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This paper demonstrates why – regarding fuel consumption – it is more senseful to perform
stationkeeping at Lagrange point as often as possible, i.e. when thrust needed is greater than 12 cm/s
for the James Webb Space Telescope. Fuel can be saved by striving to correct the orbit each time as
early as manageable. With such change, the conservative estimate for the mission lifetime increase
is over 12%.

INTRODUCTION

An interesting placement of telescopes in space are
Lagrange points. One of them, namely Sun-Earth’s L2
point has been chosen as most appropriate for the JWST,
James Webb Space Telescope [1]. This stationary posi-
tion is unstable [2], therefore small perturbations increase
with time. For this reason station keeping is required and
fuel is needed. It is not yet realistic to expect refueling
of JWST’s fuel reservoir, so its lifetime is limited by fuel
consumption. In case of JWST the expected lifetime is
around a decade due to Telescope’s very successful de-
ployment [3].

Current station keeping plan is for the maneuver to
happen every three weeks and skipped if telescope’s orbit
is still close enough to L2 [4]. Such plan can be seen as
rigid.

The goal of this paper is to propose a more economic
way of fuel consumption. As an argument, the fuel
needed per some time period is compared between two
basic station keeping plans, namely an instant impulse
by fuel kick at fixed distances from the stationary point.

EVALUATION

Let us consider the potential around the stationary
point L2. The effective potential is best described in the
rotating frame, taking gravitation and centrifugal force
into account, without Coriolis force for simplicity [5].

To estimate needed fuel, the test body of mass m – i.e.
the telescope – is first left for some time to diverge away
from the starting position close to the stationary point
L2, where it starts at rest. At a predetermined point
some fuel is burnt to kick it back to the initial almost-
stationary-position. To return there it needs velocity v,
if −v was the velocity away from L2 before the kick. The
velocity |v| is computed using ∆T + ∆V = 0, energy
conservation in effective potential V ,

mv2

2
= ∆T = −∆V = −(V − V0) = V0 − V.

Next, the needed fuel impulse Fδt is computed through
required momentum change ∆Γ, taking ∆v = v−(−v) =

2v,

Fδt = ∆Γ = m ∆v = 2mv =
√
8m(V0 − V ).

To compare efficiency of fuel powered impulses at var-
ious divergence thresholds, the impulse should be nor-
malised with time in which the test object freely diverges
from the initial almost stationary point. This time can
be evaluated solving the equation of motion. It is linear
in the vicinity of L2, since effective potential there can
be approximated with a quadratic function,

V (x) = −1

2
αx2,

where x = 0 is taken to be a stationary point and α is a
constant, in principle determined from the second order
derivative of the effective potential. Solving the equation
of motion, i.e. Newton’s law

ẍ = − 1

m

dV
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=

α

m
x

for x = x(t) gives exponential relation. The time at
which the test object gets to some point x can then be
derived by inverting the solution,

t =

√
m

α
log

x

xm
,

with xm a parameter chosen to be small enough for the
quadratic approximation of the effective potential to still
be appropriate in the considered region from xm to the
stationary point at 0. Furthermore at t = 0 the test
object would get to xm. Time starts at some negative
value, when x is a small deviation from L2 which is at 0.
As time t increases, the test object moves toward a chosen
threshold xi. After the momentary fuel burn, the same
amount of time is needed for the test object to return
to the initial point, due to reversibility of the differential
equation’s solutions.
Fuel consumption can be compared between plans of

different xi via time normalized impulses, which are com-
puted as
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where xi are turning points and x0 ≈ 0 the starting point
close to stationary, which is also why V0 is taken as 0.
Let us set x0 = 10−3xm and furthermore compare x1 =
10−1xm and x2 = 2 · x1 = 2 · 10−1xm.
The ratio of time-normalized-fuel-consumption be-

tween station-keeping plans of fuel-boost at x1 and x2 =
2x1 is
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log x2
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=
1

2

log 2 · 10−1 − log 10−3

log 10−1 − log 10−3
≈ 0.58

and is lower than 1. This means the fuel consumption is
lower if the boost is made earlier, i.e. more often.

Addition of thruster start up

For a fuel boost the initial cost of starting the thruster
has to be considered in practice. This can be added to
the evaluation as Fδt 7→ Fδt + c for some constant c.
The full result for the ratio changes into
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For large c the first factor is close to 1 and the ratio
up to 1.15. Since this is larger than 1 it would mean the
boost has too much of initial cost and running it rarely
would be more economic.

If xm is large enough however, the first factor can be
lower. In the limit xi ≫ c/

√
αm the factor evaluates to

1
2 as in the first evaluation. For x1 and x2 as above, the
factor is

x1 +
c√
αm

x2 +
c√
αm

=
1 + c√

αmx1

2 + c√
αmx1

and is lower than 1.15−1 ≈ 0.87 for c < 5.6 ·
√
αm x1,

meaning the consumption ratio is less than 1. Further-
more it means the fuel consumption is lower with ear-
lier boosts, provided the return thresholds xi are large
enough for the thruster start-up cost to relatively dimin-
ish.

Lifetime expectancy

The improvement of the telescope’s lifetime ex-
pectancy can be evaluated by comparing the average ex-
pected fuel burn. JWST’s fuel budget is 2.43m

s annually
which means on average 14 cm

s per stationkeeping ma-
noeuvre, which can be compared to the threshold for
using JWST’s thruster, 12 cm

s [4]. Taking x2 = 14
12 · x1

in the first example gives the consumption ratio 0.886,

meaning over 11% of fuel can be saved if stationkeeping
is performed regularly at the threshold 12 cm

s .
The expected lifetime expectancy increase in this case

is 12.9%, which is a conservative estimate. Due to non-
linearity, the distribution of thruster burns around the
average 14 cm

s according to the current plan contributes
to even larger ratio, so the improvement can be expected
even larger.

CONCLUSION

It can be concluded that it is more economic to plan
stationkeeping as early as possible, considering of course
that running the engine also has some initial cost to it.
The threshold for using JWST’s thruster is ∆v = 12 cm

s .
Fuel consumption increases if the free movement is un-
dergone for a longer period. An improved plan regarding
fuel use would be to use the thruster as soon as the boost
needed to return it closer to a desired orbit is over the
above ∆v threshold.
It remains open to check how fuel cost increases in

the full potential around the Lagrange point, together
with Coriolis force. The improvement of fuel consump-
tion enlengthens lifetime expectancy, conservatively esti-
mated by over 12%. Better estimate can be derived as
data about ongoing stationkeeping fuel budget spending
is known.
Costs should be seen as investments. It pays off to

use fuel as early as manageable, compared to using it per
fixed schedule, since waiting can be costly. When the sun
is up, the early bird gets the worm.
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Seljak and Andreja Gomboc for reading the manuscript.

∗ mail: name.surname at gmail
[1] NASA, Jwst orbit, https://jwst-docs.stsci.edu/

jwst-observatory-characteristics/jwst-orbit

(2022), accessed: 2022-08-09.
[2] S. Goldstein, Poole, ed., Classical Mechanics, 3rd (Pear-

son, 2002).
[3] NASA, Jwst deployment, https:

//blogs.nasa.gov/webb/2021/12/29/

nasa-says-webbs-excess-fuel-likely-to-extend-its-lifetime-expectations/

(2021), accessed: 2022-08-09.
[4] W. H. Y. Donald J. Dichmann, Cassandra M. Alberding,

(2014).
[5] S. Bhatta, (2020).


