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Abstract
In this article, the author demonstrates that there is a huge contradiction between the statements made in the famous
literature about general relativity regarding the vanishing covariant divergence of the energy-momentum tensor of matter
representing a conservation law. It is reasoned which of these contradictory standpoints are correct and which are not.
The author points out why pseudotensors cannot represent the energy density of the gravitational field. Contrary to
the statements in the famous literature about general relativity, the energy density of the gravitational field is shown
to be described by a tensor. Moreover, the author demonstrates that in general relativity there necessarily exists the
conservation of total energy, momentum, and stress regarding the completed version of Einstein’s field equations which
is that one with the cosmological constant, whereby the latter one takes on a completely new meaning that solves the
cosmological constant problem. This new interpretation of the cosmological constant also explains the dark energy and
the dark matter phenomenon. The modified Poisson equation, that is obtained from Einstein’s field equations with the
cosmological constant in the limit of weak gravitational fields, approximately meets the requirement of conservation of
total energy in Newton’s theory of gravity, whereby flat rotation curves of spiral galaxies are obtained.
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1. Matter tensor
The energy-momentum tensor of matter 𝑇 𝜇𝜈 , also simply
termed matter tensor, consists by definition of all kinds of
matter-energy, but does not contain the energy of the gravita-
tional field [1, 2],

𝑇 𝜇𝜈 = 𝑇
𝜇𝜈
(pf ) +𝑇

𝜇𝜈
(em) + . . . ,

where

𝑇
𝜇𝜈
(pf ) =

(
𝜚+ 𝑃

𝑐2

)
𝑢𝜇𝑢𝜈 +𝑃𝑔𝜇𝜈

is the energy-momentum tensor of a perfect fluid and

𝑇
𝜇𝜈
(em) =

1
𝜇0

(
𝐹𝜇𝛼𝐹𝜈

𝛼 −
1
4
𝑔𝜇𝜈𝐹𝛼𝛽𝐹

𝛼𝛽

)
is the energy-momentum tensor of the electromagnetic field [3].

In special relativity, i.e. in an inertial frame as well as in
a local inertial frame, the vanishing partial divergence of the
matter tensor 𝑇 𝜇𝜈

,𝜈 = 0 demonstrates that the sum of all kinds
of matter-energy are conserved [1, 4].

However, regarding the vanishing covariant divergence of
the matter tensor representing a conservation law in general
relativity there is a huge contradiction between the statements
made in the books of Landau and Lifshitz [2], Møller [5], and
Straumann [3] which are shown in Sec. 1.1, and those made
in the books of Weinberg [6], Fließbach [1], and Lavenda [7]
which are demonstrated in Sec. 1.3. Additionally, in Sec. 1.2
are pointed out the corresponding statements in the compre-
hensive script of Blau [8] whose standpoint is ambiguous. In
Sec. 1.4, it is cleared up which of these positions are correct
and which are not.

1.1 Standpoint
1.1.1 Landau and Lifshitz
Landau and Lifshitz write in § 96 in their famous book [2]:

In the absence of a gravitational field, the law
of conservation of energy and momentum of the
material (and electromagnetic field) is expressed
by the equation 𝜕𝑇 𝑖𝑘/𝜕𝑥𝑘 = 0. The generalization
of this equation to the case where a gravitational
field is present is equation (94.7):

𝑇 𝑘
𝑖; 𝑘 =

1√−𝑔
𝜕 (𝑇 𝑘

𝑖

√−𝑔)
𝜕𝑥𝑘

− 1
2
𝜕𝑔𝑘𝑙
𝜕𝑥𝑖

𝑇 𝑘𝑙 = 0.

(96.1)

In this form, however, this equation does not
generally express any conservation law whatever.
Because the integral

∫
𝑇 𝑘
𝑖

√−𝑔 𝑑𝑆𝑘 is conserved
only if the condition

𝜕 (√−𝑔𝑇 𝑘
𝑖 )

𝜕𝑥𝑘
= 0

is fulfilled, and not (96.1). This is related to the
fact that in a gravitational field the four-momen-
tum of the matter alone must not be conserved,
but rather the four-momentum of matter plus gra-
vitational field; the latter is not included in the
expression for 𝑇 𝑘

𝑖 .

According to that, Landau and Lifshitz claim in § 96 of
Ref. [2], that the vanishing covariant divergence of the matter
tensor (96.1) represents no conservation law at all by stating:

In this form, however, this equation does not
generally express any conservation law whatever.

1.1.2 Møller
Møller explicitly writes in § 126 in his well-known book [5]:

The law of conservation of energy and mo-
mentum, which has the form (X. 41) or

𝜕

𝜕𝑥𝑘
{√(−𝑔)𝑇 𝑘

𝑖 } =
1
2
𝜕𝑔𝑘𝑙
𝜕𝑥𝑖

√(−𝑔)𝑇 𝑘𝑙 ≡ 𝑘𝑖

(143)

is, however, not in general equivalent to the vani-
shing of an ordinary divergence and will therefore
not immediately give rise to any conservation
laws by integration over the space coordinates.
Only in the case of a stationary system conside-
red in § 114 is the right-hand side of (143) zero
for 𝑖 = 4, and by subsequent integration over the
space coordinates we get a constant of the motion
which may be interpreted as the total energy.

The occurrence of the term on the right-hand
side of (143) indicates that the system is not
strictly closed, this term being analogous to the
external four-force density on a non-closed system
in the special theory of relativity (cf. Chapter VII).

1.1.3 Straumann
Straumann shows the vanishing covariant divergence of the
matter tensor 𝑇 𝜇𝜈

;𝜈 = 0 in his famous book [3] in Eqs. (2.36):

1√−𝑔 𝜕𝜈
(√−𝑔𝑇 𝜇𝜈 ) +𝛤𝜇

𝜈𝜆𝑇
𝜆𝜈 = 0. (2.36)

He emphasizes on p. 27 in Ref. [3]:

Because of the second term in (2.36), this is
no longer a conservation law. We cannot form
any constants of the motion from (2.36). This
should also not be expected, since the system
under consideration can exchange energy and
momentum with the gravitational field.
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1.2 Ambiguous standpoint
1.2.1 Blau
In Sec. 7.9 of his comprehensive script [8], Blau denotes
the vanishing covariant divergence of the matter tensor a
“conservation law”:

In particular, in general relativity, and assuming
that 𝑇𝜇𝜈 is the complete matter energy-momen-
tum tensor (otherwise we certainly cannot expect
to derive any conservation law), we will have a
“conservation law” of the form

∇𝜇𝑇
𝜇𝜈 = 𝑔−1/2𝜕𝜇 (𝑔1/2𝑇 𝜇𝜈) +Γ𝜈

𝜇𝜆𝑇
𝜇𝜆 = 0 .

(7.144)

We see that, due to the second term, this does not
define four conserved currents in the ordinary or
covariant sense (and we will return to the inter-
pretation of this equation, and the related issue
of energy and energy density of the gravitational
field, in section 22.6).

In Sec. 22.6 of Ref. [8], Blau then denotes that, what he terms
in Sec. 7.9 a “conservation law” (cf. Eqs. (7.144)), now being
a “non-conservation law” although this just represents the
rearranged Eqs. (7.144):

To get us started, let us return to the covariant
conservation law∇𝜇𝑇

𝜇𝜈 = 0 for the matter energy-
momentum tensor which played such a key role
above, and which we now write more explicitly
as the “non-conservation law” (cf. (7.144))

∇𝜇𝑇
𝜇𝜈 = 0 ⇔ 𝜕𝜇 (√𝑔𝑇 𝜇𝜈) = −√𝑔Γ𝜈

𝜇𝜆𝑇
𝜇𝜆 .

(22.205)

1.3 Opposite standpoint
1.3.1 Weinberg
By performing an infinitesimal transformation of the dynami-
cal variables in the change in the scalar matter action

𝛿𝐼𝑀 = 1
2

∫
𝑑4𝑥

√︁
𝑔(𝑥) 𝑇 𝜇𝜈 (𝑥)𝛿𝑔𝜇𝜈 (𝑥) (12.2.2)

Weinberg demonstrates in Sec. 12.3 in his famous book [6],
that the covariant divergence of the matter tensor

0 =
(
𝑇 𝜈

𝜆

)
;𝜈 (12.3.2)

represents a conservation law. He emphasizes in Sec. 12.3 of
Ref. [6]:

Thus the energy-momentum tensor defined by
Eq. (12.2.2) is conserved (in the covariant sense)
if and only if the matter action is a scalar. Also,
with 𝐼𝑀 a scalar, (12.2.2) shows immediately

that 𝑇 𝜇𝜈 is a symmetric tensor, so this defini-
tion of the energy-momentum tensor has all the
properties for which one could wish.

This proof, that general covariance implies
energy-momentum conservation, has an exact
analog in the proof that gauge invariance implies
charge conservation.

1.3.2 Fließbach
Fließbach’s book [1] is a highly recommended German stan-
dard textbook and maybe is used most at German universities
for lectures of general relativity. One can read therein on
p. 113:

In einem Inertialsystem (wie auch im Lokalen
IS) gilt für den Energie-Impuls-Tensor 𝑇 𝛼𝛽 der
Erhaltungssatz 𝑇 𝛼𝛽

|𝛽 = 0, (8.9). Nach dem Kova-
rianzprinzip wird dies zu

𝑇
𝜇𝜈

| |𝜈 = 0 (20.31)

English translation:

In an inertial frame (as well as in the local inertial
frame) the conservation law 𝑇

𝛼𝛽
|𝛽 = 0 applies to

the energy-momentum tensor𝑇 𝛼𝛽 , (8.9). Accord-
ing to the principle of covariance, this becomes

𝑇
𝜇𝜈

| |𝜈 = 0 (20.31)

Also on p. 275 in Ref. [1], Fließbach denotes the vanishing
covariant divergence of the matter tensor as conservation of
energy-momentum.

1.3.3 Lavenda
In Sec. 3.1 in the highly recommended book of Lavenda [7],
he thematizes the vanishing covariant divergence of the matter
tensor:

∇𝑘𝑇
𝑘
𝑖 =

1√−𝑔

𝜕 (𝑇 𝑘
𝑖

√−𝑔)
𝜕𝑥𝑘

− 1
2
𝜕𝑔𝑘𝑙
𝜕𝑥𝑖

𝑇 𝑘𝑙 = 0.

(3.2)
According to Landau and Lifshitz [LL75], and

just about everyone else, “this equation does not
express any conservation law whatever.” This is
“because the integral

∫
𝑇 𝑘
𝑖

√−𝑔 𝑑𝑆 is conserved
only if the condition

𝜕𝑇 𝑘
𝑖

√−𝑔

𝜕𝑥𝑘
= 0 (3.3)

is fulfilled, and not (3.2).” Møller [lle58] comes
out and says that if the second term in (3.2) is
different from zero, “then it expresses the fact
that matter energy is not conserved.”

Lavenda in Sec. 3.2 of Ref. [7] states:
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Conservation equations of the form (3.3) are
invariant with respect to linear coordinate trans-
formations. Einstein was considering such types
of invariant equations during the period 1913-
1914. According to Folomeshkin, “Einstein non-
critically carried over equations (3.3) into the
newly general covariant theory. As a result, the
‘problem’ of energy-momentum arose.”

1.4 Resolution of the contradiction
Regarding Weinberg’s proof in Sec. 12.3 of Ref. [6] and
Fließbach’s argument of applying the principle of covariance
on the vanishing partial divergence of the matter tensor in
a local inertial frame on p. 113 in his book [1], one must
conclude, that conservation laws in general relativity are only
such ones, which underlie the principle of covariance, i.e., that
a conservation law in general relativity must be a tensor, the
covariant divergence of which vanishes. According to that,
Lavenda concludes in Sec. 3.2 of Ref. [7]:

The vanishing of the covariant derivative does
lead to a conservation law, but not one we Eu-
clideans are use to dealing with.

One should not be bothered about the non-vanishing second
term in the expression of the vanishing covariant divergence
of the matter tensor. This term must be present as it is because
otherwise the latter would not be a (covariant) conservation
law.

From all these citations, statements, proofs, and arguments
one must conclude, that the vanishing covariant divergence
of the matter tensor represents the law of energy-momentum
conservation of matter in general relativity, contrary to the
wording of Landau and Lifshitz in § 96 in their famous book [2]
regarding their Eqs. (96.1):

In this form, however, this equation does not
generally express any conservation law whatever.

However, they actually relate this statement to conservation of
total energy by writing in § 96 of Ref. [2]:

This is related to the fact that in a gravitational
field the four-momentum of the matter alone must
not be conserved, but rather the four-momentum
of matter plus gravitational field; the latter is not
included in the expression for 𝑇 𝑘

𝑖 .

This is also why total energy equals energy of matter plus
energy of the gravitational field.

2. Completed field equations

2.1 Denial of the energy tensor of the gravitational field
Misner, Thorne, and Wheeler claim regarding “local gravita-
tional energy-momentum” in §20.4. in their famous book [4]:

There is no unique formula for it, but a multitude
of quite distinct formulas. The two cited are
only two among an infinity. Moreover, “local
gravitational energy-momentum” has no weight.
It does not curve space. It does not serve as a
source term on the righthand side of Einstein’s
field equations. It does not produce any relative
geodesic deviation of two nearby world lines that
pass through the region of space in question. It is
not observable.

Anybody who looks for a magic formula for
“local gravitational energy-momentum” is looking
for the right answer to the wrong question. Un-
happily, enormous time and effort were devoted
in the past to trying to “answer this question”
before investigators realized the futility of the en-
terprise. Toward the end, above all mathematical
arguments, one came to appreciate the quiet but
rock-like strength of Einstein’s equivalence prin-
ciple. One can always find in any given locality
a frame of reference in which all local “gravita-
tional fields” (all Christoffel symbols; all 𝛤𝛼

𝜇𝜈)
disappear. No 𝛤’s means no “gravitational field”
and no local gravitational field means no “local
gravitational energy-momentum”.

Nobody can deny or wants to deny that gravi-
tational forces make a contribution to the mass-
energy of a gravitationally interacting system.
The mass-energy of the Earth-moon system is
less than the mass-energy that the system would
have if the two objects were at infinite separation.
The mass-energy of a neutron star is less than
the mass-energy of the same number of baryons
at infinite separartion. Surrounding a region
of empty space where there is a concentration
of gravitational waves, there is a net attraction,
betokening a positive net mass-energy in that
region (see Chapter 35). At issue is not the exis-
tence of gravitational energy, but the localizability
of gravitational energy. It is not localizable. The
equivalence principle forbids.

Similarly, Straumann in Sec. 3.4 of Ref. [3] states:

In SR the conservation laws for energy and mo-
mentum of a closed system are a consequence of
the invariance with respect to translations in time
and space. Except for special solutions, transla-
tions do not act as isometries on a Lorentz mani-
fold and for this reason a general conservation law
for energy and momentum does not exist in GR.
This has been disturbing to many people, but one
simply has to get used to this fact. There is no
“energy-momentum tensor for the gravitational
field”. Independently of any formal arguments,
Einstein’s equivalence principle tells us directly
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that there is no way to localize the energy of the
gravitational field: The “gravitational field” (the
connection 𝛤

𝜇
𝛼𝛽) can be locally transformed away.

But if there is no field, there is locally no energy
and no momentum. This is closely analogous to
the situation with regard to charge conservation
in non-Abelian gauge theories.

2.2 Counterarguments
In Newton’s theory of gravity, the energy density of the
gravitational field amounts to

𝜀gf (r) = − [∇Φ(r)]2

8𝜋𝐺
, (1)

see Eq. (17) in Ref. [9] and the Solution to Problem 1 in § 106
of Ref. [2]. However, in the Poisson equation of Newton’s
theory of gravity,

ΔΦ(r) = 4𝜋𝐺𝜚(r) , (2)

there does not appear the energy density of the gravitational
field, but only the mass distribution on the right-hand side as a
source of gravity. Eq. (2) is only an approximation of general
relativity in the limit of weak gravitational fields. However, all
kinds of energy have to be taken into account in order to satisfy
the requirements of a precise theory of gravity. Not only for
this reason the energy-momentum tensor of the gravitational
field must appear in Einstein’s field equations, but also to
satisfy the correspondence principle because of the existence
and the localizability of the energy density of the gravitational
field in Newton’s theory of gravity, see Eq. (1).

Regarding the statement of Straumann in Sec. 3.4 of
Ref. [3] that “. . . a general conservation law for energy and
momentum does not exist in GR” it is necessary to point
out the following: In physics, there exist four interactions,
namely gravity, electromagnetism, the weak interaction, and
the strong interaction. Conservation of total energy, which
is matter-energy plus energy of the gravitational field, does
not occur in any of the last three interactions. Consequently,
it must exist in the former and “highest-ranked” interaction,
i.e. gravity, otherwise our universe would be a chaos if there
were no conservation of total energy.

Regarding these shortcomings and contradictions, there
consequently must have been made a mistake or a logical
fallacy in general relativity.

2.3 Why pseudotensors do not solve the problem
Einstein claims in § 6. of Ref. [10] that

∑︁
𝜈

𝜕 (𝔗𝜈
𝜎 + 𝔱𝜈𝜎)
𝜕 𝑥𝜈

= 0 (𝜎 = 1, 2, 3, 4) (35)

are conservation laws:

Mr. Levi-Civita (and before him, with less
emphasis, already H. A. Lorentz) has suggested

a formulation of the conservation theorems that
deviates from (35). He (and with him other
colleagues) is opposed to an emphasis of equa-
tions (35), and are also opposed to the above
interpretation because the 𝔱𝜈𝜎 do not form a ten-
sor. The latter is readily conceded; but I do not
understand why only quantities with the trans-
formation characteristics of tensor components
should be granted physical meaning. Necessary
is only that equation systems are valid for any
choice of a system of reference which for the equa-
tion system (35) is true. Levi-Civita suggests the
following formulation for the energy-momentum
theorem. He writes the field equations of gravita-
tion in the form

𝑇𝑖𝑚 + 𝐴𝑖𝑚 = 0 , (37)

where𝑇𝑖𝑚 is the energy tensor of matter and 𝐴𝑖𝑚 is
a covariant tensor that depends only upon the 𝑔𝜇𝜈
and their first two derivatives with respect to
the coordinates. The 𝐴𝑖𝑚 are called the energy
components of the gravitational field.

A logical objection can, of course, not be
raised against such wording. But I find that (37)
does not allow us to draw these conclusions which
we are used to drawing from the conservation
theorems. This is connected to the fact that
in (37) the components of the total energy vanish
everywhere. The equations (37), for example, do
not exclude the possibility (and this in contrast
to the equations [35]) that a material system
dissolves into just nothing without leaving any
trace. Because the total energy in (37)—but
not in (35)—is zero from the beginning: the
conservation of this energy value does not demand
the continued existence of the system in any form.

In Eqs. (35) non-tensorial quantities, i.e. pseudotensors,
are utilized in order to represent the energy density of the
gravitational field. Lavenda rightly writes regarding Eqs. (35)
in Sec. 3.2 in his book [7] that this “is not a covariant conserva-
tion equation, it would essentially allow energy to be created
out of nothing!” The reason for this is that pseudotensors
vanish in a local inertial frame while they are non-zero in
other reference frames. Moreover in §20.4. of Ref. [4], Misner,
Thorne, and Wheeler justifiably state regarding pseudoten-
sors which are intended to represent the “local gravitational
energy-momentum”:

There is no unique formula for it, but a multitude
of quite distinct formulas. The two cited are only
two among an infinity.

2.4 Completion of the field equations
Einstein’s field equations

𝐺𝑖𝑚 = 𝜅𝑇𝑖𝑚 (3)
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can be rearranged to get Levi-Civita’s field equations (37),
where 𝐴𝑖𝑚 is proportional to the Einstein tensor 𝐺𝑖𝑚. Einstein
rightly objects that “. . . in (37) the components of the total
energy vanish everywhere.” However, this physical shortcom-
ing can be remedied by a simple modification: One just needs
to introduce the non-zero total energy-momentum tensor 𝐿𝑖𝑚

on the right-hand side of Eqs. (37), so that the completed
Levi-Civita field equations read

𝑇𝑖𝑚 + 𝐴𝑖𝑚 = 𝐿𝑖𝑚 . (4)

With this modification it is clear that Einstein’s field equa-
tions (3) must be incomplete and moreover violate the conser-
vation law of total energy.

According to Lovelock’s theorem – see e.g. Sec. 3.2.2 in
Ref. [3], in particular Theorem 3.1 and Eqs. (3.51) – Einstein’s
field equations in their maximum possible modified form read

𝐺𝑖𝑚 = 𝜅𝑇𝑖𝑚−Λ𝑔𝑖𝑚 , (5)

which can be rearranged in order to obtain

𝑇𝑖𝑚− 𝜅−1𝐺𝑖𝑚 = 𝜅−1Λ𝑔𝑖𝑚 , (6)

so that on comparison with the completed Levi-Civita field
equations (4) one can read off

𝐴𝑖𝑚 = −𝜅−1𝐺𝑖𝑚 , 𝐿𝑖𝑚 = 𝜅−1Λ𝑔𝑖𝑚 .

Eqs. (5) are Einstein’s field equations with the cosmological
constant. Einstein’s gravitational constant 𝜅 = 8𝜋𝐺/𝑐4 is a uni-
versal constant which regulates the strength of the gravitational
interaction, whereas the cosmological constant Λ is proven
to be a constant of integration and thus a parameter and no
universal constant [11], reflecting the fact, that different gravi-
tational systems hold different total energy densities. Thus,
there exists a different metric 𝑑𝑠2 with a different non-zero Λ
for each gravitational system [12]. This finding is of course
not in conflict with Lovelock’s theorem. However, on the
one hand it is questionable whether the term “cosmological
constant” is still appropriate, but on the other hand one has
got used to this designation.

Additionally, Einstein’s condition for emptiness, 𝐺𝑖𝑚 = 0,
must be novated in order to satisfy the requirement of the
conservation of total energy, 𝐺𝑖𝑚 = −Λ𝑔𝑖𝑚. In fact, “empty”
space-time is not really empty because it consists of the energy
of the gravitational field, wherefore it is more appropriate
to designate it matter-free instead of “empty” space-time,
where 𝑇𝑖𝑚 = 0 and consequently the total energy density
equals the energy density of the gravitational field.

3. Energy-momentum tensor of the
gravitational field

3.1 Importance of the mixed-tensor representation
By considering the Schwarzschild metric, the metric tensor
contains the Newtonian gravitational potential,

𝑔00 = −
(
1+ 2Φ

𝑐2

)
, Φ(𝑟) = −𝐺𝑀

𝑟
,

wherefore the metric tensor is a quantity which belongs to
the gravitational field and hence to its energy density. It is
of great importance to recognize that in the mixed-tensor
representation of Einstein’s field equations (6),

𝑇 𝑘
𝑖 + 𝐴𝑘

𝑖 = 𝐿𝑘
𝑖 ,

𝑇 𝑘
𝑖 − 𝜅−1𝐺𝑘

𝑖 = 𝜅−1Λ𝛿𝑘𝑖 ,
(7)

all metric tensors and their first two derivatives therein appear
only in the Einstein tensor, whereas in 𝑇 𝑘

𝑖 and 𝐿𝑘
𝑖 there are

no quantities left that represent the energy density of the
gravitational field, wherefore this suitable separation of the
metric tensors from other quantities enables to assign the
physical meaning to the respective tensors in Einstein’s field
equations (7), see Ref. [13].

Moreover, the conservation law of total energy, momen-
tum, and stress can only be obtained in the mixed-tensor
representation of Einstein’s field equations (7) because of the
special property of the Kronecker tensor, 𝛿𝑘𝑖; 𝑗 = 𝛿𝑘𝑖, 𝑗 = 0. The
derivation of this fundamental conservation law is shown in
detail in Sec. 4.1.

3.2 Properties
The tensor 𝐴𝑘

𝑖 = −𝜅−1𝐺𝑘
𝑖 has the following properties, which

are inherent to the energy-momentum tensor of the gravita-
tional field, confirming that 𝐴𝑘

𝑖 really represents it [13]:

• First of all, 𝐴𝑘
𝑖 is a tensor. In Einstein’s field equa-

tions (7), the matter-energy is represented by the matter
tensor 𝑇 𝑘

𝑖 . Consequently, also the energy of the gravita-
tional field as well as the total energy must be represented
by a tensor, otherwise one would toss apples and pears
together.

• The metric tensor is a quantity that belongs to the gravi-
tational field and hence to its energy density. All metric
tensors and their first two derivatives in Einstein’s field
equations (7) appear only in the tensor 𝐴𝑘

𝑖 = −𝜅−1𝐺𝑘
𝑖 ,

whereas in 𝑇 𝑘
𝑖 and 𝐿𝑘

𝑖 there are no quantities left that
represent the energy density of the gravitational field.

• The tensor 𝐴𝑘
𝑖 contains terms with Christoffel symbols

squared. This is in conformance with Newton’s theory
of gravity, because there appears the analoguous expres-
sion [∇Φ(r)]2 in the energy density of the gravitational
field (1).

• The tensor 𝐴𝑘
𝑖 does not vanish in a local inertial frame

because it contains non-vanishing terms with second
derivatives of the metric tensor, otherwise 𝐿𝑘

𝑖 = 𝜅−1Λ𝛿𝑘𝑖
would vanish. Regarding “the conservation of this
energy value”, Einstein rightly objects, that it “does
not demand the continued existence of the system in
any form”. Consequently, there would be no free fall
because then “a material system dissolves into just
nothing without leaving any trace”. In fact, this finding
rules out the statement of Misner, Thorne, and Wheeler
in §20.4. of Ref. [4]:
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. . . no local gravitational field means no
“local gravitational energy-momentum”.

and that of Straumann in Sec. 3.4 of Ref. [3]:

But if there is no field, there is locally no
energy and no momentum.

• The tensor 𝐴𝑘
𝑖 has the unit of measurement of an energy

density, which is required in order to represent a tensor
of any kind of energy.

• The vanishing covariant divergence of the matter ten-
sor 𝑇 𝑘

𝑖; 𝑘 = 0 means, that the matter tensor is conserved.
Because of the Bianchi identity, 𝐴𝑘

𝑖; 𝑘 = −𝜅−1𝐺𝑘
𝑖; 𝑘 = 0,

which demonstrates, that also the energy-momentum
tensor of the gravitational field 𝐴𝑘

𝑖 is conserved. Conse-
quently, matter-energy is not converted into energy of
the gravitational field and vice versa.

• Contrary to the statements of Misner, Thorne, and
Wheeler in §20.4. of Ref. [4], the tensor 𝐴𝑘

𝑖 = −𝜅−1𝐺𝑘
𝑖

demonstrates the necessarily existing unique formula
for local gravitational energy-momentum. Thereby, it
is localizable and neither in conflict with nor forbidden
by the equivalence principle.

4. Total energy-momentum tensor
4.1 Conservation law of total energy
By definition, the energy of the gravitational field is not con-
tained in the matter tensor 𝑇 𝑘

𝑖 . Consequently, the matter
tensor 𝑇 𝑘

𝑖 plus the energy-momentum tensor of the gravita-
tional field 𝐴𝑘

𝑖 must show the total energy-momentum ten-
sor 𝐿𝑘

𝑖 = 𝜅−1Λ𝛿𝑘𝑖 . The latter one is conserved, wherefore its
covariant divergence vanishes [13],

𝐿𝑘
𝑖; 𝑘 = ∇𝑘 (𝑇 𝑘

𝑖 + 𝐴𝑘
𝑖 ) = 0 ,

and which is nothing else than the covariant divergence of
Einstein’s field equations in the mixed-tensor representation (7).
By using 𝛿𝑘𝑖; 𝑘 = 𝛿𝑘𝑖, 𝑘 = 0, this conservation law of total energy
can be simplified,

𝐿𝑘
𝑖; 𝑘 = 𝐿𝑘

𝑖, 𝑘 =
𝜕 (𝑇 𝑘

𝑖 + 𝐴𝑘
𝑖 )

𝜕𝑥𝑘
= 0 .

One can even go further and take the derivative instead of
the divergence because 𝛿𝑘𝑖; 𝑗 = 𝛿𝑘𝑖, 𝑗 = 0. Thus, not only the
divergences but also the derivatives vanish, so that

𝐿𝑘
𝑖; 𝑗 = 𝐿𝑘

𝑖, 𝑗 =
𝜕 (𝑇 𝑘

𝑖 + 𝐴𝑘
𝑖 )

𝜕𝑥 𝑗
= 0 , (8)

which shows the conservation law of total energy, momentum,
and stress in general relativity in its differential form [13].

One can consider a closed region with volume 𝑉 . The
volume integration over 𝐿𝑘

𝑖, 0 in Eqs. (8) shows

𝜕

𝜕𝑡

∫
𝑉
𝑑𝑉 𝐿𝑘

𝑖 =
𝜕

𝜕𝑡

∫
𝑉
𝑑𝑉 (𝑇 𝑘

𝑖 + 𝐴𝑘
𝑖 ) = 0 ,

whereby the conserved total energy, momentum, and stress
within the closed region are obtained,

𝐸 𝑘
𝑖 = 𝜅−1Λ𝑉𝛿𝑘𝑖 =

∫
𝑉
𝑑𝑉 𝐿𝑘

𝑖 =
∫
𝑉
𝑑𝑉 (𝑇 𝑘

𝑖 + 𝐴𝑘
𝑖 ) = const.

4.1.1 Example: Non-rotating star
As a simple example, a non-rotating star with mass 𝑀 and
radius 𝑅 featuring no electromagnetic fields is considered
which occupies a closed region with volume 𝑉 = 4

3𝜋𝑅
3. The

total energy contained in 𝑉 amounts to

𝐸tot = 𝐸0
0 = 𝐸M +𝐸gf =

4𝜋Λ𝑅3

3𝜅
= const. ,

where

𝐸M =
∫
𝑉
𝑇0

0 𝑑𝑉 = −4𝜋𝑐2
∫ 𝑅

0
𝑑𝑟 𝑟2𝜚(𝑟) = −𝑀𝑐2

is the mass-energy of the star and

𝐸gf =
∫
𝑉
𝐴0

0 𝑑𝑉 = −4𝜋𝜅−1
∫ 𝑅

0
𝑑𝑟 𝑟2𝐺0

0 (𝑟)

is the energy of the gravitational field [9]. The mass

𝑀 = 𝑀c +𝐸pot/𝑐2

is the gravitational and hence the physical mass of the star,
while in the metric of the star

𝑀c = 4𝜋
∫ 𝑅

0
𝑑𝑟 𝑟2𝜚(𝑟)

√︁
𝑔11 (𝑟)

is its constituent mass which is the unbound mass of the
star. In contrast to Newton’s theory of gravity, in general
relativity, the energy of the gravitational field is stored as
curvature of space-time, wherefore it is not equivalent to the
gravitational potential energy 𝐸pot appearing as gravitational
binding energy.

4.2 Cosmological constant problem and dark energy
By relating the cosmological constant to the vacuum energy
density a huge mismatch between its theoretical and observed
value is obtained, whereby the cosmological constant problem
arises [1]. It is important to acknowledge general relativity
as a classical and not as a quantum theory. By doing so, the
cosmological constant cannot be related to the energy density
of the vacuum because the latter one can only occur in a
quantum theory.

As is already mentioned in Sec. 2.4, the cosmological con-
stant Λ is no universal constant, but a constant of integration
and therefore a parameter, representing the respective differ-
ent total energy densities 𝐿0

0 = 𝜅−1Λ regarding the different
metrics 𝑑𝑠2 of the respective gravitational systems.

The cosmological constant Λ regarding the Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) metric of the universe
is proportional to its total energy density and thereby solves
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the cosmological constant problem as well as that of dark
energy [13]. The cosmological constant regarding the FLRW
metric of the cosmos is positive, Λ > 0, because of its accele-
rated expansion, wherefore also 𝐿0

0 > 0. By using Einstein’s
field equations in mixed-tensor representation (7) one simply
concludes that also the energy density of the gravitational field
regarding the FLRW metric of the universe is positive, 𝐴0

0 > 0,
because 𝑇0

0 = −𝜚𝑐2 < 0.

4.3 Dark matter
In Newton’s theory of gravity, the energy density of the
gravitational field in matter-free space outside of a celestial
object is always negative, 𝜀gf < 0, see Eq. (1). Consequently in
general relativity, the energy density of the gravitational field in
matter-free space-time must be negative as well regarding the
metric of a celestial object1, 𝐴0

0 < 0, so that by using Eqs. (7)
together with the matter-free space-time condition, 𝑇 𝜇

𝜈 = 0,
one simply recognizes that Λ < 0, whereby the dark matter
phenomenon can be explained [13]. With this finding, flat
rotation curves of spiral galaxies are obtained in Ref. [14]
which are thematized in Sec. 5 and also shown in Fig. 1.

This finding demonstrates that dark matter in fact is nothing
else than a negative scalar curvature of space-time, while dark
energy is nothing else than a positive scalar curvature of
space-time, which both arise naturally due to the conservation
of total energy regarding the respective metrics. But also very
faint ordinary matter and, if present, exotic particles contribute
to dark matter, however are taken into account in the matter
tensor.

The cosmological constant regarding our solar system
must be tiny, otherwise the computed angle of the perihelion
shift of Mercury would not match the observed one. Moreover,
the cosmological constant has no effect on the angle of light
deflection at all [14].

5. Flat rotation curves
The modified Poisson equation,

ΔΦ(r) = 4𝜋𝐺𝜚(r) −Λ𝑐2 , (9)

that is obtained from Einstein’s field equations with the cos-
mological constant in the limit of weak gravitational fields,
approximately meets the requirement of conservation of total
energy in Newton’s theory of gravity in contrast to Eq. (2).

The rotation curves of spiral galaxies are calculated by
using Eq. (9) and Freeman’s method [15, 16] considering
spiral galaxies to be exponential discs with weak gravitational
fields and the surface mass distribution of ordinary matter

Σ(𝑟) = Σ0 exp
(
− 𝑟

𝑟𝑐

)
,

which is in good agreement with observations. The author
denotes the quantity 𝑟𝑐 as “characteristic radius” of the spiral

1An exceptional case are the metrics of large scale structures (superclusters),
where Λ > 0 because of the accelerated cosmological expansion.

galaxy, while in Ref. [15] it is termed “disc length scale”, and
in Ref. [16] “disc scale length”. More details regarding the
computations are given in Ref. [14].

The flat rotation curves of spiral galaxies are shown in
Fig. 1, where different central surface mass densities Σ0, char-
acteristic radii 𝑟𝑐, and boosting factors 𝜆 regarding the negative
value of the cosmological constant of the FLRW metric as a
benchmark are utilized [14],

Λ = −𝜆ΛFLRW , ΛFLRW = 1.1056 ·10−52 m−2 .

The effect of the cosmological constant on the rotation curves
is negligible on “short” distances but becomes dominant on
larger ones. The respective values of the cosmological constant
regarding any celestial object have to be fitted to observations
because they are initially unknown. This is also the reason
why a boosting factor 𝜆 is used in order to demonstrate the
effect of the cosmological constant on the rotation curves of
spiral galaxies.

6. Conclusions and outlook
The vanishing covariant divergence of the matter tensor demon-
strates that the matter tensor is conserved. Einstein’s field
equations with the cosmological constant Λ as a parame-
ter satisfy the requirement of conservation of total energy,
momentum, and stress, where the tensor

• 𝑇 𝑘
𝑖 is the matter tensor,

• 𝐴𝑘
𝑖 = −𝜅−1𝐺𝑘

𝑖 is the energy-momentum tensor of the
gravitational field, and

• 𝐿𝑘
𝑖 = 𝜅−1Λ𝛿𝑘𝑖 is the total energy-momentum tensor.

The modified Poisson equation (9) that is obtained from
Einstein’s field equations with the cosmological constant in
the limit of weak gravitational fields, approximately meets
the requirement of conservation of total energy in Newton’s
theory of gravity in contrast to Eq. (2), wherefore the former
can be utilized for computing the flat rotation curves of spiral
galaxies.

An extension of general relativity is the Einstein-Cartan
theory which takes torsion into consideration that causes a
repulsive gravitational interaction within matter and thereby
prevents the formation of singularities and explains the infla-
tion of the early universe [17]. However, torsion only plays a
significant role at huge mass densities. In matter-free space-
time, there is no difference between Einstein-Cartan theory
and general relativity. In order to satisfy the requirement
of the conservation of total energy, momentum, and stress,
the cosmological term has to be taken into account in the
Einstein-Cartan theory.
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Figure 1. Rotation curves of spiral galaxies with different central surface mass densities Σ0, characteristic radii 𝑟𝑐 , and boosting
factors 𝜆 regarding the negative value of the cosmological constant of the FLRW metric as a benchmark, Λ = −𝜆ΛFLRW,
where ΛFLRW = 1.1056 ·10−52 m−2, see Ref. [14].
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