
upper half complex plane for C at the beginning and perform similar operation
with the range of angles used is 0 ∼ π, which also completely correspond to all
Euler rotations in three-dimensional space. So, this is a 2-to-1 correspondence.

The three transformation matrices used above are common representation
matrices of SU(2). Their exponential forms are:(

ei
α
2 0

0 e−iα
2

)
= eiσz

α
2 , (5)(

cos β
2 sin β

2

− sin β
2 cos β

2

)
= eiσy

β
2 , (6)(

cos γ
2 i sin γ

2
i sin γ

2 cos γ
2

)
= eiσx

γ
2 . (7)

The exponent parts are three Pauli matrices :

σz =

(
1 0
0 −1

)
, σy =

(
0 −i
i 0

)
, σx =

(
0 1
1 0

)
. (8)

The following are three generators of commonly used representation matrices
of SU(2):

iσz =

(
i 0
0 −i

)
, iσy =

(
0 1
−1 0

)
, iσx =

(
0 i
i 0

)
. (9)

This is the infinitesimal form of the change of C1 and C2 mentioned above:
The first matrix represents infinitesimal changes of C1 in the direction of i in

the complex plane, and infinitesimal changes of C2 in the direction of -i. (The
accumulation of this infinitesimal change is the rotation in a finite angle, that
is, the reverse rotation of C1 and C2).

The second matrix represents infinitesimal changes of C ′
1 in the direction

of the real axis, which is proportional to the modulus of C ′
2; and infinitesimal

changes of C ′
2 in the negative direction of the real axis, which is proportional to

the modulus of C ′
1. This means they tangle to adapt to each other.

The third matrix represents infinitesimal changes of both C ′′
1 and C ′′

2 in the
direction of i, which is proportional to the length of each other. This means
they rotate counterclockwise simultaneously.

For more information about the intuitive geometry meaning of Pauli matrices
including their commutative form,please refer to my article: https://vixra.

org/abs/1710.0198

2 The Intuitive Geometric Meaning of Spin 1
Under Commonly Used Rotation Matrices

The intuitive geometric meaning of spin 1
2 is explained clearily. Why do we

use half-angle to correspond to the full angle in three-dimensional space is also
explained, please refers to https://vixra.org/abs/1810.0324.
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Now let’s study the usual rotation matrices of spin 1 using similar reasoning
method. When a particle with spin 1 passing through the instrument along the
y-axis of a Stern-Gerlach instrument, there will be possibilities of deflection–+1,
0, and -1–in the z-axis of the instrument(the up and down direction of the in-
strument). The three possibilities show that the particle may have spin angular
momentum +1, 0, or -1 in the z-direction of the instrument. The probability
amplitudes of these three possibilities are represented by three complex numbers
C1, C0, C2, and the sum of square of the moduloes is 1.

Expressing them in a column vector, i.e, the wavefunction of angular mo-
mentum of spin 1:  C1

C0

C2

 (10)

It is time to predict how the wavefunction of spin—i.e. the above column
vector—change with the rotation of the instrument by an angle α around its z-
axis(what are the three probabilities of the three deflections of the particle along
the z-axis if the instrument rotated)? This corresponds to a transformation
matrix–the rotation matrix Dz–acting on the column vector. Similarly,how to
predict the result of the change in the above column vector if the instrument
rotates around its y-axis by an angle of β, or by an angle of γ around its x-axis
with the rotation matrix Dy or Dx acting on the column vector respectively.
The spin rotation matrices Dz, Dy and Dx in these three directions are: eiα 0 0

0 1 0
0 0 e−iα

 (11)


1
2 (1 + cos(β)) sin(β)√

2
1
2 (1− cos(β))

− sin(β)√
2

cos(β) sin(β)√
2

1
2 (1− cos(β)) − sin(β)√

2
1
2 (1 + cos(β))

 (12)


1
2 (1 + cos(γ)) i sin(γ)√

2
1
2 (−1 + cos(γ))

i sin(γ)√
2

cos(γ) i sin(γ)√
2

1
2 (−1 + cos(γ)) i sin(γ)√

2
1
2 (1 + cos(γ))

 (13)

What are the intuitive geometric meaning of these three matrices? How do
we quickly get them by intuitive geometric reasoning without rot memory or
looking them up from books?

From the link at the beginning of this article, we know that the rotation
matrix of spin 1

2 , i.e. the SU(2), is three transformations which keep the sum
of the squares of the modulo unchanged of two vectors on a complex plane.The
three transformations correspond to the Euler rotation SO(3) in 3D space, and
it is a 2-to-1 correspondence. Similarly, we can achieve a 1-to-1 correspondence
by using three transformations on the complex plane which keep the sum of the
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squares of the modulus constant to correspond to the Euler rotation in the 3D
space.

First, we put three ordered vectors on the complex plane(three ordered com-
plex numbers, or one three-dimensional complex vector as shown below), namely
the three ordered complex numbers C1, C0 and C2 are actually three possible
values of 1,0 and -1 of the projection of angular momentum of spin 1 on the z
axis, which corresponds to the probability amplitudes C+, C0, C− bounded by
the sum of their squares of modulo is 1:

 

 c1 = r1e
−i(ν+α)

c0 = r0e
−iν

c2 = r2e
−i(ν−α)

(14)

Transformation keeping the sum of the squares of r0, r1, and r2 as 1 corre-
sponds to the Euler rotation of the three-dimensional space.

In addition to the exponents θ in each reiθ, we also need to agree on the sign
of three rs: r1 and r2 are always positive(including 0), and rθ can be positive or
negative. Picture the setting this way: The projection of a point on the three-
dimensional unit sphere on the z-axis is the component rz which is r0 here, can
be positive or negative; the projection onto the xy plane is the component rxy
which is always positive, and rxy can be decomposed by r1 and r2 which are
also positive.

The effect of the first matrix Dz: eiα 0 0
0 1 0
0 0 e−iα

 r1e
−i(γ+α)

r0e
−iγ

r2e
−i(γ−α)

 =

 r1
r0
r2

 e−iν . (15)

Keeping the modulus of these three complex numbers the same while C1 and
C2 rotate in the opposite direction and line up on the same line C0. The rota-
tion amplitude, that is the α angle, ranges between 0 ∼ 2π, which completely
corresponds to the three-dimensional rigid body Euler rotation angle α around
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the z-axis):

 

The above figure shows only the phase of C1 and C2 changes but none of
their lengths .

Next, we are going to adjust only the lengths of r1, r0 and r2, while keeping
the sum of the squares of the modulus constant at 1. r1, r0, and r2 are three
real numbers, keeping the sum of the squares at 1 is equivalent to the rotation
of that position vector on a unit sphere.

We make an auxiliary three-dimensional coordinate system and an unit
sphere as shown in the figure below:
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The equation of this unit sphere is:

x2 + y2 + z2 = 1, (16)

It intersects with a plane whose equation is z = −x + 1, and the intersecting
line is a small circle on the unit sphere:

y2 = −2x2 + 2x. (17)

The points (1, 0, 0) and (0, 0, 1) of the (x, y, z) coordinate system the small circle
passes through are the maximum points on the x-axis and z-axis. The extreme
value of the small circle on the y-axis is: − 1√

2
and 1√

2
, at ( 12 , −

1√
2
, 1

2 ) , and ( 12 ,
1√
2
, 1

2 ).

r1 and r2 are always positive, which correspond to the coordinates of the
point of the small circle on the x-axis and z-axis are also always positive. r0
can be positive or negative, and the coordinates of the point on the y-axis
corresponding to the small circle can be positive or negative.

Now, the point (r1, r0, r2) on the small circle rotates an angle of β clockwise
along the small circle (around the z′ axis in the figure, that is, the bisector of the
angle between the x-axis and the z-axis) clockwise reaching the point ( 12 ,

1√
2
, 1
2 )

on the small circle. This point is exactly the maximum point along the y-axis
of the small circle. Obviously, the possible rotation range of β is θ to π

2 , which
completely corresponds to the β angle that the three-dimensional Euler rotation
around the y-axis. Now we need to formalize a rotation matrix around the z′

axis by a beta angle which transforms the point (r1, r0, r2) to the point ( 12 ,
1√
2
,

1
2 ).

We first rotate the z-axis in the figure around the y-axis by π
4 to the z’ axis.

Next, let the point on the small circle rotate −β angle around the current z-axis,
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and then rotate the z-axis around the y-axis by −π
4 back to the original position

of the z-axis. cos
(
−π

4

)
0 − sin

(
−π

4

)
0 1 0

sin
(
−π

4

)
0 cos

(
−π

4

)
 ·

 cos(β) sin(β) 0
− sin(β) cos(β) 0

0 0 1

 ·

 cos
(
π
4

)
0 − sin

(
π
4

)
0 1 0

sin
(
π
4

)
0 cos

(
π
4

)
 =

1

2

 cos(β) + 1
√
2 sin(β) 1− cos(β)

−
√
2 sin(β) 2 cos(β)

√
2 sin(β)

1− cos(β) −
√
2 sin(β) cos(β) + 1

 .

This is exactly the rotation matrix Dy of spin 1 around y. Simply put,
the seemingly complicated matrix Dy is actually completely equivalent to the
rotation matrix around the bisector of the x and z axes in the xyz Cartesian
coordinate system in three-dimensional space.

Back to the complex plane, the three complex numbers now becomes:

 


C ′′

1 = 1
2e

−iν

C ′′
0 = 1√

2
e−iν

C ′′
2 = 1

2e
−iγ

(18)
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Finally, keep their respective modulus unchanged while rotating them by an
angle of γ so that they all reach to the real axis. The following matrix play this
role, which is exactly the geometric effect of the rotation matrix Dx of spin 1:


1
2 (1 + cos(γ)) i sin(γ)√

2
1
2 (−1 + cos(γ))

i sin(γ)√
2

cos(γ) i sin(γ)√
2

1
2 (−1 + cos(γ)) i sin(γ)√

2
1
2 (1 + cos(γ))

 ·

 1
2e

−iγ

1√
2
e−iγ

1
2e

−iγ

 =

 1
2
1√
2

1
2

 .

(19)

 

Postscript: Of course, the most common method of using three vectors (that is,
three complex numbers) to correspond to the three-dimensional Euler rotation
on a complex plane, is to line up the three complex numbers on one same
straight line on that complex plane, with the same phase while the sign of the
modulus of x, y and z be positive or negative.This setting corresponds to the
three components of a vector in three-dimensional space. Then keep one of
them unchanged while changing the length of the other two complex numbers
(the length mentioned here can be positive or negative), and keep the sum of
squares constant. It is a pure real transformation this way. By setting the
relative parameters, the three commonly rotation matrices in three-dimensional
space apply here.
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