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Abstract 

We discuss the particles and fields described by a hypercomplex first-order wave equation with nonzero mass of 
quantum. It is shown that the strengths of such fields are nonzero only in the area of sources. This allows us to consider 
scalar particles as localized regions of space filled with a scalar field. The interaction of such regions occurs only when 
they overlap. First, we consider simple spherically symmetric models of scalar particles in the form of homogeneous 
spherical regions filled with a scalar field and show that the spheres overlap leads to purely attractive or repulsive 
interactions. Then we generalize our results to more complex models of core-shell systems and demonstrate the 
formation of non-monotonic attractive/repulsive potential that provide metastable bound states and annihilation barriers. 

1. Introduction 

Over the past two decades, significant progress has been achieved in describing fields with zero 
and nonzero mass of quantum based on hypercomplex wave equations [1-15]. In particular, 
factorization of the Klein-Gordon operator on the basis of various noncommutative hypercomplex 
algebras made it possible to formulate a second-order wave equation for the potentials of the field 
with non-zero mass of quantum, which is equivalent to the system of first-order equations for field 
strengths similar to the system of Maxwell equations [9-17]. Such approach allows us to apply the 
analogy of the classical electrodynamics formalism for the description of massive fields. At the 
same time, the essential difference in this case is that in the equations, along with vector fields, 
scalar fields are appeared, which are described by scalar field strengths [17]. This opens up new 
possibilities for the development of alternative models for the interaction of physical objects. In the 
present paper, we use this approach to construct models for the interaction of spherically symmetric 
sources of scalar fields. 

2. Theoretical background 

2.1. Space-time algebra  

For compact writing of equations, we use the hypercomlex space-time algebra based on 
Macfarlane quaternions [18]. In this algebra any vector is presented in the basis of unit vectors 

1 2 3, ,a a a  as 

1 1 2 2 3 3A A A  a a aA ,     (1) 

with the following rules of multiplication and commutation: 

n m nm nmk ki  a a a ,      (2) 

where nm  is Kronecker delta, nmk  is Levi-Civita symbol ( , , {1, 2,3}n m k ) and i  is the imaginary 

unit ( 2 1i   ). The main advantage of this algebra is the Clifford product of vectors, which is 
represented as the sum of scalar and vector products 

   i   AB A B A B .     (3) 
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This allows writing the equations in a very compact form. To compactify the operator parts of 
equations we use additional units 1 2 3, ,e e e  with the same rules of multiplication 

n m nm nmk ki  e e e .      (4) 

The basis 1 2 3, ,a a a  is associated with spatial rotation of vector values, while basis 1 2 3, ,e e e  

connected with space-time inversion [19]. The unit vectors na  commute with units me  

n m m na e e a .       (5) 

Further we use this formalism to describe the fields with nonzero mass of quantum. 

2.2. Тhe equations for the fields with nonzero mass of quantum 

The hypercomplex wave equation for a field with nonzero mass of quantum is written in the 
following form [17,19]:  

1 1
,i i m i i m

c t c t

            
1 2 3 1 2 3e e e e e e W J             (6) 

where parameter 0 /m m c   ( 0m  is mass of quantum, с is the speed of light,   is Plank’s constant).  

The quaternion field potential W  is expressed in terms of the scalar  , t r  and vector  ,tA r  

potentials 

i  1 2W e e A = .      (7) 

The quaternion field source is 

4
4 B Bi

c


  1 2J e e = j ,     (8) 

where B  is the volume density of charge and Bj  is the volume density of current. Introducing the 
scalar and vector field strengths  

 

,

1
,

,

,

g m

c t

m





 


  


 

 

A

A

A





E

H

G

      (9) 

and taking into account the Lorentz gauge 

 1
0,

c t


  


A       (10) 

we rewrite the wave equation (6) in the following form: 

 1
0.i i m i g i

c t

        
1 2 3 2 1 3e e e e e e H G E      (11) 

This hypercomplex equation is equivalent to the following system of Maxwell-like equations for 
field strengths: 
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
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     (12) 

Multiplying each of the equations of system (12) by the corresponding field strength and adding, 
we get: 

             2 2 2 21
4 0.

2 Bg g g
c t




               


   E H G E H H E G G E j  (13) 

Denote 

 

  

2 2 2 21
,

8

.
4

w g

c
g





   

  

E H G

P G E H

         (14) 

Then expression (13) can be represented as 

    0.B

w

t


    


 P E j      (15) 

This is an analogue of Poynting's theorem for fields with non-zero mass of quantum. In this case, 
the value w  plays the role of the volume density of energy and P  is the vector of energy flux. 

2.3. Inhomogeneous first-order wave equation 

Let us consider a special class of fields described by a hypercomplex first-order wave equation 
[17,19]: 

  .i i m   1 2 3e e e W I            (16) 

The field potential W  is  

i  1 2W e e A = .      (17) 

The source I  is represented as  

4
4 L Li

c

  2 1I e e j ,              (18) 

where L  is the volume density of charge and Lj  is the volume density of current. Taking into 
account definitions (9), the equation (16) reduces to the equation for field strengths: 

4
4 L Li g i

c

    2 1 2 1e e e eG j ,          (19) 

which is equivalent to the following system: 

4 ,

4
.

L

L

g

c






G j
      (20) 



 

These equations mean that the field strengths are nonzero only in the region of sources.
In the stationary case, the current

field g . This allows us to interpret the par
space filled with scalar field g
fields 1g  and 2g  is equal to 

W g g dV W W W

where 1W  is energy of first 
interaction between regions. The interaction energy is

This value is nonzero only in the case whe
consider various models of particles in the form of spherical regions filled with a scalar field

3. Spherical models of scalar

3.1. Spherical particles with equal diam

Let us consider a system of two identical particles in the form of spherical regions of radius
filled with a scalar field g  (Fig
 

Fig. 1. The overlap of two spherical regions with scalar f

Following (22) we find the dependence of the interaction energy in this system on the distance 
between the centers of the spheres
area of intersection between two

V R R R

where d  is the distance between the centers

12 sec

1 1

4 6 2 2
W g V g R R R


    

Denote /x d R  ( {0 2}x  )

overlapping regions 1

1
2

3
W g R

interaction energy  

4 

These equations mean that the field strengths are nonzero only in the region of sources.
case, the current Lj  is zero and the system is completely described by a scalar 

This allows us to interpret the particles described by equation (16
g . The energy of a system consisting of two regions filled with scalar 

 2

1 2 1 2 12

1

8 V

W g g dV W W W


     ,   

 region, 2W  is energy of the second region
The interaction energy is 

12 1 2

1
.

4 V

W g g dV


     

is nonzero only in the case when the regions have an overlap in space.
consider various models of particles in the form of spherical regions filled with a scalar field

scalar particles 

Spherical particles with equal diameters 

onsider a system of two identical particles in the form of spherical regions of radius
g ig. 1а).  

 
The overlap of two spherical regions with scalar field g . (a) The system of particle

(b) The system of particle-antiparticle. 

find the dependence of the interaction energy in this system on the distance 
spheres. In this case, the problem is reduced to finding the volume of the 

two spheres, which is equal to 

2

sec

2
3

3 2 2

d d
V R R R

                
   

distance between the centers of the spheres. Accordingly, the 

2
2 2

12 sec

1 1
3

4 6 2 2

d d
W g V g R R R


                

  

{0 2}  ) and normalize 12W  to the energy equal to the energy of two non

2 31

3
W g R . Then we have following expression for the normalized 

These equations mean that the field strengths are nonzero only in the region of sources.  
zero and the system is completely described by a scalar 
ticles described by equation (16) as localized regions of 

The energy of a system consisting of two regions filled with scalar 

   (21) 

energy of the second region, 12W  is the energy of 

   (22) 

n the regions have an overlap in space. Further we 
consider various models of particles in the form of spherical regions filled with a scalar field g . 

onsider a system of two identical particles in the form of spherical regions of radius R  

 

. (a) The system of particle-particle. 

find the dependence of the interaction energy in this system on the distance 
the problem is reduced to finding the volume of the 

   (23) 

, the interaction energy is 

   (24) 

to the energy equal to the energy of two non-

have following expression for the normalized 
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2

12

1
1 3 1

2 2 2

x x
W

               
 .    (25) 

The dependence of 12W  on the overlap of two spheres characterizing purely repulsive interaction is 

shown in Fig. 2. 
 

 
 

Fig. 2. Dependence of the interaction energy of two identical spherical particles (Fig. 1a) on the 
distance between the centers. The vertical dotted line shows the point of contact between the 
spheres. 

 
Figure 2 shows that regions with identical fields repel each other. The repulsive force is 

2
12

1 3
3

6 2 2 2

d d
F g R R R

                
.    (26) 

It reaches the maximum at 0d   

2 2
12

1

4
F g R .      (27) 

If the scalar fields have a different signs (Fig. 1b), then the annihilation of the particle and 
antiparticle at the overlap is realized. In this case, the total energy of the system becomes equal to 
zero. The corresponding dependence of the interaction energy 12W  on the degree of overlapping is 

shown in Fig. 3. 
 

 
 

Fig. 3. Dependence of the interaction energy of two spherical particles with scalar fields of the 
opposite sign (Fig. 1b) on the distance between the centers. The vertical dotted line shows the point 
of contact between the spheres. 

 



 

3.2. Spherical particles of different

If one of the particles has a radius greater than other (

Figure 4 shows the overlap of particles with fields of the same magnitude but different in sign.
 

Fig. 4. The overlap of two particles with different diameters and different signs of the scalar field.
 

 
The volume of the overlapping spher

sec 1 2 1 2 1 212
V R R d d d R R R R


      

Accordingly, the interaction energy is

12 1 2 1 2 1 2W R R d d d R R R R       

We normalize 12W  to value equal to the 

1

2

R

R
  , 

2

d
y

R
 . Then the normalized energy of interaction is equal to

12W y y y       

As an example, Fig. 5 shows the dependence of the interaction energy for the case
 

Fig. 5. Dependence of the interaction energy of two 
between the centers. The vertical 
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different diameters 

If one of the particles has a radius greater than other ( 1 2R R ), then a small particle is absorbed.

Figure 4 shows the overlap of particles with fields of the same magnitude but different in sign.

 

 
 

particles with different diameters and different signs of the scalar field.

The volume of the overlapping spherical areas of different radii is equal to

    2 22
sec 1 2 1 2 1 22 3

12
V R R d d d R R R R

d


      

Accordingly, the interaction energy is 

    
2

2 22
12 1 2 1 2 1 2

1
2 3

48

g
W R R d d d R R R R

d
       

equal to the double energy of a small particle 

. Then the normalized energy of interaction is equal to 

      2 221
1 2 1 3 1

16
W y y y

y
          . 

5 shows the dependence of the interaction energy for the case

 

Dependence of the interaction energy of two spherical particles 
vertical dotted line shows the point of contact between the spheres.

), then a small particle is absorbed. 

Figure 4 shows the overlap of particles with fields of the same magnitude but different in sign. 

particles with different diameters and different signs of the scalar field. 

of different radii is equal to 

 2 2

sec 1 2 1 2 1 2V R R d d d R R R R       .   (28) 

 2 2

12 1 2 1 2 1 22 3W R R d d d R R R R        .  (29) 

2 3
2 2

1
2

3
W g R  and denote

.    (30) 

5 shows the dependence of the interaction energy for the case 2  . 

 ( 2  ) on the distance 
dotted line shows the point of contact between the spheres. 



 

3.3. Spherical core-shell particles

Let us consider two identical spherical core

radius shR . The scalar field in the 

 

Fig. 6. The overlap of two spherical core

 
 
 

Fig. 7. The different phases of overlapping for two core

 
In this case, the calculation of the interaction energy is reduced to the calculation of the 

intersection volumes of spheres in situations c
shown in Fig. 7(a,b,c). In the first phase

W g R R R

Denote sh

c

R

R
  , c

sh

g

g
   and

which is equal to double energy of a sphere 

normalized interaction energy of two core

(Fig. 7a) is expressed as follows:
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particles  

onsider two identical spherical core-shell particles (Fig. 6a) with core radius 

. The scalar field in the core is cg  and field in the shell is shg .  

 

 
The overlap of two spherical core-shell systems. (a) The system of particle

system of particle-antiparticle. 

 

The different phases of overlapping for two core-shell systems.

In this case, the calculation of the interaction energy is reduced to the calculation of the 
intersection volumes of spheres in situations corresponding to the three phases of overlapping 

). In the first phase (Fig. 7a), the shell interaction energy is equal to

2
2

12

1
3 .

6 2 2
I

sh sh sh sh

d d
W g R R R

                
  

and 
c

d
z

R
 . We normalize the energy 12

IW  by a value 

energy of a sphere with radius shR  filled by

interaction energy of two core-shell particles in the first phase 

7a) is expressed as follows: 

with core radius cR  and shell 

 

shell systems. (a) The system of particle-particle. (b) The 

 

shell systems. 

In this case, the calculation of the interaction energy is reduced to the calculation of the 
orresponding to the three phases of overlapping 
, the shell interaction energy is equal to 

3 .
    

        
   (31) 

by a value 2 31

3 sh shW g R , 

by the field shg . Then the 

shell particles in the first phase   2 1z      
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2

12 3

1
3

2 2 2
I z z

W   


               
 .      (32) 

The normalized interaction energy in the second phase   1 2z     (Fig. 7b) is equal to 

        

2

12 3

2 22
3

1
3

2 2 2

1
1 2 1 3 1 .

8

II z z
W

z z z
z

  



  



               


      


   (33) 

The normalized interaction energy in the third phase (Fig. 7c) is 

   

2

12 3

2
2

3 3

1
3

2 2 2

1 2
1 2 1 3 1 1 .

2 2 2

III z z
W

z z

  


  
 

               

                   



   (34) 

Let us consider the core-shell system with 3sh cR R  ( 3  ). In this case, the shell of one system 

completely absorbs the core region of the other system (Fig. 7d). As an illustration, Fig. 8 
demonstrates the dependences of interaction energy on the distance in cases 1   and 10  . 

 

 

Fig. 8. Dependences of the interaction energy of two identical core-shell particles on the distance 
between cents. Dotted line is for the case 1  , solid line is for 10  . Vertical dashed lines show 

the points of contact of the spherical regions in accordance with the phases represented in Fig. 7. 

In the case c shg g  ( 1  ), the shell repulsion dominates in the interaction (see dotted curve in 

Fig. 8). If c shg g , then we have a minimum of the energy, which corresponds to the bound state 

of two systems provided by their attraction when the shells overlap with the cores (Fig. 7d). As an 
example, the interaction energy of two core-shell particles with parameter 10   is represented in 
Fig. 8 (solid curve). In this case, a stronger repulsion is realized with a complete overlap of 
particles, provided by interaction between the cores. 

If core-shell particles differ in signs of shell and core fields (Fig. 6b), then such systems 
annihilate with full overlap. Figure 9 shows the graphs of the interaction energy for the case 1   
(sharp curve) and for the case 10   (solid curve). 
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Fig. 9. Dependences of the interaction energy of two core-shell systems with fields of opposite sign 
on the distance between centers. Dotted line for case 1  , solid line for case 10  . Vertical 

dashed lines show the points of contact of the spherical regions in accordance with the phases 
represented in Fig. 7. 

 
It can be seen from the figure that, in the case c shg g  ( 10  ), an annihilation barrier appears 

due to repulsion between the shells and the cores (Fig. 7b). 

4. Conclusion 

Thus, we have considered several basic models of spherical particles interacting through the 
overlap of scalar fields. Depending on the signs of the fields, the particles are either repelled or 
attracted. The most interesting are the models of particles that have the core-shell structure. These 
models can be used to describe bound states in a system of two identical particles. In this case, the 
binding force is determined by the ratio of the fields in the shell and the core. On the other hand, the 
core-shell model provides a barrier to particle-antiparticle annihilation. The value of the 
annihilation barrier also depends on the ratio of the fields in the cores and shells. Potentially, the 
considered phenomenological approach can be used to model short-range interactions in baryon-
baryon and baryon-lepton systems.  
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