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Abstract

This paper demonstrates why – regarding fuel consumption
– it is more senseful to perform stationkeeping at Lagrange
point as often as possible, i.e. when thrust needed is greater
than 12 cm/s for the James Webb Space Telescope. Fuel can
be saved by striving to correct the orbit each time as early as
manageable.

Introduction
An interesting placement of telescopes in space are La-
grange points. One of them, namely Sun-Earth’s L2 point
has been chosen as most appropriate for the JWST, James
Webb Space Telescope (NASA 2022). This stationary posi-
tion is unstable (Goldstein 2002), therefore small perturba-
tions increase with time. For this reason station keeping is
required and fuel is needed. It is not yet realistic to expect
refueling of JWST’s fuel reservoir, so its lifetime is limited
by fuel consumption. In case of JSWT the expected lifetime
is around a decade due to Telescope’s very successful de-
ployment (NASA 2021).

Current station keeping plan is for the maneuver to hap-
pen every three weeks and skipped if telescope’s orbit is still
close enough to L2 (Donald J. Dichmann 2014). Such plan
can be seen as rigid.

The goal of this paper is to propose a more economic
way of fuel consumption. As an argument, the fuel needed
per some time period is compared between two basic sta-
tion keeping plans, namely an instant impulse by fuel kick
at fixed distances from the stationary point.

Evaluation
Let us consider the potential around the stationary point
L2. The effective potential is best described in the rotating
frame, taking gravitation and centrifugal force into account,
without Coriolis force for simplicity (Bhatta 2020).

To estimate needed fuel, the test body of mass m – i.e. the
telescope – is first left for some time to diverge away from
the starting position close to the stationary point L2, where
it starts at rest. At a predetermined point some fuel is burnt
to kick it back to the initial almost-stationary-position. To
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return there it needs velocity v, if −v was the velocity away
from L2 before the kick. The velocity |v| is computed using
∆T + ∆V = 0, energy conservation in effective potential
V ,

mv2

2
= ∆T = −∆V = −(V − V0) = V0 − V.

Next, the needed fuel impulse Fδt is computed through
required momentum change ∆Γ, taking ∆v = v − (−v) =
2v,

Fδt = ∆Γ = m ∆v = 2mv =
√
8m(V0 − V ).

To compare efficiency of fuel powered impulses at vari-
ous divergence thresholds, the impulse should be normalised
with time in which the test object freely diverges from the
initial almost stationary point. This time can be evaluated
solving the equation of motion. It is linear in the vicinity of
L2, since effective potential there can be approximated with
a quadratic function,

V (x) = −1

2
αx2,

where x = 0 is taken to be a stationary point and α is a con-
stant, in principle determined from the second order deriva-
tive of the effective potential. Solving the equation of mo-
tion, i.e. Newton’s law

ẍ = − 1

m

dV

dx
=

α

m
x

for x = x(t) gives exponential relation. The time at which
the test object gets to some point x can then be derived by
inverting the solution,

t =

√
m

α
log

x

xm
,

with xm a parameter chosen to be small enough for the
quadratic approximation of the effective potential to still be
appropriate in the considered region from xm to the station-
ary point at 0. Furthermore at t = 0 the test object would
get to xm. Time starts at some negative value, when x is a
small deviation from L2 which is at 0. As time t increases,
the test object moves toward a chosen threshold xi. After the
momentary fuel burn, the same amount of time is needed for



the test object to return to the initial point, due to reversibil-
ity of the differential equation’s solutions.

Fuel consumption can be compared between plans of dif-
ferent xi via time normalized impulses, which are computed
as

Fδt

2 ∆t
=

√
8m(V0 − V )

2
√

m
α

(
log xi

xm
− log x0

xm

) =
α xi

log xi

xm
− log x0

xm

,

where xi are turning points and x0 ≈ 0 the starting point
close to stationary, which is also why V0 is taken as 0. Let us
set x0 = 10−3xm and furthermore compare x1 = 10−1xm

and x2 = 2 · xm = 2 · 10−1xm.
The ratio of time-normalized-fuel-consumption between

station-keeping plans of fuel-boost at x1 and x2 = 2x1 is

x1

x2

log x2

xm
− log x0

xm

log x1

xm
− log x0

xm

=
1

2

log 2 · 10−1 − log 10−3

log 10−1 − log 10−3
=

1

2

log10 2− 1− (−3)

−1− (−3)
≈ 0.58

and is lower than 1. This means the fuel consumption is
lower if the boost is made earlier, i.e. more often.

Conclusion
It can be concluded that it is more economic to plan station-
keeping as early as possible, considering of course that run-
ning the engine also has some initial cost to it. The threshold
for using JWST’s thruster is ∆v = 12 cm

s (Donald J. Dich-
mann 2014). Fuel consumption increases if the free move-
ment is undergone for a longer period. An improved plan
regarding fuel use would be to use the thruster as soon as
the boost needed to return it closer to a desired orbit is over
the above ∆v threshold.

Waiting can be costly . . .
Costs should be seen as investments.
Early bir gets the worm.
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