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Abstract

The objective of this work is to develop a highly efficient solver for the
Full Potential Equation (FPE) that will be able to compute transonic exter-
nal and internal flows attaining a (nearly) linear computational complexity.
The key innovation of this work is in the solver’s efficiency and in the fact
that it is achieved by means of adapting and applying the algebraic multi-
grid (AMG) approach to solving the problem. The mathematical difficul-
ties of the problem are associated with the fact that the governing equa-
tion changes its type from elliptic (subsonic flow) to hyperbolic (supersonic
flow). A pointwise relaxation method when applied directly to the upwind
discrete operator, in the supersonic flow regime, is unstable. Resolving this
difficulty is the main achievement of this work. A stable pointwise direction-
independent relaxation was developed for the supersonic and subsonic flow
regimes. This stable relaxation is obtained by post-multiplying the original
operator by a certain simple first order downwind operator. This new oper-
ator is designed in such a way that the pointwise relaxation applied to the
product operator becomes stable. A variety of issues regarding the AMG
coarsening and counstruction of transfer operators is addressed in order to
achieve the required efficiency for the problems under consideration.

An improved coarsening process was developed. Instead of using a fixed
threshold parameter in order to select the coarse-grid points, we developed
a dynamic threshold parameter as a measure of the strength of connection
between the matrix variables. The coarsening by dynamic threshold was
shown to be less effective for certain elliptic problems (subsonic flow), but
for supersonic flow regime where the operator does not form an M-matrix, we
obtained much better performance. In some cases where an irregular grid,
shock waves, and extreme nonlinearity are involved, the dynamic threshold is
more than necessary in order to achieve convergence. A modified formulation
of the interpolation operator is presented. While the standard interpolation
is suitable mainly for problems that are characterized by M-matrix form,
the proposed formula is more accurate and can be used for more general
matrix problems. The proposed interpolation operator includes the choice
of negative weights, which is necessary in some cases. In addition, the
FMG approach in the context of AMG was developed as a tool to deal
with a nonlinear problems. This approach significantly improved the initial
condition, especially in nonlinear cases where the initial approximation is
critical, to start the iterative procedure from a good initial approximation.

In the first part of this work we demonstrate the AMG performance on
a variety of model problems involving the quasi-linear full potential equa-
tion in two dimensions. Finite difference methods were applied for subsonic,
sonic, and supersonic flow for various flow directions (with respect to the
grid). In addition, the capabilities of the constructed algorithm to deal with
a nonlinear problem - a transonic small-disturbance equation — is presented.
The second part of the work includes the solution of the FPE in the con-
servation form. A FPE solver was developed, based on the AMG method.
The flow solver is capable of flow from subsonic to transonic conditions.
Several two dimensional flow calculations have been performed to test the
performance of the algebraic multigrid method implemented on the FPE
under body-fitted structured grid configurations. If lift is being produced,
the Kutta-Joukowski condition is enforced for the circulation. In order to
present the algorithm’s performance, results of internal and external flows

il



are presented for subsonic and transonic flows. The proposed algorithm is
demonstrated to attain excellent convergence rates, independent of the prob-
lem size, through the entire range of flow regimes. Finally, the 2D stable
operator in the supersonic flow regime was extended to 3D. We present a
3D pointwise relaxation procedure that is stable in both the subsonic and
supersonic flow regimes. This was verified by the Von-Neumann stability
analysis.
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Nomenclature

a = speed of sound; matrix entry

M = Mach number; transformation matrix
R = specific gas constant

r = residual

[0) = potential function

u, U, W = Cartesian velocities in z, y and z directions
q = magnitude of the velocity

n = unit normal vector

h = grid mesh size, enthalpy per unit mass
G = amplification factor

n = normal vector

source term

- O
I

= flux function

e = internal energy per unit mass

T = temperature

p = pressure

P = density; spectral radius

D = diagonal matrix

L,U = lower and upper matrices

S — entropy

C, = specific heat at constant pressure
c, = specific heat at constant volume
r = circulation

w — under relaxation parameter
01,605,035 = Fourier frequencies in x, y and z directions
L = operator

e = algebraic error

»m = restriction operator
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) = interpolation operator

Q — domain of the PDE

f = equation right hand side

v = number of relaxations before and after visiting the coarse-grid
I = coarse-level matrix reduction parameter
n = number of points in a given direction
WU = work units

€ = threshold parameter

S — strength matrix; face vector
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k = thermal conductivity
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Cy = grid complexity

&En = co-variant coordinate system

Ens M = contra-variant coordinate system
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1,7, k= identification of each cell center
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y = derivative with respect to y

S = derivative with respect to s

n = derivative with respect to n
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m = coarse-level

n = iteration index

d = dimension of problem
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1 Introduction

1.1 About this work

The objective of this work is to develop a highly efficient solver for the Full Po-
tential Equation (FPE), which will be able to compute transonic external and
internal flows attaining a (nearly) linear computational complexity.

The key innovation of this work is in the solver’s efficiency and the fact that
it is achieved by means of adapting and applying the algebraic multigrid (AMG)
approach to solving the problem.

The practical purpose of the proposed development is twofold:

e A standalone FPE solver.

e A building block for the compressible Euler and Navier-Stokes solver, based
on the factorizable discretization methods (see the explanations below).

1.2 Historical and scientific background

The complete Navier-Stokes equations are considered to be the correct mathemat-
ical description of the governing equation of fluid motion. The system of equations
describes the conservation of mass, momentum, and energy, and is highly coupled
and nonlinear. Simplifications to the Navier-Stokes equations are made whenever
possible. For certain types of flows, these approximations can be made without
much compromising of the physical model. Some of the various approximations
will now be discussed.

Solutions to the Navier-Stokes equations for laminar flow are considered to be
as accurate as numerical computations can be. But, most problems where viscous
effects are important are classified as turbulent flows. The Direct Numerical Simu-
lations (DNS) using Navier-Stokes equations can be performed to resolve the small
scale structure of turbulent flow, but the problem is with the enormous number
of grid points required to capture the physics of the flow. Another category of
turbulence modeling is known as large eddy simulation (LES). In this approach
the large scale turbulent motion is solved by refining the grid. The small scale
is solved by employing a turbulence model. The viewpoint behind this theory is
that the large turbulent motion is characterized by the boundary conditions, and
should not be modeled, but rather computed. On the other hand, the smaller tur-
bulent motions are more isotropic, which can therefore be resolved using a general
model. The LES methodology was employed already in 1963 by Smagorinsky [1].
The first engineering application of LES was presented by Deardorff in 1970 [2].
The next level of approximation is the Reynolds-Averaged Navier Stokes (RANS)
equations [3, 4]. Some examples of where the RANS equations are applied are flow
around a 3D obstacle |5, 6], flow in an internal combustion engine |7], unsteady
oscillatory flow in an inlet [8, 9], and flow in a turbine blade row [10].

Another approximation depends on how the density varies throughout the
flow field. For many cases of flow that occur naturally, the variance in density is
negligible compared to the other flow parameters. For example, in air the density
can be assumed constant without any significant loss of engineering accuracy for
Mach numbers below 0.3 [11, 12].
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The next level of approximation is when the viscous layers are thin. This
situation describes flow with a small amount of separation or back-flow where
viscous and turbulent diffusion can be neglected in the mainstream direction. The
Euler equations describing inviscid flow are obtained when the viscous terms in
the Navier-Stokes equations are neglected. Since the viscous terms no longer need
to be involved in the solution process, and the grid does not need to be clustered
near the wall to resolve the boundary layer, the computational cost is significantly
lower. An example of where the thin shear layer approximation is applied is viscous
flow around an airfoil [13].

The next approximation under consideration is the potential equation [12, 14,
15], which describes irrotational flows. In this inviscid irrotational flow, the en-
tropy will be constant over the whole flow field. A flow with constant entropy is
known as isentropic flow. A set of isentropic relations becomes basis of simplifying
the Euler equations. The potential flow model is equivalent to the Euler equa-
tions for continuous, irrotational flows. For subsonic external and internal flows,
the solution to the Euler and potential equations are in many cases almost iden-
tical [12, 16, 17, 18, 19]. The difference between the solutions of the two models
become more evident for supersonic flows with shock waves. The main advantage
in the potential flow model, whenever adequate, is that there is only one equation
to solve, instead of a set of five equations for the 3D Euler system. In spite of the
limitations associated with the potential flow model, it is still useful in engineering
applications. A robust and efficient solver for the FPE may still be preferable in
many cases over a more complicated Euler equation solver, provided its computa-
tional efficiency is substantially higher. One such case is an aerodynamic design
problem, when the flow field solution should be computed repeatedly many times
with variations of the body geometry. An efficient solver, even if for a simplistic
model, can be highly desirable in such a situation. This fact makes the potential
flow model very valuable in the design process since the basic physics of an inviscid
flow field is still captured.

A need for efficient and accurate solvers for compressible flow equations exists
in many areas of engineering and science. A necessity to answer this need is what
keeps motivating the development of such solvers for several decades starting from
the beginning of the computer age. However, due to the number and complexity
of the issues that need to be addressed, there still is much to be done. Much of
the research on numerical methods for potential flow was conducted throughout
the 1970s and into the early 1980s. One of the major early breakthroughs in this
development was the work by Murman and Cole on numerical solution of the small
disturbances equation for transonic flow [20]. The key achievement of the work
was the realization that since the governing equation changes its type from elliptic
to hyperbolic where the flow reaches supersonic speeds, this should be reflected in
the discretization of the equation. Each mesh point was correctly treated using
a type-dependent difference based on the domain of dependence. Their paper
laid the ground work for the years that followed. In 1973, Murman presented
a solution of the Transonic Small Disturbance (TSD) equation by using central
differencing for the subsonic regions and upwind differencing for the supersonic
region [21]. After the work of Murman and Cole other researchers kept developing
this idea. Steger and Lomax [22] presented the successive over-relaxation scheme
(SOR) to solve the potential equation. They presented transonic airfoil solutions.
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Garabedian and Korn [23| increased the order of accuracy for the Murman and
Cole’s scheme and also solved the FPE in nonconservative form. In 1972 Ballhaus
and Bailey [24] and Bailey and Steger [25] both solved transonic flows around
wings using the TSD equation.

In 1974 the idea of Murman and Cole was extended to the nonlinear FPE
and arbitrary flow direction by Jameson [26, 27]. The key issue was reflecting the
domain and dependence when the flow was generally supersonic. Jameson came
up with the idea of the rotated difference scheme using conformal mapping to
solve two- and three- dimensional problems. In 1975, he presented a solution for
the FPE in conservation form |28, 29, 30]. The concept of artificial viscosity was
applied to the difference scheme in the supersonic region to achieve upwinding.
In 1977, the first finite volume computations were presented by Jameson and
Caughey |31, 32, 33]. They developed an approach where the fluxes at a cell face
were obtained using averages from the corner points. An important result of their
paper was that nonorthogonal curvilinear grids were used for dealing with complex
boundaries.

In 1978 Hafez et al. [34] solved the FPE in conservation form by applying
artificial compressibility. In this concept, the needed viscosity in the supersonic
region was introduced by modifying the density in such a way that the upwind-
ing bias would be introduced. This approach was called density biasing and the
presented examples were flow around a cylinder and a NACA-0012 airfoil.

In 1978 various approaches were based on the approximate factorization method.
These schemes were developed by Ballhaus and Jameson [35] and Baker [36]. A
more complete description of the approximate factorization scheme is given by
Holst and Ballhaus [37].

A multigrid method for convergence acceleration was applied first in 1977 by
South and Brandt [38]. They solved the TSD equation. Other multigrid applica-
tions from that time were published by Holst [39]. A multigrid algorithm for the
FPE in conservation form was first applied by Jameson in 1979 [40, 41|. The ADI
iteration scheme in each coarse-level was applied. Different multigrid strategies
for solution of the potential equation are presented by Van-Der Wees et al. in [42].

A more recent contribution to the potential flow research area has been made
by Holst [43]. In 1995 he developed a potential flow solver, using the chimera grid
approach, that can deal with three-dimensional geometries.

As can be seen, the time between the 1970s and 1980s was a period of rapid
development of potential flow solvers. Contributions were made by numerous
researchers. It seems, however, that this direction was abandoned while still being
in its infancy following another groundbreaking work [44], in which a method
for solving the Euler equations was devised. This methodology was generalized
further to Navier-Stokes equations, turbulent flows, etc. and became the de facto
standard still accepted by aerospace industries all over the world. However, it
has been clear for some time (more than a decade, until few years ago) that only
small incremental efficiency improvements were made in the framework of this
approach. Only in the recent years a version of Runge-Kutta Implicit technique
by was developed (see, for instance [45]) resulted in a substantial performance
increase. In the opinion of numerous researchers, a substantial departure from the
above methodology is required in order to facilitate further progress. One of such
possible directions originates from the recommendation by Brandt [46]: since the
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system of equations is of the mixed type, it is beneficial in terms of efficiency to
address each of the co-factors in a way that is the most efficient for it instead of
treating the whole system in the same way.

This idea was successfully realized in the past for the incompressible high
Reynolds number Navier-Stokes equations (see, for instance, [47, 48]), but the
progress towards applying it to the compressible flow was rather slow and the
success is very limited. The explanation for this is in the complexity of the issues
that need to be resolved. One such difficulty is that the standard discretization
schemes in multidimensions introduce non-physical coupling between the different
co-factors of the system. This difficulty is addressed by the emerging class of the
so-called factorisable methods [49, 50]. In this light, the task of constructing an
efficient FPE solver attains great importance, since such a solver can be used not
only by itself, but becomes an integral part of the overall methodology for solving
the flow equations based upon the factorizable discretization.

2 Research Objectives and Significance

The purpose of this work is to develop a highly efficient method for solving the
FPE equation. The practical goal of this is two-fold: first, as was mentioned above,
to develop an important building block for the factorizable methodology. Second,
to develop a stand-alone “optimally” efficient transonic FPE solver. Such a solver
can be a useful tool for engineers, for example, in the aerodynamic design process,
where multiple flow field computations need to be performed as small changes to
the geometry are made.

Remark. It appears that despite the availability of the Navier-Stokes codes, the
engineers in aerospace industries would still often use an FPE solver, provided
it is a really efficient one. They sometimes prefer simplistic flow solutions to a
more meaningful Navier-Stokes solution if the former can be obtained cheaply
(with minimal time and with modest computer resources). For instance, a group
of researchers developed a method for solving FPE which appeared significantly
more efficient than any of its predecessors about a decade ago (see [51]). This
methodology was soon adopted by some aerospace industries (such as the Boeing
company), where it is still used routinely (as far as we know).

Multigrid methods are considered to be most efficient for a variety of problems.
In 1962, Fedorenko [52, 53| introduced the first instance of a class of algorithms
that would come to be known as multigrid methods [54, 55, 56, 57, 58, 59]. Fe-
dorenko solved the Poisson equation in a unit square. Since then, other mathemati-
cians have extended Fedorenko’s idea to general elliptic boundary value problems
with variable coefficients; see, e.g., [60]. However, the full efficiency of the multi-
grid approach was realized by Brandt [61, 62, 63]. He also made these methods
applicable to nonlinear problems by introducing the Full Approximation Scheme
(FAS) [62]. Another achievement in the formulation of multigrid methods was the
full multigrid (FMG) scheme [62], based on the combination of nested iteration
techniques and multigrid methods. For additional references of multigrid methods
see, e.g., |64, 65, 66].The growing demand for efficient solvers led to further de-
velopments of geometric multigrid methods. However, for many applications it is
difficult to construct a sequence of coarse-grids. Furthermore, geometric multigrid
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methods are, in general, not robust with respect to the operator coefficients. Gen-
eral anisotropies make an application of the geometric multigrid very cumbersome.
In the 1980s algebraic multigrid (AMG) methods were developed [67, 68, 69, 70]
to deal with these problems by extending the main ideas of geometric multigrid
methods to an algebraic setting. The AMG is a method for solving algebraic
systems based on multigrid principles with no explicit knowledge of the problem
geometry. AMG uses the matrix’s properties to construct the coarse-levels and
the operators involved in the algorithm.

This work concentrates on applying the algebraic multigrid approach to compu-
tational aerodynamics problems, with the purpose of obtaining robust and efficient
solver methodology suitable for practical purposes. A basic problem of compu-
tational aerodynamics - compressible Euler equations - can be characterized by
an inherent anisotropy, attributed to the scalar differential operators of which the
system of PDEs is comprised,

e advection operator,

e full-potential operator at nearly sonic flow speeds.

Having to deal with these general anisotropies makes an application of the “tra-
ditional” geometric multigrid very complicated [71, 72|. The algebraic multigrid
approach, however, addresses this issue for a scalar operator case in a natural way.
Applying these methods to systems of equations, though, is a difficult task. This
is due to the fact that different kinds of anisotropy can be found in the physical
phenomena described by the system. The factorizable methods, which have been
demonstrated to have certain advantages in facilitation of optimal solvers, allow
addressing each scalar operator separately, possibly by algebraic multigrid.

This work investigates the possibility of applying an algebraic multigrid method
to transonic flow problems. The mathematical difficulties of the problem are as-
sociated primarily with the fact that the governing equation changes its type,
being elliptic in the subsonic and hyperbolic in the supersonic regions of the flow.
Since these two cases differ in their properties, a suitable numerical approximation
should be devised for each of these two regions. It was first shown by Murmann
and Cole in 1971 [20] that the stable solution to the transonic small disturbances
equation can be obtained by switching from central differencing in the subsonic
region to upwind differencing in the supersonic region and applying the line im-
plicit relaxation scheme [38]. This methodology was generalized by Jameson to
the FPE and general flow direction |73, 74].

2.1 Thesis outline

This thesis can be divided into two parts. The first, including Section 3 to Section
9) describes the basic AMG method and the extension of the method to deal with
transonic flow problems that are characterized by strong nonlinearity, shock waves,
and extreme anisotropy (results of the irregularity of the grid or the equation
itself). The second part (from Section 10 to Section 12) deals with the FPE in the
quasi-linear form solved with finite difference approach. The third part describes
the solution of the FPE in the conservation form while the equation is discretized
on a body-fitted structured grid approach. Now these sections are described in
detail:
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First part

Background on the classical geometric multigrid method is given in Section three.
The full multigrid as a tool to improve the initial guess is also discussed in this
section. In Section four the basic AMG method is described. Details regard-
ing computational complexity issues and the advantages and difficulties in using
a pointwise relaxation method are given there as well. Relaxation methods and
smoothing analysis are described in Section 5. The transonic flow problem is intro-
duced in Section 6 and our approach to solve the supersonic region is presented. In
Section 7, the extensions of the AMG method to the transonic flow computations
are discussed. Numerical calculations using finite difference method are presented
in Section 8 and convergence results for various flow speeds are given. The abil-
ity of the developed AMG approach to deal with the nonlinear TSD equation is
presented in Section 9.

Second part

A very brief introduction to finite volume method is presented in Section 10. The
discretization of the FPE is discussed in Section 11. In Section 12, we present the
results of several numerical experiments with the AMG method. Here, we also
consider discretizations on body-fitted structured grids. The feasibility study of
the developed methodology’s extension to a three-dimensional case is presented in
Section 13. Finally we conclude with some remarks in Section 14.

3 Geometric (Classic) Multigrid Method

The multigrid method is a multilevel iterative method for solving the algebraic
system Au = f, where A is a real n X n matrix and u, f are vectors in R". We
denote by v an approximation of the exact solution u and by e the error, e = u—wv.
Defining the residual to be r = f — Av, we observe the critical relationship known
as the residual equation Ae = r. Multigrid is the recursive application of a two-
grid process.

An iterative method, such as Jacobi or Gauss—Seidel, which is applied to the
fine-grid problem, is characterized by a slow convergence rate that also depends
on the grid size (1 — O (h?)). This method provides rapid damping for the high
frequency error components, while having very little effect on the smooth low
frequency errors. These smooth components are responsible for the slow total
convergence. Consider, for example, performing the Jacobi iteration on the 2D
finite difference Laplacian on a 50 x 50 grid, as shown in Figure 1. This behavior
is typical of stationary iterations applied to elliptic operators: oscillatory errors
reduce quickly, while the slow convergence is seen in smooth modes.
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Figure 1: Smoothing of a random error by the Jacobi iteration method.

A multigrid algorithm, employing grids of different mesh size, allows solving
for all the error components and provides a rapid convergence rate. The high
frequency components are reduced by applying a pointwise relaxation method like
Jacobi or Gauss—Seidel, while the low frequency error components are effectively
reduced by a coarse-grid correction procedure. Therefore, in order to effectively re-
duce all error components, it seems appropriate to use the recursive error reduction
method, and transfer the smooth error components several times to successively
coarser grids to allow for effective error reduction. This idea leads to the concept
known in multigrid as V-cycle. It is illustrated in Figure 2. The fundamental idea
behind the multigrid algorithm is as follows: In the V-cycle an approximation to
the exact solution is relaxed on and then transferred to a coarser grid. The process
is repeated recursively until the coarsest grid is reached where the corresponding
residual equation is inexpensive to solve. The approximation is then transferred
back to finer grids until the finest grid is reached. In this way all error components
can be reduced.

In geometric multigrid, the grid with the greatest number of points (the fine
grid) is called Q" the next coarser grid is Q" the third coarser grid is Q%" and
so on. Successive grids are often selected by halving the number of points in each
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dimension. Therefore, Q" has 2¢ as many points as 92", where d is the dimension
of the problem.

Level

Relax @ @ Relax h
Restrict Interpolate
Relax @ @ Relax 2h
Restrict Interpolate
Relax .‘ ® Relax 4h
0 Solve Lh

Figure 2: Grid configuration for a V-cycle.

3.1 The multigrid algorithm

For simplification, I will describe the multigrid algorithm with the following two
grid correction schemes. After a few smoothing sweeps we obtain an approximation
v" whose error e = u” —v" is smooth. Then we need to express this smooth error
as a solution of a coarse problem, whose matrix A%" and right hand side f2*
have to be defined. The residual " = f* — A"" is a smooth function if e” is
smooth. Obviously, the original equation A"u" = f and the residual equation
Aheh = rh are equivalent. The difference is that e®and r" are smooth, so we
can represent them on a coarser grid, 22", with half the number of points on the
fine-grid. Define r?" as the restriction of the fine-grid residual to the coarse-grid,
r?h = [Zhyh where TP is a restriction operator. In this way the right-hand side
of the coarse-grid problem is defined. The coarse problem is A%e?h =yt After
a few smoothing sweeps, the error ¢” is smooth, so we can apply an interpolation
operator, I}, to transfer e" to the fine-grid. Then, we update v" by applying
the following coarse-grid correction step v?, = o" + I e?. In practice, the
interpolation procedure may also introduce high-frequency error components on
the fine-grid. Therefore it is convenient to complete the procedure by applying
vy post-smoothing sweeps after the coarse-grid correction. Since the coarse-grid
problem is not much different from the original problem, we can apply the two-grid
correction scheme to the residual equation on 92", relaxing there and then moving
to Q* for the correction step. This process can be repeated on coarser grids until
a direct solution of the residual equation is reached.

Assuming that successive coarser grids have been defined, and assuming that
a matrix operator A is defined on all grids, the multigrid algorithm, by using
V-cycle, can be summarized as follows [54]:
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ot — MG (vh, fh)
while convergence criteria are not satisfied , perform a V-cycle:

e Relax on A"u" = f* vy times with initial guess v™.

e Compute the residual " = f* — A"u" and restrict it to the coarse-grid by
f = [2hph,

— Relax on A%?h = f?h y; times with initial guess v?* = 0.
_ Compute f4h 4h 2h

x Relax on A*u* = f4 1, times with initial guess v*" = 0.
x Compute f8h = [8hpih,

. Solve Albybh — fin

x Correct v — ’U4h + Ighoysh,

% Relax on A*u* = f4" v, times with initial guess v*".

— Correct v?" = v*h 4 [3th,

— Relax on A%u?h = 2% 1y times with initial guess v?".

e Correct v =" + I} v?".

e Relax on A"u" = f* 1, times with initial guess v™.
Here L is used to label the coarsest grid. The integers v and v, are parameters in
the scheme that control the number of relaxation sweeps before and after visiting
the coarse-grid. They are usually fixed at the start based on past experimental
results. The multigrid work-flow is pictured in Figure 3.

Restriction —

<—— Prolongation

Figure 3: Geometric multigrid setting.
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3.2 The Full Multigrid (FMG) method

It is always beneficial to start the iterative procedure from a good initial approxi-
mation. The multigrid method suggests a natural way of getting this approxima-
tion cheaply. Starting the solution process from a coarse-level, for example Q"
where the discretized problem A?'u?" = f?" is easily solved. The solution can
be interpolated to the next finer level as an initial approximation for the itera-
tive process to solve A"u" = f". The interpolation I}, is applied and then the
multigrid solution process at level Q" is started. This idea of using a coarse-level
approximation as a first guess on a finer level is known as nested iteration. The
algorithm that joins nested iterations with the V-cycle is called the full multigrid
V-cycle. Given first an explicit term, the FMG algorithm for two levels is written

as follows:
Initialize f2" « I;%hfh>

e solve or relax on coarsest level, A%hy2h = 2

o vl [h 2

e Relax A" = f 1 times.

The coarse-level right sides are initialized by transferring f* from the fine-level.
The cycling parameter v sets the number of V-cycles applied at each level. Prac-
tical experience shows that it is problem dependent. For example, in subsonic
flow, where the equation is elliptic, vy = 1 is a a good choice. The extension to
multilevel is straightforward. The schedule of grids for FMG with vy = 1 is shown
in Figure 4.

The FMG scheme costs a little more per cycle than the V-cycle scheme (see
for example [54]). However, a properly designed FMG can be much more effective
because before the Q" problem is even touched, the Q2" problem has already been
solved to the level of discretization error. This is because the iterations on the
coarse-level are designed to provide a good initial guess for the next finer level.
In this work an FMG (containing two levels only) is applied as a part of the
AMG code for the nonlinear problems involving circulation. See the details in the
following sections.
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===pp Interpolation
=Py Restriction h
==pp High-order interpolation

Q=

A/ N\
SNV

Figure 4: Schedule of grids for the FMG scheme applied with four levels.

3.3 Measuring the algorithm’s efficiency

An important question is, how much do the multigrid schemes cost in terms of
storage and computation time?

Storage Cost - A d-dimensional grid with n points in each dimension has n
points. Two arrays must be stored, v and f, in the finest level for 2n? total storage
locations. Assuming that Q%" is recursively constructed by halving the number of
points in each dimension of ", the coarse-grids require 2-¢ times the amount of
storage of the next finest grid. Therefore, the total storage requirement can be
expressed as follows:

d

Storage cost =2n*{1+274 4272+ 427 <

Therefore, in one, two, and three dimensions, the total storage cost is less than 2,
4/3, and 8/7 times the cost of storage of the fine-grid quantities, respectively.

Computational cost - It is convenient to measure the computational cost of
multigrid schemes in terms of work units (WU), which is the cost of performing one
relaxation sweep on the finest grid. Since the coarse-grid consists of 27¢ times the
number of points as on the next finest grid, the work required on a coarse-grid is
2~ times the amount of work required on the next finest grid. Each level is visited
twice , and assuming that a v(1, 1) cycle is employed, then the computational cost
is computed as follows:

Computational cost =2 {1427 4+272 4 427" WU < Wu. (2)

1—2-d
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In one, two, and three dimensions, this corresponds to 4, 8/3, and 16/3, respectively.
As one can see, the computational cost, measured in terms of WU, is not affected
by the problem size. Since this result is desirable for the purpose of scalability, it
does not indicate how multigrid performs compared to other algorithms in terms
of total computational cost. In order to get this comparison, the number of V-
cycles, which is required to reduce the error, needs to be known. This parameter
is calculated below.

There are two forms of errors present in the numerical solution of a PDE
problem. The first is called the discretization error and is a direct result of moving
from the continuous problem u to the discrete problem v”. In a 1D problem, the
discretization error is defined by

El =u(z;) —ul, 1<i<n-—1. (3)

Using the definition of the discrete Ly norm, it can be shown that (3) can be
bounded by
1B*], < KR? (4)

where K is a positive constant and p is a positive integer (1 for a 1D problem and
2 for a 2D problem).

A second type of error is generated while approximating the exact solution of
the discrete problem u" with v". This is the algebraic error and is simply defined
as

e =uh — o (5)

The goal of an iterative method is to reduce the algebraic error as fast as
possible and attain a result that is of the order of the discretization error. Consider
a d-dimensional problem with n? unknowns such that the grid spacing is h = % in
each dimension. Assume that the convergence factor v is bounded in each V-cycle
(independent on h). If the scheme reduces the algebraic error from O (1) to the
level of the discretization error, then, O (h?) = O (n™?), the number of V-cycles
required, v, must satisfy ¥ = O (n™?) and hence v = O (logn). The cost of one
V-cycle is O (nd). In order to get an error that is in the level of discretization
while using the multigrid algorithm, the cost in this case is O (ndlogn). This
result is much better than the direct methods, for example Gauss elimination,
where O (n*?) is obtained.

4 The Basic AMG Method

We address the reader to |69, 54, 75, 70] for a detailed description of the AMG
algorithm, while in this section we shall only briefly review the algorithm empha-
sizing its aspects that require special treatment for the purpose of this work.
Consider a certain boundary-value problem for a scalar PDE in domain Q™. Its
discretization will result in a linear algebra problem of the form A™u™ = ™, where
A™ is an n X n matrix with entries a;; with i =1,...,n, 5 =1,...,n, m =1,2, ..,
uw™ = {u;} is the vector of unknowns, f™ = {f;} is the forcing term vector, and
n is the number of points in the computational grid covering the domain. These
equations formally play the same role as the coarse-grid equations defined in the
geometric multigrid method. A grid Q™ can be regarded as a set of unknowns .
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In any multigrid method there are two basic processes involved: smoothing
and coarse-grid correction. Their purpose is to reduce all error components in the
overall iteration. In geometric multigrid methods the coarse-grids are uniformly
coarsened or semi-coarsened; thus the freedom in the selection of the coarse-grids
is limited. The grid’s hierarchy is constructed based on the grid geometry infor-
mation rather than properties of the matrix A. In algebraic multigrid we have no
access to the geometry of the problem. The construction of the coarse-levels and
inter-grid transfer operators are based on the properties of the discrete operator
only.

In a geometric multigrid the definition of smoothness of the error involves
grid geometry. The absence of grids in AMG renders this definition meaningless.
Therefore, the concept of smoothness has to be generalized to some meaningful
measurable quantity that can be computed based on the discrete operator only. A
common definition of the algebraic smoothness is based on the fact that a simple
pointwise relaxation scheme, like symmetric Gauss—Siedel (SGS), effectively damps
highly oscillatory modes of the error only. Consequently, the coarse-grid correction
must deal with the remaining slow components. The characterization of such slow
components ,e, is: Ae ~ 0.

The AMG algorithm includes two parts. The first part is an automatic setup
phase that performs four steps:

1. The matrix entries are analyzed. The purpose is to find strong and weak
connections between the variables.

2. Construction of the next coarser level based on a certain splitting criterion.
All the variables are split to C-points (those are going to form the next
coarse-level) and F-points.

3. The transfer operators, restriction and interpolation (17, I/*1), are eval-

uated. Usually, the restriction is the transpose of the interpolation.

4. The coarse-level matrix is computed, usually based on the Galerkin principle
Am = Im  A™HmHL I this paper another algorithm is presented for the
construction of the restriction operator and the coarse-level matrix.

The second part, the solution phase, uses the resulting operators in order to per-
form multigrid cycles until a desired level of accuracy is reached. This phase
consists of three components:

1. Smoothing by a relaxation method such as Jacobi or Gauss—Seidel.
2. Transfer data between levels by restriction and interpolation.
3. Solution on the coarse-level.

We shall give here a brief description of these phases of what is considered a
classical AMG in the spirit of [69] followed by a description of the solution process.
Only the aspects of the processes that require a special attention for the purpose
of this work will be described in more detail.
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4.1 Strong and weak connections

In the context of an AMG we are going to deal at each level with a linear system
of equations
A = (6)
where m is the level index. The goal is to split variables into two groups: those
remaining on the coarse-level (C') and those that can be “represented” by the
coarse-points and, therefore, may not be included in the coarse-level (belong to
F\C). As mentioned before, the coarsening process is derived based on the strong
and weak connections between unknowns, which essentially measure the relative
size of the off-diagonal entries. Connections between neighboring variables are
considered strong if the size of the corresponding matrix entry exceeds a certain
threshold, relative to the maximum entry of the row. This threshold value is very
important for constructing a good coarse-grid. According to [69], a point i is said
to be strongly connected to a point j, if
—aj; > grilgf (—all). (7)

The threshold value ¢ is kept fixed for most applications, with a typical value
of 0.25. It was found in this work, however, that for the problems considered here
this approach can lead to an inadequate coarsening and interpolation processes,
and hence to poor convergence. Therefore, a dynamic threshold approach was
devised (see Section 7).

Before proceeding with the coarsening process we need to make one more
definition. Denote S as the set of points that strongly influence the point 7; that
is, the point upon which the point ¢ strongly depends. Also, denote by (SZ?“)T the
points that strongly depend on the point ¢. The strength matrix S} is defined as:

mo__
17‘7

(8)

1 if © # j and w; strongly depends on u;
0 otherwise

The nonzero entries in row 7 of Si", and the nonzero entries in column ¢ of S

indicate the points in (S™)". Now the interpolation process can be introduced.

4.2 The standard interpolation operator

Let us define the set of points that are strongly connected to ¢ by S". Let N;* =
{j €O j#4, aff # 0} denote the neighborhood of a point ¢ € Q™. D, =
The neighboring coarse-grid points are denoted by C!". The neighboring fine-
grid points denoted by D?, and the point that is weakly connected to the point ¢
are denoted by D}". Denote the neighboring fine-grid strongly connected to point
t by D; and the fine-grid points weakly connected to ¢ by D}".
The interpolation of the error at the F-point i takes the form

el = Z wrern Vie Q" 9)

where wj} is an interpolation weight, and C}" is the subset of C-points whose

values will be used to interpolate a value at 7.
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Since the error e]" is obtained after a smoothing process, then the ith equation
becomes

apel + Y ajey + Y alel+ Y afel =0 Vie Q" (10)

keC™ jeD? jeDF

In order to determine the weights, w7, we need to replace e in the second and
third sums with approximations in terms of e}’, where k € C/*. Thus, replacing
el with e;" corresponds to taking into account strong F' — I connections using
C-points that are common between the F-points. Since the error is smooth, the
error introduced in making this approximation is insignificant. By applying this
distribution we get the following interpolation formula for the variable i € F™ as

presented in [69],

azkakz
m alj + ZkED ZZEC"L akl

wi = — . (11)

Experience has shown that this proposed interpolation produces accurate re-
sults, and it is efficient mainly for the symmetric and M-matrices, but when it
is applied to a matrix with both positive and negative off-diagonal entries, espe-
cially when the negative off-diagonal values are large (as, for example, in the case
of transonic flow), the AMG method could fail during the setup phase. The details

are discussed in Section 7.

4.3 Classical Ruge and Stueben coarsening

The classical Ruge and Stueben coarsening algorithm will be presented here. For
further details the reader is referred to [55, 69]. Once strong connections are
determined (see (8) for definition of strong dependence and influence), a coarse-
grid is chosen so that all strongly connected neighbors of any fine-grid point are
available for direct or indirect interpolation. The Ruge and Stueben algorithm
selects coarse-grid points based on two heuristic criteria:

e H-1: For each fine-grid point i, each point j € S; must either be a coarse-

grid neighbor or strongly depend on at least one coarse-grid neighbor of 7 in
S;.

This criterion tends to create large coarse-grids. In practice, a second heuristic is
used to limit the size of the coarse-grid.

e H-2: The set of coarse-grid points should be a maximal subset of all F-points
with the property that no C-point strongly depends on another C-point.

The motivation for H-1 follows from the fact that an effective coarsening scheme
should allow accurate interpolation. Since smooth error varies slowly in the direc-
tion of strong connection, smooth error will be interpolated well by points that
are strongly connected.

The heuristic H-2 is much easier to satisfy, and is in place to ensure that coarse-
grids are sufficiently coarsened in order to keep computational cost at scalable
levels. Since these two rules may be contradictory, a typical AMG algorithm
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relays on enforcing H-1, using H-2 as a guide. The reduction in computational
cost per V-cycle that can be achieved by enforcing H-2 rigorously is lost in the
convergence behavior of the iteration. Because H-2 is weaker condition than H-1,
the selection of coarse-grid points is accomplished by a two-pass process that picks
a set satisfying H-2 (initial partition of the grid to C' and F-points), then checks
for any points where H-1 is violated, adding new C-points if this occurs. In the
first pass the C-points are selected based on their number of strongly connected
neighbors. A suitability measure of a point ¢ to be a C-point is simply to count
the number of points strongly influenced by ¢. This count is )\; and is simply the
column sum of column ¢ of the strength matrix S. The greater the value of \;
, the more useful point ¢ will be in interpolation if defined as a C-point. The
point with the largest weight is then selected as a C-point. Each j € SI is now
strongly connected to a C-point; all these j points are assigned as F-points so
that H-2 is not violated. All strongly connected neighbors of these j points are
then more attractive to be a C-point, thus their weights is increased. In this way
the points that strongly influence 7 are more likely to be chosen as C-points. This
process of choosing C-points based on maximal measure, and making all strongly
influenced points F-points, is then repeated. This process is continued until all
points are either C- or F-points. An example of the first pass is illustrated for
a structured grid in Figure 3. Edges indicate strong connections, a black point
indicates C-points, and a white dot indicates F-points. A white dot with a number
indicates an unassigned point, while the number corresponds to its measure in the
corresponding stage in the coarsening process. After a point is assigned, all edges
connected to that point are removed.
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Figure 5: An illustration of the first pass of the algebraic multigrid coarsening
algorithm for a nine-point discretization stencil on a uniform grid with periodic
boundary conditions. The upper left (a) diagram is the original grid, the lower
center (e) is the final step.
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The algorithm in Figure 5 is summarized as follows:

1. The nodes of the graph of the strength matrix are assigned a weight according
to the number of off-diagonal connections.

2. A point with the maximal weight is chosen as a C-point.
3. The neighbors of the new C-point are set to be F-points.

4. For each new F-point, the weights of its neighbors are increased by one to
make them more likely to be chosen next. This process is repeated until all
points are either C- or F-points.

In this way an initial coarse-grid is chosen that gives a maximal independent set
over all strong connections. The purpose of the second pass is to enforce H-
1 rigorously. Additional points are then added to the coarse-grid, if necessary.
This means that some F-points are changed to C-points. This is done so that a
minimum number of C-points are added. In the case of the example in Figure
5(E), the resulting grid becomes that shown in Figure 6.

@ O® OO
O O O O O
® Oe OO
O O O OO0
® Oe OO0

Figure 6: Second pass process for the nine-point Laplacian problem with periodic
boundary conditions. The added C-points are shown in the final coloring as red
dots with heavy red outlines.

Aggressive coarsening

A very efficient way of improving memory is by aggressive coarsening instead of
the standard coarsening. In this approach strong connectivity is also defined by
strongly connected F-points, which means that F-to-C connectivity does not need
direct connections to the C-point.
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Aggressive coarsening is implemented by first extending the definition of strong
connectivity to variables that are not connected directly through a given stencil.
In practice, each F-point is surrounded by C-points from which it is interpolated.
Instead of using only the C-points in the stencil we take into account all the strong
connections of each C-point in the stencil. It is usually sufficient to apply aggres-
sive coarsening only in the first coarsening step and maintain standard coarsening
for the rest of the coarse-levels. This coarsening approach results in significantly
improved complexities and memory requirements, but the convergence speed is
reduced since fewer points on the coarse-level results in less efficient interpolation.
For further details about the aggressive coarsening approach the reader is referred
to Stueben [69].

4.3.1 Restriction and prolongation (interpolation) operators

Having constructed the coarse-levels, we need to devise the restriction (residual
transfer) and prolongation (correction interpolation operators). According to the
classical AMG approach (see [69] for details), one can design the prolongation
operator I"*! while the restriction operator is taken to be the transposed of the
prolongation

NI
ma = (L") (12)
For the purpose of this work, however, this procedure had to be modified so that
the prolongation operator is devised directly according to certain rules (see Section

7).

4.3.2 Restriction and coarse-level operators

As mentioned, in the standard approach suggested by Stueben [69], the restriction
operator is defined as the transpose of the interpolation 7" ,, I”"*'. Then the
coarse-grid operator is defined by the Galerkin type procedure,

Am—i—l — ITT:LL+1Am]Znn+1' (13)

This is the simplest way to construct the restriction and coarse-grid operators.
However, it is known (see, for instance, [76]) that it may lead to poor convergence
when matrix A™ is not an M-matrix, which is normally the case for the problems
considered in this work. Therefore, some alternatives had to be considered (see
Section 7).

4.3.3 Solution phase

The solution phase of the algorithm relies on the resulting operators to perform
an iterative solution process (AMG cycles) until a desired level of accuracy is
reached. An AMG cycle can be described in the following as consisting of the
following stages:

1. Pre-smoothing, by a relaxation method like Jacobi or Gauss—Seidel

2. Performing restriction of the problem, i.e., transferring residuals to the
coarser level.
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3. Solution on the coarse-level (by recursion).

4. Performing prolongation, i.e., interpolating the solution correction to the
finer level.

5. Post-smoothing, again, by a certain relaxation method.

Usually, the relaxation used as an ingredient of an AMG algorithm is a pointwise
one. One of the central contributions of this work is developing a stable pointwise
direction-independent relaxation for the entire range of the flow speed, from low
Mach number flow to transonic and supersonic regions (see Section 6). This devel-
opment was a prerequisite for considering an application of AMG to the transonic
flow problem.

4.3.4 Measuring complexity

The computational complexity concept is intended to measure the algorithm’s
requirements for computer resources:

e computer storage (memory),
e CPU time.

There are four types of complexity measure that are commonly considered: con-
vergence rate, grid complexity, operator complexity, and stencil size.

Convergence rate

It is defined as the average fractional change in the residual for a multigrid cycle.
Foe example, a convergence factor of 0.1 indicates that the residual decreases by
one order of magnitude in each multigrid cycle on average over all computed cycles.

Grid complexity

It is defined as the total number of elements in the coarse-levels divided by the
number of elements in the fine-level. Let nf denote the number of degrees of
freedom on level k and n¥ the number of nonzero entries in the level k operator
AF _ Therefore the grid complexity is computed as follows:

mo ok
Co = L=t (14)
ng
Grid complexity provides a direct measure of the storage required for the solu-
tion and right side vectors, and it is a useful tool to compare different coarsening
strategies. In geometric multigrid, if coarse-grids are constructed by halving the
number of points in each dimension, the grid complexities for one, two, and three
dimensions are 2, 4/3, and 8/7, respectively [54].
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Operator complexity

It is defined as the sum of the nonzero matrix elements in all the coarse-levels,
divided by the number of the nonzero matrix elements on the fine-level. The
operator complexity is defined by

m nk
Cp = —Z’ﬁl L (15)
ny,

The amount of work required by the relaxation and residual computations is
directly proportional to the number of nonzeros on the coarse-levels. Therefore,
low value of the operator complexity that increase linearly with the problem’s
resolution signifies a linear complexity operator.

Stencil size

The stencil size is the average number of points in a matrix row. It strongly
influences the setup time (the time to compute the coarse-levels and operators),
since growing stencil sizes substantially increases the number of operations in the
coarsening and interpolation processes. It also influences the relaxation sweep
time. In order to obtain a scalable algorithm, both operator complexity and
stencil size should be independent of the problem size.

Before we proceed, however, it is useful to give a brief summary of the two
main relaxation methods that usually serve as smoothers for both algebraic and
geometric multigrid approaches.

5 Relaxation methods

The area of algebraic systems has been treated extensively in the literature, with
the aim of improving the algorithms and reducing the number of operations. Some
direct and iterative methods can be found in [77, 78, 79, 80, 81, 82, 83|. Relaxation
methods are represented in this work by the Jacobi and Gauss—Seidel iterations
applied to linear system of equations. These classical relaxation methods are
robust and relatively easy to implement. They are applicable in more general
cases than most direct methods [79, 84]. However, they are known to be rather
slow to converge.

5.1 Point Jacobi method

Let us consider the algebraic system Ax = b, where A is an n x n matrix. The ith
row of the equation is Zj a; jx; = b;. This can be written as:

E amxj + Qi ;5 + E Clijl'i = bl

j<t J>i

iy = b — Y airi+ Y ay (16)

j<i j>i
(bz‘ = Djci Wiy + D az‘ﬂi)

Qi

€Tr; =
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This suggests the following iterative process,

(k) (k)
LD <bi = D Wiy D 0T )

i )

Q4

(17)

where k is an iteration index. The general formulation of the Jacobi method is
best represented in matrix form. We decompose the matrix A in a sum of three
matrices containing the main diagonal D, the upper triangular part U, and the
lower triangular L. That is, we write A = D — L — U. Then the linear system
Au = f becomes

(D-L-U)u=f
Du=(L+U)u+f.

Multiplying by D~! corresponds exactly to solving the jth equation for z; for all
17=1,...,n,

(18)

u=D"(L+U)u+D'f. (19)

Let define the Jacobi iteration matrix by R; = D~ (L + U), then the iter-
ation process of the Jacobi method is v(!) = R;0(® + D=1f while the current
approximation (or the initial guess) on the first iteration is denoted v(®, while
the new, updated approximation is denoted v("). In practice, once all of the v
have been computed, the procedure is repeated until convergence to the solution
is obtained. An important modification that can be made to the Jacobi method
is by a weighted average:

o =[(1=w)I+wR;]v” +wD™'f. (20)

This new iteration is called the damped Jacobi method. When w = 1 we get
the original Jacobi iteration. The Jacobi iteration matrix is defined by R, =
(1 —w) I +wRj; then the method can be expressed as

vV = R, +wD7f. (21)

5.2 Gauss—Seidel method

The Jacobi method does not use all the available up-to-date information when
updating xgkﬂ). It uses values from the k" iteration for all xj, even for j < 4
where xékﬂ)is already known. If we revise the Jacobi method so that we always
use the most current estimate of the exact x;, then we obtain the Gauss—Seidel

iteration:

(bz — Z Z.CLZ‘]‘{E(-]H_U =+ Z ZCLZ]ZEEk)>
x§k+1) _ J< J — 7> . (22)

In the matrix form, splitting the matrix A into the form A =D — L — U, we
can write the system of equations as

wu=(D—-L)'"Uu+(D-L)""f (23)
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We can define the Gauss—Seidel iteration matrix by

Re=(D-L)"'U, (24)
and the method is

v = Rev® +(D - L)' f. (25)

For the Jacobi method, the order in which the components of v are updated
is immaterial, since components are never overwritten. For Gauss—Seidel, the
order of updating is significant. Instead of sweeping through the grid points in
ascending order, we can sweep over the grid points in descending order. We can
also alternate between ascending and descending order. This method is called the
symmetric Gauss—Seidel method. One iteration of this method consists of two
consecutive relaxations: a standard Gauss—Seidel relaxation, followed by another
Gauss—Seidel relaxation in the reverse order.

5.3 Convergence analysis

The update formula, for both Jacobi and Gauss—Seidel methods, is linear in v
and does not change from one relaxation to the next. This type of formula is
known as stationary linear iteration. Each of the methods described above may
be represented in the form:

v* ) = RoF 4 g, (26)

where R is a general iteration matrix. These methods, obviously, when applied to
the exact solution, should not change it. Let us verify this for the Jacobi method

v(k-‘rl) _ ij(k) + D_lf,
v* D = Rv® 4+ D Au,

27
o™ = DL+ U)o + DD~ L -U)u, 27)
v = DL+ U)o — DL+ U)u + u,
and thus
) = p®) = if o®) =y, (28)
In general it can be written as follows:
u= Ru+g. (29)
By subtracting (27) from (29) we find that
u— ¥ = Ru+g— (Ro™ +g) = R (u—vW), (30)
and thus
e* ) = Rel®), (31)

If the iteration is performed m times we get
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elm = Rme), (32)

The superscript 0 corresponds to the initial approximation. It is possible to bound
the error after m iterations by

e < [IR™ || - (33)

It follows that the error is forced to zero as the iteration proceeds, if and only if
|R™|| < 1. The norm of the error will approach zero as the number of iterations
increases, only if p (R) < 1. The spectral radius p (R) is also called the asymptotic
convergence factor.

6 Transonic flow — model problem formulation

6.1 The continuity equation

The law of mass conservation expresses the fact that mass cannot be created in
a fluid system and it cannot disappear. Consider a finite control volume fixed in
space and time (2, as sketched in Figure 7. The time rate of change of the total
mass inside the control volume {2 is

g [ (oa). (34)

Q

The mass flow of a fluid through a surface element ds fixed in space is p\_/-ﬁds,
where n is a unit normal to the surface. The convection for the case of closed
domain is that 7 always points outwards. If the following product is negative
‘_/ -7 < 0, it is called an inflow boundary (mass enters the domain), and if this
product is positive it is called an outflow boundary (mass leaves the domain). By
taking into account the general formulation of (34), the conservation law of mass

1S
I V.7w)dS =0 35
a/ﬁ +]{p(-n> = 0. (35)
Q o0

The latter result is known as the Gauss theorem [12].
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Figure 7: Definition of a finite control volume.

6.2 The momentum equation

The variation of momentum is caused by the net force acting on the mass element.
The momentum of a mass element with a control volume (2 is

é
pV dS2. (36)
The variation in time of the momentum is
d —
4 VdQ) . 37
A 37)

The transfer of momentum across the boundary of the control volume is described
_>
by a convective flux tensor that consists of the following two components: pul’

ﬁ
and pvV'. The contribution of the convective flux tensor to the conservation of
momentum is then

- ]f oV (V7) ds. (38)
o0

Since there is no diffusion of momentum when the fluid is at rest, the diffusive
flux is zero. There are two kind of forces acting on the control volume:

e Body forces - acts directly on the mass element, i.e., gravitational buoyancy,
Coriolis or centrifugal forces.

e Surface forces - acts directly on the surface of the mass element. These forces
result from the pressure distribution imposed by the outside fluid surrounding the
volume, and shear and normal stresses resulting from the friction between the fluid
and the surface of the volume. .

The contribution of the body force f. to the momentum conservation is fm p fedS.
The surface sources consist of the pressure component and of a viscous stress ten-

sor T Qs = —p}—i—?. Summing the above contributions to the general conservation
law, we finally obtain the conservation of momentum:
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QJ|Q;

/deQ+j§pv (vﬁ) dS:Q/pfedQ—%deS+aZf (? W) ds. (39)

Q o0

6.3 The energy equation

The First Law of Thermodynamic states that any changes in time of the total
energy are caused by the rate of work of forces acting on the volume and the net
heat flux into it. The total energy per unit mass E is obtained by adding the
internal energy per unit mass, e, to the kinetic energy per unit mass V?/2,

2

E:e+% (40)

The total energy per unit volume is pF and its variation in time within the
volume Q is expressed as ¢/at [, pEdQ). Then, the contribution of the convective

flux is
- pr (V : ﬁ) ds. (41)

o0

The diffusive flux Fp is proportional to the gradient of the conserved quantity
per unit mass (Fick’s law),

Fp = —ypkVe, (42)

where v = Cr/c, is the ratio of specific heat coefficients and & is the thermal
diffusivity coefficient. The diffusion flux represents the diffusion of heat due to
temperature gradients. Therefore, the above equation can be written in the form
of Fourier’s law of heat conduction, i.e., Fp = —kVT, where k is the thermal
conductivity coefficient and T' is the temperature.

The net flux into the finite control volume also consists of the heat sources
(absorption or emission of radiation), which include the time rate of heat transfer
per unit mass ¢, and the rate of work done by the body forces f.. Then the
volumetric sources

Qu=pl.V + i (43)

The surface source (), corresponds to the time rate of work done by the pressure
and shear normal stresses on the fluid element,

- —

Qo= —pV +7-V. (44)

By summing the above contributions we obtain the energy conservation equa-
tion,

gt/pEdQ+}[pE(7-ﬁ)dszfk(VT-ﬁ)ds

+/(pfe V+Qh dQ j{p d5+]{(; 7>-ﬁ’d5.

Q o0N o0N
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By applying the relation for the enthalpy H = h + V?/2 = E + 7/, and gather-

— —
ing the convective pE'V and pressure term <pV), we can finally get the energy

equation,
0 7 =
a/pEdQ+jz{pH<v- n>d5:
fk(VT-ﬁ)dSJr/(pfe-7+qh)dn+f(r-7) T dS.
N Q oN

In order to get a better overview of the various terms involved, the three
conservation laws can be collected into one system. For this purpose let define
two flux vectors: F, as the vector of convective fluxes and F, as the vector of
viscous fluxes. In addition, the source term () comprises all volume sources due
to body forces and volumetric heating. By casting equations (34, 35, 36) we get

%Q/?ch+]{(ﬁc— F,)ds = Q/ﬁdQ. (47)

0N

6.4 The full potential equation (FPE)

The derivation of the FPE will be presented in this section. The approach taken
here to derive the FPE is one of several possible ways. More complete information
on the derivation can be found in [12].

The equation of mass conservation in a steady state fluid flow can be written
in divergence form,

V- (pV) =0, (48)

H
where V' = (u,v)T is the velocity and p is the local density. Since we are
dealing with a potential flow, by definition the flow is irrotational, which implies
that there exists a velocity potential such that

V =V (49)

The density is related to the velocity (and hence to the potential ¢) through the
energy equation. Let us start from the u-momentum and v-momentum equation

d, , d
il =0 o0
7 (pu” +p) + a0 (puv) = 0, (50)
or, applying the derivatives in  and y directions, we get
d d d d d
— — — — —(p) = 0. 51
pu——(u) +u {dg;(pw + dy(pv)} +pudy(v) + () (51)

The terms within the square brackets equal zero because of the continuity
equation. Thus the u-momentum equation becomes

d [(u®+v?) N 1d
dx 2 pdx

W] -0 ()
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In deriving the above equation we made use of the irrationality relationship
ﬁ
(VxV =0), L(u)=2L(v).

7d_y — dz

Furthermore, for isentropic flow of a perfect gas, the relation /% = const or
1
- (L)”holds. Thus,
Poo Poo
1d 7 (p) d ( (1_1>
20 (p) = LMol ¥ ). 53
pdx(p) P (53)
Therefore, the u-momentum becomes
d | [(u?+v? Y (poo)% (1-1)
el =0 54
< ( . )+7_1pwp | (54
or
(W+v?) v p
-=G 55

where G(y) is an arbitrary function of y or a constant in z. Doing similar
manipulations with the v-momentum equation, we get

(W +v*) v p
—-=F 26
where F'(z) is an arbitrary function z. Comparing (55) and (56) we conclude
that F(x) = G(y) = Constant. Thus, the energy equation becomes

2, .2
(W +v) +—L P const. (57)
2 vy—1p

At the free-stream the above equation becomes

u? + 02 o
(e +05) | 7 P
2 Y= 1 Poo

Comparing (57) and (58) and also noting that the sound speed is defined as

a’ = 72—;, we get the relation between the local speed of sound and the flow speed:

= const. (58)

v—1

a2:a§o+T(Vfo—u2—v2). (59)
Comparing (57) and (58) and also noting that ¢ = /(u? + v?), and that the
sound speed is defined as 7’;%: =a? = 1\‘2_0200 =1, we get
(u? 4+ v?) 1 (o1 L 1
S S 60
A T N G A TN O o

The density can be referenced to a uniform free stream at infinity, or to a
stagnation point condition. We derive the free stream version,

p@) = |V (22— a)| T (61)
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By applying the above relations, the five unknown fields u, v, p, and p are
eliminated in favor of the potential function ¢, which solves the full potential
equation:

Ve (9) V()] = 0. (62)
The limitation of the potential low model - The potential flow model
assumes a constancy of the entropy and total enthalpy, S = const., H = const.,
and ? X ‘_/ = 0, where ¢ is the solution of the mass conservation equation. This
model ensures that the momentum and energy conservation laws are satisfied.
However, in presence of shock waves, this will no longer be the case since the
Rankine-Hugoniot relations lead to an entropy increase through a shock. If the
shock intensity is uniform the flow remains irrotational. If the shock intensity is
not constant, the flow is not irrotational and hence the potential flow model is
not “good” anymore, since the potential model implies constant entropy and has
therefore no mechanisms to generate entropy variations over the shock [12]. In
this work it will be assumed that any shock waves in the flow are weak enough
so that the entropy and vorticity generated by the shock can be ignored without
introducing serious errors.

6.5 Transonic flow - model problem formulation

Transonic flow is a flow in which large subsonic and supersonic regions coexist.
Usually, the supersonic region of the flow is bounded by sonic lines with smooth
gradual acceleration of the flow from subsonic to supersonic, and by shock waves
through which the flow slows to subsonic speeds. This type of flow occurs in a
variety of applications such as flow over aircraft wings, helicopter rotor blades,
flow inside compressors and turbines, inlets. Starting from the mass conservation
written explicitly, we get

dp ou Op ov
9"t Pan a0t g, =0 (63)

The terms g—z and g—z can be evaluated by using the momentum equations in x
and y directions:

ou  Ou 19p a® 0p
UtV = ———— = —— ——

Ox dy pOox p Ox

dr 9y  pdy  pOy

(64)

since a? = (g—ﬁ) , assuming the entropy is constant. Finally, the FPE in the
s=const.

quasi-linear form is obtained,
(a% = u?)Buw — 2uvhyy + (a® — V) By, = 0 (65)

where ¢ is the potential, © and v are the velocity components, and a is the speed
of sound. This equation is a nonlinear second order partial differential equation
for ¢, of the form

Agbxw + B¢xy + C¢yy = D, (66)
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where the two characteristics directions are given by

dy B+ vB*—4AC

dr 2A (67)
Taking the coefficients in (65) the characteristics are
d —byb, £ /(P — a2
N SV () (68)

dx a? — ¢?

The characteristics of the FPE are the edges of the Mach cone and are sym-
metric about the velocity vector V. The discriminant will determine the nature
of the equation. When ¢ < a the characteristics are imaginary and the equation
is elliptic. As ¢ > a the discriminant is positive, which results in real values for
the roots and therefore real characteristics — the equation becomes hyperbolic.
Any numerical scheme used to solve the FPE for ¢ has to reflect the domain of
dependence in both the subsonic and supersonic flow regimes.

The precise manner in which both x and y derivatives are shifted in supersonic
regions was discovered by Jameson (see [27]), which is called the “rotated difference
scheme”. In this method the z and y derivatives are shifted correctly so that the
numerical and physical domains of dependence coincide, regardless of the local flow
direction. The first step towards the rotated difference scheme is to re-express the
quasi-linear form (see Eq. (65)) in a new Cartesian coordinate system, s —n, where
the s-axis is aligned with the flow direction and n is normal to it, as illustrated in
Figure 8.

Streamline

Figure 8: Cartesian coordinate system s —n. The s-axis is aligned with the flow
direction, and n-axis is normal to it.
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Denote the angle between the z-axis and s-axis, equal to the flow angle, 6.
Coordinates s —n and x — y are related by the following transformation:

x = scos (f) — nsin (0) s =z cos (#) + ysin ()
y = ssin (0) +ncos (6)’ n =1ycos(f) — xsin(6).

The derivatives with respect to  and y in terms of s and n are computed as

follows:

The second order derivatives are:

= s (3:) = [(3) 2~ (5) 90} [ (@) 0= () )
(2) 0] [(2) 0+ (2) et

= cos? (6) % — 2cos (6) sin (6) 7

55 (3)- ()=

= cos® (6) 8‘9—; + 2 cos (6) sin (6) 85;1 :

325 [(2) ox0r- ()] [(2) o+ () ]

By applying cos (6) = 4/q and sin (0) = v/q, Eq. (65) becomes

(CL2 - q2)¢ss + a2¢nn =0. (72)

(69)

It can be seen that in subsonic regions, when a > ¢, Eq. (72) is elliptic,
and hyperbolic in supersonic regions. Now we have to identify the terms in the
quasilinear form that contribute to ¢s, and ¢,,,, which are easily found from (71)

as follows:

o 0or 0y o 9
%—%g—f—a—y%—COS(Q)a—x—'—Slﬂ(e)a—y,

g_; _ % (%) _ {cos )2 4 sin () —] [cos () a% + sin (9) a%} 7
— cos? () 2 + 2sin (6) cos (9) 8i;y | a; .

0x?
. 9, 0
—sin (6) . + cos (0) o’

9 _dor 00y
on  dxdn  Oyon

el in (o) 2 0 NG B
oz = {— sin (6) 5y T o (0) a—y] [— sin () 5, T oo (0) 8_y} :
= sin” ( )@—28111( ) cos ( )8x8y+COS ( )8_y2’
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where ¢, and ¢, are

Pss = €08°(0) Py + 25i0(0) cos(0) puy + sin*(0) by,
Grn = SIN*(0) P — 25i0(0) c08(0) Pry + c08>(0) Py -
The transonic flow problem is a very difficult one from the computational
standpoint since Eq. (72) changes type. It is elliptic in the subsonic region,
giving rise to signals propagating in all directions. Every point in the domain
will be influenced by every other point. As the flow velocity nears the sonic
condition, a point in the flow will be more affected by the upstream. In the
supersonic region the equation becomes hyperbolic, and the information signals
will travel only in the flow direction. Until 1971 the attempts of scientists to solve
the transonic flow problem numerically were successful only in the subsonic flow
regime. Earl Murman and Julian Cole [20] were the first to recognize the fact
that since the equation changes its character from elliptic to hyperbolic, different
discreet operators should be applied for each of these two cases. Murman and
Cole observed that the dependence of the point (7, j) on the entire neighborhood
is physically correct only in the subsonic case where the PDE is elliptic (see Figure
9). Murman and Cole recognized that in the supersonic regions, since the domain
of dependence of a certain grid point (i,j) is bounded by the characteristics,
the numerical scheme should reflect this upstream dependency. Therefore, they
proposed to use the upwind scheme (see Figure 9(b)).

(74)

®
/ G+1)
— o . s
\ (i) L) [ L)
L)
Physical domain Numerical domain
of dependence of dependence
(a)
\' i
- o O o
/ G G2) (L) |G
o (i,j-1)

(b)

Figure 9: a.) In elliptic regions, the point (i,j) depends on the surrounding
region. b.) In supersonic regions, the point (¢, j) should depend primarily on the
information within the characteristic cone.
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The small disturbance equation was solved in this way, where the flow was
aligned with the z-axis. The solution was applied as follows — a line Gauss—
Seidel relaxation along the y-axis grid lines in the order that follows the flow
direction. In the present work we insist in using a pointwise relaxation (for the
reasons stated previously). If the flow is subsonic (and central differencing is used),
a simple pointwise relaxation (Gauss—Seidel or damped Jacobi) is stable. In the
supersonic case, however (when an upwind difference approximation is used), such
a relaxation is unstable (the amplification factor is greater than unity for certain
components). The main achievement of the work presented in this paper is the
development of a relaxation procedure that is stable when applied in the pointwise
manner.

6.6 Subsonic flow — the discrete approximation

Assume the equation is to be discretized on a uniform Cartesian grid while Az =
Ay = h. Also recall that the aim of this work is not only to construct a stand-
alone full potential equation solver but also a building block for a future algorithm
for solving the full flow equations based on the factorizable discretization methods
(see [50]). Therefore, when constructing a finite difference approximation to ((72))
we apply the following rationale: the discrete form of this equation is expected to
follow from the form of the full potential co factor when the system of Euler equa-
tions is discretized by means of the factorizable scheme. Therefore, the concepts
of “narrow” and “wide” approximations to derivatives (see [50]) are applied here
as well.

A convenient way to express graphically a local discrete operator is through

its stencil. A standard way to represent a stencil is by a matrix (see, for instance,
[55]).

1. When the flow is grid aligned (the s-axis coincides with the x-axis), the
streamwise derivative is approximated by the “wide” central second difference

L1 -2
h=——12 -4 2]. (75)
ss 2

SA IR S

The cross-flow second derivative is approximated by the standard “narrow”

difference
1 1
o = 7z —? - (76)

2. In the case of zero Mach number flow, an approximation to the entire equa-
tion is a discrete Laplacian of the following form:

AP ! :
RPN

NN DN

1
2 |. (77)
1

3. It follows from here that the concepts of “wide” and “narrow” second finite
differences have to be generalized to the arbitrary direction.
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First, we generalize a “narrow” second finite difference to a general direction.

Consider the following finite difference stencils:

1
s _ 4n __ 1
vy — Pyy — K2 =2 |,
1
[0 -1 1]
s __ 1 (78)
vy = 32 —1 2 -1
| 1 -1 O_
1 -1 0]
n _ 1
vy = 32 —1 2 -1
i 0 —1 1_

Then the “narrow” second difference in direction n can be given by the following
expression
b = sin®(0)dus + 2in(6) cos(0) ¢, + cos(0)dy,. (79)

Note, that this difference approximates the cross-flow second derivative. Also it is
sufficient for the purpose of this work to consider the case where the flow direction
forms with, say, the x-axis an angle

0° < 6 < 45°. (80)

Therefore, the expression (79) covers all the relevant situations. The “wide” dif-
ference in general flow direction is defined simply by subtracting ((79)) from the
“wide” approximation to Laplacian ((77)).

6.7 Supersonic flow

In the supersonic region the equation changes type from elliptic to hyperbolic, and,
therefore upwind differencing should be used to approximate the second derivative
in the flow direction ¢4 (see ((72))). Again, in the case of grid aligned flow, the
second derivative in the flow direction is going to be approximated by a one sided
“wide” second difference. In the case of a general flow direction, the following
approximations to the derivatives are employed:

L [Godte) (Chesto) (-dst@) o 0
o - — 1 -1 1 0 0
b2 1120 1 (2 152 2 .2 ’
(5 —3sin*(0)) (=3 +2sin*(0)) (35— 2sin*(0)) sin®(0) 0
(81)
0 sin? (6) 0 0 0
w0 Gogee) b ogogee) o
wop2 | 0 (—3+2sin*(0) -1 (—3+sin*@)) 0 |’
0 (4—143sin*@®) 1+ (2-1sin*(9) 0
1 0 0 0
Ry=33| -1 10 (83)
1 -1 0

The approximations to ¢, remain the same as in the subsonic case.
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6.8 Devising a stable relaxation procedure

As stated above, we restrict ourselves in this work to usage of a pointwise relax-
ation. Therefore, we have to make sure there is a variant of such a relaxation at
our disposal that not only is stable for all the cases of interest but also provides
a good smoothing. While simple damped Jacobi and symmetric Gauss—Seidel re-
laxation schemes are suitable for the subsonic case, both of them are unstable in
the supersonic case. This can be easily verified by Von-Neumann analysis. As
an example, a view of the amplification factor, |G (6, 602)|, as a surface over the
region [—m, 7] X [—7, 7] is given in Figure 10. The amplification factor is a function
that describes how the error amplitudes evolve, or, how the amplitude of a mode
changes with each relaxation sweep. For convergence of the method, we must have
an amplification factor of the damped Jacobi relaxation lower than unity for all
the frequencies #; and 65, and in this case, this condition is not satisfied. It can
be seen that the amplification factor decreases in magnitude as the modes become
more oscillatory (f; and 6, are increased), but at the slower modes (at the center
of the graph) it increases and reaches values exceeding unity.

105

084

G|

0.87

|G| 055

024
0.37

0.05 -3.2

28 07+

Figure 10: a) Amplification factor |G (01, 6s)| for the damped-Jacobi method
applied to the discrete upwind operator in two dimensions, shown as a surface

over the region [—m, 7| X [, 7]. b) Same amplification factor shown as a curve
of fixed 6;.

Several directions were explored to devise a stable pointwise relaxation. One of
them was to rely on the well-known decomposition of the supersonic operator into
two advection operators, discretizing each one by a certain upwind scheme. A sim-
ple pointwise relaxation is stable when applied to these discretizations. However,
the overall procedure would suffer from some deficiencies. The main one is that it
cannot be generalized to a three-dimensional case. Therefore, this possibility was
rejected. Yet another attempt was based on the artificial time method that was
introduced by Jameson in 27|, while the idea was to use a three-level difference
scheme. This approach was also rejected for reasons related to implementation.
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6.9 Our approach

A well-known approach that can help in the situation described above is the Kac-
smarz relaxation [85, 55]. According to the theory, this relaxation always gives
smoothing (provided the operator is not semi-definite, i.e., has no eigenvalues with
zero real part), but it is rather inefficient. Instead of solving the algebraic linear
system Ax = b directly, it suggests to solve

AATy = b, (84)

where

= ATy. (85)

The implementation of the Kaczmarz relaxation in our case turns out to be
quite expensive: since the A matrix has to reflect the upwind (second-order) dif-
ference operator, matrix A7 will have to reflect downwind differencing. Their
product, therefore, is going to be rather cumbersome. Therefore, our approach
was to find a simpler matrix, A4, to replace AT and to solve a system AAy = b
where = Ay. The difference operator resulting in matrix A, for the cases of
0° < 0 < 45° was chosen to be of the following form:

L= (}L sin?(6) + i sin(6) cos(ﬁ)) Gi-1j+1

1 1
+ (4_1 -3 sin(6) cos(@)) Dit1,j+1

1
+ 5 sin2(9)¢,-7j+1 (86)

1 1 .
+ (5 5 51112(9)) Giv1,j

+ (}1 cos?(0) + isin(@) cos(@)) Git1,j—-1 — Gij-

For illustration, we present this operator in two special cases. When the flow
is grid aligned, L is given as follows:

1
g0 0 g
0 0 1

while for the diagonal direction flow, the discrete operator is

-1
L=+ (88)

O Orl-
o I =
—_

e e )

It is important to note that the performance of the overall AMG algorithm
depends strongly on the choice of operator L. The particular structure presented
in (86) seems to lead to the best results. The product operator LL is h-elliptic,
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according to the concept of h-ellipticity introduced by Brandt [63]|. Figure 11
presents the amplification factor (the function that describes how the error
amplitudes evolve - for convergence of the method, we must have an
amplification factor lower than unity) for the Gauss—Seidel relaxation method, as
a surface over the frequencies [—m, 7| X [—m, w]. The flow speed for the three
cases is M, = 1.1 and the flow direction 6 = 0°,30°, and 45°, respectively. One
can see that the whole surface is lower than unity, which indicates that the
method is stable. Clearly, the amplification factor decreases as the modes
become more oscillatory. The smoothing properties of such a relaxation are
much better than those of the classical Kaczmarz (for comparison see Figure 12).
To the best of our knowledge, there are no other known results of an application
a simple pointwise relaxation and of the AMG method based on it for the
transonic flow problem.
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Figure 12: Amplification factor , |G (01, 6,)|, applied to the discrete upwind op-
erator in two dimensions, shown as a surface over the region [—m, 7] x [—7, 7] for
the Kaczmarz method. The flow conditions are M = 1.1 and 6 = 0°.

Now, when we have stable and efficient relaxation schemes for cases of subsonic,
sonic, and supersonic flow, it is necessary to devise a single unified methodology
that covers all the cases. When the flow is subsonic, a central difference is used
for the second derivative in the flow direction, while pointwise relaxation can be
applied directly in conjunction with the matrix A (or operator L). If the flow is
supersonic, we apply relaxation directly with the product of downwind and upwind
operators LL (or matrix AA). Since the operator L cannot suddenly appear in the
supersonic flow regime, it must exist also in the subsonic flow regime. Therefore,
these two schemes have to be combined. One way of doing this is still to keep A in
the subsonic case while modifying it so that it gradually becomes a unity matrix
as the flow speed decreases.

Once we have a stable relaxation procedure based upon the combined opera-
tor, we can proceed to devising the overall solver. However, when operator L is
nonlinear it becomes complicated to construct and apply such a combined oper-
ator. For the purpose of overcoming this difficulty, we devised and applied the
distributive relaxation technique such that it is identical to the simple pointwise
relaxation on the operator LL in the linear case.

6.10 Residual distributive relaxation

Denote the residual of the discrete equation at point

r= f - L¢Ca (89>

where ¢° stands for a current approximation to ¢. Then (in the case of a linear
operator L), the equation for correction can be written as follows

L(5¢) = 1. (90)

However, as discussed previously, a pointwise relaxation procedure applied di-
rectly to the above equation is unstable in the hyperbolic case. Therefore, it was
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suggested to apply relaxation directly to the “combined” operator
LL(sy) =r, (91)

and, after computing the correction dy, to evaluate the correction d¢ = f}(éy)
The entire AMG solution algorithm can address the combined operator LL (or
matrix AA) and the corresponding unknown 7 (or correction d7y). However, when
operating on the finest level, we need to deal with the problem in terms of the
unknown ¢. One way of doing this can be to translate the correction dy into the
correction d¢ at the end of a relaxation sweep or a multigrid cycle. An alternative
way is to perform this translation immediately after computing the correction at

each and every point

(5¢)i,j =L (59)2',]‘ : (92)
Note, that due to the structure of operator L, at grid point ¢, j we have
(6¢)i,j = (6y)i,j' (93)

Therefore, this procedure can be described as evaluating correction (d¢), ; at a
point based on the original operator L. However, in addition to introducing it
at point 7,7 and in order to avoid the instability of such a “direct” relaxation
procedure, we also distribute its fractions at certain downstream points according
to the operator L.

The residual distribution method consists of distributing fractions of the flux
balance in a cell to the adjacent cells in the upwind direction, with weights sum-
ming up to one for consistency. The idea is to build a procedure that accurately
mimics the structure of the operator L in all the flow conditions that we have
tested. The distribution of the residual in every point in the field is done in a
systematic procedure, exactly according to the structure of the operator L.

Consider a subsonic grid aligned flow, in a cell center far from the boundaries.
After computing the residual, it is distributed to three adjacent cells according to
the operator L,

1
2
Gic1j+1 = Qi1j41 + M =1 5,

747J4
1
Gi-1j = Qi1+ sz?"i,j, (94)
1
Gi1j-1= Gi—15-1+ ijzﬁ‘,j,

where 7; ; is the residual computed in the cell (¢, j) and M, ; is the local Mach
number through the face (i,7). As one can see, the the additional weight to each
cell is modified so it gradually becomes zero as the flow speed decreases.

7 Extending the AMG method to transonic flow
computations

7.1 The coarsening process by using a dynamic threshold

In the context of an algebraic multigrid we are going to deal at each level with a

linear system of equations
A" = ™ (95)
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where m is the level index. As mentioned in the previous section, the coarsening
process is derived based on the strong and weak connections between unknowns,
which essentially measure the relative size of the off-diagonal entries. Connections
between neighboring variables are considered strong if the size of the corresponding
matrix entry exceeds a certain threshold, relative to the maximum entry of the
row. This threshold value is very important for constructing a good coarse-grid.
According to [69], a point 7 is said to be strongly connected to j, if

—ajy > gn’rflgzx(—a%). (96)
The threshold value ¢ is kept fixed for most applications, with a typical value of
0.25. It is well-known that devising a robust coarsening process, which results in an
accurate interpolation, is one of the keys for achieving a good AMG convergence.
There are special cases, for example, anisotropic elliptic problems (anisotropy can
be a result of the computational grid or the equation itself), where the equation
changes type from elliptic to hyperbolic (transonic flow problem) and a fixed
threshold parameter can result in an inadequate coarsening process.

The problem under consideration (supersonic case, for instance) usually leads
to a matrix with significant negative off-diagonal entries. Therefore, it is important
to redefine the definition of strong and weak connections, so that it becomes
more adequate for our case. We would like to allow a connection with a negative
coefficient whose absolute value is sufficiently large, to be classified as a strong one.
Therefore, as suggested in [76], we modify definition (96): a point 7 is considered
to be strongly connected to point j, if

|a?| > emax laly]| . (97)

Our further generalization of this idea is to select strong connections using a
different threshold parameter for each row of the matrix A™, while computing its
value by analyzing this row’s entries. Each row represents a difference operator
at a specific grid point and, possibly, boundary conditions. Intuitively speaking,
the same fixed threshold value (as used in the classical AMG) cannot reflect the
relative size of the row’s entries for various cases (isotropic, strongly anisotropic,
or hyperbolic). Therefore, in order to maintain a good AMG performance across
the entire variety of flow speeds, we propose to compute the threshold adaptively,
during the coarsening process, for each row of the matrix.
Assuming the operator A™ is known, we start from the following equation:

apul + 3 allul = Vie Q™ (98)

JENT

Let us define the threshold parameter £ for each row i as:

aij
o Zj;éi || m (99)
> i laij|
As one can see, the threshold parameter is simply the weighted average value
in a given row. Several observations relating to the constant coefficient case are
in order here. If a periodic boundary condition is applied, the matrix A™ is
composed of identical rows and the threshold parameter can be calculated once
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for each coarse-level. But, while applying other boundary condition (Dirichlet,
Neumann), as for a general problem, it is necessary to calculate the threshold
for each row separately. This proposed threshold calculation appears to be more
adequate than the fixed threshold used in the standard AMG method. This will
be illustrated by the numerical experiments in Section 8. Practical experience has
shown that while solving the FPE in the conservation form with finite volume
schemes, the advantages of the dynamic threshold is even more dramatic. This
area is covered in Section 13.

7.2 The coarse-grid and restriction operators

In the classical approach, suggested by Ruge and Stueben, the restriction operator
is defined as the transpose of the interpolation, I, ;, Im+1 Then the coarse-grid
operator is defined by the Galerkin-type algorithm, AmJrl = I Amm . We
shall refer to this approach as Algorithm 1. Although this is the simplest way to
construct the restriction and coarse-grid operators, it leads to poor convergence,
when the matrix A™ is not an M-Matrix.

Alternatively, a second algorithm discussed in [76] is to use direct approxima-
tions based on the fine-grid operator A™ to construct A™* and I™*!. Assuming
the operator A™ is known, we start from the following equation:

apul* + Y apul'+ Y alul ~ ft i€ (100)

jec jeD™

In order to derive the coarse-grid operator A™*!, the terms associated with ul',
7 € D™, in the ith equation, ¢ € C™, should be approximated. The simplest way is
to distribute these elements according to their values to their strong connections.
The resulting coarse-level operator could not provide accurate correction to an
approximate solution in the fine-level, and it leads to poor convergence rates.
Alternatively, the terms u[', j € D™, in the ith equation can be replaced by
the jth equation. While this operation cannot eliminate all u7*, j € D™, it can
reduce the magnitude of the coefficient. The 7', j € D™ are eliminated by the
interpolation formula if |ai ‘ < ¢. and the ', j € D™ are replaced by means

@i /a” > €., where e, = 0.001, i.e.,
S if || <<
m— s . 101
R a;';k,ZN afaf, if |af/ag] > e (101)
e m

The new equations are obtained

alPu + Z a(2)um—|— Z ag)u}” ~ f— Z i} — i iec™,  (102)

jecm jeDm jeDm ]J

where D" = {j . ag‘/am > €., JE Dm}. This process is repeated until uj",j €
D™is eliminated from the 7th equation. Therefore,

ol + Y aPur ~ - ZZ %) mo e cm, (103)

jeC'm =1 ]EF"L ]]
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(1)

OFNG!
ij Qj; /a;

is defined as A™™! = (agjL)). The restriction operator I is resulted directly
from (103),

where a;;” = al?, D" = {j:

17

>e., J€ Dm}. The coarse-grid operator

L—1 a(z')
frt == >0 nf ieanth (104)
I=1 jeCcm 45

Note that using this method we get I™+1 # (I;IL‘H)T (see |76] for more details).
This approach works well for all the problems considered in this paper.

7.3 The interpolation operator

Two attempts have been made to construct an interpolation operator that can deal
with a matrix that includes positive and negative off-diagonal entries. Stueben in
[69] described the following choice for the interpolation operator for the variable
1€ Q™

a;;e; + ozl'Za;kek + ﬁiZajkek = 0. (105)

keC; keC;

Since the matrix under consideration may include both positive and negative off-
diagonal entries, the notation they used is:

oy a; if (a; <0) and ot — 0 if (ay <0) (106)
" 0 Zf (CLU > 0) " Qjj Zf ((lij >0
Correspondingly,
N ={jeNi:a};<0} and NS ={jeN;:a};>0}. (107)

The parameters «; and (§; are defined as follows:

- +
. a. . . a..
a; = Ljen, Y and  Bi= Zyen - (108)
D _kec; ®in > ke, Gk
This leads to the following interpolation weights:
—qy Gk kel
Wi, = {_B fﬁ Ek c C*; (109)

where C;” and C;" are negative and positive off-diagonal entries, respectively. This
approach for constructing the interpolation operator was implemented for the
supersonic flow regimes, and resulted in a slow convergence.

The second attempt to improve the interpolation operator, and hence the over-
all performance in the transonic flow regime, was the implementation of the inter-
polation formula described in [76]. In this case, we also did not find any advantage
in terms of operator complexity and convergence factor for the problems that we
have tested.



7 EXTENDING THE AMG METHOD TO TRANSONIC FLOW COMPUTATIONS44

Our formulation for the interpolation operator is based on Stueben’s approach
[69], which was demonstrated to be efficient for the M-matrices. The construction
of the interpolation operator is identical to the standard interpolation (described in
Section 4) except for the definition of weak /strong connections. Namely, the mod-
ified criteria are based on comparing the absolute values of the matrix entries (97)
and not their values (96). This interpolation formula is more accurate (especially
in the supersonic flow regime) than used in the standard AMG method because un-
like the standard approach, it allows sufficiently large negative off-diagonal entries
also to be considered as strongly connected points. This is verified by numerical
experiments reported in Section 8. It is important to mention that the best results
in the sonic flow regime were obtained with the classical interpolation operator
., = (Ifg“)T. Although we present the AMG setup that results in the best
performance, our aim is to construct a uniform interpolation operator that works
well for all the cases. That is to say, our modified interpolation works well for the
entire range of the flow speed, from low Mach number flow up to transonic and
supersonic regimes.

7.4 Smoothing

In this work we insist on using a pointwise relaxation method as a smoother for
the AMG algorithm. It is motivated by the following observations:

e Pointwise relaxation methods are relatively simple.

e Pointwise relaxation is desirable in the AMG context since (unlike line relax-
ation) it releases us from reliance on the grid geometry. Using line relaxation
within the geometric multigrid context while the flow is grid aligned is quite
acceptable, but it is not clear how to extend it to the general flow direction
case.

e While using Jacobi or symmetric Gauss—Siedel methods, the relaxation pro-
cess is independent of the flow direction, and, therefore, of the problem’s
geometry.

e Can be parallelized effectively.

7.5 The FMG method in the context of AMG for solving
nonlinear problems

When a nonlinear problem is involved, it can happen that many AMG cycles are
wasted in order to reach a suitable approximation when the initial condition is
far from the exact solution. This situation can be avoided by applying the FMG
method that was presented in Section 3. However, the original geometric FMG is
based on geometric multigrid cycles in order to improve the initial guess on the
fine-level. That is, the coarsening process itself is fixed and this puts particular
requirements on the smoothing properties of the smoother used in order to ensure
efficient interplay between smoothing and coarse-grid correction. Pointwise relax-
ation is very efficient for isotropic problems. However, for anisotropic problems
pointwise relaxation is effective only in the direction of strong connections. Conse-
quently, other smoothers are required in order to get convergence, if it is possible
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at all. In order to have an efficient interplay between smoothing and coarse-grid
correction and a robust FMG method that produces a good initial guess for the
fine-level, we suggest to replacing the MG V-cycles with an AMG V-cycles.

Figure 13 shows the schedule of the grids in the order in which they are visited.
The coarse “base” grid of the FMG sequence are based on the classical coarsening
strategies — doubling the mesh size in each direction, that is, by h — 2h coarsening.
Practically, we solve the problem first on a coarse-grid and then interpolate the
solution to the finer level. The interpolated solution serves as an initial approxi-
mation for the AMG cycle on the finer level. Formally, such an FMG algorithm,
based on four levels, can be described as follows:

1. Initialize IP" f" — f20) I3 f2h — fah

2. Solve the problem on coarsest grid A8hy8h = f8h,
3. I®h — vt

4. Vil (0t f4) — ot v times.

5. [Zhyth — o2

6. Vite (v, f2h) — v, vy times.
7. 10— ol
8. Vive (v, f*) — v", vy times.

Instead of transferring the f" to the coarse-level by restriction, the original right
hand side f is used for the coarsest level. The cycling parameter 1 sets the
number of AMG V-cycles done at each level. Practical experience has shown that
vy depends on the problem. Usually for elliptic problems 1y = 1 is sufficient to
produce a good initial guess for the fine-level.

It is important to mention that this simple FMG algorithm seems still far from
being optimal. However, it already appears to be very instrumental in solving non-
linear problems (as presented in Section 13). We believe there is still much room
for optimization, albeit, the results indicate that the algorithm is very efficient
even as is.
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Figure 13: Schedule of grids for the improved FMG scheme on four levels. The
bold arrows indicate the AMG V-cycle. The thin arrows present an interpolation
of the approximation to the next finer level.

8 Numerical Experiments - Finite Differences

8.1 AMG in subsonic/sonic flow

To evaluate the AMG performance, a series of numerical experiments were per-
formed with isotropic and anisotropic problems with periodic boundary conditions.
The symmetric Gauss—Siedel method is employed as a smoother, and the following
notation is used for the results presented in the following tables:

cf — convergence factor, defined by

1A = 1l
[Aut=t — £,

where u(denote the ith algebraic multigrid iteration.

C, — grid complexity — total number of elements, on all the levels, divided by
the number of elements on the finest level (as introduced in Section 4).

To give insight into the coarsening process and the structure of the coarser
levels, we illustrate them graphically. Figure 14 presents two consecutive levels,
fine and coarse, for various Mach numbers and flow directions. The average con-
vergence factor for problems of varying sizes is listed in Table 1. As one can see,
it is independent of the problem size. For an isotropic case, say M = 0, the
proposed coarsening algorithm selects, as expected, an isotropic coarse-grid (the
same as would be obtained by the geometric multigrid coarsening). The proposed
algorithm appears robust for anisotropic cases as well. For grid aligned anisotropy
(0 = 0°), as sketched in Figure 14(b), the coarsening algorithm chooses a grid
identical to one that would be obtained by semicoarsening in the geometric multi-
grid context. For grid diagonal aligned anisotropy case (f = 45°, M = 0.9), the
coarse-grid chosen is shown in Figure 14(c). Recalling that the discrete operator
in this case consists of the product L-L and due to the setting ¢ = 0.25, how-
ever, AMG treats connections in the z-direction as strong. We conclude that the

cf (110)
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obtained coarsening pattern is an excellent choice for this problem and it is well
reflected in the convergence rates presented in Table 1. Figure 14(d) represents
the result of the coarsening procedure for a general anisotropic case (6 = 30°).

The average convergence factor and grid complexity for problems of varying
sizes are listed in Table 1. As one can see, the convergence rate is bounded inde-
pendent of the problem size. Solving the problem on reduced mesh sizes maintains
the structure of the fine-scale problem and so the grid complexity remains nicely
bounded, independent of problem size, with values of approximately % for the
Laplace problems and 2 for the anisotropic problems.
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Figure 14: Various coarsening for a nine-point discretization on a 11 x 11 grid.
White points are F-points, black points are C-points. a) M, = 0, § = 0°. b)
My =0.95 60 =00 ¢) My =0.9, 0 =45 d) M, =0.95, = 30°,
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Table 1: Convergence rate C; and grid complexity Cg of resulting V' (2,1) AMG
cycles.

Grid Mo =025 Mo =05 Mo=075 Mex=095 Mec=1
f[rad] C; Co C; Cq Cf Cq C;5 Co C; Cq

0 25 x 25 0.04 138 0.06 143 0.05 188 0.06 2.07 0.07 1.96
50 x 50 0.06 137 0.05 138 0.05 184 0.06 1.98 0.07 1.96
100 x 100 0.05 1.35 0.06 1.35 0.06 1.82 0.07 1.95 0.07 1.96
25 x 25 0.06 137 0.05 138 0.06 144 0.14 1.58 0.08 1.93
50 x 50 0.06 136 0.05 136 0.06 142 0.07 1.59 0.08 1.93
100 x 100 0.06 1.35 0.06 1.35 0.06 1.38 0.06 1.37 0.08 1.93
25 x 25 0.06 138 0.05 1.41 0.08 143 0.05 2.02 0.04 1.78
50 x 50 0.05 1.36 0.05 140 0.05 1.40 0.04 192 0.04 1.78
100 x 100 0.06 1.35 0.06 1.40 0.07 1.39 0.05 1.9 0.04 1.78

o3

INE]

8.2 Application of AMG in supersonic flow

The AMG performance for supersonic flow with various Mach numbers and flow
directions, while using SGS as a smoother, is presented in Table 2 and Table 3.
Coarsening diagrams for these cases are presented in Figure 15. In all cases the
same initial guess was used. Periodic boundary conditions were imposed. Once the
setup phase was completed, V(2,1) AMG cycles were applied in the solving phase.
The convergence rate is slightly slower here compared to the subsonic flow, but
still lower than 0.1 in most cases. As expected, the memory requirements for these
strongly anisotropic problems is typically higher than that for isotropic problems
(see Table 1). The reason being that AMG essentially performs one-dimensional
coarsening in the direction of strong connectivity.

As a comparison we present the AMG performance for the same flow conditions
and grid sizes while applying the damped Jacobi relaxation method (w = 0.7) as
a smoother (see Table 3). It is clearly seen that the convergence is significantly
slower than that for the SGS smoother and its rate exhibits a slight h-dependence.
For higher grid size (100 x 100) the situation is even worse; no convergence was
achieved. The sign (-) indicates the variants of the algorithm that were not
convergent).
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Figure 15: Various coarsening for a nine-point discretization on an 11 x 11 grid.
White points are F-points, black points are C-points. a) M., = 1.05, § = 0°; b)
M, =1.15, 6 = 30°.
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Table 2:  Asymptotic convergence factors of resulting V(2,1) cycles, while applying
SGS relaxation method.

My =105 Myp=11 My=115 My=12
ffrad] Grid C; Co C; Cq Cf Cq C5 Cq

Fixed thr. 0 25x25 016 198 011 1.95 011 212 0.18 218
50 x 50 0.12 190 0.17 191 0.26 194 0.18 2.19

100 x 100 0.12 190 0.2 190 0.27 190 0.2 2.20

Dynamic thr. 25x25 0.05 223 0.08 213 0.07 216 0.06 2.20
50 x50  0.08 221 0.10 2.07 0.07 212 0.06 2.20
100 x 100 0.09 2.18 0.10 2.12 0.09 2.08 0.13 2.06

Fixed thr. . 25 x25 0.07 202 010 154 0.11 1.56 0.11 1.57
50 x50  0.15 201 011 154 0.11 155 0.1 1.55

100 x 100 - - 0.11 154 0.11 155 0.18 1.54

Dynamic thr. 25x25 0.06 219 0.04 220 0.07 210 0.04 298
50 x50  0.07 2.13 0.07 214 0.0r 2.10 0.04 3.0

100 x 100 0.07 2.12 0.09 212 0.1 212 0.04 3.0

Fixed thr. I 25x25 0.11 201 011 155 0.11 1.56 0.13 1.61
50 x50 0.16 204 0.11 152 014 1.52 0.13 1.60

100 x 100 0.2 2.02 04 154 014 154 0.26 1.57

Dynamic thr. 25x25 0.0 211 0.1 214 0.06 2.18 0.07 2.14

50 x50 0.08 206 0.1 208 0.06 211 0.07 212
100 x 100 0.08 2.06 0.06 2.10 0.07 2.11 0.08 2.10

Table 3: Asymptotic convergence factor C'y and grid complexity Cq of resulting
V(2,1) cycles, while applying damped Jacobi relaxation method (w = 0.7). In the
coarsening process a dynamic threshold was applied.
My =105 My=11 My=115 My =12
frad] Grid C; Cq C; Co C; Co C; Cq

Dynamic thr. 0 25 x 25 0.35 2.23 030 213 045 217 0.27 2.22
50 x 50 04 221 09 207 08 211 050 220
100 x 100 0.4 2.17 - - - - 0.57 2.17

Dynamic thr. z 25 x25 047 219 027 221 0.41 216 0.33 298
50 x50 047 213 028 220 045 212 037 3.05
100 x 100 0.48 2.12 035 214 0.74 2.08 0.44 3.05
Dynamic thr. z 25x25 032 211 030 214 033 218 037 214
50 x50 0.73 2.06 0.51 2.08 0.67 2.11 - -
100 x 100 - - - - - - - -

Our observations from these numerical experiments are then as follows:
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1. Since a periodic boundary condition is used, the second pass process has to
be applied for all the coarse-levels in order to satisfy the interpolation re-
quirements. Both Algorithms 1 (Galerkin algorithm) and 2 (direct approxi-
mation) converge. Although Algorithm 1 is simpler to implement, there is a
significant advantage to the second method over the first one in the super-
sonic flow regime, where the discrete operator does not lead to an M-matrix.

2. In the coarsening process while using Algorithm 1, the terms associated
with u7", j € I, in the ith equation (see (103)), are not totally eliminated.
Therefore, the remaining small values can be distributed among the coarse-
level points in this row 7 € C]", exactly as it was done while constructing an
interpolation operator. Applying this procedure seems to result in a better
convergence rate. Note also that the resulting coarse-level matrix will be

weakly diagonally dominant (sum of each row’s entries is zero).

3. There is no clear advantage in using the dynamic threshold for the subsonic
flow case due to the increasing grid complexity, despite the slightly better
convergence rate. A fixed threshold with ¢ = 0.25 works well for M, < 1.
However, in the supersonic flow regime, where the problem is of the hyper-
bolic type, applying the dynamic threshold improves the coarsening process
and the convergence rate substantially, although the grid complexity dete-
riorates slightly. It is important to mention that the situation is even more
clear-cut when the same operator is applied but with Dirichlet or Neumann
boundary conditions. In this case, the dynamic threshold makes even a
greater difference.

4. Both pointwise relaxation methods, Jacobi and SGS, are convergent, but
the latter gives a faster convergence for the problems we have tested. In the
case of supersonic flow, when the problem does not constitute an M-matrix,
SGS clearly has a significant advantage over the Jacobi method.

5. In the sonic flow regime, M., = 1 and when the flow is grid aligned, during
the coarsening process by applying the direct approximation process (see
Section 7), small entries are introduced in the matrix A. The entries in
the ith equation, ¢ € C™ (see (103)) are simply set to zero if the condition
‘aﬁ/a?} < ¢, is satisfied. Our first attempt to deal with this issue was
as follows: since the corresponding points can no longer serve as coarse-grid
points, they are ignored in the coarse-level; in other words, the corresponding
equation is eliminated. In practice, these points are no longer considered as
C-points thus becoming F-points. This results in poor interpolation since
some of the strong connections are no longer considered as such. As a result,
this procedure leads to a poor convergence factor. In order to resolve this
difficulty properly it is necessary to understand its origin. Since the sonic
case results in an operator with strong connections orthogonal to the flow
direction (along the y-axis), the best coarsest level we can hope for has to
include a certain minimal number of coarse-grid points along each of the
grid’s columns. Insisting on continuing the coarsening process beyond this
level gives rise to the above difficulty. The main idea is that the coarsening
process should be terminated when the problem can be solved efficiently
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with just a few relaxations, although the number of remaining points on the
coarse-level still seems relatively large.

6. In the sonic case, the damped SGS method had to be applied in the coarse-
levels, since the regular SGS failed to converge. The value of the under
relaxation parameter used w = 0.7. This, together with a timely termination
of the coarsening process (see above), resulted in a robust algorithm with a
bounded convergence factor (Cy = 0.07) for the sonic case, independent of
the problem size. It was also verified (for the sake of constructing a uniform
algorithm, suitable for the variety of cases) that the damped SGS performs
well (as with w = 1) for the entire range of the flow regimes.

7. In the sonic flow regime M., = 1; the interpolation operator constructed
by transposing the restriction operator gave the best results. However, its
performance is inferior in some other cases. Therefore, it cannot be a part
of the overall “general purpose” algorithm.

9 The nonlinear transonic small disturbance (TSD)
equation

So far we have considered linear problems. We will now discuss how AMG can
be used to solve nonlinear problems. The framework for applying AMG to such
problems can be as follows: The full problem on the finest grid is addressed directly
by some kind of nonlinear relaxation as a smoother. Then the AMG cycle is applied
to the linearized residual problem. The solution correction can be incorporated
into the full nonlinear problem at the end of each multigrid cycle, and so on,
until a converged solution is reached. The main objective of the reported research
direction is to develop an AMG solver for the full potential equation in general
geometries relying on body-fitted grids methodology. Here we illustrate the basic
capabilities of the new methodology by applying it to a simpler (also nonlinear)
case - transonic small disturbances equation (TSD). More detailed information
about the derivation of the TSD equation can be found in references |12, 86, 15].
We shall present here just an overview.

The TSD equation can predict the transonic flow field about thin airfoils or
through slightly convergent/divergent nozzles. It is derived by simplifying the full
potential equation. The assumptions we make here are:

1. The airfoil is thin and its boundary’s slope, %, is very small.
2. The local flow velocity components are close to the free-stream values.

It is assumed that the potential takes the form ¢ = Vx + ¢ where V is the free-

stream velocity and ¢ is the perturbation potential. Thus, the partial derivatives

with respect to x and y become ¢, = Vo + ¢, and ¢, = ¢,. The idea behind

this assumption is that if we assume that the perturbation quantities are small,

the second order terms (product of two small quantities) can be neglected. One

of the corollaries from the small disturbance assumptions, is then the following
P Py

2 . 111
Voo<<Voo<< (111)
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We start from the full potential equation in the quasi-linear form, and substi-
tute: Gur = Pz, Pyy = Pyy, Puy = Pay- The second term in (65) can be viewed
as

2
e\ (90 ~
2Py = 2 (Vo + ©2) 0y 0y = Vit (1 + V_) (V—g) >~ (), (112)

2
since 5—3 < 1. Consider the coefficient (a? — u?). Since the speed of sound and

the flow velocity are related by the energy equation, (47), this coefficient can be
approximated as

@2—u2:aio+—7_1 [V;—uQ—UQ}—uQ

2
2 7= 1 e\ (2| e 2\
:aoo—l—TVoo 1—(1+V—Oo) _(K) —Voo(l—i—v—oo)
(113)
— -2 - 092 ()
—a1-mz - ez ()]

where M, is the free stream Mach number and ~ is the ratio of specific heats.
The second powers of the disturbance velocity components are neglected as small.
The coefficient of the third term in (47) can be approximated in a similar manner:

2 2 2 Y=1 0 2 2 2
— = A | v NN —
a” —v as, + 5 [OO U U] v
2 2
1—1(1 P\ _ [Py

Substituting these approximations we get the transonic small disturbance (TSD)
equation:

—1
a2 + 1= V2

) (114)
o T e (ﬁ) = o

Voo <

[1 - MOQO - (7 + 1>M§o@x] Pz T Oyy = 0. (115)

The TSD equation is nonlinear (the coefficient in front of ¢,, depends on the
flow velocity). It is this nonlinearity that makes formation of shock waves possi-
ble. The mathematical difficulties of the problem are associated primarily with
the mixed hyperbolic and elliptic type of the equations and the presence of dis-
continuities. The computational method should be capable of addressing these
difficulties including the prediction of the shock formation.

The TSD equation may be elliptic or hyperbolic. In order to examine this
behavior let is write (115) as:

Cops + @yy =0, (116)

where,

C=1-M2—(y+1)M2p,. (117)
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The character of this equation may be determined by finding the roots of this
equation, obtained from the theory of characteristics:

dy 1
dx —C
When C > 0 no real characteristics exist and the equation is elliptic. When C' < 0
two characteristics exist with slopes that are equal in magnitude and opposite
in sign, and will be symmetric about the z-axis. In this case (115) becomes
hyperbolic.
Small disturbance approximation for the surface pressure coefficient C, is as
follows:

(118)

p—p =1 (f) —1
C _ e e] — Poo — > , (119)
S T M R SO

where C), is the difference between local static pressure and free stream static pres-

.
sure, nondimensionalized by the free-stream dynamic pressure. The term (%)
can be replaced by (61), and we get:

~

[1+VT*1M§o (1—%)}”j 1
SYMZ,

14 a5tarz, (1 - W) |7y

C, =

VE
1 2

(120)

0
—1 372 e |7
1+t (—2)] T -1
SVME, '
Again, this approximation is obtained by neglecting the second order terms.
This pressure coefficient is an immediate practical result from any aerodynamic

computation, since it allows us to calculate drag and lift forces acting on a body.
It is also a great tool to evaluate a solver.

9.1 The TSD discretization

In the present flow problem the finite differences are used for simplicity, and also
because Murman and Cole’s [20] original work used this type of discretization.
Since the perturbation potential values are located at the cell’s center, the domain
boundary is located adjacent to the cell’s centers. If the flow is subsonic and the
equation is elliptic, every term in (115) will be computed, using the central finite
difference formulas:

Pitlj — Pi-1;j

o ANERRE AV
Vir1j — 20ij + i1
Prg = 2 ’ > (121)
(AxiJrl’j + Ami,j)
 Pig+l — 2055+ Qi1
Pyy =

(Ay; i1 + Ayi,j)Q 7
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where Az and Ay are the grid spacings in = and y directions, respectively. If the
flow is supersonic, then the ¢, and ¢,, terms must be shifted in the direction of the
flow, while the term ¢,,, (derivative in the normal to the flow direction) is evaluated
using central differences as written in (121). To summarize, the derivatives are
approximated as follows:

_ Pig — Pi-15
Yo = AIZ‘J ’
Pij — 2015 + Qi—aj
Prxz = 5 122
(Al‘i’j + Al‘i,17j)2 ( )
_ Pig+1 — 2005+ Pig1
Pyy = .

(AYi 1 + Ayi,j)2
We shall emphasize again that the discretization is determined by the sign of
the quantity C' given by (117). If C' > 0, the flow is subsonic and a central
differencing is used, while the supersonic case is characterized by C' < 0 and an
upwind approximation is used.

As an initial condition to start the iterative process we set the potential per-
turbation ¢ at all interior points to zero. That is,

pij = 0. (123)

Once the problem is solved and the values of ¢ are known at all the points, we
can evaluate other quantities such as disturbance velocities, Mach number, and
surface coefficient pressure.

9.2 Overview of the solution procedure

The basic steps in the iterative solution of the TSD equation while applying the
AMG method are as follows:

1. Construct the grid.
2. Compute the grid spacings Az and Ay and store them in arrays.
3. Initialize the potential by ¢ = 0 in all the computational domain.

4. Construct the coefficient matrices A and A by a linearization process. Then
the product matrix A* = AA is evaluated. This matrix will be used in the
coarsening process, and the coarse-level correction process.

5. Next is the setup phase, which includes the coarse-grid selection and the
design of appropriate interpolation and restriction operators. Based on the
matrix A* the coarse point selection algorithm proceeds in two passes. We
first make an initial division of the grid points by choosing a preliminary par-
tition into C- and F-points. Once the initial assignment have been made,
we make a second pass in order to satisfy the coarsening requirements as
described in Section 4. In this way the coarse-level and the restriction oper-
ator are constructed. Next the interpolation operator is constructed based
on the algorithm described in Section 4.
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6. At this point the solving phase begins. The V-cycle algorithm is executed
with two SGS relaxations on each coarse-level, for both the downward and
upward directions. In the coarsest level the problem is usually solved after
5 to 15 relaxations and then the correction is interpolated and added to the
fine-level. It is important to note that on the fine-level only, direct SGS
relaxations were done (not with the matrix A*). This reason for this is that
we could have the ability to apply local extra relaxation sweeps in cases when
the nonlinearity is dominant, for example, near shocks waves or stagnation
points.

7. The goal is to reduce the Ly-norm of the residual below 1071°, with a con-
vergence rate of less than an order of magnitude per V-cycle. In the case of
M < 0.5 the set up phase is performed only one time, at the beginning of
the algorithm, and no extra updates of the coefficient matrices A, A, and
A* are needed. When the flow is transonic, the nonlinearity is dominant
and each V-cycle is followed by a new setup phase in order to achieve the
desired convergence rate. This is done since the nonlinearity is solved on the
fine-level only. Since the matrices considered are constructed of nonlinear
coefficients, they must be updated. Performing the setup phase is expensive
in terms of storage, computation, and time, but since the nonlinearity is
solved only on the fine-level, it is more than necessary in order to achieve
convergence. The setup phase can be performed after 1-2 V-cycles and it is
problem dependent. In the TSD equation the setup phase is performed 6
times with two V-cycles between each update, resulting in 12 V-cycles.

8. After the residual reaches a sufficient level, the post processing starts. Once
the potential perturbation ¢ in all the points is known we can compute the
velocity components v and v as follows: v = ¢, + V., v = ¢,. Then the
local Mach number M;;, and the pressure coefficient C), are computed.

9.3 Subsonic flow in a channel with a bump

The cases considered here are subsonic and transonic flow in a channel with a
bump. A uniform orthogonal H-grid used (96 points in the x-direction and 48
points in the y-direction) is presented in Figure 16. The perturbation potential
values are located at the centers of the cells. Since the equation is discretized with
finite difference method, the cells have no meaning in the numerical process.
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Figure 16: The mesh used for solving the TSD equation.

The influence of the bump on the flow is imposed through the boundary con-
ditions; the velocity component normal to the “surface” V| is approximated as
follows:

Vi=f"V, (124)

where in our case

e (x — 48) | (125)

VB — (2 — 48)°

and it represents a surface slope of a circular arc of 7/15 and radius 192. The
bump is located at the lower wall of the channel at 44 < z < 54.

Attention is now turned to the boundary conditions. Since we are solving here
the equation for the potential perturbation that is caused by the existence of the
bump at the center of the lower wall, a good assumption is that the perturbation
is zero at the farfield boundaries. Therefore in the inlet and outlet boundaries a
homogeneous Neumann condition was applied, while in the upper wall a Dirich-
let boundary condition was applied. The difference at the points next to the
boundaries were evaluated using ghost points. The nonlinear SGS relaxation was
implemented as a smoother on the finest level. The Mach number isolines and
color maps are shown in Figure 17 for four cases of inlet velocity (Mach number)
varying from 0.1 to 0.9. Fifty isolines have been drawn on the color map for each
case, ranging from the lowest velocity to the highest velocity value. It is clear that
increasing the Mach number makes the compressibility effects more dominant and
for an incident velocity of M., = 0.9 a supersonic region is reached on the bump,
which is terminated by a shock.
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Figure 17: Transonic flow over a circular bump; free stream M., = 0.9, grid 96 x 48
points.

The pressure coefficient distribution on the lower surface is plotted in Figure
18. Note that the pressure on most of the surface is less than p,.and the minimum
value of C), on the surface is —3 at 6 = 7/2.
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(c) (d)

Figure 18: Surface pressure coefficient C), along the bottom wall with an incident
Mach number ranging from M., = 0.1 to M, = 0.87, using the (96 x 48) mesh
size.

AMG performance

The first coarse-level for each case described above is sketched in Figure 19. When
of Mach number M., < 0.3 the compressibility effects are not yet significant and
the operator is nearly isotropic, the points that construct the coarse-level are
distributed uniformly, as can be seen in Figure 19. As the free-stream velocity is
increased to nearly the sonic case, the problem’s attribute is strong dependence
in the y-direction, and little or no dependence in the z-direction. This is clearly
illustrated by Figure 19(a). The algorithm generates a semicoarsened grid that is
coarsened only in the y-direction, in the direction of the strong dependence. This
is precisely the coarse-grid that one would use to construct an efficient geometric
multigrid method. Since smooth error varies slowly in the direction of the strong
dependence, the interpolation can be performed accurately in that direction and
the coarsening algorithm automatically exhibits this critical property.



9 THE NONLINEAR TRANSONIC SMALL DISTURBANCE (TSD) EQUATION61

(a) (b)
(c) (d)

Figure 19: The fine and first coarse-level produced for the TSD equation in several
flow conditions: a) M =0.1b) My =0.4¢) My = 0.6 d) My = 0.87. The blue
cells correspond to F-points and the red cells correspond to the C-points.

The Lo-norm of the residual is shown in Table 4 for each V-cycle, for four
different cases of inlet velocity. Note that for the first three cases and for all the
grid sizes, the convergence factors are bounded well below 0.1. The residual norm
decreases by a nearly constant factor with each V-cycle. This continues until it
levels off after about 10 V-cycles near 107!, where round-off error is on the order
of the residual norm itself. The fast convergence is mainly due to the particularly
simple geometrical situation, which benefits the interpolation process. We will see
later that this advantage gets lost in more complex geometric situations or for
more complicated problems (FPE in conservation form). To illustrate the residual
reduction graphically, Figure 20 presents the convergence history of the residual
(Lo-norm) versus the iterations number, for the four cases described above.

The convergence properties in the case of M., = 0.87 deteriorate slightly due
to the extreme anisotropy of the problem and, perhaps even more, due to the
presence of a shock wave. The coefficient matrix used for evaluating the AMG
operators is constructed by a linearization of the problem. The main reason for
the performance degradation seems to be that the coefficients, especially in the
transonic flow regime, depend rather strongly on the solution. A useful technique
to overcome this problem is to apply local smoothing sweeps (about 2-3 extra
local relaxation sweeps) near the shock wave, immediately after distributing the
correction to the points on the fine-level. Often, the extra relaxations overcome
any difficulty near the shock waves and the overall results approached the desired
convergence factor of 0.1. The additional work does not seriously affect the overall
complexity and convergence properties since the number of points that forms the
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shock wave is usually very small in comparison with the number of interior points
(set of measure zero). The performance of the AMG with 2-3 extra relaxations at
the end of each cycle are presented in Table 5.

Table 4: The results of AMG V-cycles applied to the flow through a channel with
a bump. The second norm of the residual |R™|, and the convergence factor Cf
are presented. The mesh size is 96 x 48.

M. =0.1 M, =04 M., =0.6 M. =0.9
V-cycle | [|[R™, Cy [ R™ |, Cy | R[], Cy [R™ ]I, Cy
0 2.518-00 - | 10.306e-00 - | 15.971e-00 - | 0.1205e-00 —
1 6.2546-02  0.02 | 0.184e-00 0.02 | 0.480e-00 0.04 | 0.174e-00 1
2 1.517e-03  0.03 | 3.203¢-03 0.02 | 1.973¢-02 0.05 | 3.599¢-02 0.21
3 3.932¢.05 0.03 | 6.104e-05 0.02 | 9.200e-04 0.05 | 6.452¢03 0.18
4 1.031e-06  0.03 | 1.182¢-06 0.02 | 4.242e-05 0.05 | 8.664e-04 0.13
5 2.700e-08  0.03 | 2.283¢-08 0.02 | 1.921e-06 0.04 | 1.164e-04 0.13
6 7.022¢-010 0.03 | 4.371e-10 0.02 | 8.599¢-08 0.04 | 1.550e-05 0.13
7 1.816e-11  0.03 | 8.295¢-12 0.02 | 3.821e-09 0.04 | 2.034e-06 0.13
8 4.677e-13  0.03 | 1.542e-13 0.02 | 1.690e-10 0.04 | 2.636e-07 0.13
9 1.221e-14  0.03 | 1.192e-14 0.08 | 7.458¢-12  0.04 | 3.380e-08 0.13
10 2.816e-15 0.23 | 1.183e-14  0.99 | 3.311e-13  0.04 | 4.290e-09 0.13
11 2.751e-15  0.98 | 1.176e-14 0.99 | 2.377e-14 0.07 | 5.394e-10 0.13
12 2.664e-15 0.97 | 1.156e-14 0.98 | 1.912e-14 0.80 | 6.73le-11  0.12
13 - - - - - ~ | 8.348e-12 0.12
14 - - - - - ~ | 1.035e-12  0.12
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Figure 20: Convergence history of the residual.

Table 5: The table shows the results of AMG V-cycles applied to the flow through
a channel with a bump. The second norm of the residual || R™||, after each V-cycle,
convergence factor Cy, are presented for M, = 0.87. The mesh size is 96 x 48.
M., = 0.87
Ve | [R™l,  Cy

0 0.1205e-00 -

1 4.062e-02  0.33
2 6.972e-03  0.17
3 6.186e-04  0.09
4 7.096e-05 0.11
5 7.698e-06  0.10
6 7.910e-07  0.10
7 8.123e-08 0.11
8 8.793e-09  0.12
9 1.011e-09  0.12
10 1.207e-10  0.12
11 1.464e-11  0.12
12 1.792e-12  0.12
13 2.202e-13  0.12
14 6.053e-14  0.27
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Table 6 presents the grid and operator complexity for four test cases with differ-
ent Mach numbers. Summing the number of rows of all the coarse-level operators
and dividing by the number of rows on the fine-level shows the grid complexity.
For example, in the case of M, = 0.1 the grid complexity is 1.497. Thus, we know
that the total storage of the vector of unknowns ¢, and the right side require 1.497
times the space required for the fine-grid quantities. As a comparison, the geomet-
ric approach has a grid complexity of about %. The difference can be explained as
follows: despite the fact that the number of points on the first coarse-level (1152)
is exactly one-fourth that of the fine-level (4608), a thing that in the geometric
approach is obtained by full coarsening, the other coarse-levels has fewer than half
the number of points as the next finer level. In the case of M, = 0.4 the first
coarse-level produced by the AMG is a red-black (coarsened by a factor of ~2).

Summing the number of nonzeros in all the operators and dividing by the
number of nonzeros in the fine-level shows that the operator complexity is greater
than 2 for the four cases of Mach number. This parameter indicates how much
storage is needed. The operator complexity also reflects the cost of one relaxation
sweep on any level, so consider the case of My, = 0.1, a V(2,2) cycle of AMG
costs about 9.16 WUs (2.29WU on the descent and the ascent). The operator
complexity is slightly increased with the Mach number and affects the number of
operations required. It can be observed that the operator complexity increases
with the Mach number. Two factors affecting this are the average stencil size
and the coarsening process. The average stencil size is the average number of
nonzero coefficients per row. For simplicity, let us take a look at the fine-level.
For the low Mach number, the stencil size of the matrix A* is quite small, since
A is nearly a unity matrix. As the Mach number increases so does the average
stencil of A* due to the structure of A. It is possible to get very large stencil
sizes on coarser levels. Large stencil size can lead to large operator complexity
since various processes such as coarsening, interpolation, and relaxation require
that neighbors of neighbors are visited, which results in a growth in the number of
operations per cycle. The second reason for the increased operator complexity is
the relatively large number of points on the fine-levels, which is partially a result
of the second pass process, while F-points are replaced by C-points in order to
satisfy the interpolation requirements.

The convergence factor, grid complexity, and stencil size were considered when
the coarsening and interpolation procedures were defined, since they affect each
other. Increasing complexities can improve convergence, while decreasing grid
and operator complexities lead to a degradation in convergence. Maintaining a
convergence factor around an order of magnitude, while keeping the complexities
as small as possible is the first priority in this work. Several remarks concerning
the trade-off between convergence rate and memory requirements are detailed in
Section 12.
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Table 6: Grid complexity Cq and operator complexity C', for four cases of Mach
number.

complexities | Moo = 0.1 | Moo = 0.4 | Moo = 0.6 | Mo = 0.87
Co 1.497 1.971 1.920 1.942
Cr 2.294 3.207 2.873 3.208

This problem was solved on two more grids with different resolutions of 48 x 24,
and 24 x 12. To illustrate the AMG performance with respect to the problem size,
the extreme case with an ambient Mach number of M, = 0.87 is presented in
Table 7. The results were obtained by repeating the setup phase 6 times while
applying two V-cycles between each update. This results in a total of 12 V-cycles
until the residual has decreased to the desired level of "107!°. It can be seen
clearly that the algorithm is scalable and does not depend on the problem size
(the convergence factor is nearly constant for all the grids considered).

Table 7: The results of AMG V-cycles applied to the flow through a channel with
a bump. The second norm of the residual after each V-cycle, the convergence
factor, grid complexity, and operator complexity are presented for two grid sizes.
| My = 0.87
grid size — 48 x 24 24 x 12

V-cycle [R™ly, Gy | IR™, Cf
5.781e-00 - 2.666e-00 -
0.644e-00 0.5 | 0.310e-00 0.30
0.319e-00 0.10 | 9.347e-02 0.20
3.214e-02 0.16 | 1.861e-02 0.12
5.018e-03 0.18 | 2.256e-03 0.11
8.796e-04 0.10 | 2.579e-04 0.10
8.813e-05 0.09 | 2.630e-05 0.10
7.923e-06 0.09 | 2.743e-06 0.10
6.999e-07 0.09 | 2.869e-07 0.10
6.278e-08 0.09 | 3.012¢-08 0.10
5.756e-09  0.09 | 3.165e-09 0.11
5.371e-10  0.09 | 3.328e-10 0.11
5.067e-11  0.09 | 3.498e-11 0.11
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10 Structured finite volume scheme

In this section, the methodology developed to solve the FPE in the conservation
form on body-fitted structured grid will be covered.
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10.1 Finite control volume

The derivation of the principal equations of fluid dynamics is based on the fact
that the dynamic behavior of a fluid is determined by the conservation laws (mass,
momentum, and energy). The conservation of a flow quantity means that its total
variation inside an arbitrary volume can be expressed as the net effect of the
amount of the quantity across the boundary and of external forces acting on the
volume. The quantity crossing the boundary is called flux. In order to develop a
mathematical description of the control volume let us consider a general 2D flow
field as represented in Figure 7. Since the formulation is applied for 2D meshes,
the cell volume is simply the area. In a similar way, the face area is the length of
the face. A finite region of the flow, bounded by the closed surface df) and fixed
in space, defines the control volume 2. A surface element is assigned as d.S, and
its associated unit normal vector is 7, and it is defined as 7 = ngi + nyj It is
defined as positive when pointing outward from the control volume surface. The
conservation law to a scalar quantity per unit volume U is written as follows:

d
o | U-d9). (126)

The variation of U in time is equal to the amount of the quantity U entering
the control volume through the boundary with the velocity V

[ (o (7)), o

Due to the diffusive flux that is expressed by the Fick’s law (relating the
diffusive flux to the concentration field)

BZ){ Kp lv (%) : ﬂ ds, (128)

Wherer is the thermal diffusivity coefficient. The volume (), and surface
sources (), are expressed as

/deQ + f (G- 7) as. (129)
o0

o9
After summing the above contributions we obtain the general form of the
conservation law for the scalar quantity U

5 [vins flo@ - (v(5) 7)) as= [ Qs § (3. 7) as

o9

(130)

If the conserved quantity is a vector, the convective and the diffusive flux would

become tensors, also the volume and surface sources would change into a tensors.
The conservation law for a general vector quantity U is

%/Udswf [(Fo—Fp) - 7] ds:/@vdﬂ+f(§s-ﬁ) ds,  (131)

o0N o0
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where I;c is the convective flux tensor and F 'p 18 the diffusive flux tensor. If

there are no volume sources, U depends solely on the flux across the boundary
ds.

10.2 The structured finite volume scheme

The structured finite volume scheme is based on the conservation laws, which are
expressed by the Navier—Stokes, Euler, or the FPE [87, 88|. The physical space is
divided into a number of grid cells — quadrilaterals in 2D. The grid generation is
done in such a way that: the domain is completely covered by the grid, there is no
free space left between the grid-cells, and the grid-cells do not overlap each other
(Some excellent books of grid generation methods can be found in [89, 90, 91, 92]).
The resulting structured grid is described by the Cartesian coordinates z, y, and
z (the corners of the grid cells). Based on the grid, the control volume is defined
in order to evaluate the integrals of the convective fluxes as well as of the source
term. Since a control volume does not change in time, we get £ [ (wd)) = Q2.
Eq. (126) becomes

H

ow 1 o, o, —

=G f(F—F) dS—/QdQ . (132)
Q Q

The flux is evaluated at the midpoint of the face. Considering a particular
volume €; ; we obtain

P Np
d‘/|/lj k ]_ — — —
s = — FC—FU> A m—(QQ) 1
dt Qi jx Zzl ( m 5 irj,k (133)

The variable AS,, presents the area of face m. The term in the square brackets
is simply the residual R; ;.

10.3 Geometrical quantities of the control volume

Before the discretization process the area of the control volume AS,,, unit normal
vector n,,, and the coordinate systems involved must be calculated and stored. In
this work a cell-centered scheme was preferred — the control volumes are identical
with the grid cells and the flow variables are located at the cell’s center. The
center’s coordinates of each cell, C; and Cs, are obtained by the arithmetic average
of the four corner cells 1, 2, 3, and 4, as is sketched in Figure 21.



10 STRUCTURED FINITE VOLUME SCHEME

}

3
o

Figure 21: Control volume of a cell-centered scheme.

For instance, point C (z,y) is defined by its coordinates,

(xl+ 224+ 23+ 24) (yl+y2+y3+y4d)
4 ’ 4

The area 2 is calculated as follows,

C(z,y) =

Vo1 Vi i V32 V34
2 2
where the vectors Va1, Vi1, V3o, and Vi are:

Qi =

Vzl = (22, T2) — (21, ¥1) ,
= (24 ys) — (21, 1),

V32 = (z3y3) — (22, ¥2),

Vag = (23y3) — (T4, Ya) -

68

(134)

(135)

(136)

The faces of the control volume (“control area” since the 2D case is considered)
are given by straight lines, therefore, the unit normal vector is constant along them.
When we integrate the fluxes according to (132), we have to evaluate the product
of the area of a face AS and the corresponding unit normal vector 7. The face

H .
vector S is defined as,

S = [Ss, S, = NS,

(137)

The face vectors of the control volume are given by the following relations:
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81:

SQZ

Sy =

Sy =

The unit normal vector at the face m is obtained from (137) as n,, =

while AS,, = |S,| = /52 + 52.

Y2 —
L1 — X2 |
Ys — Y2
| L2 — X3 |
Ys — Y3
| L3 — T4 |
Y1 — Y4
| Lq4 — X7 | '

(138)

In practice, all the unit normal vectors and the face lengths are computed and

stored for each control volume €, ;.

10.4 Coordinate systems

In structured grids, the grid points in the physical space are mapped in a unique
way onto a continuous set of two integers (7, j) (one for each coordinate direction).
The set of integers defines the computational space. Since the fluxes, according
to Eq. (132), are computed in a direction normal to the face, a mechanism that
allows the transformation of the covariant vectors (consider with the grid direction)
to contravariant vectors (normal to the face) is needed. For this purpose three
different coordinate systems are involved: Cartesian, covariant, and contravariant,

as sketched in Figure 22.

x —
1y

Figure 22: 2D cells and the associated three coordinate systems.
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e Cartesian coordinate system (x, y) — orthogonal coordinate system (the axes
are mutually perpendicular) where the mesh grid is defined.

e Covariant coordinate system (&,7) — nonorthogonal coordinate system at-
tached to the face of each element. Consider the face 2 — 3 in Figure 22.
In order to obtain the best scaling of the numerical values, the origin of the
coordinate system is located on the intersection between the face (2 —3) and
the line that connects the cell’s centers C and C5. The &-axis connects two
adjacent cells centers (C} and Cy), i.e.,

§ = CQ (I, y) -C (I, y) ) (139)

where C; and Cy are the cell’s centers defined in a Cartesian coordinate system
(x,y). The n-axis is aligned with the face (2 — 3), and is defined as follows:

n= ‘/3 (.ZU3, ?JS)*‘/? (I2» 92) ) (140)

where V] and V5 are the grid’s node (vertex) coordinates. Let us define the matrix
M that transform the general vector from a Cartesian coordinate system (x,y) to
the covariant coordinate system (&, n):

M= {5;’” S ] (141)
Nz Ty

The first row in the matrix M includes unit vector components in the &-

direction, (ém,éy), and the second row includes a unit vector components in 7-

direction, (7,,7,). The matrix M transform a general vector g from the Cartesian
(orthogonal) coordinate system (z,y) to the covariant (non-orthogonal) coordinate

system (&, 7),
{gﬂ:M.{gﬂ. (142)

We need the covariant system in order to evaluate the equation derivatives.
Since a body-fitted grid is applied, the grid is far from being orthogonal (especially
adjacent to the body’s surface) and hence the covariant vector does not coincide
with the face normal direction. The convective fluxes are defined normal to the face
element. For this purpose we need the contravariant coordinate system (&,,n,).

e Contravariant coordinate system (&,,n,) — a nonorthogonal coordinate sys-
tem. Its origin coincides with the covariant coordinate system. The axis
&, is normal to the face element (2 — 3) and the axis 7, is normal to the
covariant &-axis, a general vector g in the Cartesian coordinate system can
be transformed to the contravariant coordinate system by the following,

2] (3]

nn Gy

where M' = (MT)_l. It is important to note that in the transformation from
Cartesian to contravariant coordinate system, the magnitude of the general vector
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g is reserved. This fact does not hold in the transformation from Cartesian to
covariant coordinate system. In practice, the magnitude of a general vector g is
obtained by,

9] = v/ VeVen + Vi Vi (144)

The equation discretization takes place in each cell in the covariant coordinate
system. Since the fluxes are computed normal to the face direction, a transfor-
mation mechanism from the covariant to the contravariant coordinate system is
needed. In practice, the matrices M and M’ are computed and stored for each
face in the grid.

If the coordinate system is orthogonal, then the contravariant and covariant
interpretations are identical (up to scale factors). This can be seen by imagining
that we make the coordinate axes in Figure 22 perpendicular to each other. It is
worth noting that orthogonal does not necessarily imply rectilinear. For example,
in polar coordinates the axes are not straight lines, but they are orthogonal, be-
cause as we vary the angle we are always moving perpendicular to the local radial
axis. See, for example, the mesh grid used to solve the flow around a circular
cylinder in Section 13. When we consider systems of coordinates that are not mu-
tually perpendicular, the contravariant and covariant forms differ. As an example
see the problems presented in Section 13.

11 Discretization of the FPE in the conservation
form

The purpose of the current section is to describe a procedure for constructing
stable finite volume approximations to the conservation form of the full potential
equation. The strategy of discretizing the FPE in the conservation form is based
upon an idea similar to that of the rotated difference approach introduced by
Jameson [27] and implemented initially in the quasi-linear form of the equation.
However, this approach is not made directly. Instead it is accomplished indirectly
by following the same rationale.
We review briefly our approach starting with the FPE in the quasi-linear form
(72),
Vi — M? & 0 145
¢ 727 =0 (145)
Let us look at both terms (72) from a numerical standpoint. Note that when
the Mach number is close to zero (incompressible flow) the second term can be
neglected; thus we are left with V2¢, which is discretized by a certain type central
differencing, according to (77). As the Mach number increases the second term,
which describes the second derivative in the streamwise direction, actually deter-
mines the “dynamics” of the flow. When the flow is subsonic, a central difference
is used for the second derivative in the flow direction (¢ss), while pointwise relax-
ation is applied directly in conjunction with the matrix A (or operator L). If the
flow is supersonic, we apply relaxation directly with the product of downwind and
upwind operators LL (or matrix AA). We would like to apply the same rationale
to the discretization of the FPE in the conservation form, while the advantages
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that were obtained in the quasi-linear case discretization, would be implemented.
The relation between the discretization approach applied in the quasi-linear form
and the FPE in the conservation form will now be covered. Expanding the FPE
and rearranging terms, Eq. (145) can be reformulated as,

0 0
PV + (cbx% + ¢y0_y) p=0, (146)

where the density p is given in Eq. (61). Note that Eq. (145) and (146) have
a similar structure. The density parameter p plays two roles. In the first term
it serves as a constant. In the second term it serves as an unknown variable.
As one can see, the second terms in both of the above equations are identical.
Therefore, the same rationale applied in the quasi-linear case can be applied to the
conservation form. The description of the discretization technique is as follows: For
the first term V2¢ the fluxes are computed by a central discretization independent
of the flow direction and speed. The dynamics of the flow is reflected in the second
term which is discretized in such a way that the result is a “wide” approximation
in the streamwise direction.

The criterion for selecting the best discretization consists mainly of how accu-
rate the discretization is in computing the gradients and how generally applicable
the algorithm can be. An initial test to verify the discretization’s accuracy is to
check that the method can reproduce a free-stream velocity applied to an arbitrary
mesh. If not, then the discretization will not be acceptable. The second criterion
deals with how general the discretization is. It is desired to attain solutions on
highly stretched irregular structured grids, and flow in various speeds and direc-
tions. The divergence of the fluxes, must be computed according to Eq. (132).
The flux through a given cell’s face is a product of the velocity vector and the
density, which are both functions of the potential ¢. The type of the discretiza-
tion approach, central fluxes, or upwind fluxes, is determined by the local Mach
number across the cell’s face. So, the first obstacle in forming the flux is therefore
calculating the velocity vector at each cell’s face.

11.1 Velocity components

From Eq. (49), the velocity field can be found by calculating the gradients of ¢ in
the z, y, and z directions. For an orthogonal structured grid, this calculation is
straight forward due to the Cartesian ordering of the cells. For a nonorthogonal
grid, it is less clear how to formulate and compute the gradients of ¢. Before
obtaining the divergence, however, one needs to define the physical components of
the velocity vector for each face in the grid. The velocity components are derived
in the covariant coordinate system (£, 7). Consider for example the face at the half
node (i — 1/2,j) as sketched in Figure 23. The velocity vector of the flow through
this face has two covariant components as follows:

‘/cov = ‘/fé + ‘/;7777 (147)

where V; is approximated by a “narrow” derivative in {-direction and V,, is derived
by splitting a central difference between both sides of the face, in n-direction. It
is done as follows:
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‘;2 _ (¢i,j B (bifl,j)’
Afi,j

v, = 1 ( Gij1 — Pij—1 ) _l_l ( Gi-1j+1 — Pi-1j-1 ) .

2 \Anijr1+ Anij 2 \Ani—1j41 + Ani_y
Now when we have the covariant velocity components we need to express the
velocity in the Cartesian coordinate system in order to compute the local speed
of sound and then the Mach number through this face. The transformation from

the covariant coordinate system to the Cartesian coordinate system is done by
multiplying the covariant vector by the inverse of the matrix M,

(148)

[, o] = M7V, V) (149)
and the velocity absolute value is,

¢ = (uv* +v%). (150)

The local speed of sound is then

—1
a2:a§0+(72 )

where ao, = Ve/M, = 1. Finally, the Mach number (the ratio of the flow speed to
the local speed of sound) M at the half point (i —1/2,7) is M = %.

(V2 —u® —v?), (151)

i1, j+1 i, j+1 i+l j+1

Py - L ]
0 54172

i, j i, j Divasy, j

‘ () ____-—-"".
— i+1, j
D12, 5

i1, j+1 n; J-_ml i, j1 i+1, j1

. L] »

Figure 23: Sub-domain or control volume surrounding a node (3, 7).

11.2 Flux calculation — incompressible flow

In this section I will describe in detail how the fluxes of the FPE are discretized.
As described in Section 1, the computational space is divided into quadrilateral
cells where FPE is solved in each cell separately. Using Cartesian coordinates
(x, y, z) the FPE is written as follows (see Eq. (48)):
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o)+ (o 0 =0, (152)

The velocity components v and v are calculated as the gradient of the potential

o.

U= ¢y, U= @y. (153)
The flow is assumed to be uniform in the far field with a Mach number M.

At the body surface, “no penetration” boundary condition is applied,
V.w =0, (154)
where the product X_/Ti is the velocity component normal to the surface. The

density is computed from the isentropic formula (61). The space discretized form
of Eq. (152) in the covariant coordinate system (£, 7) can be written as follows:

d d
& (F)+ n (G) =0, (155)
where F' = p(¢¢, ¢y) ¢ and G = p (¢¢, ¢y) ¢, From the notation above, the fluxes
labeled F' and G are constructed of terms that contribute to the flux in the £ and
n directions.

The conservatively requirement on Eq. (155) will be satisfied if the scheme can
be written under the form:

=0, (156)

_|_

Ag An
where f is the numerical flux at the cell face mid-point (i—3,7), (i+3,7), (4, j+3),
and (i,7 — 3).

In order to simplify the derivation, let us introduce first the incompressible flow
equation, which is characterized by a constant density, referenced to a uniform
free-stream density poo, p = poo = 1; this results in

d d
— + — = 0. 157

In a case of a low Mach number flow, an approximation to the entire equation
is a discrete nine-point Laplacian, exactly as in the quasi-linear case. Now, let us
express ¢¢ and ¢, as their covariant components,

¢ = Fe& + Fyi,
¢77 = Ggf + Gnﬁa

where the covariant velocity components, F¢, F,, G¢, and G,, which are calculated
at the face (z — %,j), are discretized as follows:

(158)
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Fe = §(¢i,j — Pi_1)

+ 1(¢ijr1 — Pim1541) n 1(¢ij—1 — Pim1,5-1)
4 ANSY 8 A& ji 8 N i ’
F, = 1(¢ij+1 — ¢iy-1) + 1(i-1+1 — Pim15-1)
2 AMijr + D0y 200141+ Anicyyy
Ge — 3(¢iy — ¢ij-1) n 1(is1; — Piv1,j-1) 1 (¢i-15 — ¢i—1,j—1>7
4 An; 8 ANt 8 A
_ 1 (i1 — dim1y) n 1(it15-1 — Pim1,5-1)
2000+ A0y 24800051+ A0y '

(159)

Gy

The parameters A¢ and An are the grid spacing in the ¢ and 7 directions,
respectively. The distance separating the cell’s centers (7, j) and (i — 1, j) is A ;.
The horizontal distance separating the cells (7, j) and (i + 1, j) is A& 41 ;. Likewise,
the vertical distances that separate (i, j) from (i — 1, j) and (¢, j + 1) are An; ; and
An; j+1, respectively. Spacings are computed during the grid generation phase, and
are stored as one-dimensional arrays, for later use during the discretization. Since
the grid is not uniform we have to take each relevant grid spacing in order to get
an accurate discretization. The approximations for the above covariant velocities
at the faces (i + 1/2,7) and (i, + 1/2) are done in the same way.

In order to get the flux that crosses each face in the cell (4, j), the velocity com-
ponents must be projected normal to the face through which the flux is computed.
Hence, the fluxes are approximated as follows,

(160)

!

G
G4-1:|: £:| N, 1.
, +3 ) +3
LT3 G?? i,j+% L)+ 3

Computation of the remaining terms is done in a similar fashion, using the
four-step process described above.

11.3 Compressible flow — subsonic flow (M < 1)

When the Mach number is increased, the density of the fluid changes with respect
to the pressure. This case of compressible flow is distinguished from the previous
incompressible flow in that the density can no longer be considered constant.
Consider the term d% [0 (¢, Py) de] in Eq. (155). The terms ¢, and ¢, in Eq.
(61) reflect most of the flow’s “dynamic”. The discretization approach of these
two terms must take into account the value of the Mach number through the
face and the flow direction. Consider, for example, the face (i —1/2, 7). The term
d% (p (P, y) ¢e) in Eq. (155) may be computed at the half node (i —1/2,5) as
follows:
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1. First, the discretization of ¢¢ (fluxes of the Laplacian) that were presented
in the previous subsection, holds.

2. Next, the Cartesian velocity components u and v, the contravariant velocity
components V¢ and V,, the local speed of sound «a, and the local Mach number
M, are computed at the half node (i —1/2, j).

3. Now, when the Local Mach number is available across the face (i — /2, j)
and the flow direction is known, we can decide how to discretize the velocity
¢¢ (recall that we are dealing with the flux through the face (z — %, j) in the
equation for the density

0w -a| " (61

where the velocity vector of the flow through this face has two covariant compo-
nents as follows:

P () = pPoo

Vigw = Vel + Vi, (162)

The discretization of ¢. depends on the direction of the flow relative to the
vector n, normal to the face, as sketched in Figure 24.

N
~

Figure 24: Definition of the parameter § =V - n

The parameter delta is defined as,

§=V-n, (163)
where V and 7 are unit vectors of the flow’s velocity and the face’s normal, respec-
tively. The way we choose to discretize the velocity terms ¢, and ¢, is determined
by the parameter §. For example, when § = 1 the flow direction is normal to the
face 2-3, and it results in a “wide” approximation in the {-direction and “narrow”
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approximation in the n-direction. The case of § < 0 indicates that the flow di-
rection is opposite to the way that the grid’s indices are defined. It is a typical
situation when solving the flow field through a cylinder, or airfoil. Further details
and examples are presented in Section 13.

The covariant velocity components through face 2 — 3, V¢, and, V,,, are derived
by central differencing for a flow in a general direction as follows:

7 1 (¢z j ¢i—1 ) (¢z +1 — ¢z 1 +l) (¢z 1 ¢z 1 1)
Vi=11-— _52) ALY YV _5 ] ] + 52 J— J— ’
¢ ( 2 Agl,] 4 Agl J+1 Afu 1

- 1 (@i — O ) 1 (Cbi—l = Qim1,j—1 . -
V= (Lm0 ) 2 (Pt — Gy if V>0,
T4 ( A jia 4 A1 f -
- 1 (i 11— ¢i—1j> 1 (¢ij — ¢ij—1) . -
A 2 SR e R P}
! ( Anz‘—uﬂ 1 Am,j / Y
(164)

where the velocity vector in the Cartesian coordinate system is defined as V=
Va2 + Vyy. The terms Z and ¢ are unit vectors in the x and y directions, respec-
tively.

4. When the density p and the covariant velocity ¢, are available at the half
node (i — /2, j), the flux can be computed by

ficpag = p (&g, &) . (165)
5. Computation of the remaining fluxes at (i + /2, §), (i, 7 + 1/2), and (i, j — 1/2)
is done in a similar fashion, using the four-step process described above.

11.4 Compressible flow — supersonic flow (M > 1)

In the supersonic region the equation changes type from elliptic to hyperbolic, and
therefore, a “wide” upwind difference should be used to approximate the deriva-
tives in the streamwise direction. In the construction of the discrete approximation
to the conservation form, it is necessary to switch to upwind differencing. Con-
sider again the flux through the face (i —1/2,j). The flux in the {-direction is
approximated as follows:

1. A central discretization of the Laplacian holds also in this case.

2. Next, according to relations presented in Section 12.1, the Cartesian compo-
nents of velocity v and v, the contravariant component of velocity Vg, and
Von, the local speed of sound a, and the Mach number M, are computed at
the half node (i — /2, j).

3. The discretization of the velocities ¢, and ¢, in Eq. (61) is done in the
streamwise direction while taking into account an upwind approximation as
the flow exceeds M = 1. The final formula for ¢, and ¢, is written as follows:

1 u u
¢i:M—V§ Ven + <_W>V§‘ng
,.7 2%)

X (166)
2 u u
¢y M2 V ‘/;7" + < MQ > V V;In
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The superscript u denotes an upwind approximation. Since the equation
changes type from elliptic to hyperbolic, therefore, a “wide” upwind difference
should be used. As an illustration, when the flow is grid aligned, the fluxes
at the half node (i — 1/2, j) are discretized, in a stencil notation, as follows:

_1 1
Ve=| 41 .., Va=| _1 1 |- (167)
2 3 bJ 2 2
11 1
1 1 2 2
As one can see, the upwind differencing is introduced smoothly since # — 1

as M — 1. If the upwind differencing were introduced directly as M., > 1,
there would be a sudden change in the representation of the Laplacian term
V2¢, which does not vanish when M, = 1. A scheme of this type was tested
and found to be much less efficient.

Any numerical scheme used to solve the FPE for the potential ¢ must satisfy
the domain of dependence. Since the characteristics are symmetric about
the velocity vector, both the & and 7 derivative terms must be properly
shifted when solving the FPE. The discretization of V; and V,, is already was
presented in the previous subsection. However, the upwind approximations
VEU and V;;‘ in a general direction is done as follows: In case of § > 0,

w 1 Gi—1j — Pi—2,j 1 Gi—1j-1 — Pi—2,j—1
= () g () s

Afz'fl,j 4 Agifl,jfl
1 i—1,5 — $i-24 1 i,j—1 — Pi—1,5—
+ (_52) (b 1,7+1 <i> 2,5+1 + = (1 o (52) ¢,j 1 ¢ 1,5 1)
4 Aé’i*l,j‘i’l 2 Afi,jfl
1 Gij — di1,
21— s2) Pid J 168
1 (bifl Yy (bifl j—1 . ~
w__ ) s >
Y 2 Ani_1 of v20;
Lot — Gty -
Vu — _(b 1,]+1 (b 1,] Zf ‘/;J < O

K 2 A’?iq,jﬂ
If 6 < 0, then

v = (152) Pir1 — Gig | (152) biv15-1 = Pijr
2 )

AN&iy1, 4 A&iv1j-1
- (252) (bi*Xg;;f?j“ + % (1-0%) ¢i7j+1ﬁgj:17j+l7
1 i — 14
+§@—wa?izgrﬂ, (169)
VRt i Wz
VU — 1¢i,j+1 — Gij if f/y < 0.

o2 Am,jﬂ
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In these approximations the velocity is assumed to be from left to right,
namely V, > 0.

4. When ¢ and ¢ are calculated, the density p is available at the half node
(i — 1/2,7). Then, the flux (in {-direction) can be calculated by Eq. (165).

5. Computation of the remaining fluxes at (i + /2, 5), (i, j + 1/2), and (i, 5 — 1/2)
is done in a similar fashion, using the four-step process described above.

11.5 Boundary conditions

A distinction of fluid flows in two different cases depends solely on the boundary
condition. The numerical treatment of the boundary conditions requires particular
care. An improper implementation can result in an inaccurate simulation of the
real system. In addition, the stability and convergence rate of the scheme can be
adversely influenced. For completeness we will introduce first the two common
types of boundary conditions, Dirichlet and Neumann.

11.5.1 Dirichlet condition

The potential is prescribed along the boundaries. Practically, the values of the
ghost cells are fixed. Only the interior cells are relaxed, so the boundary conditions
are satisfied on all the levels.

11.5.2 Neumann condition

The normal derivative of the potential ¢ (namely the velocity components u and
v) is specified along the boundary. Note that the relaxation (which is performed
on interior cells only) should change the boundary value, not so that the corre-
sponding boundary condition is satisfied exactly, but to smooth the error along
the boundary. Each relaxation sweep is followed by an update of the ghost cells
in order to satisfy the boundary condition.

Further types of boundary conditions that were applied in several case studies
presented in this research are as follows:

e Inflow and outflow internal flows,
e Solid wall,
e Coordinate cut,

e Periodic boundary.

The numerical treatment of the first two cases will be covered in the following lines
since it takes place in all the flow cases that were tested in this research work. The
next two cases will be covered in the relevant application. For further information
of boundary conditions the reader is referred to Blazek [90, 12]. At the boundary,
the information will reflect either the free-stream conditions, imposed conditions,
or conditions inside the computational domain. The boundary conditions need
to be applied so that the unknown variables at the boundary reflect the correct
information. Since the 2D FPE is being solved here, only the velocity components
will need to be specified at each boundary. For this purpose we use the dummy
cells.
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11.5.3 Dummy cells

In general, boundary conditions can be applied to either boundary faces or exterior
boundary cells, which lie outside the boundary layer. These exterior cells are often
called dummy cells or ghost cells. The dummy cells are additional layers of grid
cells outside the physical domain. This is sketched in Figure 25 for the case of
a 2D structured grid. The whole computational domain is surrounded by two
layers of dummy cells (dashed lines). The cells are virtual (ghost cells), although
geometrical quantities such as areas and flux vectors are associated with them.
The purpose of the dummy cells is to simplify the computation of the fluxes along
the boundaries. This can be achieved by the possibility of extending the stencil of
the discretization scheme beyond the physical boundaries. The number of dummy
cells must be such that the part of the stencil outside the physical domain is
completely covered. The conservative variables values in the dummy cells are
obtained from the boundary conditions.

interior cell

ghost cell

Figure 25: Two layers of dummy cells around the 2D computational domain.

11.5.4 Inflow / outflow

The first type of boundary condition to be discussed is a flow entering or leaving
the domain, commonly referred to as inflow and outflow conditions. Since the 2D
FPE is being solved here, the velocity components u and v are specified as either
the free-stream condition or a given velocity profile. The treatment of the outflow
boundary condition is the same.
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11.5.5 Solid wall

The second type of boundary is wall or solid surface. Figure 26 presents the solid
wall boundary condition for the cell-centered scheme. Since in this work we are
dealing with an inviscid flow, the fluid slips over the surface. This is known as the
nonpenetrating condition. There is no friction force, so the velocity vector must
be tangent to the surface,

99 _
on

at the surface, where 7 denotes the unit normal vector at the surface. Hence

0 (170)

the contravariant velocity V is zero at the wall. When the grid is orthogonal,
the implementation of this boundary condition is relatively easy. But since the
curvilinear coordinate system is wrapped around the body, which results in a
nonorthogonal grid, this condition is more difficult to implement. In order to
attain this value we have to answer the following question: what is the value
of the dummy cell that we have to impose in order to get a zero contravariant
velocity, ‘7@ =07

*2

o1

e (

Figure 26: Solid wall boundary condition for the cell-centered scheme. Dummy
cells are denoted as 0 and —1.

Since the discretization of the velocities is done in a covariant coordinate sys-
tem, we can build an equation for the contravariant velocity, ‘7@ By combining
Eqgs. (142) and (143) we get a system that transforms the velocity vector from the
covariant to the contravariant coordinate system,

fe]-ere ]
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According to the following example, the equation for the contravariant velocity
has to be solved only in n-direction. So substituting the relation for the covariant
velocity we get the following relation:

Ven -1 . Ve
[ V£ } - (MT) M @,rfi,jfl (172)
77” Ani,j

As one can see, the equation for ‘7;771 (the second equation) is an algebraic
equation with one unknown — ¢; ;1. Expanding the equation for V,,, we get

Gij — Qi1
where C, (5, and \_/2 are computed as follows:
— (i + ks —(2+e)
Ol - ~ 2 2 = 7 2 (174)
<§xﬁy - 77x§y> (fzﬁy - nx§y>
Ve = 1 (¢ig1j — di-1,5) N 1 (¢ig1,-1 — i-1,j-1) (175)

T 2D+ DGy)  2(D&aga+ D)
In this way all the dummy cells along the solid wall boundaries were evaluated.

12 Applications

The efficiency of the AMG method in solving the second order nonlinear FPE
in the conservation form for various compressible flow problems is studied in this
section. All the results were obtained with the algorithms described in the previous
sections. Several observations are in order here, related to the AMG setup phase
and solution phase in the various flow problems:

1. Generally, strong connectivity is defined by ¢ = 0.25. When the problem
is subsonic, and the velocity is quite far from the sonic case, we find that
there is no advantage in using the dynamic threshold in the coarsening pro-
cess (described in Section 4). Instead, the fixed threshold does the work
quite well, in terms of convergence properties and complexities. But in some
cases, especially when the matrix A™ is not an M-matrix, the influence of
the fixed threshold as a measure of strength between the matrix variables
becomes dominant. It causes not only the smoothing to be less effective
but also interpolation to be less accurate (since fewer points are involved
in the interpolation process). It results in a much slower convergence rate
(above 0.5), in the cases where we have convergence at all. The convergence
can be improved, for instance, by applying more smoothing steps in each
V-cycle. However, this would substantially increase the cycle cost and more
importantly, won’t improve the interpolation process. In such cases the dy-
namic threshold is applied. However, the dynamic threshold is implemented
only when no other alternative is available. Practical experience has clearly
shown that the dynamic threshold tends to increase the number of points on
the coarse-levels. It results in a slightly increased operator complexity and
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especially grid complexity. The alternative, namely to try to improve the
increased complexity by modifying the truncation of the coarse-level oper-
ator (see remark 5 in this Section), will be generally much more expensive.
Nevertheless, in light of the strong nonlinear cases involved, and the discon-
tinuities in the matrix’s coefficients, the cost that we pay for the convergence
properties is quite acceptable. In fact, the dynamic threshold together with
the direct approximation approach (discussed in Section 8 for construction
of the coarse-level and restriction operator) is a “brute force” approach to
improve the AMG performance.

2. The coarse-level and restriction operators are construed based on the strong
and weak connections between the matrix A* entries. The coarse-point se-
lection algorithm proceeds in two passes. We first make an initial division
of the grid points by choosing a preliminary partition into C- and F'-points.
Once the initial assignments have been made, a second pass process is ap-
plied in order to satisfy the coarsening requirements as described in Section
8. In this way the coarse-level and the restriction operator are constructed.
Next the interpolation operator is constructed based on the algorithm de-
scribed in Section 8. A question to be asked is how many coarse-levels are
needed in order to solve the problem? Normally it is unknown how many
levels of coarsening to execute from the beginning. The base case of the
algorithm is satisfied when the current level is sufficiently coarse. This is a
broad term and basically there are several choices. For instance, one could
check for the number of data points or simply limit the number of levels.
In this algorithm the first approach is chosen. The number of points at the
coarsest level is limited to about ~ 1% of the total number of points on the
finest level. The coarsening process, which includes the construction of the
coarse-levels and the restriction operators, continues until this criterion is
satisfied. In each coarse-level, the interpolation operator is constructed.

3. Our focus, in the problems involved, is to reduce the Ly-norm of the residual
below 1071, with a convergence rate of less than an order of magnitude
per V-cycle. However, judging just the convergence behavior is not suffi-
cient for having a robust AMG. Definitely, we had to take into account the
computational work and memory requirements. The computational work is
determined by the operator complexity Cr, and the convergence rate C'.
Only if both quantities are bounded as the problem is increased do we have
an optimal performance. However, compared to problems on very regular
meshes, a decrease in the AMG convergence is expected in the case of irreg-
ular meshes. The main reason is the interpolation, which tends to be close
to geometrical interpolation in regular meshes. The influence of the irregu-
larity of the grid and its dimension on the convergence behavior is problem
dependent. In such cases there is a small increase in the convergence factor
as well as in the operator and grid complexities. This situation is bounded
and can be controlled by the dynamic threshold parameter. By experience,
the effects mentioned are very limited for the problems that we have tested
in this work.

4. If the flow speed in a given problem reaches a local Mach number, let us
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say below 0.7, the coefficients in the matrix A* are nearly “frozen” during
the solution process. In this situation, the setup phase, which includes the
construction of the matrices and transfer operators (restriction and interpo-
lation), was performed only once, at the beginning of the algorithm, and no
extra updates of the matrices A, A, and A* were needed. This is the situation
in most of the problems that were tested. When a transonic flow is involved,
it results in a strong anisotropy (near the boundary) and the treatment of
such a problem is more difficult and requires special attention. The nonlin-
earity is more dominant and 2-3 successive V-cycles are followed by a new
setup phase in order to achieve the desired convergence rate (the frequency
in which a setup-phase is performed is problem-dependent). This is done
since the non-linearity is solved on the fine-level only. Since the matrices
considered are constructed of nonlinear coefficients, they must be updated.
Performing the setup-phase is expensive in terms of storage, computation,
and time, bur it is very essential in order to achieve convergence. The setup
phase can be performed after 1-2 V-cycles and it is problem-dependent. This
process is repeated until the residual reaches a sufficient level. A possible
way to improve this process is to update only the points belonging to the
region of the strongest anisotropy. However, this approach was not actually
implemented.

5. Through all the problems presented in this research work, a direct approx-
imation based on the fine-grid operator A™ to construct the coarse-level
matrix A™"! and the restriction operator I"™! was applied (see details in
Section 8). In practice, this process, which includes several operations on the
matrix A™ entries, results in a significantly less sparse coarse-level matrix.
Most of the entries, however, are small relative to the diagonal, and there-
fore, can be ignored without seriously sacrificing convergence. Consequently,
in order to keep the resulting coarse-level operator as sparse as possible, the
construction of the coarse-level operator should always be combined with a
reasonable truncation. This is performed immediately when the coarse-level
operator is computed, by eliminating the small values relative to the diagonal
according to the following: % < u, where u = 107%. Practically, all those
entries of the coarse-level matrix that satisfy this condition are added to the
diagonal, in order to preserve the row sum. This process is repeated for all
the coarse-level operators and it worked perfectly well for all the problems

that we have tested.

It is very important to mention here that, since the coarse-level operator is
constructed by direct approximation, the truncation of the small entries can
be implemented directly on the coarse-level only (and not as an interpolation
truncation as can be done in the Galerkin operator). This process is dan-
gerous since in some circumstances, an “important” entry can be eliminated
and if not applied with great care, may cause divergence in practice. As a
comparison, if the Galerkin operator was applied (at least for the subsonic
case where the equation is elliptic and we can still reach convergence) the
truncation of the small entries would be implemented to the interpolation
operator and not to the Galerkin operator directly. The reason is that in
the worse case the convergence may slow down but no divergence can oc-
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cur. However, Galerkin operator is not relevant for the following “tough”
aerodynamic problems that we are facing.

6. It should be clear that this AMG algorithm is designed to deal with problems
characterized with various flow conditions. This directly refers to the type
of a given matrix A. However, we are not really interested in, for instance,
an algorithm version for one particular A only (for instance an M-matrix)
but rather in having a uniform AMG setup if the matrix A ranges over
some reasonable class of matrices. A reasonable class may consist of the
discretization matrices of both elliptic and hyperbolic equations discretized
on an irregular grids.

7. The AMG components which discussed in Section 8, generally are not de-
signed to be optimal. Unfortunately, they will always be constructed on the
basis of compromises between numerical work and overall efficiency. In par-
ticular cases, when the flow is subsonic (which is characterized by an elliptic
operator) with a regular or an irregular grid, we show that the convergence is
independent of the problem size and is as fast and expensive as we wish. Ac-
tually, the convergence rate is not generally the problem; in fact, the AMG
can always be forced to converge rapidly, but rather there is the trade-off
between convergence, numerical work, and memory requirements. In this
respect, while constructing the AMG algorithm, low memory approaches
were of particular interest, even if the reduced memory requirement causes
a degradation of the convergence properties. In any case, since the prob-
lems that we have faced with are characterized by an extreme anisotropy,
with irregular grids, shock waves, and strong nonlinearity, we focused on the
following requirements: The operator complexity must not be significantly
larger than 3.0 and the convergence factor around an order of magnitude.
We will see that these requirements are satisfied in most of the test cases
considered.

8. This algorithm is far from being optimal. It is not being designed for the
greatest efficiency but rather to be as uniform as possible, that could cover
most of the relevant cases regarding the FPE. The AMG components are
constructed on the basis of compromises between numerical work and over-
all efficiency. Our main interest was to use the new algorithmic components
that have already been discussed and implement them as fixed strategies.
They are not adjusted to the particular requirements of a given problem.
For example, if the coarse-level and restriction operator are constructed ac-
cording to Chang [93] and not by the Galerkin condition, it is always applied
in all the flow conditions considered in the relevant problem, although the
Galerkin condition can produce much better results (in a very specific flow
conditions, for instance, subsonic flow). Similarly, if a dynamic threshold
is applied, it is done in all the coarse-levels. There are situations where
a local application may give improved convergence properties with much
lower cost and memory. For example, by applying a fixed threshold only
to the fine-level and for the rest of the coarse-levels a dynamic threshold
is applied. Similarly, aggressive coarsening, which can improve the memory
requirements on the expense of slower convergence rate. Thus, there is much
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room for quite substantial optimizations and one may think of various mod-
ifications and improvements relating to the AMG’s coarsening strategy and
smoothing. However, by our experience, the algorithm in its current form is
very flexible, robust, and efficient in practice.

9. For analyzing the AMG performance, the timing for constructing the setup
phase and the solving phase was not taken into account as a parameter for
quality of the code. Since the timing depends on both the machine and the
compiler, it has to be judged with care. Comparisons typically change from
machine to machine.

In order to make the description of the following applications clearer, and more
self-contained, we repeat the most relevant aspects described above. References
to previous sections are kept to a minimum.

12.1 Overview of the solution procedure

The basic steps involved in the iterative solution of the FPE while applying the
AMG method in a curvilinear grid will now be covered.

1. The first step is to construct the structured curve linear grid. The grid must
be smooth, with adequate resolution near the body surfaces.

2. Compute and store the following geometrical measurements of each cell in
the computational domain:

Face vector S.
Face length AS.

Unit normal vector at each face n,,.

()
(b)
(c)
(d) Transformation matrices M and M.

3. For simplicity, the initial conditions were assumed to be uniform flow in
the free-stream direction, at the free-stream velocity V.. First, the velocity
gradients are derived in a covariant coordinate system. Second, we know
that the free-stream velocity is in the z-direction. Since the derivatives are
computed in the covariant coordinate system (&,7), we have to find the
covariant velocities. The equations in which the covariant velocities are
computed in each cell are written as,

]-u 5]

Replacing the velocity by its derivative

¢i,j B ¢i—1,j

Ve = ,
¢ AE; 5

(177)

the expression for the potential at the cell’s center is

Gi—1; = Gij — D& M1 Vi, (178)
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where M; ; is the first coefficient of the matrix M (transfers a velocity vector
from the Cartesian to the covariant coordinate system) which is already
computed and stored. Therefore, the potential is known at any point in the
field. This process of applying an initial condition works fine even for the
transonic flow cases where the nonlinearity is significant.

4. The setup phase — the matrices A, and, A are constructed by a linearization
process, then we get A* = A- A. All operations performed by the AMG
process, in a given AMG cycle, are based upon the matrix A*.

5. The coarse-level and restriction operators are constructed based on the
strong and weak connections between the matrix A*entries. The coarse point
selection algorithm proceeds in two passes for construction of the coarse-level
and restriction operator. Next the interpolation operator is constructed
based on the algorithm described in Section 8.

6. The solving phase — a V (2,2) cycle with SGS smoothing steps is applied
recursively on the coarse-levels. Only on the finest level is a direct relaxation
is applied (without using the matrix formation) in order to have the ability
to apply local smoothing sweeps where it is necessary. In the coarse-levels
the SGS is applied only in the matrix form. The coarsest level was solved
iteratively exactly as the other coarse-levels. Each direct relaxation on the
fine-level is followed by an update of the ghost points in order to ensure that
the boundary conditions are satisfied.

7. In order to understand the simulation results and verify that the physical
problem is solved, under the limitations of the potential flow model several
flow characteristics such as the velocity field, Mach number, and pressure
coefficient were computed in each cell. Since the potential value is defined
at the cell’s center and the presentation of the flow characteristics is done
on the vertices of the grid, an interpolation is performed. The velocity at
a given vertex is an average of the flow velocities through the faces that
surround it. As the velocity is known, the local speed of sound and the local
Mach number can be calculated for each vertex.

12.2 Numerical experiments

Several two-dimensional flow calculations have been performed to test the perfor-
mance of the AMG method implemented within the FPE within the body-fitted
structured grid finite volume context. The test-cases were chosen to address two
major requirements: First, the flow model problem has to agree with the poten-
tial flow limitations. Second, it should allow to examine capability of the code
to deal with irregular structured grids together with an equation that becomes
extremely anisotropic near the sonic case and changes type to hyperbolic in the
supersonic flow regime. The following model problems certainly do not give the
full picture, but they most easily allow investigation of the AMG’s asymptotic
behavior as well the ability to deal with various specific aspects such as extreme
anisotropy (which can be obtained by the grid or the equation itself), nonlinearity,
discontinuities, and shock waves. Two-dimensional solutions will be given for the
following problems:



12 APPLICATIONS 88

1. Channel with a circular bump.
2. A circular cylinder with and without circulation.

3. NACA-0012 airfoil. The simulation includes two angles of attack, a = 0°and
a = 1.25°.

4. NACA-2822 airfoil with o = 0°.
5. Convergent-divergent diffuser.
6. Nozzle.

7. Solid propellant rocket engine.

The problems were tested in subsonic and transonic flow regimes in different grid
resolutions. All the computational data in the subsonic flow regime is two orders
accurate in space and first order accurate in the supersonic region. All the exper-
iments have been run on a computer with a 2.4 GHz Pentium 4 processor and 4
GB of RAM. For each experiment, we report the following data.

We consider several measures of the effectiveness of the algorithm. Our focus is
on solving the FPE in each case to a high degree of accuracy, namely by reducing
the residual by at least ten orders of magnitude. The rate by which the residual
reached a sufficient level is clearly reflected by the convergence factor. As the
convergence rate is reduced so is the number of iterations that are required in
order to decrease the residual to a sufficient level. The grid and the operator
complexities were also computed as a measure of the algorithm’s efficiency.

The column denoted by ||R™||, reports the residual Lo-norm after each V-cycle.
For each V-cycle the columns denoted by C report the convergence factor, which
is the ratio of |R™||, between successive V-cycles. In the row denoted by Cq,
the grid complexity is reported, which is the total number of grid points on all
the levels, divided by the number of grid points on the finest level. The operator
complexity is reported as C, associated with the V-cycle for every run (defining
operator complexity in the usual sense (see Section 5), as the ratio of the number
of entries stored in all matrices on all levels divided by the number of entries stored
in the finest-level).

In order to define the AMG’s setup, various parameters have to be defined. The
following default settings were used throughout the calculations, unless explicitly
stated otherwise:

e The coarsening process including construction of the restriction operator is
done according to Algorithm 2, described in Section 8 for all the problems
that follow. Although Algorithm 1 is simpler to implement, there is a signif-
icant advantage to the second method over the first, in the supersonic flow
regime, where the discrete operator does not lead to an M-matrix.

e The second pass process was applied only for the fine-level, in order to satisfy
the interpolation requirements.

e Strong connectivity is defined by the fixed threshold ¢ = 0.25. The dynamic
threshold is used where the fixed threshold fails and it is problem dependent.
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e By default we use a symmetric Gauss—Seidel, two pre- and two post-smoothing
steps being the default.

e The type of interpolation used is according to that described in Section 8.

e Coarsening is terminated as the number of points at the coarsest level drops
below ~ 1% of the total number of points on the finest level. In the case
where a supersonic speed is involved, the coarsening is terminated according
to the details described in Section 8.

12.3 Channel with a bump

This is the first simple representative example of an internal flow while solving the
FPE in the conservation form. It consists of a channel of height L and length 3L.
Along the bottom wall there is a circular arc of length L and thickness 0.1L. An
H-grid is constructed, based on the algorithm of Blazek [90], using 96 cells in the
z-direction and 32 cells in the y-direction. Also coarser grids of 24 x 8 and 48 x 16
were computed based on this algorithm. The mesh used for the channel flow test
case is presented in Figure 27.

Wall A= max

E=min € =max
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Figure 27: Mesh 96 x 32 used for the channel flow test case.

A constant velocity and Mach number as inlet and outlet flow conditions were
imposed. At the top and bottom, a solid wall boundary condition was applied, as
detailed in Section 12. A uniform flow velocity is applied as an initial condition.
The Mach number isolines and color maps are shown in Figure 28. The problems
were solved with the following Mach numbers: 0.01, 0.25, 0.5, and 0.64. One isoline
has been drawn on the color map every 0.013 ranging from 0.0 to 0.65. It is clear
that within the low Mach number range the solution does not greatly depend on
the Mach number and the Mach isolines are practically identical. When increasing
the M, the compressibility effects become more dominant and for an incident
velocity of My, = 0.64 a supersonic region is terminated by a shock (see Figure
28(d) appears above the bump. The pressure coefficient for the four cases described
above is presented in Figure 29. The shock jump is clearly visible in the pressure
distribution when M., = 0.64. The results compare very well with Mach contour
distributions in the literature [94, 12, 17].
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Figure 28: Mach number isolines computed on the (96 x 32) mesh for the following
incident Mach numbers: a) My = 0.01, b) My = 0.25, ¢) My = 0.5, d) My =

0.64. Observe the shock appearing at M., = 0.64.
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Figure 29: The pressure coefficient C), calculated at the bottom wall for M., =
0.01 — 0.64. Observe the shock appearing at M., = 0.64.

AMG performance

The first coarse-level for each case described above is sketched in Figure 30. In
fact, these coarsening patterns are very interesting, and several observations are
in order here. First, the case of M, = 0.01 is characterized by a practically
incompressible flow that results in nearly an isotropic equation. So, we would
expect that the coarse points would be distributed uniformly at the entire flow
field. But as can be seen in Figure 30(a) this is not the case. The reason for
that is the irregularity (anisotropy) of the grid, which is clearly reflected in the
coarsening pattern. Since the grid is highly stretched in both directions x and
y, near the bump, the coarsening algorithm is strongly influenced by that. For
example, the coarsening pattern above the bump is nearly isotropic since the cell’s
aspect ratio is nearly unity, so the irregularity of the grid is not significant at this
area. In addition, the discrete operator in this case relies upon a nine-point stencil
which results in an “aggressive coarsening” (a similar coarsening pattern can be
obtained by solving the Poisson equation with a nine-point stencil). However, as
we move further away from the bump in the y-direction, the grid’s aspect ratio
gets bigger since the cells are stretched in the z-direction. Consequently, a given
change in the derivatives along the z-direction would influence more strongly the
new solution (depending on the grid’s aspect ratio) than the same change in the
derivative along the y-direction. The problem shows strong dependence in the x-
direction, and little or no strong dependence in the y-direction. The same process
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occurs in both sides of the bump, where the grid is coarsened in the y-direction
— the direction of strong connections. This coarsening pattern for the rest of the
flow conditions is essentially the same, accept for M, = 0.64 where there is a
slight disturbance of the regular coarsening above the bump, where the anisotropy
is largest. It is important to mention here that a dynamic threshold is applied
for this specific problem while in the rest of the subsonic cases a fixed threshold
of € = 0.25 results in good performance in terms of complexities and convergence
properties.
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Figure 30: The finest and first coarse-level for flow through a channel with a
bump. The mesh size is (96 x 32). The problem was solved with various Mach
numbers: a) My, = 0.01, b) M, = 0.25, ¢) My = 0.5, d) My = 0.64. The
blue point corresponds to F-point (fine-level) while the red point corresponds to
C-point (coarse-level).
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The discrete Lo-norm of the residual is shown in Table 8 for each V-cycle,
in four different cases of M.,. Note that for the first three cases and for all the
grid sizes, the convergence factor is bounded well below 0.1. The residual norm
decreases by a relatively the same factor with each V-cycle. This continues until
it levels off after about 10 V-cycles near 1073, where round-off error is of the
order of the residual norm itself. Due to the mathematical nature of the potential
equation, the Mach number has a large impact on the convergence rate. When the
Mach number increases so does the upwind bias of the discretization, and there is a
decrease in the convergence rate as well. In addition, the effect of the nonlinearity
and the existence of shock waves manifest themselves in the convergence properties
for M., = 0.64 where the first three cycles are slow to converge and then the
residual reduction is stabilized on 0.1 for the remaining 7 V-cycles. It is rather
clear that this slow convergence is only caused by the strong nonlinearity and the
presence of a discontinuity. It takes 2 — 3 “waste” cycles before the critical error
components are sufficiently reduced by relaxations and the convergence becomes
faster.

One possible way to improve the convergence rate at the beginning of the so-
lution phase is by improving the initial condition. This can be achieved by the
full-multigrid (FMG) approach, which is described in Section 8. The convergence
of nonlinear iterations depends even more critically (compared to subsonic flow
for instance) on a good initial condition. Typically, the better the initial condi-
tion used on the fine-level, the less significant is the effect of nonlinearity on the
convergence and more effective the fine-level solver will be. The FMG approach
was implemented in this problem for subsonic and supersonic flow as well. For
subsonic flow it worked fairly well; the interpolation I/, A™*! is generally accu-
rate enough to be treated by the fine-level relaxation. However, for supersonic
flow, where an exceptionally strong nonlinearity exists the success is very limited.
It is very important to mention that although the first three cycles are slow to
converge, in the remaining V-cycles the convergence rate is lower than 0.1 without
any local smoothing sweeps around the shock waves. To illustrate the residual
reduction graphically, Figure 31 presents the convergence history of the residual
(Ls norm) versus the iterations number, for the four cases described above. We
observe that for subsonic cases, M., = 0.1 —0.5 we need fewer than 10 V-cycles to
reduce the Lo-norm of the residual by 10 orders of magnitude. As for the transonic
case of M, = 0.64, the convergence is somewhat slower here while about 12 cycles
are required to reduce the residual by 10 orders of magnitude.
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Table 8: The results of the AMG V-cycles applied to the flow through a channel
with a bump with mesh size of 96 x 32. The discrete Lo-norm of the residual
|R™||, and the convergence rate Cy are presented after each V-cycle, for various
Mach numbers. The sign (-) indicates that the level of discretization error has

been reached.

M., =0.01 M, =0.2 M, =0.5 M., = 0.64
Voyde | [R™l,  C; | IR, Cr | IR"l, _Cr | IIB"l, G
0 3.236e-04 — 6.540e-03 — 5.587e-03 — 4.417e-03 —
1 1.320e-05 0.04 | 3.130e-04 0.05 | 1.135e-03 0.20 2.598e-03 0.58
2 3.763e-07 0.03 | 1.111e-05 0.04 | 1.536e-04 0.14 1.231e-03 0.47
3 1.295e-08 0.03 | 2.555e-07 0.02 | 2.071e-05 0.13 4.791e-04 0.39
4 4.234e-10 0.03 | 8.623e-09 0.03 | 1.484e-06 0.07 1.261e-04 0.26
5 1.397e-11  0.03 | 2.808e-10 0.03 | 8.585e-08 0.06 2.687e-05 0.21
6 4.404e-13 0.03 | 9.762e-12 0.03 | 3.655e-09 0.04 2.166e-06 0.08
7 1.324e-14  0.03 | 3.495e-13 0.04 | 1.492e-10 0.04 2.341e-07 0.11
8 4.154e-16  0.03 | 1.352e-14 0.04 | 9.411e-12 0.06 5.210e-08 0.22
9 1.326e-16  0.32 | 3.243e-15 0.24 | 6.416e-13 0.07 6.838e-09 0.13
10 1.317e-16  0.99 | 3.147e-15 0.97 | 3.537e-14 0.06 6.645e-10 0.10
11 1.319e-16 1.00 | 3.134e-15 1.00 | 8.233e-15 0.23 6.050e-11 0.09
12 1.332¢-16  1.01 | 3.142¢-15 1.00 | 7.900e-15 0.96 5.172e-12 0.09
13 — — - - — - 3.934e-13 0.08
14 — — — — — — 5.865e-14 0.15
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Figure 31: Convergence history of the discrete Ly-norm of the residual for various
cases of Mach numbers.

Table 9: Grid complexity Cq and operator complexity C', for four cases of Mach
numbers.

Complexities | Mo = 0.01 | My =0.2 | Mo = 0.5 | Moo = 0.64
Co 1.58 1.60 1.72 2.06
Cr 2.15 2.25 3.24 3.56

As mentioned, compared to isotropic problems, complexity is generally greater
for anisotropic problems. The complexities can increase further for problems as
discussed here where anisotropies are not aligned with the grid. Table 9 presents
the grid and operator complexity for four test cases of Mach number. Summing
the number of rows of all operators and dividing by the number of rows on the fine-
level shows the grid complexity. For example, in the case of M., = 0.01 the grid
complexity is 1.58. Thus, we know that storage of the vector of unknowns (¢) and
the right side requires 1.58 times the space required for the fine-level quantities.
As the Mach number is increased the problem becomes strongly anisotropic and it
results in an increased grid complexity. This is an expected behavior of the AMG
algorithm since the memory (size of coarse-levels) requirement for the strongly
anisotropic problem is greater than that for an isotropic problem. The reason is
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that AMG is essentially performing one-dimensional coarsening in the direction of
the strong connections. Therefore, when M., = 0.64 a large “pocket” of supersonic
flow is obtained above the bump, which is terminated by a shock wave. In this
region, the anisotropy is largest. In this case the grid complexity is C = 2.06.

The operator complexity slightly increases with the Mach number, and is above
2 for the four cases of Mach number. Two possible reasons for the increased
operator complexity are the average stencil size and the coarsening process. The
average stencil size is the average number of coefficients per row. For simplicity,
let us look at the fine-level. When M., < 1, the stencil size of the matrix A* is
large, although the matrix A is diagonally dominant with a; ; ~ 1 but the weights
of the entries off-diagonal are definitely not zero (it is zero for M, = 0). As the
Mach number is increased so does the average stencil of A*. It is possible to get
very large stencil sizes on coarser levels (as will be discussed in Table 11). Large
stencil size can lead to large operator complexity since various processes such
as coarsening, interpolation, and relaxation, require that neighbors of neighbors
are visited, which results in growth in the number of operations per cycle. The
second reason for the increased operator complexity is the relatively large number
of points on the coarse-levels, as previously explained. Furthermore, the second
pass process, can also contribute to the relatively high complexities since F'-points
are replaced by C-points in order to satisfy the interpolation requirements.

For comparison , Table 10 presents the AMG performance for M, = 0.5
while using a fixed threshold as a measure of strength between the matrix A*
entries, rather than dynamic threshold as presented above (in Table 8). This
table includes the Lo-norm of the residual for 12 V-cycles. It is clearly seen that
the alternative of a fixed threshold results in poor convergence properties and is
also unstable with no upper limit. The grid and operator complexities obtained are
Cqo = 1.95 and C, = 2.95, respectively. However, the dynamic threshold approach
was preferred for this specific problem, although the operator complexities were
slightly increased.
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Table 10: The results of the AMG V-cycles applied to the flow through a channel
with a bump, with M, = 0.5. The discrete Ly-norm of the residual ||R™||, and
the convergence rate Cy are presented for the grid 96 x 32 after each V-cycle. A
fixed threshold ¢ = 0.25 was applied during the coarsening process.

My =05
V-cycle | |[R™|, Cy
0 1.724e-02  —
1 8.540e-03  0.50
2 1.076e-03  0.13
3 4.056e-05 0.04
4 1.622e-05  0.40
5 7.221e-06  0.45
6 1.705¢-06  0.24
7 2.519¢-07  0.15
8 7.893¢-09 0.03
9 1.063e-08 1.35
10 | 3.988¢-09 0.37
11 8.908¢-10 0.22
12 1.195¢-10  0.13
Co 1.95
Cr 2.95

Let us examine the storage requirements for two extreme cases of M., = 0.64
and M., = 0.1. The problem was solved with 5 levels and the properties are
presented in Table 11. The first coarse-level, A™*! has 1268 points, about one-
fifth the number of points on the fine-level. This can be seen in Figure 30(a).
Each succeeding coarse-level has approximately half the number of points as the
preceding finer level. The coarse-level operator on the second level corresponds
to a 29-point stencil. That is, although the reduction of points is substantial,
the number of the nonzeros in the second- level matrix is still not far from the
finest level. For M, = 0.65 the situation is even more dramatic. In the last
column it can be seen that the average number of nonzeros per row increases as
the grids become coarser. However, the operator and grid complexities are slightly
damaged. In addition, the first coarse-level has more actual nonzero coefficients
than does the fine-level operator. This is relatively common for AMG and an
example of this phenomenon is described by Briggs, Henson and McCormick [54].
The results were obtained by repeating the setup phase 6 times while applying
two V-cycles between each update, resulting in a total of 12 V-cycles until the
residual decreased to the desired level of ~10~1°.

A grid dependence study has been conducted to verify the independence be-
havior of the AMG algorithm on the grid resolution; two more grid levels have
been used with (24 x 8) and (48 x 16) grid points in the axial and vertical direc-
tions. It is very important to mention that our main interest here is to verify the
robustness of the code rather than achieving the greatest efficiency. Therefore, in
each resolution, the AMG components (for instance, dynamic threshold, coarse-
level parameter 7, and second pass process) were “fixed”; that is, they were not
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locally adjusted to particular requirements of a given resolution. These compo-
nents contain exactly the values applied in the greatest resolution 96 x 32. The
results of the Ly-norm of the residual ||R™||, and the convergence rate C; are
shown in Table 12. Tt can be clearly seen that the algorithm is scalable and does
not depend on the problem size (the convergence factor is nearly constant for all

the grids considered).

Table 11: Properties of the fine and coarse-level matrices for the AMG V-cycles
applied to the flow through a channel with a bump.

Number of rows ‘ Number of nonzeros ‘ Average entries per row

Level | My, = 0.01

My =064 | Moo =001 My =064 | Moo =0.01 M = 0.64

A™
Am+1
Amt2
Am+3
Amt4
AmTS

3072
1238
390
126
41

3072 52760 52945 17.1 17.3
1629 35511 56672 28.6 34.7
1000 18317 39568 47 39.5
564 5909 22743 46.5 40.3
296 1297 11305 31.6 38.1
148 - 5323 - 35.9
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Table 12: The table shows the results of the AMG V-cycles applied to the flow
through a nozzle. The second norm of the residual ||R™||, after each V-cycle and
the convergence factor C are detailed for two mesh sizes, 25 x 9 and 49 x 17.

M., =0.01 M, =0.2
grid size — 25 x 9 49 x 17 25 x 9 49 x 17
Veeyce | [R™,  Cy | IR™l,  Cr | IR™, Gy | IR,  Cy
0 5.664e-04 - 4.410e-04 - 1.152e-02 - 8.931e-03 -
1 2.072e-05 0.03 | 1.892e-05 0.04 | 5.169e-04 0.04 | 4.295e¢-04 0.05
2 7.042e-07 0.03 | 8.089e-07 0.04 | 2.221e-05 0.04 | 1.507e-05 0.04
3 2.495e-08 0.04 | 3.694e-08 0.05 | 9.302e-07 0.04 | 6.502e-07 0.04
4 8.551e-10 0.03 | 1.624e-09 0.04 | 3.626e-08 0.04 | 2.810e-08 0.04
5 2.759e-11 0.03 | 6.720e-11 0.04 | 1.304e-09 0.04 | 1.152e-09 0.04
6 8.33%9¢-13 0.03 | 2.609e-12 0.04 | 4.319e-11 0.03 | 4.441e-11 0.04
7 2.371e-14 0.03 | 9.516e-14 0.04 | 1.330e-12 0.03 | 1.633e-12 0.04
8 6.407e-16  0.03 | 3.266e-15 0.03 | 4.090e-14 0.03 | 5.941e-14 0.04
9 4.256e-17 0.07 | 1.253e-16 0.04 | 1.764e-15 0.04 | 2.859e-15 0.05
10 4.026e-17 0.95 | 7.155e-17 0.57 | 8.928e-16 0.51 | 1.663e-15 0.58
11 4.043e-17 1.00 | 7.234e-17 1.01 | 9.090e-16 1.02 | 1.804e-15 1.08
Cq 1.62 1.58 1.61 1.60
o)) 1.87 2.04 1.88 2.12
M, =05 M., =0.64
grid size — 25 x 9 49 x 17 25 x 9 49 x 17
Veeyde | R, Cp | IR™, Gy | [IB™, Cp | Ry,  Cy
0 1.097e-03 - | 3.203e-03 - | 1.129e-03  — | 3.748-03 -
1 9.051e-05 0.08 | 1.188¢-03 0.36 | 1.805e-04 0.16 | 8.262e-04 0.22
2 7.145e-06  0.08 | 1.732e-04 0.15 | 1.901e-05 0.11 | 2.990e-04 0.36
3 4.521e-07 0.06 | 2.294e-05 0.13 | 5.471e-07 0.03 | 5.535e-05 0.19
4 2.723e-08  0.06 | 2.025¢-06 0.09 | 1.451e-08 0.03 | 6.562e-06 0.12
5 1.601e-09  0.06 | 1.634e-07 0.08 | 3.478e-10 0.02 | 6.091e-07  0.09
6 9.302e-11  0.06 | 1.252e-08 0.08 | 7.553e-12 0.02 | 4.411e-08 0.07
7 5.369¢-12  0.06 | 9.381e-10 0.07 | 1.517e-13  0.02 | 2.941e-09  0.07
8 3.088¢e-13  0.06 | 6.945e-11 0.07 | 3.033e-15 0.02 | 1.882e-10 0.06
9 1.670e-14  0.05 | 5.109e-12  0.07 | 2.082e-15 0.69 | 1.185e-11  0.06
10 1.907e-15  0.11 | 3.743e-13  0.07 | 2.139e-15 1.03 | 7.417e-13  0.06
11 1.618¢-15  0.85 | 2.634e-14 0.07 - ~ | 4.614e-14  0.06
12 1.947e-15 1.20 | 4.330e-15 0.16 — — 4.684e-15 0.10
Cq 1.70 1.75 2.03 2.02
y, 2.49 3.03 2.81 3.11
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12.4 Flow around a circular cylinder
12.4.1 Computational domain and boundary conditions

We now consider a 2D cylinder placed in a uniform subsonic flow. The grid is
sketched in Figure 32 and its generation is straightforward in polar coordinates,
formed by circles and radial lines. The outer boundary is located far enough from
the solid body where free undisturbed flow conditions are applied. In regions of
strong flow variations, near the cylinder wall, the grid is refined. So the radial
spacing of the circles increases from the solid body surface to the far field with
a factor R, as defined by Ar; = r;iy —r; = r; (R —1). The factor R is defined
by the position of the outer boundary and the number of mesh points /N; in the
radial direction: ry, = R™~1. For example, selecting N; = 30 points in the radial
direction and an outer boundary at 5, we obtain R = 5/29 = 1.057.



12 APPLICATIONS 102

}; coordinate cut

inlet outlet

S
%es
S

KIS

S
OO0
S

.
ehetesse
87595 0% 0%

(b)

Figure 32: An O-type mesh used for the circular cylinder flow test case. a)
Extended mesh, b) Close-up of the mesh around the cylinder.

Along the &-line on the surface ¢ = 1, the solid wall boundary condition was
applied. The inlet and outlet flow boundary were located in ¢ = %,,,,. The cut
lies along the n-line (7 = 1, juqez) where a periodic boundary condition is applied.
The boundary conditions used are as follows:

e The farfield boundary (£ = max) is five times radius lengths away from the
cylinder, where the inflow and outflow boundary conditions were applied. A
uniform flow (Neumann condition) was imposed in the z-direction at the in-
let and outlet regions of the domain. In practice, this condition was attained
by projecting the velocity vector normal to the cell’s face.
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e A solid wall boundary condition on the cylinder’s surface. The normal ve-
locity is zero since no mass penetrates the solid body. This condition is
implemented according to Section 12.5.

e At j =1 and j = J,,4z, along the cut, a coordinate cut boundary condition
was applied. This is a line composed of grid points with different compu-
tational indices but the same physical location. The grid is folded such
that it touches itself. The cut boundary condition is implemented by using
ghost cells. The situation is sketched in Figure 33. The ghost cells coincide
location-wise with the grid cells on the opposite side of the cut. Hence the
values of the potential in the ghost cells are obtained directly from the op-
posite cells. All the fluxes across the faces of the boundary cell are evaluated
exactly like in the interior field. The cut boundary is implemented by gener-
ating a complete control volume at the cut . Using the ghost cells (Numbers
0 and -1 in Figure 33), the fluxes were calculated in the same way as inside
the domain. The value of the first ghost cell (number 0) is obtained directly
from cell ja.. The value of the second ghost cell (number -1) is obtained
from cell j,,.. — 1. We can write these conditions as follows:

¢i70 = ¢i7jmam7
¢i,—1 = ¢i,jmax—17

179
Pijmazt1 = Pi;s (179)

¢i7jmam+2 = ¢172

Figure 33: Coordinate cut boundary condition. Ghost cells are numbered as 0, -1,
(Jomaz + 1), and (Jpae + 2).

The results are presented for the fine-grid 28 x 120. The first number indicates
the number of cells in the radial direction while the second number corresponds
to the number of cells that are wrapped around the cylinder. The problem is
solved for inlet Mach number values ranging from 0.01 to 0.41, and the results are
presented in Figure 34. There are two stagnation points (u = v = 0) at z = +a,
y = 0, at front and back ends of the cylinder. Within the low Mach number
range, the solution does not greatly depend on the Mach number and practically
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it is similar to the incompressible flow. When the Mach number is increased,
the effect of the compressibility becomes more significant and for an inlet Mach
number of 0.41, a sonic speed M, = 1 was reached on the top and bottom of
the cylinder surface (symmetric), followed by a supersonic region terminated by a
shock wave. This can be seen for the case of an inlet velocity of M., = 0.41.
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Figure 34: Distribution of velocity as computed on the (28 x 120) mesh, for an
M. = 001, b) M. = 0.1, ¢) My = 0.2, d)
M, = 0.3, e) M, = 0.41. Observe the shock appearing at the top and bottom
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The pressure distribution in a given flow pattern is of primary practical impor-
tance. Knowledge of the pressure distribution is necessary for the calculation of
the forces and moments produced by the fluid on the solid boundaries. The pres-
sure distribution at the cylinder surface can be found from Bernoulli’s equation,
P+ %,0\/2 = const. The pressure coefficient C), is defined as:

P — P
Cr PUL
where p., represents the pressure at the farfield, and p is the pressure on the
surface of the circular cylinder. A wide description of the pressure coefficient is
described in the next section, which deals with the airfoil case study. The pressure
coefficient distribution on the surface of the cylinder is plotted in Figure 35. Since
the pressure distribution is symmetric about z = 0 and y = 0, there is no net
force on the cylinder. Note that the pressure on most of the surface is less than
Poo and the minimum value of C), on the surface is -3 at 8 = 7/2.

(180)

Cp

(a)

Figure 35: Surface pressure distribution along a circular cylinder with incident
Mach number ranging from M., = 0.01 to M., = 0.41, using the (28 x 120) mesh.
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12.4.2 AMG performance

The first coarse-level for each case described above is sketched in Figure 36. It is
important to mention that for all the subsonic cases described above, M., < 0.5,
a fixed threshold of € = 0.25 was applied, since much better results were observed,
especially in terms of grid and operator complexity. However, the situation is
vastly different in the transonic case, M., = 0.41, where a dynamic threshold
was applied in order to achieve convergence. Although this fast convergence is
achieved at the expense of increased complexities (as presented in Table 14), the
alternative of a fixed threshold € = 0.25 in this specific case results in divergence.
This specific point emphasizes the robustness of the improved coarsening process
in the AMG algorithm. When an incompressible flow is addressed, the operator
is nearly isotropic — a nine-point stencil. Therefore, as expected, the points that
construct the coarse-level are distributed uniformly, as can be seen in Figure 36(a).
This type of coarsening is typical for nine-point stencils with all connections being
strong, yielding a grid complexity of ~ 1.6. If a dynamic threshold is applied for
this problem it would result in less “aggressive” coarsening, and the complexities
would deteriorate slightly. However, we use the dynamic threshold where we really
need it, according to the requirements mentioned before.

As the velocity is increased the equation becomes anisotropic, and this uniform
coarsening structure holds until the flow reaches supersonic speeds. This extreme
anisotropy is characterized by a strong connection in the azimuth direction (u -
axis). There is a slight deviation from the uniform coarsening in the upper and
lower parts of the cylinder, where the anisotropy of the problem is most significant.
However, the coarsening pattern is essentially the same.
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(a) (b)
(c) (d)

()

Figure 36: The finest and first coarse-level for mesh size (28 x 120). The red color
corresponds to the C-point and the blue color corresponds to the F-point. The five
free-stream velocities are as follows: a) M, = 0.01, b) M., = 0.1, ¢) M = 0.2,
d) My, = 0.3, e) M, = 0.41.
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Table 13 presents the discrete Lo-norm of the residual for each case of Mach
number described above. The residual reduction is also sketched in Figure 37.
The residual norm decreased rapidly for 10 to 12 V-cycles with the value in the
corresponding ||R™||, column, while in the last few cycles a constant value was
reached (asymptotic convergence rate). In the first three cases of M, = 0.01,
M., = 0.1, and M, = 0.2, the setup phase was performed, followed by 12 V-
cycles. The convergence factors are bounded independent on the problem size.
The convergence factor remains bounded independent of the problem size. In the
case of M., = 0.3, where the compressibility became significant, the results were
obtained by repeating the setup phase 6 times while applying two V-cycles between
each update. This results in a total of 12 V-cycles until the residual decreases to
the desired level of 107!, The transonic case provide to be a more difficult
test for the algorithm. The convergence rate in the first three cycles is slightly
damaged mainly due to the dominant nonlinearity. Although the first three cycles
are relatively slow to converge, in the remaining V-cycles the convergence rate is
less than 0.1 without any local smoothing sweeps around the shock waves.

The convergence histories for the five cases are depicted in Figure 37. The
effect of the Mach number on the AMG performance is clearly shown. The case
of M., = 0.41 results in a supersonic flow regime that is terminated by a shock
wave. The convergence is somewhat slower here. It requires nearly 12 V-cycles to
decrease the 2-norm of the residual to a level of 1071, which is twice the number
of cycles required in the case of M, = 0.01.

The grid complexity and operator complexity are presented in Figure 14. It is
clear that when the flow is subsonic the complexities are bounded. In the case of
M, = 0.41 the grid and operator complexity are too high, relative to our above
requirements, while the reasons for the increased complexities are similar to those
stated in the previous problem (channel with a bump). A possible way to improve
the complexities is by aggressive coarsening. This approach was implemented
but, as expected, convergence became considerably slower (above 0.3) and still
approached an upper limit for the large mesh size. Aggressive coarsening not only
causes the smoothing to be less effective but interpolation was also significantly
less accurate.
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Table 13: The results of AMG V-cycles applied to the flow around a circular
cylinder. The Ly;—norm of the residual after each V-cycle is presented for mesh
size 28 x 120.

Moo = 0.01 Mo = 0.1 Moo = 0.2 Moo = 0.3 Moo = 0.41
V-cycle | [[R™, Cy IR, Cy |R™ |5 Cy |R™ |5 Cy |R™ |5 Cy
0 7.489¢-03 - | 5.747e02 - | 0.115e-00  — | 0.175e-00 - | 7.542e-02 -
1 1.060e-03  0.14 | 1.235¢-03 0.02 | 5.416e-03 0.05 | 1.390e-02 0.08 | 1.403e-02 0.18
2 4.306e-05 0.04 | 4.431e-05 0.04 | 7.122e-04 0.13 | 3.760e-03 0.27 | 6.565e-03  0.47
3 2.211e-06  0.05 | 1.886e-06 0.04 | 1.024e-04 0.14 | 3.615e-04 0.10 | 1.171e-03  0.18
4 1.201e-07  0.05 | 8.440e-08 0.04 | 4.352e-06 0.04 | 2.957e-05 0.08 | 6.378e-04 0.54
5 6.8500-09 0.06 | 3.884e-09 0.05 | 1.855¢-07 0.04 | 1.914e-06 0.06 | 5.716e-05 0.09
6 4.048¢-10  0.06 | 1.816e-10 0.05 | 7.848e-09 0.04 | 1.151e-07 0.06 | 5.244e-06  0.09
7 2.457e-11  0.06 | 8.533¢-12  0.05 | 3.283e-10 0.04 | 6.721e-09 0.06 | 3.419e-07  0.07
8 1.508¢-12  0.06 | 3.998e-13 0.05 | 1.364e-11  0.04 | 3.874e-10 0.06 | 2.524e-08 0.07
9 9.300e-14  0.06 | 1.874e-14 0.05 | 5.636e-13 0.04 | 2.222e-11  0.06 | 1.760e-09  0.07
10 5.773¢-15  0.06 | 1.893¢-15 0.10 | 2.308e-14 0.04 | 1.272e-12  0.06 | 1.203e-10  0.07
11 4.067¢-16  0.07 | 1.736e-15 0.92 | 3.620e-15 0.16 | 7.290e-14 0.06 | 8.136e-12  0.07
12 1.798¢-16  0.44 | 1.700e-15 0.98 | 3.367e-15 0.93 | 6.622¢-15 0.09 | 5.484e-13  0.07
1 \ \ \
o M =001
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Figure 37: Convergence histories.
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Table 14: Grid complexity Cq and operator complexity C', for four cases of Mach
number.
complexities | Moo = 0.01 | My = 0.1 | My = 0.2 | Mo = 0.3 | Moo = 041
Cq 1.31 1.33 1.33 1.33 1.98
CrL 1.82 1.867 2.26 2.18 3.09

A useful tool to examine how AMG performs on the problem is to analyze
the coarsening statistics. Table 15 shows the average number of rows and the
number of nonzeros for cases of M, = 0.01 and M., = 0.41. In M., = 0.41 the
problem was solved with 6 levels. The initial coarse-level, A™*! has 1700 points,
exactly half the number of points on the fine-level. This can be seen in the color
scheme described in Figure 36(a). The next succeeding coarse-levels contain ap-
proximately half the number of points as the preceding finer level. Subsequent
coarsening then becomes slightly faster because the coarse-level, which was pro-
duced by direct approximation (described in Section 8), becomes larger on coarser
levels. The reason for this relatively slow coarsening is due to the dynamic thresh-
old as a measure of strength between the matrix variables. The alternative of using
a fixed threshold, particularly in this transonic case, would result in a significantly
slower convergence. In the last column it can be seen that the average number
of entries per row increases as the grids become coarser. However, the operator
and grid complexities are not damaged. Table 15 presents also the coarse-levels
for M = 0.01. In this case a fixed threshold is applied. It is clearly seen that the
AMG coarsening is much faster, with only 4 coarse-levels. The initial coarse-level,
A™H has 780 points, less than one-fourth the number of points on the fine-level.
This coarsening pattern is essentially the same for the next coarse-levels. This
example exactly introduces the reason why a fixed threshold is preferred in the
subsonic case, where the equation is elliptic, instead of using a dynamic threshold.
More in this context, the reason why a relatively large stencil of 16 points is
obtained on the fine-level is due to the weights of the operator L, although they
are very small and “far away” from the diagonal, their value is nonzero.

This problem was solved for two grids consisting of 14 x 60 and 7 x 30 points;
the results are presented in Table 16. The convergence factors are bounded inde-
pendent of the problem size. The complexities of the AMG cycles remain nicely
bounded independent of the problem size. The grid complexity and operator com-
plexity for grid 7 x 30 are C = 1.72 and Cf, = 2.13, respectively, and for the case
of grid 14 x 60 the results are Co = 1.31 and C}, = 1.72.
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Table 15: Results of the AMG V-cycles applied to the flow around a circular

cylinder.

Number of rows Number of nonzeros Average entries per row

Level | Moo =0.01 My =041 | Moo =0.01 My =041 | M =0.01 My =0.41
A™ 3360 3360 55924 58260 16.6 17.3
Amtl 780 1700 35460 57868 45.4 34
Amt2 180 884 8940 31141 49.6 35.2
AmES 45 456 1605 17891 35.6 39.2
Amta - 238 - 9749 - 40.9
A5 - 126 - 5203 - 41.2

Table 16: The results of the AMG V-cycles applied to the flow around a circular
cylinder. The second norm of the residual after each V-cycle ||R™||,, convergence

factor Cy, grid complexity Cq, and operator complexity C;, are presented for grid
sizes 7 x 30 and 14 x 60.

My =0.2 My, = 0.41
grid size — 7 x 30 14 x 60 7 x 30 14 x 60
V-cycle [B™ly Gy | IR™,  Cp | IR™ly, G | IR™,  Cy
0 0.261e-00 - 0.182e-00 - 3.409e-02 - 2.323e-02 -
1 1.558e-02 0.06 | 1.093e-02 0.06 | 2.303e-03 0.06 | 2.395e-03 0.1
2 1.029e-03 0.07 | 1.107e-03  0.10 | 2.179e-04 0.09 | 5.023e-04 0.21
3 7.318¢-05 0.07 | 1.230e-04 0.10 | 9.027e-06 0.04 | 3.197e-05 0.06
4 2.343e-06 0.03 | 4.268¢-06 0.03 | 2.480e-07 0.03 | 1.644e-06 0.05
5 7.183e-08 0.03 | 1.489e-07 0.03 | 7.155e-09 0.03 | 8.751e-08 0.05
6 2.183e-09 0.03 | 5.264e-09 0.04 | 2.145e-10 0.03 | 5.100e-09 0.06
7 6.725e-11  0.03 | 1.884e-10 0.04 | 6.623e-12 0.03 | 3.431e-10 0.07
8 2.158¢e-12  0.03 | 7.065e-12 0.04 | 2.082e-13 0.03 | 2.452e-11 0.07
9 7.410e-14 0.03 | 2.807e-13 0.04 | 7.384e-15 0.04 | 1.770e-12 0.07
10 3.964e-15 0.05 | 1.181e-14 0.04 | 2.571e-15 0.35 | 1.274e-13  0.07
11 2.165e-15 0.55 | 1.853e-15 0.16 | 2.397e-15 0.93 | 9.721e-15 0.08
12 2.754e-15 1.27 | 2.034e-15 1.10 | 2.592e-15 1.08 | 3.795e-15 0.39
Cq 1.72 1.31 1.88 2.02
Cr 2.13 1.72 2.45 2.92

12.5 Flow around a circular cylinder with circulation

A rotating circular cylinder placed in a free-stream generates a fluid motion that
has been the subject of research from the point of view of numerical simulations,
experiments, and theoretical analysis. This flow field is equivalent to the combi-
nation of flow past a cylinder and a vortex. This type of fluid motion is of major
importance in aerodynamics, since fundamental aspects of the flow past an airfoil
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(which is the next numerical experiment) can be enlightened through conformal
transformation from the flow past a rotating cylinder, under the appropriate sim-
plifications. Two aspects have drawn attention from researchers with respect to
flow past a rotating cylinder. The first aspect is that the rotation action is able
to suppress the separation of the boundary layer around the cylinder. The second
aspect is the lift generated on the cylinder by the surrounding fluid, also known
as the Magnus effect [16, 18].

In this problem the same O-type mesh is used, and the only difference is in the
boundary conditions. Exactly as in the case with the fixed cylinder, there is an
outer boundary where an inflow and outflow are applied. The circulation around
the cylinder is applied by using the cut, emanating from the body to the farfield,
where a jump in the potential is allowed. Thus, the cut can be interpreted as a
periodic boundary with conditions, for any point on the cut,

®i,0 = Pijmaz + 1,
®i-1 = Pijmaz—1 + 1,
Gi jmaz+1 = Pix — T,
Gijmaz+2 = Pi2 — L.
The results are presented for the fine-level that includes 3360 grid points. The
algorithm was tested by several flow conditions as follows:

(181)

1. M =0,T=0.01
2. My, =0.1,T =0.01
3. Mo =0.1,T =0.05
4. My =0.1,T=0.1
5. My =04, T =0.1

The first step was to validate the problem setup, the choice of the boundary con-
ditions, and the mesh attributes. This accomplished by applying a circulation of
[' = 0.01 with a nearly zero free-stream (M., =~ 0, case 1). The sign of the circu-
lation imposes a flow in the clockwise direction. The Mach isolines for this case
are plotted in Figure 38. Since a zero free-stream is applied, the Mach contours
are simply symmetric contours around the cylinder. The problem was solved for
inlet Mach number values ranging from 0.01 to 0.4, and the results are presented
in Figure 39. Only the fourth case results in a supersonic flow regime. Notice that
the stagnation point lies above the cylinder, in the region where the direction of
the free-stream opposes the circulation. As the flow’s speed at the surface of the
cylinder increases, the region of close isolines around the cylinder extends far from
the wall and, as a consequence, the stagnation point moves upward.
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Mach
0.00154

0.00137
0.00120
0.00103
0.000855
0.000683

IU.DUOSIU

0.000338

Figure 38: Flow over a cylinder having a circulation of I' = 0.01. Contours are
spaced for equal increments of 1075,
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Mach
0.212

0.183

0.153

0.124

0.0941

0.0645

0.0350

0.00543

Mach
0.227
I0.195
0.164
0.132
0.100
0.0688
0.0371

0.00542

Figure 39: Distribution of velocity as computed on the (28 x 120) mesh, for the
following flow characteristics: a) M, = 0.1, I' = 0.01, b)M, = 0.1, ' = 0.05,
)My, = 0.1, T =0.1,d) M, = 0.4, ' = 0.1. Observe the shock appearing at
Mo, = 041.

It was verified in these simulations that the velocity becomes close to the free-
stream velocity along the outer boundary of the domain. The pressure coefficient
C, distribution on the surface of the cylinder is plotted in Figure 40. It is clear that
when the flow is subsonic in the entire domain there is no significant difference
in the C, profiles. From Figure 40 we can see the pressure difference between
the lower and the upper part of the cylinder. This is the lift generated on the
cylinder by the surrounding fluid, also known as Magnus effect [18]. It is clear
that the lift is increased with the free-stream. As the flow becomes supersonic on
the upper part of the cylinder’s surface, a shock wave appears. It is clearly seen
in the sharp decrease in the pressure coefficient. The tendencies described by the
classical irrotational theory (see, e.g., Batchelor [18]) for the pressure coefficient
distribution are followed by the numerical solution obtained in this investigation.

Mach
0.219

0.166
0.112
0.0588

0.00542

Mach
123
I 1.06
0.883
0.711
0.538
0.365
0.193

0.0200
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Figure 40: The distribution of pressure coefficient C, by using (28 x 120)mesh.
The cases are as follows: a) M, = 0.1, ' = 0.01, b)M,, = 0.1, T' = 0.05,
)My =0.1,T=0.1,d) M, =04, T =0.1.

12.5.1 AMG performance

The first coarse-level for each case described above is sketched in Figure 41. When
the flow is subsonic, M., < 0.5, it is characterized by a nearly isotropic operator
and the C-points the construct the coarse-level are distributed uniformly, as can
be seen in Figure 41a. As the free-stream is increased to the supersonic case, as
mentioned above, there is a slight disturbance of the uniform coarsening pattern
where the anisotropy of the operator is largest (see Figure 41(e)).
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(a) (b)
(c) (d)

()

Figure 41: The finest and first coarse-level. The red color corresponds to the
C-points while the blue color corresponds to the F-points. The mesh size is
(28 x 120). The five flow conditions are as follows: a) case 1, b) case 2, ¢) case 3,
d) case 4, e) case b.
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The convergence of the method is summarized in Table 17 for the five cases
under consideration. Using the standard Lo-norm we see that after 12 cycles,
the residual reached 107'* and the AMG converged rapidly for the cylinder with
circulation as for the previous model problem, where we saw a convergence rate
lower than an order of magnitude for all the cases that were previously introduced.
The fastest cycle, M., = 0.1 and I" = 0.05, needs 11 steps to reduce the residual
by ten orders of magnitude. In cases 1 — 4 no updates of the matrix A*and the
restriction and interpolation operators were needed. In case 5, the nonlinearity is
dominant, which required to execution of the setup phase 6 times with 2 V-cycles
in between, resulting in 12 V-cycles overall to reach convergence.

The complexities for these five cases are presented in Table 18. The operator
complexity is below 2 for cases 1 — 4 where the flow is subsonic in the entire field.
Case 5 is characterized by a transonic flow on the upper part of the cylinder,
and the grid and operator complexities are increased to 1.97 and 3.0, respectively.
Two possible reasons for the increased operator complexity are the average stencil
size and the coarsening process. The average stencil size is increased due to the
existence of the operator L when the velocity approaches supersonic values. The
second reason for the increased operator complexity is the relatively large number
of points on the fine-levels, which is a result of the second-pass process, when F-
points are replaced by C-points in order to satisfy the interpolation requirements.

Table 17: The results of AMG V-cycles applied to the flow around a circular
cylinder with circulation. The second norm of the residual after each V-cycle is
presented for mesh size 28 x 120.

case 1 case 2 case 3 case 4 case 5

V-cycle | [[R™,  Cj [B™ly — Cp | IR™;  Cp | [[R™lly G | IR™;  Cf
0 8.293e-02 - 0.112e-00 - 0.396e-00 - 0.702e-00 - 7.431e-02 -
1 2.141e-03  0.02 | 9.882e-03 0.04 | 1.594e-02 0.04 | 3.462e-02 0.05 | 1.208e-02 0.16
2 5.941e-05  0.03 | 3.965e-04 0.04 | 6.093e-04 0.04 | 1.344e-03 0.04 | 1.774e-03 0.15
3 1.782e-06  0.03 | 2.233e-05 0.06 | 2.981e-05 0.05 | 5.913e-05 0.04 | 2.106e-04 0.12
4 5.783e-08  0.03 | 1.429e-06 0.06 | 1.706e-06 0.06 | 2.911e-06 0.05 | 1.988e-05 0.09
5 2.036e-09  0.04 | 9.648e-08 0.07 | 1.078e-07 0.06 | 1.583e-07 0.05 | 1.805e-06 0.09
6 7.814e-11  0.04 | 6.594e-09 0.07 | 7.130e-09  0.07 | 9.387e-09 0.06 | 1.606e-07 0.09
7 3.273e-12  0.04 | 4.499e-10 0.07 | 4.782e-10 0.07 | 5.885e-10 0.06 | 1.414e-08 0.09
8 1.504e-13  0.05 | 3.047e-11  0.07 | 3.207e-11  0.07 | 3.795e-11  0.06 | 1.235e-09 0.09
9 7.187e-15 0.05 | 2.048e-12  0.07 | 2.144e-12  0.07 | 2.48le-12 0.07 | 1.073e-10 0.09
10 3.482e-16  0.05 | 1.369e-13  0.07 | 1.428e-13  0.07 | 1.635e-13  0.07 | 9.288e-12  0.09
11 2.997e-17  0.09 | 9.293e-15  0.07 | 9.584e-15 0.07 | 1.094e-14 0.07 | 8.013e-13  0.09
12 2.309e-17  0.77 | 2.082e-15 0.22 | 1.995e-15 0.21 | 2.660e-15 0.24 | 6.890e-14  0.09
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Table 18: Grid complexity Cq and operator complexity C}, for five cases of Mach
number and circulation magnitude.

Complexities ‘ case 1 ‘ case 2 ‘ case 3 ‘ case 4 ‘ case b

Ca 1.31 1.31 1.31 1.31 1.97
Cr 1.82 1.82 1.82 1.82 3.016

12.6 Symmetric airfoil - NACA-0012

In the field of fluid dynamics, an area of significant practical importance is the
study of airfoils. An airfoil refers to the cross-sectional shape of an object designed
to generates lift when moving through a fluid. The airfoil generate lift by diverting
the motion of fluid flowing over its surface in a downward direction, which results
in an upward reaction force.

12.6.1 Airfoil characterization

Before dealing with the fluid flow around the airfoil let us define the airfoil geomet-
rically. The main parameters of an airfoil are labeled in the diagram presented
in Figure 42. Specifically we are interested in the angle of attack «, the chord
length, and the mean camber line. The chord is a straight line and typically used
to measure the airfoil length. The mean camber line is a curve that connects
halfway between the upper and lower surfaces, and is used to measure the airfoil
curvature. Airfoil shapes are commonly characterized with a numbering system
originally defined by the National Advisory Committee for Aeronautics (NACA).
This characterizing system defines airfoil shapes with a series of digits correspond-
ing to nondimensional airfoil properties. In this work we modeled a 4 digit airfoil
to simplify the geometry of the airfoil we wish to analyze. The first number de-
scribes the maximum camber as a percentage of the chord length. The second
digit indicates the position of the maximum camber in tenths of the chord. The
last two digits provide the maximum thickness of the airfoil as a percent of the
chord length.

Angle of ~ _
Attack ~ /T~ o

Relative Wind

Figure 42: Diagram of an airfoil with key parameters labeled.
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12.6.2 Problem definition

A grid convergence study was done in order to determine the appropriate grid
dimensions in terms of the distance between the airfoil and farfield, grid resolution,
etc. Four different grids were tested. They are: (128 x 48), (64 x 24), (32 x 12).
The first number corresponds to the number of cells that wrap around the airfoil
surface, and the second dimension is the number of cells normal to airfoil’s surface.
In this case an O-topology mesh is generated by applying the algorithm of Donald
Hawken [95], as is sketched in Figure 44(a) . A close-up of the grid near the
airfoil is shown in Figure 44(b). The diagram of the airfoil is sketched in Figure
43. We can see from the rendering of the O-topology that the aerodynamic body
is enclosed by one family of grid lines (7 = const.). The second family of grid
lines (£ = const.) is spanned in the radial direction between the body and the
farfield. The complete boundary line n = 1 represents the contour of the body,
from a to b. The coordinate cut is defined by the boundaries £ = 1 (nodes a-c)
and ¢ = maz (nodes b-d) in the computational space. The coordinates of the
NACA-0012 profile are given in Table 19.

Table 19: Coordinates of the NACA-0012 airfoil.
z, [m] y, [m] z,m] |y [m]
0.5 0 -0.49685 | 0.00971
0.49814 | -0.00032 | -0.48741 | 0.01891
0.49248 | -0.00108 | -0.47176 | 0.0275
0.48192 | -0.00253 | -0.44959 | 0.03549
0.46487 | -0.00488 | -0.42028 | 0.04278
0.43958 | -0.00826 | -0.38319 | 0.04914
0.40455 | -0.01278 | -0.33776 | 0.05427
0.35889 -0.0184 | -0.28373 | 0.05779
0.3026 -0.02492 | -0.22135 | 0.05941
0.2367 -0.03201 | -0.15147 | 0.05893
0.16313 | -0.03923 | -0.07563 | 0.05636
0.08454 | -0.04605 | 0.00395 | 0.05194
0.00395 | -0.05194 | 0.08454 | 0.04605
-0.07563 | -0.05636 | 0.16313 | 0.03923
-0.15147 | -0.05893 0.2367 0.03201
-0.22135 | -0.05941 0.3026 0.02492
-0.28373 | -0.05779 | 0.35889 0.0184
-0.33776 | -0.05427 | 0.40455 | 0.01278
-0.38319 | -0.04914 | 0.43958 | 0.00826
-0.42028 | -0.04278 | 0.46487 | 0.00488
-0.44959 | -0.03549 | 0.48192 | 0.00253
-0.47176 | -0.0275 0.49248 | 0.00108
-0.48741 | -0.01891 | 0.49814 | 0.00032
-0.49685 | -0.00971 0.5 0
-0.5 0 - -
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Figure 43: Diagram of the airfoil in O-type topology.

i
W
\“\“r‘ll!?,',,"%'fl,/

NS
IR
AN

i
/|

W
7

0
7
%

Dt
N

W

N
B

3
5%

QR
N

R

S
&

121

Figure 44: Structured curvilinear body-fitted grid of the O-type. a) Mesh used for
the NACA-0012 airfoil flow case study. b) A close-up of the grid near the airfoil.

Definitions of the domain boundaries and associated boundary conditions are
as follows. The farfield boundary (n = max) is ten chord lengths away from the
airfoil, where the inflow and outflow boundary conditions were imposed. On the
surface of the airfoil the tangency condition was enforced. The cut boundary is
implemented by generating a complete control volume at the cut. The details
of how to apply the periodic boundary condition along the cut are exactly as
described in the problem of flow around a circular cylinder (see Section 12). In
this context, it is important to mention that all the ghost cells along the cut are
constructed so that they perfectly fit the geometry of the cells that they intend to

replace.
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Since the potential assumption implies the flow is irrotational, the local vor-
ticity production is zero. When solving a flow problem involving an airoil that
produces lift, there is a finite circulation I around the airfoil. In order to obtain
lift, this circulation must be imposed. Its magnitude is obtained by applying the
Kutta-Joukowski condition, which states that the circulation value is such that the
stagnation point is located at the trailing edge. The details of how to implement
the Kutta-Joukowski condition are described below.

12.6.3 The Kutta-Joukowski condition

Consider an airfoil at an angle of attack, producing a nonzero lift. The following
line integral over any contour enclosing such an airfoil will produce a nonzero
result, known as the circulation around an airfoil T',

——
% V.dS =T. around air foil. (182)
Js

In the above integral, dS is an infinitesimal line segment vector, tangential to
the contour. In the case of potential flow, then, using the Stokes’s theorem, the
above line integral may be shown to be equivalent to the following area integral:

fﬁﬁ:/A(VXV)-W-dQ:o. (183)

The area integral is zero because the curl of the velocity vector is zero in a potential
flow. Now let us link the above integral to the velocity potential. The integrand
may be written as follows:

¢dx+ 6(;5

o 8y —d¢.  (184)

— — — ~ ~ A ~
VdS = VordS = (6ui +6,)) (doi +dyj) =
Thus, the circulation I' in Eq. (184) is related to the jump in the velocity
potential:

——
f V-dS = d¢ around air foil. (185)
Js

The above result means that somewhere in the z — y plane, the potential
function must experience an abrupt jump in its value by a quantity equal to the
circulation I'. In our analysis, we locate the disturbance potential jump along a
cut that starts at the airfoil trailing edge, and ends at the downstream infinity.
Figure 45 gives an illustration of the trailing edge in 2D airfoil problem. Consider a
typical cell (z,1) above the cut, downstream of airfoil trailing edge. The circulation
is first computed as,

I' = érEt0p @18 pottom. (186)

where ¢rgi0p a0d @7 porom are the potential values at the trailing edges for
the top and bottom points, respectively. In Figure 45, the values of the potential
OTE top ANA OTE pottom are known, where the subscripts T'E, top and TE, bottom
correspond to the trailing edge upper and lower ¢ coordinates, respectively. Since
these values are defined at the cell’s center, and are not known at the trailing
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edge, an extrapolation is needed. The simplest way to accomplish it is by using
the Taylor series expansion. The value of ¢ at the trailing edge is computed from,

8¢face,top
s (187)

aQSface bottom .
¢TE,bottam = gbface,bottom + ASG—:S

The partial derivative is the tangential velocity at the trailing edge. The length
AS' is the distance from the face to the trailing edge. Practically, it is equal to
half of the length of the face. Once the circulation value is calculated, the next
step is to apply the potential jump. All the cells above and below the cut, which
is drawn from the airfoil surface to the farfield boundary, will have the value of
their potential modified to satisfy the proper jump condition. It is done as follows:

¢TE,tap = ¢face,top +AS

®i0 = Gijmaz + 1,
Gi—1 = Dijmaz—1 + 1,

(188)

qbi,jmax—i-l = ¢i,1 - F;

¢i,jma:c+2 - ¢i,2 —TI.
ISITE / .2
. o1

Trailing edge
0=3 A
o I=1
ITE L =4
1

1 \ 1

Figure 45: The Kutta-Joukowski condition in the finite volume method.

In this way, the flow over the airfoil must satisfy the Kutta condition, which
says that the fluid flowing over the upper and lower surfaces of the airfoil meets
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at the trailing edge of the airfoil. This condition explains how an inviscid fluid
can generate lift. In reality, it is friction between the boundary of an airfoil and
the fluid that allows for the flow to meet smoothly at the trailing edge. Thus, the
Kutta condition accounts for friction at the boundary of an airfoil that is necessary
for lift to be generated. The Kutta condition forces two additional constraints in
the flow around an airfoil. First, the condition imposes that the leading and
trailing edges of the airfoil are stagnation points [12]. Second, the angle of attack
of the airfoil must remain well below a critical angle known as the stall angle.
As the angle of attack increases beyond the stall angle, the Kutta condition is no
longer physically applicable because the flow is no longer smooth and continuous.

It is important to mention that the Kutta-Joukowski theorem states a relation-
ship between the circulation around an airfoil and the lifting force acting upon it.
The relation is L = p-l_/ -T" where L is the force (lift) experienced in the direction
normal to the velocity V. This fact states that if there is no circulation around
the airfoil we cannot have lift. We will not discuss this further and it is not part
of this research work.

Remark: The flow around an airfoil was solved also in a C-grid approach
but several obstacles were encountered, so that in the end the O-grid type was
preferred. In order to describe how to implement the Kutta condition in the C-
grid approach, let us look at some of the issues involved in more detail. Consider
the case of the 2D airfoil with a sharp trailing edge surrounded by finite volumes,
as sketched in Figure 46. Consider the five cells a, b, ¢, d, and e. For computing
the divergence in cell a, for example, it is necessary to compute the fluxes on
the edges of the cell that are not lying on the body. On this face, a solid wall
boundary condition is applied, and this is done by 9¢/an = 0 . In practice, this
condition enforces a ghost point value, which leads to a zero contravariant velocity
Ven. This cell face does not pose any special problem in implementing the solid
wall boundary condition. Now consider the cell with centroid b. While imposing
the solid wall boundary condition on the edge 1 — 2, a problem arises because
we do not have enough ghost points to impose the zero contravariant velocity.
Since the velocity formula includes six points, from both sides of the edge, in this
case , one of them is not a ghost point since it is located on the cut, where a
periodic condition is applied. So in this case the solid wall boundary condition is
not satisfied. Although this approach is slightly distorted, it worked fine in terms
of convergence properties. Nevertheless, as mentioned before, an O-grid approach
was preferred for this problem.
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Trailing edge

|1

Figure 46: An implementation of the Kutta-Joukowski condition.

Three test cases are presented for the flow past an airfoil. These test cases
can be categorized into two basic groups. First is the nonlifting case, NACA-0012
with a zero angle of attack a = 0°, where a symmetric target pressure distribution
is specified. The second group of test cases addresses the lifting airfoils, which
include NACA-0012 with a = 1.25° and NACA-2822 with o = 0°. The solution
process of these two groups is slightly different.

12.6.4 Boundary conditions

For the airfoil surface, a solid wall boundary condition is imposed (no penetration),

d9
B =

If the grid adjacent to the cut is orthogonal, the implementation of this con-
dition is straightforward, and the following equation is satisfied:

% _ ¢intem’or - ¢ghost
on VAVS ’

where @gnos is the the potential value at the ghost cell, and A¢ is the distance
between the interior cell center and the ghost cell’s center. The condition is satis-
fied while @interior = @ghost- This case is relatively simple to implement. If the grid
adjacent to the cut is not orthogonal, exactly as described in this flow problem,
the solid wall boundary condition is applied as described in Section 12.

_
pV i=p 0. (189)

(190)
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There are two ways in which the farfield boundary conditions are imposed.
The first method, which was chosen to be implemented in this research work, is
using a Neumann boundary condition at the farfield. The flow field is assumed
to be known at the farfield and is taken as the free-stream condition. Practically,
it is implemented by projecting the free-steam velocity V., normal to the cell’s
face. A periodic boundary condition is applied to the cells located at the top and
bottom of the cut. When lift is being produced (airfoil with an angle of attack
or nonsymmetric airfoil), the Kutta condition is enforced by applying a jump in
potential across the cut, from the trailing edge to the ghost cells at the farfield.
An example of implementing the cut and farfield boundary conditions is given in
Figure 47. This figure presents a partial view of the grid adjacent to the farfield
boundary and the cut. The ghost cell’s centers are sketched by the sign x. The
ghost cells above and below the cut are formed as mirror reflections of the interior
cells. In this way, it is ensured that the vector connecting the center of the ghost
cells with the adjacent interior cell’s center lies in the direction of the boundary
normal vector. It is important for the Kutta condition to be satisfied. In order to
compute the residual at point (7, 7) we have to know first the potential values at
the ghost cells. The potential value of cell (7, j) is set to the free-stream condition
(Neumann condition). The Kutta condition is applied to all the cells above the
cut and their values are modified to satisfy the proper jump condition, according
to (188). This analysis holds true for the ghost cells in the opposite direction.

coordinate cut

d)ld ¢iJ+1
o X x - ghost cells
—_— @ - cell center

Figure 47: Illustration of how the Kutta condition is applied. A partial view of
the airfoil O-type grid near the farfield boundary.

The second method to implement the Kutta condition is to apply the Dirichlet
boundary condition at the farfield. This method is described by Jameson [26, 28,
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31] and also by Hirsch [12]. Assuming a free-steam condition of an axial flow of
V. in the z-direction, the potential at the farfield can be expressed as

¢ =V -, (191)

while the origin of the grid coordinate is taken as the airfoil trailing edge. When lift
is being produced, the Kutta condition is enforced and then the above boundary
condition is modified to take into account the circulation across the cut. The
vortex of strength I' is added to the boundary condition and it becomes,

I'5

qb:Voo-x—F%- (192)

The angle 3 is measured from the cut (which is aligned with the z-axis). Returning

now to the first method — When applying the Neumann boundary condition, the

additional term of the circulation is not reflected in the flux calculation across

the boundary. This fact can be proved by rewriting Eq. (192) in a cylindrical
coordinate system while x = rcos (),

8 (r.8) = Vi - reos (8) + 2.

27

Since the flux of a given face is computed in the normal direction, the change

of the potential ¢ with respect to the radial direction (normal to the boundary
faces) can be written as follows:

99

or
As one can see, when applying the Neumann boundary condition, the additional
term of the circulation to the boundary condition is not reflected in the velocity
value, normal to the cell’s face. As mentioned, the first method was chosen to
be implemented for cases of both NACA-0012 and NACA-2822. It proved to be
efficient to code and was simple in its formulation.

(193)

= Viocos (). (194)

12.6.5 NACA-0012 — qualitative results for o = 0°

Before doing detailed quantitative analysis of the simulation results, the overall
characteristics of flow field were examined to make sure that the solution reflected
the expected behavior. All the problems were computed with 128 x 48 mesh size.
Figure 48 demonstrates the results of test cases in which subsonic and transonic
flows are involved. The Mach number around a NACA-0012 airfoil with a free-
stream Mach number varies from 0.1 to 0.8 with a zero angle of attack, o = 0°, as
demonstrated. The first order upwind scheme has been applied in the supersonic
flow regime. The results compare very well with Mach contour distributions in the
literature [14, 12, 96|, and also on grids with lower resolutions. The flow around
the airfoil undergoes a strong local velocity gradient in the leading edge region,
where over 2 — 3 cells downstream of the stagnation point, the velocity increases
from nearly zero to values larger than the incoming free-stream velocity. The
following basic features are visible, indicating that qualitatively accurate results
are being depicted:

e A stagnation point at the leading edge and trailing edge of the airfoil.
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e Symmetric Mach contours at the top and bottom of the airfoil.

The Mach 0.1 and 0.3 cases have only a slight difference in both the Mach
contours and the C), solution. The flow is close to being incompressible at
these speeds, giving very little difference in the results. At M, = 0.5 the
compressibility of the flow become more significant and at M., = 0.76 the
compressibility effects are very evident.

(c) (d)

Figure 48: Distribution of the Mach contours as computed on the (128 x 48) mesh,
for different incident Mach numbers. a) M., = 0.1, b) M., = 0.3, ¢) M., = 0.5,
d) M, = 0.76. Observe the shock appearing at the top and bottom surfaces.

12.6.6 The pressure coefficient C,

The aerodynamic performance of airfoil sections can be studied by reference to
the distribution of pressure over the airfoil. This distribution is usually expressed
in terms of the pressure coefficient:

Y
] L) =1
p_pOO Poo (Poo)
Cp, = = = . (195)
Togpeud, ghEul 3yMEL
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The pressure coefficient C), is the difference between the local static pressure
and the free-stream static pressure, nondimensionalized by the free-stream dy-
namic pressure. The airfoil pressure distribution is generally plotted as C), versus
x, where the parameter x varies from 0 at the leading edge to 1 at the trailing
edge. The pressure coefficient is plotted with negative values, higher on the top.
This is done so that the upper surface of a conventional lifting airfoil corresponds
to the upper curve. The C, starts from about 1 at the stagnation point near
the leading edge and rises rapidly (the pressure decreases) on both the upper and
lower surfaces, and finally recovers to a small positive value of C), near the trailing
edge. The lift coefficient is related to the C, by: C; = [ (Cy, — Cy,) d, where Cp,
and C),, are lower and upper surface pressure, respectively. It is the area between
the curves. Figure 49 shows the pressure distribution on the upper and lower
surfaces computed by the pressure coefficient with negative C),, toward the top,
following the usual convention. Observe the sharp decrease in C), across the shock
wave. The M, = 0.1 and M, = 0.3 cases have a slight difference in both the
convergence and C), solution. The flow is close to being incompressible at these
speeds, giving very little difference in the results. At M., = 0.5 the flow becomes
more compressible and at M., = 0.76 the compressibility effects are very evident.
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Figure 49: The distribution of pressure coefficient for an airfoil NACA-0012 as
computed, using (128 x 28) mesh, for four Mach numbers.
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12.6.7 AMG performance

In the subsonic cases, M., < 0.5, the coarse-levels were obtained while applying
a fixed threshold (¢ = 0.25). Tt was sufficient to apply the second pass process
in the first coarsening step and maintain standard coarsening for all subsequent
levels. In the transonic case, M., = 0.76, a dynamic threshold produced much
better results (in terms of convergence properties) but at the expense of somewhat
greater memory requirements.

The strength of connection between the matrix variables can be clearly seen
from Figure 50, where the finest and first coarse-levels are plotted. For M., = 0.1
the operator is nearly isotropic, and due to the setting of ¢ = 0.25, the AMG
algorithm treats most of the connections contained in the corresponding matrix
as strong (at least, there is an azimuthal symmetry in the strong connection).
Consequently, the first coarse-level corresponds to red-black coarsening in most
of the domains, far from the airfoil surface. There is a significant deviation from
this coarsening pattern near the airfoil surface where an isotropic coarsening is
observed. The reason is that the grid is highly stretched near the airfoil surface
and the cell’s aspect ratio becomes nearly unity. In a few cells above the airfoil the
anisotropy is largest and this is well reflected in the one-dimensional coarsening
pattern, while the AMG coarsened in the direction of the strong connectivity, in
the n-direction. This coarsening pattern is essentially the same for the rest of the
cases.

Remark: Also in this context, with a careful examination of the cells on the
cut (j = 1, j = jmax), it can be seen that away from the cut or the airfoil surface
the cells are roughly square, while this is not the case when approaching the cut
or the airfoil surface. The grid is highly stretched. Looking at the discretization
scheme, notice how the coefficients in the {-direction compare to the n-direction,
especially above the cut. Their ratio scales as the grid cell aspect ratio. For exam-
ple, if S;, = 1005, then the n-direction coefficient would be 100 times larger than
the &-direction coefficient. Consequently, a given change in the derivatives along
the n-direction would influence the new solution 100 times more strongly than the
same change in the derivative along &-direction. This has a very important effect
that can be viewed from two aspects: The first one is that the error components
in the large coefficient direction are reduced much more quickly than those in the
small coefficient direction. So not only does SGS relaxation reduce fast error com-
ponents, it does so significantly in the large coefficient’s direction. Thus the slow
error components in the small coefficient direction are reduced much more slowly.
This directional sensitivity of the iterative solver is caused by the anisotropic co-
efficients, which can be a result of the equation or an irregular grid. The second
aspect is that since the fast error components in large coefficients are reduced
faster, it is well reflected in the coarsening process. The problem shows strong de-
pendence in the n-direction, and little or no strong dependence in the &-direction.
Perhaps the most important observation is that the grid has been coarsened only
in the direction of strong dependence. Because smooth error varies slowly in the
direction of strong dependence, interpolation can be performed accurately in that
direction.
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Figure 50: The finest and first coarse-level for mesh size (128 x 48). The red color
corresponds to the C-point and the blue color corresponds to the F-point. The
five flow conditions are as follows: a) M, = 0.1, b) M, = 0.3, ¢) M, = 0.5, d)
M., = 0.76. The pictures on the right are magnified views of the airfoil region.
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The discrete Lo-norm of the residual is shown in Table 20 for each V-cycle,
in four different cases of Mach number. In Table 21 the grid and operator com-
plexities are presented for the above Mach numbers. When the flow is subsonic,
M., < 0.5, the convergence rate is bounded below an order of magnitude. Af-
ter 12 V-cycles a residual smaller than 107!° was reached. In the subsonic cases,
M, < 0.5, the coefficient matrices A, A, and A* were changed very slowly from
one cycle to the next, especially above and below the airfoil’s surface and at the
leading and trailing edges, where the velocity gradient is maximal. Consequently,
performing the setup phase only once, at the beginning of the solving phase, is
sufficient to achieve a stable and efficient convergence; thus these cases were solved
with 12 V-cycles.

The influence of compressibility on the overall convergence is well observed in
the transonic case M., = 0.76; where, as expected, convergence becomes consid-
erably slower. The results were obtained by repeating the setup phase 6 times
while applying two V-cycles between each update. This results in a total of 12
V-cycles until the residual decreased to the desired level of 1071, Concerning the
convergence behavior near the shock waves, it is generally observed that standard
error smoothing is less efficient near the discontinuity. Therefore, there are two
possibilities to improve convergence.

The first approach, which was introduced by Brandt [97], is to apply local
smoothing sweeps in the neighborhood of the singularity. The additional work
does not seriously affect the overall complexity and convergence properties since
the number of points that forms the shock wave is usually very small in comparison
with the number of interior points (set of measure zero). However, applying this
approach results in a minor improvement in the overall convergence properties.
The second approach that was chosen to be applied for this problem, is to invest
more effort by additional smoothing sweeps (71-2 local iterations) on the fine-
level. This approach was preferred in order to improve the overall convergence
properties in an inexpensive way and to overcome this convergence degradation.
In addition, the main purpose of this “extra” work is mainly to “locate” the shock
and to establish its profile, i.e. to “clean-up” the area of the strong nonlinearity
as the coarse-level correction is distributed on the fine-level. In this way we also
significantly reduce the accumulation of errors that were interpolated from the
coarse-levels.

The convergence histories are demonstrated in Figure 51. It is clear that as
the Mach number increases so is the number of iterations required to solve the
problem. We observe that for subsonic cases, M., = 0.1 —0.5, we need less than 10
V-cycles to reduce the Ly-norm of the residual by 10 orders of magnitude. As for
the transonic case of M., = 0.76, the convergence is somewhat slower here while
about 12 cycles are required to reduce the residual by 10 orders of magnitude.

This extra increase in the number of iterations is mainly due to the strong
anisotropy and the existence of two supersonic pockets that are terminated by
shock waves. For M., = 0.76, the problem was converged less than an order of
magnitude per V-cycle, and a much greater operator complexity of Cn = 3.89
was obtained. This behavior is typical of the more general problems, which are
characterized by a strong anisotropy and nonlinearity of the matrix coefficients.
It is important to mention that according to our particular requirements, it is too
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high but still practical. It is not surprising as shown in Table 20 and Table 21, that
you get what you pay for. Combinations of AMG components that produce the
best convergence rates are also those with the greater costs. Parameter selection
is largely the art of finding a compromise between performance and cost.

Table 20: The results of AMG V-cycles applied to the flow through a symmetrical
NACA-0012 airfoil. The second norm of the residual after each V-cycle is presented
for 128 x 28 mesh size.

My =0.1 My =0.3 My =0.5 My =0.76
V-cyele | [[R™l,  Cp | |IB™,  Cr | [B™, Cf =™, Gy
0 7.095e-04 - 2.276e-03 - 5.015e-02 - 8.959e-03 -
1 2.956e-05 0.04 | 1.631e-04 0.07 | 9.031e-04 0.02 | 1.722e-03  0.19
2 7.825e-07  0.03 | 9.298e-06 0.06 | 6.360e-05 0.07 | 7.216e-04  0.42
3 2.611e-08 0.03 | 4.834e-07 0.05 | 6.443e-06 0.10 | 4.419¢-04  0.61
4 9.265e-10 0.04 | 2.726e-08 0.06 | 6.322e-07 0.10 | 1.017e-04  0.23
5 4.162e-11 0.04 | 1.421e-09 0.05 | 7.259e-08 0.11 | 1.853e-05  0.18
6 2.314e-12  0.06 | 7.824e-11 0.06 | 8.328e-09 0.11 | 4.673e-06  0.25
7 3.898e-13  0.17 | 4.293e-12  0.05 | 1.008e-09 0.12 | 1.027e-06  0.22
8 3.627e-13  0.93 | 6.056e-13 0.14 | 1.217e-10 0.12 | 1.993e-07  0.19
9 - - 5.464e-13  0.90 | 1.487e-11 0.12 | 3.810e-08  0.19
10 - - - - 1.809e-12  0.12 | 7.416e-09  0.19
11 - - - - 2.210e-13 0.12 | 1.456e-09  0.20
12 - - - - 3.28%-14 0.15 | 2.857e-10  0.20
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Figure 51: Convergence histories.

Table 21: Grid complexity Cq and operator complexity C}, for four cases of Mach
number.

Complexities | Mo = 0.1 | Moo = 0.3 | Moo = 0.5 | My = 0.76
Co 1.90 1.93 2.13 1.92
o3 3.01 2.95 3.87 3.89

This problem was solved for two more grid sizes of 64 x 24 and 32 x 12. Conver-
gence factor C'y and Lo-norm of the residual || R™||, are presented in Table 22. This
is a case where applying AMG convergence acceleration is a very attractive possi-
bility since it is precisely a situation, for which constructing an efficient geometric
multigrid approach would become extremely cumbersome. We observe that for
subsonic flow the AMG exhibits the same type of convergence that was observed
in the previous problems. The residual Lo-norm is decreased by a relatively con-
stant factor, below an order of magnitude per V-cycle. It takes about 8 V-cycles
to reach a residual of 107!2. As the Mach number increases the convergence dete-
riorates, but we find the solver to still be very efficient for this problem, despite of
the strong nonlinearity of the problem. The storage requirement is greater than
that for the subsonic case (isotropic case), the reason being that AMG performs
one-dimensional coarsening in the azimuthal direction at the farfield since the
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strong connection in the ¢{-direction (azimuthal direction) arises from a large grid
spacing in 7)- direction. In this respect, the complexities deteriorate significantly.

Table 22: The results of AMG V-cycles applied to the flow through an NACA-
0012 airfoil. The second norm of the residual after each V-cycle ||R™||, and the
convergence factor C'y are detailed for two different mesh sizes.

My, =0.1 My, =0.76
grid size — 33 x 12 65 x 25 33 x 12 65 x 25

V-cycle [B™ly Gy | IR™,  Cp | IR™ly, G | IR™,  Cy
0 1.368e-03 - 1.347e-03 - 6.849e-03 - 1.123e-02 -
1 6.872e-05 0.05 | 5.310e-05 0.39 | 1.104e-03 0.16 | 2.447e¢-03 0.21
2 3.208¢-06 0.05 | 1.956e-06 0.04 | 1.720e-04 0.16 | 9.265e-04 0.38
3 1.461e-07 0.05 | 1.271e-07 0.06 | 1.862e-05 0.11 | 3.680e-04 0.40
4 6.702e-09 0.05 | 8.625e-09 0.07 | 3.282e-06 0.18 | 1.355e-04 0.37
5 3.273e-10  0.05 | 5.882e-10 0.07 | 6.709e-07 0.20 | 4.198e-06 0.03
6 1.777e-11  0.05 | 4.058e-11 0.07 | 9.692e-08 0.14 | 1.885e-07 0.04
7 1.138e-12  0.06 | 2.843e-12 0.07 | 1.079e-08 0.11 | 8.792e-09 0.05
8 3.787e-13  0.33 | 2.042e-13 0.07 | 9.245e-10 0.09 | 5.410e-10 0.06
9 3.717e-13  0.98 | 3.190e-14 0.16 | 5.690e-11 0.06 | 3.702¢-11 0.07
10 3.716e-13  1.00 | 2.837e-14 0.89 | 5.028¢e-12 0.09 | 2.695e-12 0.07
11 - - - - 9.383e-13 0.19 | 7.177e-14 0.03
12 - - - - 1.226e-13 0.13 | 2.322e-14 0.32
Cq 1.88 1.91 2.00 2.09
Cr, 2.62 2.93 3.18 3.54

Let us examine the storage requirements for two cases of M, = 0.76 and
M, = 0.1. For M = 0.1. The problem was solved using six multigrid levels
and the solver’s characteristics are presented in Table 23. The initial coarse-level,
A™ has 3072 points, exactly half the number of points on the fine-level. This
can be clearly seen in the coarsening pattern presented in Figure 50(a). The
coarsening in the next coarse-levels is more “aggressive”, while each succeeding
coarse-level has fewer than half the number of points as the next finer level. It
can be seen in the last column that the average number of nonzero entries per row
increases as the grids become coarser. For M., = 0.76, the situation is even more
dramatic. In the last column it can be seen that the average number of nonzeros
per row increases as the grids become coarser. However, the operator and grid
complexities are slightly damaged.
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Table 23: Results of AMG V-cycles applied to the flow around NACA-0012 airfoil.

Number of rows Number of non-zeros Average entries per row
Level | Moo =01 My =076 | Moo =01 M, =076 | My, =01 M, =0.76
A™ 6144 6144 108983 110289 17.7 17.9
Amtl 3072 3323 104678 148812 34 44.7
Amt2 1437 1758 60275 86978 41.9 49.4
AmA3 659 968 33783 45543 51.26 47
Amtd 266 532 14869 23786 55.89 44.7
AmFS 104 278 5805 12115 55.8 43.5

We would like to recall here that our main goal in these applications is to
demonstrate how different AMG components can influence the overall perfor-
mance. We have not tried to find a combination that results in an optimal per-
formance, but rather confine ourselves to a set of components or parameters that
result in an acceptable performance and in robust multi-purpose algorithm. The
above results clearly show that an optimized parameter setting (for instance: dy-
namic threshold, matrix reduction parameter 7, second-pass process), depending
on the application, may improve the performance substantially further.

12.6.8 NACA 0012 - results for o = 1.25°

Before doing detailed quantitative analysis of the simulation results, the overall
characteristics of flow field were examined to make sure that the solution reflected
the expected behavior. The following results were computed on the 128 x 48
mesh. Figure 52 presents the results of test cases in which subsonic and transonic
flows are involved. The Mach number of isolines, for free-stream Mach number,
varies from 0.1 to 0.71 with o = 1.25° demonstrated. It is well observed that
the Kutta condition is satisfied and the stagnation point is located on the trailing
edge. Figure 53 shows the pressure coefficient C),, on the upper and lower surfaces
with negative values toward the top, following the usual convention. The presence
of shock waves above and below the airfoil is well observed in the sharp decrease
of C}, when M., = 0.71.
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(a) (b)
(c) (d)

Figure 52: Distribution of velocity as computed on the (128 x 48) mesh, for dif-
ferent free-stream Mach numbers. a) M, = 0.1, b) M, = 0.3, ¢) M, = 0.5, d)
My, = 0.71. Observe the shock appearing at top and bottom surfaces.
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Figure 53: The distribution of pressure coefficient C, for an NACA-0012 airfoil at
a = 1.25%s computed using (128 x 28) mesh, for four Mach numbers.

Table 24: Results of the circulation I' for four cases of Mach number.
Circulation | My =01 | My =03 | My =05 | My =0.71
r | 7.83¢-03 | 2.48¢-02 | 4.73¢-02 | 9.36e-02

12.6.9 AMG performance

A symmetrical NACA-0012 airfoil with o = 1.25° produces lift due to the imposed
finite circulation I' around the airfoil. The value of the circulation is unique
for each set of flow condition. This problem is much more complicated to solve
with the AMG method, because the circulation value must be updated after each
smoothing sweep in order to satisfy the Kutta condition at the airfoil trailing edge.
In fact, this problem becomes a kind of an optimization problem while the goal is
to improve the circulation until convergence is reached for both the circulation I’
and the equation itself (the residual has to reach the level of discretization). Two
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very important observations are in order here. First, since I' is updated only on
the fine-level, the overall AMG performance suffers significantly. The reason is
that in order to solve the problem, both the residual and the circulation have to
reach convergence. Second, however, each circulation update results in a new set
of potential values along the cut, which leads to a somewhat different solution and,
therefore, has an extreme impact on the overall convergence of the algorithm. The
coarse-level correction loses its relevance at the moment the circulation is updated.
As a consequence, the convergence rate becomes extremely slow (around 0.85).
This action of changing the boundary values (along the cut) is against the basic
ground rules of the multigrid method. This global process gives rise to slow error
components, which results in unsatisfactory AMG behavior. Note that in the
elliptic problem (subsonic flow), when imposing a potential disturbance inside the
domain or along the boundaries, all the points in the domain are influenced and
“feel” the potential disturbance. Therefore, it is expected that this process could
be extremely amplified when the potential disturbance occurs along the entire
cut, which is constructed of several cells. It is important to note here that it does
not matter if the residual is dropped five orders of magnitude (or even more) by
successive V-cycles (without updating I'). Once the circulation value is modified,
the residual jumps three or four orders of magnitude and most of what we have
gained in the AMG V-cycles is lost! Note that as the circulation T' is “frozen” (at
any Mach number mentioned above), the AMG performance becomes visible again
with the convergence rate below an order of magnitude per V-cycle. However, this
situation makes use of the AMG algorithm very unpractical.

Practical experience has shown that in order to “cure” this problem a possible
way is to obtain a good approximation of I' as an initial condition for the algorithm.
The best way to obtain a good approximation I'y is by solving the problem on a
coarser grid (usually a geometrically four-times coarser grid is enough to obtain
very fast convergence). This is done by the FMG method in the context of AMG,
as detailed in Section 8. However, a properly designed FMG scheme can be much
more effective in general than just sequence of V-cycles. Recall that the alternative
of convergence rates around 0.9 are definitely not acceptable. The key principle
regarding the FMG approach in general approach is that before the Q2™ problem
is even touched, the Q2™ problem has been solved to the level of discretization
error and the result is a good approximation to the circulation value I'y (its value
is within ~ 1 — 3% of the value of ' that obtained on the fine-level Q™) as an
initial condition. It is very important to mention that the convergence rate of
these nonlinear iterations (especially in the transonic case where the nonlinearity
is significant) depends dramatically on a quality of the initial condition for I'. The
better the initial guess, 'y, used on the fine-level, the more effective the AMG
V-cycle will be. In our test-case the FMG scheme relies on, four levels, while on
the coarsest level (16 x 6 grid) the problem was solved to the level of machine zero.

Therefore, the practical implementation of this problem, relies heavily upon
the way the treatment of the circulation value is incorporated in each V-cycle.
The value of the circulation I' must be updated at the end of each V-cycle, im-
mediately after the correction from the coarse-levels is distributed to the points
on the fine-level. In order to improve the speed of convergence, a robust choice
of the circulation optimization must be made. Three possibilities are in order: In
the first, which is the one chosen in this work, the circulation can be improved
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by a simple 2D linear extrapolation of the circulation value. If the circulation
value is known in the present and last iterations, the next value can be calculated
as follows:, an over-relaxation parameter 1 < w < 2 can be added in order to
accelerate convergence:

Chew = Fn-l—l +w (Fn—l—l - Fn) . (196)

The second possibility is to apply an over-relaxation on I' by the following
formula,

Chew =wlpy + (1 —w) Ty, (197)

where also in this case 1 < w < 2. The third possibility is to first solve the
problem on a coarse-level to the level of discretization and obtain the circulation
value I'y. Then apply an under-relaxation (w = 0.5) on I' by the following formula,

Tpew = wlo + (1 — w) Tt (198)

The three methods were tested while the third Eq. (198), gave much better
results in terms of convergence properties. However, it requires a pre-calculation
of I'y on a coarse-level.

Another technique that significantly improves the convergence is by freezing
the value of I" once it ceases to change by a certain amount. This is accomplished
by monitoring each new update of I' and calculating the percent change of the
new value from previous one.

T ehange = Do =0 00, (199)
Fn—&-l

When TI'change = 107%, the value of T is frozen for the remainder of the AMG
V-cycles.

In practice, the improved FMG is very effective for this specific problem be-
cause a very good initial guess is obtained on the fine-level 2™ although it costs a
little more per cycle than the V-cycle scheme. The first coarse-level for each case
described above is sketched in Figure 54 as a magnified view of the area around
the airfoil. When the flow is incompressible, the operator is nearly isotropic and
the points that construct the coarse-level are distributed uniformly, as can be seen
in Figure 54(a). As M is increased the equation becomes more anisotropic and
it is well reflected in the coarsening pattern where the number of coarse points is
increased around the sonic line, above and below the airfoil, where the anisotropy
is largest.
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Figure 54: The fine and first coarse-level of the airfoil with a = 1.25° for four
cases of Mach number: a) My, = 0.1, b) M, = 0.3, ¢) M, = 0.5, d) My, = 0.71.
Blue point indicates an F-point and red point indicates a C-point.

The discrete Lo-norm of the residual and the convergence rate are shown in
Table 25 for each V-cycle, in four different cases of Mach numbers. In Table 26 the
grid and operator complexities are presented for the above Mach numbers. When
the flow is subsonic, M., < 0.5, the convergence rate is bounded below an order
of magnitude. After 12 V-cycles a residual smaller than 107!° was reached. In
the subsonic cases, M, < 0.5, the coefficient matrices A, A, and A* were changed
very slowly from one cycle to the next, even, above and below the airfoil surface
and at the leading and trailing edges where the velocity gradient is maximal. Con-
sequently, performing the setup phase only once, at the beginning of the solving
phase, is sufficient to obtain a stable algorithm and efficient convergence. These
problems were solved to the machine zero by applying 12 V-cycles on the finest
level.

The influence of the compressibility on the overall performance is well observed
in the transonic case M., = 0.76; The convergence, as expected, becomes consid-
erably slower. The results were obtained by repeating the setup phase six times
while applying two V-cycles between each update. This results in a total of 12
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V-cycles until the residual decreased to the desired level of “1071%. In this partic-
ular case, more effort was invested by additional local smoothing sweeps (™2 local
iterations) in the neighborhood of the shocks. This appeared very helpful in order
to improve the overall performance.

The convergence histories for the five cases are depicted in Figure 55. The
effect of the Mach number on the AMG performance is clearly visible. The case of
M, = 0.76 is characterized by two supersonic pockets, which are terminated by
shock waves above and below the airfoil. Convergence is somewhat slower here.
It requires nearly 11 V-cycles to decrease the Lo-norm of the residual to a level of
10719, In the case of M., = 0.01, they converged just by 7 — 8 cycles. Although
the problem was converged rapidly, this advantage is eaten up by the much greater
complexities of Cp = 2.05 and C'p, = 4.72. This fact is typical for the more general
problems, which are characterized with a strong anisotropy and nonlinearity of
the matrix coefficients.

Table 25: The results of AMG V-cycles applied to the flow through a symmetrical
NACA-0012 airfoil. The second norm of the residual || R™||, after each V-cycle and
the convergence rate Cy are presented for 128 x 28 mesh size.

My =0.1 My =0.3 My =0.5 My =0.71
V-eycle | [[R™l,  Cy | [B™, Cy | IR, Gy =™, Cf
0 2.090e-02 - 6.272e-02 - 0.104e-00 - 8.944e-02 -
1 1.824e-03 0.08 | 2.020e-02 0.32 | 2.708e-02 0.26 | 1.386e-02  0.15
2 1.873e-04 0.10 | 1.715e-03 0.08 | 2.912e-03 0.11 | 2.209e-03  0.16
3 1.573e-05 0.08 | 1.478e-04 0.09 | 2.471e-04 0.08 | 3.438e-04  0.16
4 1.281e-06 0.08 | 1.313e-05 0.09 | 2.270e-05 0.09 | 6.087e-05  0.16
) 1.018e-07 0.08 | 1.145e-06 0.09 | 2.199e-06 0.10 | 1.101e-05  0.18
6 8.159e-09 0.08 | 1.001e-07 0.09 | 2.294e-07 0.10 | 1.988e-06  0.18
7 6.560e-10  0.08 | 8.804e-09 0.09 | 2.100e-08 0.09 | 3.593e-07  0.18
8 5.318e-11  0.08 | 7.740e-10 0.09 | 1.756e-09 0.08 | 6.499e-08  0.18
9 4.332e-12  0.08 | 6.782e-11  0.09 | 1.745e-10 0.10 | 1.179e-08  0.18
10 3.508e-13  0.08 | 5.852e-12  0.09 | 1.968e-11 0.11 | 2.149e-09  0.18
11 3.956e-14 0.11 | 4.221e-13 0.07 | 1.614e-12 0.08 | 3.930e-10  0.18
12 3.170e-14 0.80 | 1.231e-13  0.29 | 1.152e-13 0.07 | 7.084e-11  0.18
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Figure 55: Convergence histories.

Table 26: Grid complexity Cq and operator complexity C}, for four cases of Mach
number.

Complexities | Mo = 0.1 | Mo = 0.3 | My = 0.5 | My =0.71
Co 3.02 2.94 1.95 2.05
CL 1.90 1.92 2.99 4.72

This problem was solved for two more grid sizes of 64 x 24 and 32 x 12.
Convergence factor Cy and Lo-norm of the residual ||R™||, are presented in Table
27. For M., < 0.5 we observe that for subsonic flow the AMG exhibits the same
type of convergence that was observed for this problem solved on the finer grid.
The residual Lo-norm decreases by a nearly constant factor, below an order of
magnitude per V-cycle. It takes about 8 V-cycles to reach a residual of 10712, As
the Mach number is increased the convergence degrades, but we find it still very
good for this problem, inspite of the strong anisotropy. The storage requirements
are greater than that for the subsonic case (isotropic case), the reason being that
AMG performs one-dimensional coarsening in the azimuth direction at the farfield.
This is because the strong connections in the ¢-direction (azimuth direction) arises
from a large grid spacing in the n-direction. This fact strongly has a rather severe
adverse effect on the complexities.
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Table 27: The results of AMG V-cycles applied to the flow around NACA-0012
airfoil with a = 1.25°. The second norm of the residual ||[R™||, after each V-cycle
and the convergence factor Cy are detailed for two different mesh sizes, 32 x 12

and 64 x 24.
M, =0.1 M. =03
grid size — 32 x 12 64 x 24 32 x 12 64 x 24
V-cycle IR™l, ¢ | WIR™M, ¢ | IR™M,  cr [ IR, Cf
0 2.623e-02 - 2.324e-02 - 7.697e-02 - 6.900e-02 -
1 2.243e-03 0.08 | 2.324e-03 0.10 | 8.830e-03 0.11 | 1.188e-02 0.17
2 1.756e-04 0.08 | 2.259e-04 0.10 | 9.205e-04 0.10 | 1.106e-03 0.09
3 1.264e-05 0.07 | 1.916e-05 0.08 | 7.204e-05 0.08 | 8.374e-05 0.08
4 8.909e-07 0.07 | 1.544e-06 0.08 | 5.429e-06 0.08 | 6.317e-06 0.08
5 6.277e-08 0.07 | 1.229e-07 0.08 | 4.072e-07 0.08 | 4.776e-07 0.08
6 4.440e-09 0.07 | 9.787e-09 0.08 | 3.059e-08 0.08 | 3.613e-08 0.08
7 3.149e-10 0.07 | 7.811e-10 0.08 | 2.304e-09 0.08 | 2.735¢-09 0.08
8 2.234e-11  0.07 | 6.252e-11 0.08 | 1.739¢-10 0.08 | 2.074e-10 0.08
9 1.583e-12 0.07 | 5.016e-12 0.08 | 1.315e-11 0.08 | 1.574e-11 0.08
10 1.117e-13 0.07 | 4.016e-13 0.08 | 9.931e-13 0.08 | 1.175e-12 0.07
11 - - 3.125e-14  0.08 - - 7.187e-14  0.06
12 - — 5.638e-15 0.18 — — 3.233e-14 0.45
Ca 1.85 1.91 1.88 1.91
o5} 2.53 2.89 2.51 2.78
M, =0.5 M, =0.71
grid size — 32 x 12 64 x 24 32 x 12 64 x 24
Veyde | [R™[, Gy | [R"l,  Cr | IR™, Cr | IR, C;
0 0.135e-00 - 0.132e-00 - 7.285e-03 - 1.241e-02 -
1 2.340e-02 0.17 | 6.005e-02 0.04 | 4.031e-03 0.55 | 1.027e-02 0.82
2 2.104e-03 0.09 | 7.292e-03 0.12 | 1.707e-04 0.04 | 1.637e-03 0.15
3 1.557e-04 0.07 | 7.900e-04 0.11 | 9.955e-06 0.06 | 2.408e-04 0.15
4 1.180e-05 0.08 | 8.441e-05 0.11 | 1.062e-06 0.11 | 3.504e-05 0.15
5 8.979e-07 0.08 | 9.001e-06 0.11 | 1.822e-07 0.17 | 5.247e-06 0.15
6 6.779e-08 0.08 | 9.653e-07 0.11 | 1.996e-08 0.11 | 8.001e-07 0.16
7 5.082e-09 0.07 | 1.036e-07 0.11 | 3.331e-09 0.17 | 1.246e-07 0.16
8 3.788e-10 0.07 | 1.109e-08 0.11 | 3.970e-10 0.12 | 1.946e-08 0.16
9 2.808¢-11 0.07 | 1.186e-09 0.11 | 4.774e-11 0.12 | 3.046e-09 0.16
10 2.053e-12  0.07 | 1.264e-10 0.11 | 1.522e-11 0.32 | 4.772e-10 0.16
11 — — 1.331e-11  0.11 | 1.817e-11 1.1 | 7.469e-11 0.16
12 — — 1.255e-12  0.09 — — 1.161e-11  0.16
Ca 1.95 1.92 1.99 1.99
o)) 2.70 2.80 3.78 4.32
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Table 28: The table shows the FMG performance applied to the flow around a
NACA-0012 airfoil with a@ = 1.25° for four Mach numbers. The FMG(1,1) scheme
is shown for one SGS relaxation on the descent phase and one SGS relaxation on
the ascent phase. The FMG(1.1) number of levels is presented in the first row.
The second row includes the AMG V-cycles performed in the FMG process. The
average convergence factor between successive V-cycles is presented in the third
row.

My =0.1 My =0.3
grid size — 32x 12 | 64x 24 | 128 x 48 | 32 x 12 | 64 x 24 | 128 x 48
FMG(1,1), number of levels 3 3 4 3 3 4
AMG V(1,1) - cycles 1 1 5 1 1 5
Average convergence factor,Cy - - 0.12 - - 0.12
My =0.5 My =0.71
FMG(1,1), number of levels 3 3 4 3 3 4
AMG V(1,1) - cycles 1 1 5 1 10 10
Average convergence factor,Cy - - 0.13 - 0.12 0.14

The above test case and the following case of flow around an asymmetric
NACA-2822 airfoil were constructed as worse case examples for the AMG algo-
rithm (in its current form). Although the performance is normally very efficient
when the circulation is “frozen” (for instance when o = 0°), as the circulation is
updated it severely violates the coarse-level correction process. As a consequence,
the V-cycle convergence becomes extremely slow. As already mentioned, there is
much room for optimizing the AMG algorithm for this very particular problem, for
instance by further improving the circulation extrapolation process or modifying
the FMG approach to obtain a better initial guess for the fine-level.

12.7 Nonsymmetric airfoil NACA—-2822

In this problem we take one more step further and consider a nonsymmetric air-
foil. First, the nonsymmetry results in an irregular stretched grid near the airfoil
surface. Second, such an airfoil generates lift even at a zero angle of attack. There-
fore, the circulation must be calculated and the ghost cells above and below the
cut must be updated after each smoothing sweep in order to satisfy the Kutta
condition. Solutions to the NACA-2822 airfoil were attained on an O-type grid
that was also constructed by the algorithm of Hawken [95]. The grid has 48 cells
in the normal direction and 128 cells around the airfoil, while the coordinates are
shown in Table 29. In the first example (NACA-0012), the farfield boundary is
located ten chord lengths away from the airfoil. The grid and a magnified view of
the grid near the airfoil’s surface are presented in Figure 56.
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Table 29: Coordinates of the NACA-2822 airfoil.

x, [m] y, [ml] x, [m] y, [m]
0.5 0 -0.4937678 | 0.02016554
0.4966792 | 0.00018965 | -0.4740583 | 0.03022682
0.4852147 0.0007128 -0.4394766 | 0.04037793
0.4607264 | 0.00121574 | -0.3878135 | 0.04987806
0.416639 0.00020189 | -0.3171328 | 0.05759262
0.3473771 | -0.00489418 | -0.2271611 | 0.06215686
0.2517068 | -0.01606706 | -0.1202867 | 0.06208281
0.1348081 | -0.03270936 | -0.00204013 | 0.05554108
0.00738226 | -0.04972611 | 0.1190656 0.0437382
-0.1177091 | -0.05888357 | 0.2328184 0.03025188
-0.2292303 | -0.05675405 | 0.3299344 0.01812037
-0.3206813 | -0.04944643 | 0.4042574 0.00908261
-0.3905658 | -0.04028333 | 0.4542647 0.0034868
-0.4406526 | -0.03049537 | 0.4830459 0.00076342
-0.4739683 | -0.02053009 | 0.4963978 0
-0.4932659 | -0.01053022 0.5 -0.00055668
-0.5 0.01010243 - -
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Figure 56: Structured curvilinear body-fitted grid of the O-type for NACA-2822.
a) The mesh used for the NACA-2822 airfoil flow case study. b) A close-up of the

grid near the airfoil.

The same boundary conditions were applied as for the NACA-0012 test case.
This problem was solved for the cases of four different free-stream Mach numbers
with a zero angle of attack. The Mach contours for four different Mach numbers
are presented in Figure 57. Figures a — ¢ depicts subsonic cases (M4, < 0.5), while
the fourth figure is at transonic conditions. At M., = 0.75 a shock is present in

the flow above the upper surface of the airfoil as can be seen in Figure 57(d).
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Figure 58 shows the C), distribution for the airfoil at M, = 0.1,0.4,0.5,0.75
and o = 0°. The pressure coefficient is negative for pressure values less than
the free-stream, which occurs on the top of the airfoil. In plots of the pressure
coefficients for airfoils, the negative of the pressure coefficient is usually plotted
to indicate that the lower pressure region is on the top of the airfoil and the high
pressure region is on bottom of the airfoil.

(d)

Figure 57: Distribution of velocity as computed on the (128 x 48) mesh, for dif-
ferent incident Mach numbers. a) M, = 0.1, b) M, = 0.3, ¢) M, = 0.5, d)
M, = 0.75. Observe the shock appearing at the top and bottom surfaces.
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o—eo M=0.1

Figure 58: The distribution of pressure coefficient as computed using (128 x 48)
mesh, for different Mach numbers at a = 0°.

Table 30: Results of the circulation I' for four cases of Mach number.
Circulation | Moo = 0.1 | Moo =03 | Moo = 0.5 | Moo =0.75
T | 1.221e-02 | 3.831e-02 | 7.097e-02 [  0.159

12.7.1 AMG performance

The first coarse-level for each case described above is sketched in Figure 59. When
the flow is practically incompressible, the discrete operator is nearly isotropic and
the points that comprise the coarse-level are distributed uniformly, as can be seen

in Figure 59(a).
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(a) (b)
(c) (d)

Figure 59: A magnified view of the coarsening area around the airfoil. Fine- and
first coarse-level of the airfoil with a@ = 0° for four cases of Mach number: a)
My, =0.1,b) My =0.3, ¢c) M, =0.5,d) My, =0.75. A blue point indicates an
F-point and a red point indicates a C-point.

Table 31 presents the discrete Lo-norm of the residual and the convergence
rate for each case of Mach number described above. The residual norm decreased
rapidly for 10 to 12 V-cycles with the value in the corresponding ||R™||, column,
while in the last few cycles a constant value was reached (asymptotic convergence
rate). In the first three cases of M., = 0.1, M, = 0.3, and M., = 0.5, the setup
phase was implemented only once, followed by 12 V-cycles. Solving the problem
on reduced resolution maintained the structure of the fine-scale problem and the
convergence factor remained nicely bounded independent of the problem size. In
the transonic case of M, = 0.75, where the compressibility became significant,
the results were obtained by repeating the setup phase 6 times while applying two
V-cycles between each update. This resulted in a total of 12 V-cycles until the
residual decreased to the desired level of “107!°. The transonic case provides a
more difficult test for the algorithm. The convergence rate in the first three cycles
is slightly damaged mainly due to the dominant nonlinearity. Although the first
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three cycles are slow to converge, in the remaining V-cycles the convergence rate
is lower than 0.17 without any the extra relaxation sweeps on the fine-level.

The grid complexity and operator complexity are presented in Table 32. It
is clear that when the flow is subsonic the complexities are bounded. In the
case of M, = 0.75, the complexities are somewhat high, relative to our above
requirements, while the reasons for the increased complexities are similar to those
stated in the previous problems (for instance channel with a bump). A possible
way to improve the complexities is by aggressive coarsening. This approach was
implemented but, as expected, the convergence became considerably slower (above
0.3). Aggressive coarsening not only causes the smoothing to be less effective but
also interpolation is significantly less accurate.

The convergence histories for the five cases are described in Figure 60. The
effect of the Mach number on the AMG performance is clearly visible. The case
of My, = 0.75 results in a supersonic flow regime (in the upper surface) that is
terminated by a shock wave. Convergence is somewhat slower here. It requires
nearly 12 V-cycles to decrease the Ly-norm of the residual to a level of 10719,
which is twice the number of AMG iterations required in the case of M., = 0.1.

Table 31: The results of AMG V-cycles applied to the flow around a NACA-2822.
The second norm of the residual ||[R™|, and the convergence rate Cy after each
V-cycle are presented for mesh size 128 x 48.

M, =0.1 My =0.3 My =0.5 My =0.75
Veeyele | [IB™l, Gy | IB™l,  Cr | IIB™l, Gy | IB™, G
0 5.649e-03 - 6.100e-02 - 0.102e-00 - 8.442e-02 -
1 6.026e-04 0.10 | 1.850e-02 0.30 | 2.445e-02 0.03 | 5.955¢-02 0.70
2 6.644e-05 0.11 | 1.622e-03 0.09 | 2.668e-03 0.11 | 8.632¢-03 0.14
3 5.636e-06 0.08 | 1.469e-04 0.09 | 2.116e-04 0.08 | 1.459e-03 0.17
4 4.483e-07 0.08 | 1.330e-05 0.09 | 1.898e-05 0.09 | 2.469e-04 0.17
5} 3.460e-08 0.08 | 1.195e-06 0.09 | 1.594e-06 0.08 | 3.680e-05 0.15
6 2.680e-09 0.08 | 1.072e-07 0.09 | 1.591e-07 0.10 | 5.388e-06 0.15
7 2.093e-10  0.08 | 9.687e-09 0.09 | 1.533e-08 0.10 | 7.915e-07 0.15
8 1.658e-11  0.08 | 8.748e-10 0.09 | 1.200e-09 0.08 | 1.207e-07 0.15
9 1.330e-12  0.08 | 7.891e-11 0.09 | 9.192e-11 0.08 | 1.945e-08 0.16
10 1.051e-13  0.08 | 7.076e-12 0.09 | 1.041e-11 0.11 | 3.354e-09 0.17
11 1.580e-14  0.15 | 5.900e-13 0.08 | 1.128e-12 0.11 | 5.695e-10 0.17
12 1.515e-14 0.96 | 7.421e-14 0.13 | 6.260e-14 0.06 | 9.681e-11 0.17

Table 32: Grid complexity Cq and operator complexity C', for four cases of Mach
number.

complexities | Moo =0.1 | Moo =03 | Moo = 0.5 | My = 0.75

Cao 1.90 1.92 1.96 2.08
Cr 3.03 2.94 3.02 4.95
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Figure 60: Convergence histories.

This problem was solved for two more grid sizes of 64 x 24 and 32 x 12. Con-
vergence factor Cy and Lo-norm of the residual ||[R™||, are presented in Table 33.
We observe that for subsonic flow the AMG exhibits the same type of convergence
that was observed on the finer grid. The residual Ly-norm is decreased by a rela-
tively constant factor, less than an order of magnitude per each V-cycle. It takes
about 8 V-cycles to reach a residual of 107'2. As the Mach number increases the
convergence degrades, albeit we find it still very efficient for this problem in light
of the strong irregularity and anisotropy. The storage requirements are larger than
that for the subsonic (isotropic case) since AMG performs one-dimensional coars-
ening in the azimuth direction at the farfield since the strong connection in the
&-direction (azimuthal direction) arises from a large grid spacing in 7- direction.
This fact has an adverse effect on the complexities.
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Table 33: The results of AMG V-cycles applied to the flow around NACA-2822
with a = 0°. The second norm of the residual ||R™||, after each V-cycle and the
convergence factor C; are detailed for two mesh sizes, 32 x 12 and 64 x 24.

M., =0.1 M., =0.3
grid size — 32 x 12 64 x 24 32 x 12 64 x 24
Veeyce | [R™,  Cy | IR™l,  Cr | IR™, Gy | IR,  Cy
0 1.328e-03 — 1.114e-02 — 4.288e-03 — 3.296e-02 —
1 1.004e-04 0.07 | 9.747e-04 0.08 | 5.875e-04 0.13 | 6.170e-03 0.18
2 7.135e-06  0.07 | 9.205e-05 0.09 | 5.933e-05 0.10 | 4.919e-04 0.08
3 4.870e-07 0.07 | 7.371e-06 0.07 | 5.348e-06 0.09 | 3.398e-05 0.07
4 3.277e-08 0.07 | 5.523e-07 0.07 | 4.673e-07 0.09 | 2.294e-06 0.07
5 2.213e-09 0.07 | 4.058e-08 0.07 | 4.059e-08 0.09 | 1.552¢-07 0.07
6 1.510e-10 0.07 | 2.974e-09 0.07 | 3.521e-09 0.09 | 1.054e-08 0.07
7 1.041e-11  0.07 | 2.186e-10 0.07 | 3.052e-10 0.09 | 7.190e-10 0.07
8 7.247e-13  0.07 | 1.613e-11 0.07 | 2.640e-11 0.09 | 4.921e-11 0.07
9 5.064e-14 0.07 | 1.194e-12 0.07 | 2.277e-12 0.09 | 3.384e-12 0.07
10 3.700e-15 0.07 | 8.842e-14 0.07 | 1.963e-13 0.09 | 2.333¢-13 0.07
11 7.061e-16 0.19 | 6.497e-15 0.07 | 1.703e-14 0.09 | 1.696e-14 0.07
12 5.735e-16  0.81 | 1.619e-15 0.25 | 2.390e-15 0.14 | 5.257e-15 0.07
Cq 1.85 1.90 1.89 1.91
o)) 2.54 2.91 2.53 2.82
My, =0.5 M., =0.75
grid size — 32 x 12 64 x 24 32 x 12 64 x 24
Veeyde | R, Cp | [R™,  Cp | IB™,  Cp [ Ry,  Cy
0 8.552¢-03  — | 7.200e-02 - | 5.126e-02  — | 8.727e-02 -
1 2.801e-03 0.32 | 5.950e-02 0.82 | 2.350e-02 0.45 | 4.070e-02 0.46
2 2.861e-04 0.10 | 6.592e-03 0.11 | 6.902e-03 0.29 | 2.065e-03 0.05
3 2.719e-05 0.10 | 7.183e-04 0.11 | 2.262e-03 0.33 | 2.500e-04 0.12
4 2.511e-06 0.09 | 7.851e-05 0.11 | 1.746e-04 0.08 | 1.467e-05 0.06
5 2.294e-07 0.09 | 8.533e-06 0.11 | 1.155e-05 0.07 | 2.934e-06 0.20
6 2.085e-08 0.09 | 9.283e-07 0.11 | 7.904e-07 0.07 | 4.916e-07 0.17
7 1.886e-09 0.09 | 1.013e-07 0.11 | 4.775e-08 0.06 | 8.675e-08 0.18
8 1.700e-10  0.09 | 1.105e-08 0.11 | 5.469e-09 0.11 | 1.339e-08 0.15
9 1.527e-11  0.09 | 1.206e-09 0.11 | 4.527e-10 0.08 | 1.897e-09 0.14
10 1.355e-12  0.09 | 1.316e-10 0.11 | 4.591e-11 0.10 | 2.564e-10 0.14
11 1.084e-13 0.08 | 1.439e-11 0.11 | 7.794e-12 0.17 | 3.513e-11 0.14
12 8.545e-15 0.08 | 1.597e-12 0.11 | 4.771e-12 0.61 | 6.247e-12 0.18
Cq 1.91 1.92 1.98 2.02
cy, 2.63 2.82 3.94 4.60

Table 34 shows the FMG performance applied to the flow around an NACA-
2822 airfoil with a = 0° for cases of four different free-stream Mach numbers with
mesh size of 128 x 48 cells. The row labeled “FMG(1,1), number of levels” lists
how many coarse-levels (geometrically coarsened h — 2h) were needed in the FMG
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scheme. The row labeled “AMG V(1,1) cycles” gives the number of AMG V-cycles
used until a desired level of residual was reached in each coarse-level. Also the
average convergence factor is presented for each level. In the case of M, < 0.5,
five AMG V-cycles were applied in each coarse-level as part of the FMG algorithm.
Observe that the average convergence rate were around an order of magnitude per
cycle. It was clear that when the flow is subsonic through all the domains, five
V-cycles were sufficient for getting a reasonable correction on the fine-level. In the
transonic case ten V-cycles were applied in each coarse-levels.

Table 34: The FMG performance applied to the flow around an airfoil NACA-
2822 with a = 0° for four Mach numbers. The FMG(1,1) scheme has one SGS
relaxation on the descent phase and one SGS relaxation on the ascent phase. The
FMG(1.1) number of levels is presented in the first row. The second row includes
the AMG V-cycles performed in the FMG process. The average convergence factor
between successive AMG V-cycles is presented in the third row.

My =0.1 My =0.3
grid size — 32x 12 | 64x 24 | 128 x 48 | 32x 12 | 64 x 24 | 128 x 48
FMG(1,1), number of levels 3 4 4 3 4 4
AMG V(1,1) - cycles 1 5 5 1 5 5
Average convergence factor,Cy - 0.09 0.10 - 0.09 0.10
My =0.5 My =0.75
FMG(1,1), number of levels 3 4 4 3 4 4
AMG V(1,1) - cycles 1 5 5 1 10 10
Average convergence factor,Cy - 0.11 0.12 - 0.12 0.12

12.8 Transonic diffuser

The purpose of this test-case is to evaluate the AMG performance while simu-
lating the operation of a converging-diverging diffuser, which is an important and
basic component associated with propulsion and the high speed flow of gases. This
application often places strong demands on CFD algorithms. For example, one
purpose of the diffuser is to decelerate the flow ahead of the engine. Another pur-
pose is to connect the inlet with the engine. In many cases, the inlet and engine
axes are offset, and the diffuser must turn the flow [14]. In this exercise, both sub-
sonic and transonic flow through a converging-diverging diffuser are investigated.
Mach number variation and shock formation may be examined. This flow problem
can be found practically in any gas dynamics textbook for example [15, 14].

12.8.1 Problem definition and boundary condition

The diffuser has a rectangular cross-section. It has a flat bottom wall and a
converging-diverging channel with a maximum 10° divergence angle at the top
wall. A diagram of the diffuser model is shown in Figure 61. The coordinates of
the transonic diffuser are presented in Figure 35. The ratio of the inlet area to
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the throat area is AA¢ = 1.4114 and the ratio of the exit area and the throat

throat

area is % = 1.5. This problem was solved on grids with three different levels
of resolutions in order to check the AMG’s scalability. These grids are as follows:
120 x 40, 60 x 20, and 30 x 10, while the finer mesh is presented in Figure 62. The
grid is clustered close to upper and lower walls and in the throat (horizontally),

with a stretching factor of 1.1.
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Table 35: Coordinate of the transonic diffuser.

o m] | yiml | 2,lm] | y.[m]
-4.04000 0 2.03921 | 1.08010
8.65000 0 2.11764 | 1.08713
-4.04000 | 1.49986 | 2.19608 | 1.09446
-3.75143 | 1.41140 | 2.27451 | 1.10208
-3.46286 | 1.41140 | 2.35294 | 1.10998
-3.17429 | 1.41140 | 2.43137 | 1.11816
-2.88572 | 1.41140 | 2.50980 | 1.12661
-2.59714 | 1.41140 | 2.58824 | 1.13531
-2.30857 | 1.41140 | 2.66667 | 1.14425
-2.02082 | 1.38302 | 2.74510 | 1.15343
-1.73635 | 1.28072 | 2.82353 | 1.16282
-1.45928 | 1.17730 | 2.90196 | 1.17242
-1.19451 | 1.10234 | 2.98039 | 1.18220
-0.94667 | 1.05538 | 3.05882 | 1.19215
-0.71915 | 1.02827 | 3.13725 | 1.20226
-0.51364 | 1.01346 | 3.21569 | 1.21249
-0.33014 | 1.00577 | 3.29412 | 1.22284
-0.16727 | 1.00204 | 3.37255 | 1.23329
-0.02270 | 1.00046 | 3.45188 | 1.24381
0.10619 1.00001 | 3.53484 | 1.25449
0.22237 | 1.00019 | 3.62593 | 1.26570
0.32846 1.00083 | 3.73060 | 1.27801
0.42677 | 1.00184 | 3.85392 | 1.29211
0.51926 | 1.00316 | 3.99963 | 1.30860
0.60748 1.00475 | 4.16959 | 1.32777
0.69263 1.00658 | 4.36380 | 1.34954
0.77560 1.00866 | 4.58076 | 1.37333
0.85708 | 1.01099 | 4.81792 | 1.39815
0.93752 | 1.01357 | 5.07227 | 1.42268
1.01727 1.01642 | 5.34067 | 1.44548
1.09656 1.01953 | 5.62020 | 1.46514
1.17554 | 1.02293 | 5.90828 | 1.48057
1.25432 1.02661 | 6.20279 | 1.49121
1.33297 | 1.03058 | 6.50201 | 1.49720
1.41154 | 1.03486 | 6.80461 | 1.49956
1.49006 1.03943 | 7.10959 | 1.49999
1.56854 | 1.04432 | 7.41623 | 1.50000
1.64701 | 1.04951 | 8.03242 | 1.50000
1.72546 | 1.05501 | &.34121 | 1.50000
1.80390 | 1.06082 | &.65000 | 1.50000
1.88234 | 1.06694 — —

1.96078 1.07336 — —
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Figure 61: A diagram of the transonic diffuser.

Figure 62: Mesh used for the flow through the transonic diffuser.

The following boundary conditions were specified:

e Subsonic flow at the inlet and the mass flow rate at the outlet are the same,
in the x-direction.

e Solid-wall boundary condition at the top and bottom of the diffuser.

12.8.2 Qualitative results

The overall characteristics of flow field were examined to make sure that the so-
lution reflected the expected behavior. Figure 63 presents cases of subsonic and
transonic flow. Figure 63(a) shows the flow through the diffuser when it is com-
pletely subsonic. The flow accelerates out of the chamber through the converging
section, reaching its maximum speed at the throat. The flow then decelerates
through the diverging section. Figure 63(d) presents the case where the Mach
number at the inlet is increased to M, = 0.46. The flow at the throat reaches
the sonic speed (choked throat). Unlike the subsonic flow, the supersonic flow
accelerates as the cross-section area is increased. The region of the supersonic
acceleration is terminated by a normal shock wave, as can be seen in Figure 63(d).

In order to verify the simulation results, in the subsonic region where the flow
is isentropic, the relation between the geometry and the flow properties is needed.
The flow of fluid in the transonic-diffuser can be modeled by assuming isentropic
flow. The ideal gas assumption relates density, pressure, and temperature,

p = pRT. (200)

Isentropic flow, no change in entropy, is possible if no heat transfer or friction
occurs. The properties v and R fully specify an ideal gas. Sonic velocity of an
ideal gas is a function of gas properties and temperature, thus,

M=ro L

¢ ART

(201)
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With these assumptions of ideal gas and isentropic flow, the ratios of pressure,
density, and temperature can be related to their stagnation values at a given
Mach number by the following relations:

~

PO ’y—l 2ﬁ
D1+ Mm
p (i)

TO Y — 1 9
—=(14—-M
T ( + 5 ) ; (202)
LN
P _ (1 + LM2> .
p 2
The mass conservation is given by
pAV = p* A*V* = const. (203)

This equation states that the mass flowing through the nozzle must be constant.
The superscript “star” signifies critical conditions (when the flow reaches a sonic
speed), where the Mach number is unity at the throat. It is possible to express
the area ratio 4/4+ in terms of the Mach number of the flow,

A 1

A M,

2 oo . (204)

—1
L+ 3

According to Eq. (204) when the inlet Mach number is M., = 0.46, as com-
puted in Figure 63(d), Eq. (204) becomes 2.01, which is exactly the ratio between
the inlet area and the throat area. Thus, there is a good agreement between the
nozzle theory calculations and the numerical simulation.

A pressure coefficient along the diffuser upper wall for four cases of inlet velocity
is presented in Figure 64. No significant differences are observed between the
results obtained with Mach number ranging from 0.01 to 0.3. A strong pressure
gradient is present in the case of M., = 0.46 where a shock is obtained at the
diverging section of the diffuser.
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Figure 63: Mach number isolines as computed on the (120 x 40) mesh, for an
inlet Mach number: a) M., = 0.01, b) M, = 0.1, ¢) M, =0.2,d) M, = 0.3, ¢)
M, = 0.46. Fifty contours were sketched between the maximum and minimum
presented Mach numbers. Observe the shock wave in the fourth case.
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Figure 64: The pressure coefficient calculated on the upper wall using the
(121 x 41) mesh size for the above flow conditions. Observe the shock appear-
ing when M., = 0.465.

12.8.3 AMG performance

So far we have considered only symmetric problems. Practical experience has
shown that no particular problems were caused while solving a nonsymmetric
problem. The main reason for that is the way we construct the coarse-level ma-
trix. Using the coarsening process while using a direct approximation (detailed
in Section 8) rather than Galerkin operator, we are not limited in the type of
resultant coarse-level matrix that is obtained — for instance, whether the matrices
are positive definite, weakly diagonally dominant, or a various class of matrices
that are not in the M-matrix form (with large negative entries off-diagonal). In
the following example and the next one (flow through a nozzle), AMG turned out
to yield robust and fast convergence.

The first coarse-level for each case described above is sketched in Figure 65.
When the flow is incompressible (M = 0.01), the operator is nearly isotropic and
is constructed of a nearly 17-point stencil (most of the points “far away” from the
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point i are very small, so this operator “behaves” as a nine-point stencil). However,
since the grid is highly stretched near the bottom and upper walls and also in the
throat area, this irregularity affects the coarse points selection, as can be seen
in Figure 65(a). It can be seen that a red-black coarsening is obtained through
most of the domain except at the convergent and divergent parts of the throat,
where two kinds of coarsening patterns were obtained. In the throat (where the
area is minimal) the cell’s aspect ratio is nearly unity; therefore, the coarsening
algorithm distributes the coarse points uniformly. In the convergent and divergent
parts of the diffuser, where the anisotropy is largest, the grid is coarsened in the
direction of strong connection, in the y-direction. A significant contribution to the
strong connection in the y-direction is the irregularity of the grid in these areas.
As the velocity is increased the equation becomes anisotropic, and in the case
of My, = 0.46 the dynamic threshold was applied in order to reach convergence.
Since the coarsening process while using the dynamic threshold yields larger coarse
operators (since more coarse-points are selected), this phenomenon is well reflected
in the coarsening pattern presented in Figure 65(d). However, except for the
uniform coarsening in the throat area, the coarsening pattern is essentially the
same.
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Figure 65: The finest and the first coarse-level for mesh size of (121 x 41). The
red color corresponds to the C-point and the blue color corresponds to the F-
point. The four test cases are solved with various flow conditions as follows: a)
M, = 0.01, b) M, = 0.1, ¢) My = 0.3, d) My, = 0.462. The pictures on the
right are magnified views of the coarsening pattern around the throat area.

Table 36 presents the discrete Lo-norm of the residual for each case of Mach
number described above. Both the Mach contours and the convergence history are
evidence that the AMG solves the problem to the level of discretization on each
grid. The residual norm decreased rapidly for 8 to 10 V-cycles with the value in
the corresponding || R™||, column, while in the last few cycles a constant value was
reached (asymptotic convergence rate). In the first two cases of M., = 0.01 and
My, = 0.1, the setup phase was implemented only once, followed by 8 V-cycles.
Solving the problem on reduced resolutions, the structure of the fine-scale problem
remains very similar and so does the convergence factor, verifying that the solver’s
efficiency is independent on the problem size.. In the case of M, = 0.3, where
the compressibility became significant, the results were obtained by repeating the
setup phase six times while applying two V-cycles between each update. This
results in a total of 8 V-cycles until the residual decreased to the desired level
of 710!, The transonic case, M., = 0.46, provides a more difficult test for the
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algorithm. In this case the setup phase was repeated 6 times resulting in 12 V-
cycles. The convergence rate in the first three cycles was deteriorated slightly.
Although the first three cycles are slower to converge, in the remaining V-cycles
the convergence rate is lower than 0.1 without any local smoothing sweeps around
the shock waves.

The convergence histories for the five cases are depicted in Figure 66. The effect
of the Mach number on the AMG performance is clearly shown. In the first three
cases, when the flow is subsonic, it takes around 8 cycles to reduce the Lo-norm
of the residual to a level of 107!°. The case of M, = 0.46 results in a supersonic
flow regime that is terminated by a shock wave. Convergence is somewhat slower
here. It requires nearly 12 multigrid cycles to decrease the Lo-norm of the residual
to a level of 10710,

The grid complexity and operator complexity are presented in Table 37. It is
clear that when the flow is subsonic the complexities are bounded. In the case
of M., = 0.46 an operator complexity of C, = 3.80 is too high, relative to our
requirements, while the reasons for the increased complexities are similar to those
stated in the previous problems. Two possible ways to improve the complexities for
the transonic case (M, = 0.46) are by more aggressive coarsening or truncation
of the coarse-level operator.

Table 36: The results of AMG V-cycles applied to the flow through the transonic
convergent-divergent diffuser. The second norm of the residual ||R™||, and the
convergence factor C'y are presented for each AMG V-cycle. The mesh size 120 x40.

My, =0.01 My =0.1 My =03 Mo, = 0.46
Veycle | [IB™l, Gy | IB™l, GO | IIB™l, Gy | IR™, G
0 4.933e-04 - 4.947e-03 - 1.366e-02 - 1.861e-02 -
1 1.120e-04 0.22 | 1.140e-03 0.23 | 6.865e-03 0.50 | 3.588e-03 0.19
2 5.680e-06  0.05 | 5.566e-05 0.05 | 3.771le-04 0.05 | 1.364e-03 0.38
3 3.859e-07 0.07 | 3.382e-06 0.06 | 3.187e-05 0.08 | 5.269¢-04 0.39
4 2.778e-08 0.07 | 2.050e-07 0.06 | 2.799¢-06 0.09 | 3.287e-04 0.62
) 2.102e-09 0.08 | 1.307e-08 0.06 | 1.293e-07 0.05 | 2.177e-05 0.07
6 1.609e-10  0.08 | 8.361e-10 0.06 | 8.572e-09 0.07 | 1.634e-06 0.08
7 1.242e-11  0.08 | 5.359%-11 0.06 | 8.630e-10  0.10 | 1.834e-07 0.11
8 9.620e-13  0.08 | 3.395e-12 0.06 | 2.682e-11 0.03 | 1.905e-08 0.10
9 7.469e-14 0.08 | 2.157e-13 0.06 | 4.277e-12 0.16 | 1.798e-09 0.09
10 6.379-15 0.09 | 3.707e-14 0.17 | 3.189%-13 0.07 | 2.258e-10 0.13
11 2.832e-15 0.44 | 3.088e-14 0.83 | 1.283e-13 0.40 | 1.966e-11  0.09
12 2.607e-15 0.92 | 3.082e-14 1.00 | 1.342e-13 1.05 | 2.260e-12 0.11
13 - - - - - - 3.300e-13  0.15
14 - - - - - - 2.285e-13  0.69
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Complexities | Mo = 0.01 | Mo = 0.1 | Mo = 0.3 | Moo = 0.46

Ca 1.74 1.74 1.77 2.03
Cr 2.44 2.48 2.54 3.80

Table 37: Grid complexity Cq and operator complexity C', for four cases of Mach
number.
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AMG V-cycles

Figure 66: Convergence histories.

Table 38 shows the average number of rows and number of nonzeros for the
above four cases of M., = 0.01 — 0.46. Several comments are in order here. The
problems were solved with maximum 6 levels. Fixed threshold is applied to the
first three cases while in the fourth case of M, = 0.46 a dynamic threshold is
applied. A second pass process is implemented only in the first coarse-level, for
all the test cases. In the case of M, = 0.01 the coarsening is relatively fast with a
coarsening ratio of 0.45. This can be clearly seen in the coloring scheme described
in Figure 65(a). Subsequent coarsening then becomes slightly faster because the
coarse-level, which was produced by direct approximation (see Section 8), becomes
larger on coarser levels. Also in this case, the number of nonzeros is decreased in
the coarse-levels while the situation is different as the anisotropy is increased. In
the case of M., = 0.3, the first coarsening step tends to be relatively fast (0.5), in
terms of reduction of grid points, while at the same time the size of the resulting
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stencil on the second level becomes substantially larger than on the finest one.
The situation is even more dramatic as the anisotropy is increased. The reason
for the relatively slow coarsening for M., > 0.3 is due to the increased stencil
size in the first coarse-level and the dynamic threshold as a measure of strength
between the matrix variables. The alternative to use a fixed threshold, particularly
in this transonic case, would result in a much slower convergence rate, as already
described above.

This problem was solved for two more cases of mesh consisting of 64 x 24 and
32 x 12 points. Both the Lo-norm of the residual and the convergence factor for two
cases of M, = 0.1 and M, = 0.46 are presented in Table 39. The grid complexity
and operator complexity for these cases are also presented in Table 39. As one
can see, for both grid sizes the residual norm decreases by a relatively constant
factor with each V-cycle. This continues until it levels off after about 12 V-cycles.
Although each V-cycle gives good convergence, as the resolution is decreased one
might expect a faster convergence and not slower as is presented for both cases of
Mach numbers (see Table 36). In order to check if this degradation is a result of an
error that is not sufficiently smooth, an extra relaxation was applied on the finest
level, but the convergence rate was marginally improved. This result ensures that
the main source of this degradation is the interpolation process, which becomes
much less accurate when the grid is more and more “diluted”. Another possible
reason that contributes to the overall degradation in small scale problems is the
stretching of the grid near the boundaries, which becomes more extreme as the
the resolution is decreased. This situation is more dramatic when supersonic flow
regions are involved, as can be seen in Table 39.

Also in this context, for M., = 0.46 one can see that the operator complexity
with grid size 60 x 20 is C, = 3.23, which is slightly improved compared to
C', = 3.80 obtained in a grid size of 120 x 40. This change is mainly a result of
the grid irregularity. As the resolution decreased, the coarse-level matrix contains
many fewer nonzeros compared to the fine-level. For instance, in grid size 60 x 20
the first coarse-level contains 12.5 nonzeros more than the finest level (first coarse-
level - 79365 nonzeros, finest level - 69424 nonzeros). For grid size 120 x 40 the
first coarse-level contains 25% more nonzeros than the finest level (coarse-level -
108127, finest level - 83224 points). This increase of the coarse-level operator, at
least in the first coarse-level, influenced the operator complexity substantially. In
order to understand it intuitively, the best way is to look at the first coarse-levels
for the above two resolutions, as sketched in Figure 65 for M., = 0.46. In grid size
80 x 50, in the convergent area of the diffuser a line-wise coarsening is obtained in
the y-direction. On the other hand, in the same region but with grid size 120 x 40
a red-black coarsening was obtained. As a consequence, since the final values of
Cq and O, are influenced by the size of the coarse-level operators, much larger
values were obtained. For both grid sizes 120 x 40 and 80 x 50, except for the
throat area, the coarsening pattern is essentially the same.
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Table 38: The Results of AMG V-cycles applied to the flow through a transonic
diffuser.

Number of rows

Level | Moo =001 My,=01 M,=03 My, =0.46

A™ 4800 4800 4800 4800
Amtl 2204 2203 2257 2400
Amt2 897 907 1029 1321
Amt3 337 347 435 859
Amtd 125 126 177 534
AmtS - - 66 315
Am+6 - - - 188

Number of nonzeros

A 83224 83224 83224 83224
Amtl 67374 70068 100602 108127
Amt2 34140 33831 48820 60688
Amt3 14229 14740 22982 33948
Am+4 4698 4813 7805 17736
AMES - - 1676 8836
Am+6 - - - 3697

Average entries per row

Am 17.3 17.3 17.3 17.3
Amtl 30.5 31.8 44.5 45
Amt2 38 37.2 47.4 45.9
Amt3 42.2 42.4 52.8 39.5
Amta 37.5 38.1 44 33.2
AmES - - 25.4 28
AMFE - - - 19.6
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Table 39: The results of AMG V-cycles applied to the flow through the transonic
diffuser. The discrete second norm of the residual ||R™||, after each V-cycle and
the convergence factor C; are presented for various Mach numbers and two grids
of 32 x 12 and 64 x 24.

M., = 0.01 Mo =0.1
grid size — 30 x 10 60 x 20 30 x 10 60 x 20
V-cycle IBR™ly  Cp | IR™,  Cp | |R™ly  Cr | |IR™],  Cy
0 2.226e-03  — | 1.672e-03 - | 2.227e-02 - | 1.674e-02 -
1 2.837e-04 0.12 | 1.681e-04 0.10 | 2.859¢-03 0.12 | 1.856e-03 0.11
2 1.442¢-05 0.05 | 5.516e-06 0.03 | 1.450e-04 0.05 | 5.142¢-05 0.03
3 8.765e-07 0.06 | 1.695¢-07 0.03 | 9.540e-06 0.07 | 1.806e-06 0.04
4 5.857¢-08  0.07 | 6.545¢-09 0.04 | 6.834e-07 0.07 | 6.405¢-08 0.04
5 4.259e-09 0.07 | 2.411e-10 0.04 | 5.254e-08 0.08 | 2.707e-09  0.04
6 3.384e-10  0.08 | 1.020e-11  0.04 | 4.352e-09 0.08 | 1.090e-10  0.04
7 2.912e-11  0.09 | 4.207e-13  0.04 | 3.869¢-10 0.09 | 4.749e-12  0.04
8 2.668¢-12 0.09 | 1.978¢-14 0.05 | 3.645e-11 0.09 | 2.168¢-13  0.05
9 2.558¢-13  0.10 | 1.493e-15 0.08 | 3.592e-12 0.10 | 2.024e-14  0.09
10 2.520e-14 0.10 | 1.315e-15 0.88 | 3.704e-13  0.10 | 1.911e-14 0.94
11 2.930e-15  0.12 - ~ | 457314 0.12 - -
12 1.356e-15  0.46 - ~ | 2.217e-14 048 - -
Co 1.73 1.80 1.78 1.80
CyL 1.88 2.41 2.01 2.42
M., =03 Mo = 0.46
grid size — 30 x 10 60 x 20 30 x 10 60 x 20
V-cycle [B™ly  Cr | IR™l,  C¢ | [[R"ly,  Cr | IR,  Cf
0 6.725e-02 - | 5.072e-02 - | 0.104e-00 - | 7.933¢-02 -
1 1.002e-02  0.14 | 6.992e-03 0.13 | 2.162e-02 0.21 | 1.321e-02 0.16
2 1.097¢-03  0.11 | 5.183e-04 0.07 | 8.839e-03 0.41 | 5.217e-03 0.39
3 1.173¢-04  0.11 | 5.436e-05 0.10 | 7.796e-03 0.88 | 5.063¢-03 0.97
4 5.255e-06 0.04 | 1.650e-06 0.03 | 1.462e-03 0.19 | 1.030e-03  0.20
5 2.775e-07  0.05 | 1.107e-07 0.07 | 9.841e-04 0.67 | 3.262e-04 0.32
6 1.556e-08 0.06 | 2.566e-09 0.02 | 9.841e-05 0.10 | 3.372e-05 0.10
7 9.057e-10  0.06 | 2.278-10 0.09 | 7.197e-06 0.07 | 3.813¢-06 0.11
8 5.511e-11  0.06 | 5.227e-12  0.02 | 5.207¢-07 0.07 | 1.663e-07 0.04
9 3.537e-12  0.06 | 4.342e-13  0.08 | 4.302¢-08 0.08 | 1.083¢-08 0.07
10 2.474e-13  0.07 | 6.287e-14 0.14 | 3.765¢-09 0.09 | 7.768e-10 0.07
11 3.402e-14  0.14 | 6.740e-14 1.07 | 3.177e-10 0.08 | 6.514e-11  0.08
12 2.609e-14  0.77 - - | 2.592e-11  0.08 | 5.153e-12  0.08
Co 1.67 1.81 2.02 1.98
cr 1.94 2.46 2.46 3.23
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(b)

Figure 67: A magnified view of the central area of the diffuser. Shown are the
finest and the first coarse-level created by: a) grid size 120 x40, b) grid size 80 x 50.
Both cases correspond to M., = 0.46.

12.9 Nozzle

The next example is flow through a nozzle. The rocket engine nozzle has three
functions: to produce thrust, to conduct the exhaust gases back to the free-stream,
and to set the mass flow rate through the engine. A diagram of the nozzle can
be seen in Figure 68. The coordinates of the nozzle which are depicted in Table
40, were obtained by a security institute. The nozzle has a rectangular section,
a flat bottom wall, and a converging-diverging channel with a maximum angle
of 30° at the top wall. The convergent part follows a curved contour while the
contour of the divergent part is a straight line. The ratio of the inlet area to the
throat area is AAA = 1.4114 and the ratio of the exit area and the throat area

throat

is % = 1.5. Figure 69 is the mesh used for the calculation. The mesh size is

96 x 48 and it is clustered close to the upper and lower walls vertically and in the
throat horizontally , with a stretching factor of 1.1.
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Table 40: Coordinates of the Nozzle.
z,m] | y[m] | =z,[m] | y[m]
-0.20000 0 -0.03055 | 0.04721
0.06100 0 -0.02835 | 0.04520
-0.20000 | 0.11620 | -0.02617 | 0.04330
-0.19000 | 0.11620 | -0.02402 | 0.04139
-0.18078 | 0.11620 | -0.02188 | 0.03949
-0.17225 | 0.11620 | -0.01976 | 0.03761
-0.16433 | 0.11620 | -0.01765 | 0.03574
-0.15694 | 0.11620 | -0.01555 | 0.03389
-0.15003 | 0.11620 | -0.01346 | 0.03208
-0.14355 | 0.11620 | -0.01138 | 0.03022
-0.13746 | 0.11620 | -0.00930 | 0.02840
-0.13170 | 0.11620 | -0.00723 | 0.02663
-0.12626 | 0.11620 | -0.00516 | 0.02479
-0.12111 | 0.11620 | -0.00309 | 0.02311
-0.11621 | 0.11620 | -0.00102 | 0.02167
-0.11154 | 0.11582 | 0.00106 | 0.02076
-0.10709 | 0.11420 | 0.00314 | 0.02030
-0.10283 | 0.11058 | 0.00523 | 0.02034
-0.09875 | 0.10718 | 0.00733 | 0.02083
-0.09484 | 0.10385 | 0.00944 | 0.02147
-0.09108 | 0.10063 | 0.01157 | 0.02211
-0.08745 | 0.09752 | 0.01371 | 0.02278
-0.08396 | 0.09450 | 0.01587 | 0.02345
-0.08059 | 0.09156 | 0.01805 | 0.02412
-0.07732 | 0.08872 | 0.02026 | 0.02476
-0.07416 | 0.08595 | 0.02249 | 0.02544
-0.07109 | 0.08325 | 0.02474 | 0.02608
-0.06811 | 0.08066 | 0.02703 | 0.02674
-0.06522 | 0.07812 | 0.02935 | 0.02743
-0.06239 | 0.07559 | 0.03170 | 0.02812
-0.05964 | 0.07316 | 0.03410 | 0.02882
-0.05695 | 0.07078 | 0.03653 | 0.02952
-0.05433 | 0.06844 | 0.03902 | 0.03022
-0.05175 | 0.06614 | 0.04155 | 0.03092
-0.04924 | 0.06389 | 0.04413 | 0.03163
-0.04676 | 0.06172 | 0.04677 | 0.03234
-0.04434 | 0.05956 | 0.04947 | 0.03305
-0.04195 | 0.05739 | 0.05224 | 0.03380
-0.03961 | 0.05527 | 0.05508 | 0.03455
-0.03730 | 0.05323 | 0.05800 | 0.03532
-0.03502 | 0.05118 | 0.06100 | 0.03610

-0.03277 | 0.04915 — -

168
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Figure 68: Nozzle diagram.
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Figure 69: Mesh used for the converging-diverging nozzle flow test case.

The following boundary conditions were specified:

e A subsonic flow at the inlet and the same mass flow rate at the outlet, in
the z-direction.

e Solid-wall boundary condition at the top and bottom walls.

When the inlet velocity is not high enough to induce sonic flow in the throat,
the flow in the nozzle is subsonic throughout. For a subsonic inlet velocity of
M, = 0.092 the area ratio exactly equals the critical ratio 4in/a* described in Eq.
(204). The flow in the throat becomes sonic and a normal shock can be observed
in the diverging section as can be seen in Figure 70. The pressure coefficient C),
computed along the nozzle upper wall for four cases of inlet velocity are presented
in Figure 71. A strong pressure gradient is present in the case of M., = 0.092,
where a shock is obtained at the diverging section of the nozzle.



12 APPLICATIONS 170

Mach
0.0792
Io.osss
0.0577
0.0469
I0.0361
0.0253

0.0145

0.00376

Mach
0.330
Io.zas
0.240
0.195
Io.1so
0.105

0.0601

0.0150

Mach
Io.ao7
0.696

0.585

0.474

0.363

0.252
/ IO.141
-0.05 0.00 0.05

-0.15 -0.10 0.0301

C

Mach
I1.14

0.981

0.823

0.665
IO.SOS

0.350

-

0.0345

(d)

Figure 70: Distribution of velocity as computed on the (80 x 50) mesh, for the
following velocities: a) My, = 0.01, b) M, = 0.04, ¢) M, = 0.08, d) M, = 0.092.
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Figure 71: The pressure coefficient calculated on the upper wall for the above flow
conditions.

12.9.1 AMG performance

The first coarse-level for each case described above is sketched in Figure 72. This
coarsening pattern was obtained for all the Mach numbers, from M., = 0.01 to
My = 0.092. A dynamic threshold was applied for all the following cases since
more stable performance were obtained in terms of convergence properties, mainly
in the transonic case of M, = 0.092. Several observations are in order here. First,
this coarsening pattern is not so intuitive for this specific problem, since we would
expect a uniform distribution of the coarse points at the inlet area, rather than a
one-dimensional coarsening in the y-direction, at least for M., = 0.01, where the
equation is isotropic. A possible reason is the stretching of the grid cells in the
z-direction, which contributes to the strong connections in the y-direction, and
thus, the AMG coarsening algorithm automatically coarsens in the direction of
the strong connections. As for the coarsening at the throat, it is what we would
expect for all the free-stream Mach numbers, in particular for M., = 0.092 where
the anisotropy is largest.
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M = 0.01

Figure 72: The finest and the first coarse-level for mesh size of (80 x 50). The red
color corresponds to the C'-point and the blue color corresponds to F-point. This
coarsening pattern was obtained for M, = 0.01. The same coarsening pattern

was also obtained for various flow conditions as follows: M. = 0.04, M., = 0.08,
and M., = 0.092.

Table 41 presents the discrete second norm of the residual for each case of Mach
number described above. Both the Mach contours and the convergence history are
evidence that the AMG solves the problem to the level of discretization on each
grid. The residual norm decreased rapidly for 10 to 12 V-cycles with the value
in the corresponding ||R™||,. We observe that each cycle exhibits a very stable
convergence behavior with an asymptotic convergence rate of less than an order of
magnitude. In the first case of M., = 0.01, the setup phase was implemented only
once, followed by 12 V-cycles. The case of M., = 0.04, where the compressibility
became significant, the results were obtained by repeating the setup phase four
times while applying three V-cycles between each update. This results in a total
of 12 V-cycles until the residual decreased to the desired level of “1071°. In the last
two cases of M, = 0.08 and M., = 0.092, more frequent updates of the matrices A,
A, and the restriction and interpolation operators were needed in order to achieve
efficient and stable performance. In these cases, the setup phase was repeated six
times while each update was followed by two V-cycles. It is important to note that
the convergence rate in the first 2-3 cycles is not significantly damaged, compared
to the previous problems, mainly due to a relatively good initial condition.

The convergence histories for the five cases are depicted in Figure 73. The
effect of the Mach number on the AMG performance is clearly shown. The case
of My, = 0.092 results in a supersonic flow regime that is terminated by a shock
wave. Convergence is somewhat slower here. It requires nearly twice the number of
V-cycles (10) to decrease the Ly-norm of the residual to a level of 1072, compared
to the case of M., = 0.01. This slow convergence is mainly due to the 2 — 3 first
“waste” cycles (slow to converge due to strong nonlinearity) until the convergence
is stabilized. Also it is very important to mention that, although there is strong
anisotropy and nonlinearity, no extra local smoothing sweeps were needed at all
to achieve convergence.

The grid complexity and operator complexity are presented in Figure 42. It is
clear that the complexities are reasonable and bounded for all the flow velocities.



12 APPLICATIONS 173

In the case of M, = 0.01, the second pass process is applied for all the coarse-
levels and it is well reflected in the grid complexity, which is slightly increased
to Cn = 1.98. Unfortunately, the operator complexity is not adversely affected.
As for the remaining three cases, the second pass was applied only for the first
coarse-level.

Table 41: Results of AMG V-cycles applied to the flow through a nozzle. The
second norm of the residual |R™||, and the convergence factor C; are presented
for each AMG V-cycle. The mesh size is 80 x 50.

My =0.01 My =0.04 M =0.08 My = 0.092
V-cycle | [[R™l,  Cp | [IR™,  Cy | IB™, Cy 1Bl Cy
0 1.019e-04 4.085¢-04 - 8.207e-04 - 2.460e-03 -
1 5.200e-05 0.5 | 3.041e-04 0.74 | 4.176e-04 0.5 1.377e-03 0.55
2 1.389e-06 0.03 | 8.848e-06 0.03 | 5.672e-05 0.14 1.242e-04 0.09
3 4.495e-08 0.03 | 2.632e-07 0.03 | 2.271e-05 0.40 6.550e-05 0.53
4 1.536e-09 0.03 | 1.668e-08 0.06 | 1.279e-06 0.06 8.958¢e-06 0.14
5 6.144e-11  0.04 | 8.932e-10 0.05 | 9.215e-08 0.07 5.395e-06 0.60
6 2.511e-12  0.04 | 3.978e-11 0.04 | 2.977e-09 0.03 2.411e-07 0.04
7 1.220e-13  0.05 | 2.337e-12 0.06 | 7.656e-11  0.03 1.278e-08 0.05
8 6.721e-15 0.06 | 1.139e-13  0.05 | 4.182e-12 0.05 6.050e-10 0.05
9 4.062e-16 0.06 | 6.697e-15 0.06 | 1.793e-13  0.04 3.271e-11 0.05
10 6.957e-17 0.17 | 1.102e-15 0.16 | 8.592e-15 0.05 1.489e-12 0.05
11 6.475e-17 0.93 | 1.017e-15 0.92 | 5.929e-16 0.07 6.984e-14 0.05
12 6.555e-17 1.01 | 1.016e-15 1.00 | 4.248e-16 0.72 3.314e-15 0.05
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Figure 73: Convergence histories.

Complexities | My, =0.01 | My =0.04 | My =0.08 | M, = 0.092

Co 1.98 1.92 1.90 1.93
Cr 2.47 2.47 2.52 2.46

Table 42: Grid complexity Cq and operator complexity C', for four cases of Mach
number.

This problem was solved for two more cases of mesh sizes of 40 x 25 and 20 x 12
points. Both the Ls-norm of the residual and the convergence factor for two cases
of M = 0.01 and M, = 0.092 are presented in Table 41 . We deliberately
decided to present a relatively simple case of subsonic flow compared to a more
complex one characterized with a strong anisotropy. Observe that the difference
of the above meshes hardly influences the convergence properties. As mentioned,
computational work is determined by the operator complexity and the convergence
factor. Only if both are bounded as a function of the problem size do we have a
robust algorithm, namely, an asymptotically performance. In this case we can see
that the complexities C, and C¢ are indeed independent of the grid size.

Let us examine the coarsening statistics in order to understand how AMG
performs on this problem. Table 43 presents the number of rows and the number of
the nonzeros for two cases of M., = 0.01 and M., = 0.092. The case of M, = 0.01
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was solved with seven levels (including the fine-level) while the case of M., = 0.092
was solved with five levels only. In the latter case the coarsest level consists of a
relatively large number of points (the reason was already pointed out in Section 8).
The coarsening is not so fast and is similar for both cases. The first coarse-level is
exactly half the number of points on the fine-level, while this reduction ratio of grid
points for the rest of the coarse-levels is approximately reserved. A possible way to
improve the coarsening performance is by using aggressive coarsening, but the cost
is a much slower convergence rate mainly due to the interpolation process, which
is significantly damaged. Tt is interesting to note here that although the stencils
on the coarse-levels become larger, for both cases, subsequent coarsening then do
not become faster. For both cases (M, = 0.092 and M, = 0.01) it happens
simply because the dynamic threshold tends to produce large coarse-levels. In the
case of M., = 0.01, an additional effect is the second-pass process applied to all
the coarse-levels. These two processes bound the coarsening speed but the gain
has very efficient convergence properties.

Table 43: The results of the AMG V-cycles applied to the flow through a nozzle.
The second norm of the residual after each V-cycle ||R™||, and the convergence
factor C'y are detailed for two different mesh sizes.

M, =0.01 My = 0.092
grid size — 20 x 12 40 x 24 20 x 12 40 x 24
Veeyde | [B™,  Cp | IR™, Cp | IB™, Cr | IB™, C;
0 5.102e-04 — 1.318e-04 — 2.603e-03 — 1.578e-03 —
1 1.850e-04 0.36 | 9.100e-05 0.69 | 5.220e-04 0.20 | 1.127e-03 0.71
2 1.123e-05 0.06 | 1.077e-06 0.01 | 2.040e-04 0.39 | 1.980e-04 0.18
3 6.497¢-07 0.06 | 6.191e-08 0.06 | 8.749¢-05 0.43 | 1.094e-04 0.55
4 4.256e-08 0.07 | 5.122e-09 0.08 | 1.593e-05 0.18 | 5.334e-05 0.49
5 3.283e-09 0.08 | 4.727e-10 0.09 | 1.139¢-06 0.07 | 1.973e-06 0.04
6 2.784e-10 0.08 | 4.541e-11 0.10 | 8.919e-08 0.08 | 1.540e-07 0.08
7 2.451e-11  0.09 | 4.441e-12 0.10 | 7.047e-09 0.08 | 1.318-08 0.09
8 2.192e-12  0.09 | 4.385¢e-13 0.10 | 5.390e-10 0.08 | 3.809¢-10 0.03
9 1.979¢-13  0.09 | 4.352e-14 0.10 | 4.182e-11 0.08 | 2.390e-11 0.06
10 1.798¢e-14 0.09 | 4.331e-15 0.10 | 3.253e-12 0.08 | 1.684e-12 0.07
11 1.656e-15 0.09 | 4.350e-16 0.10 | 2.525e-13 0.08 | 1.213e-13 0.07
12 2.747e-16  0.17 | 1.052e-16 0.24 | 1.957e-14 0.08 | 8.929¢-15 0.07
Ca 1.90 1.91 1.75 1.85
Cy, 2.03 2.28 2.09 2.38
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Table 44: Results of the AMG V-cycles applied to the flow through the nozzle in
various Mach numbers.

Number of rows Number of nonzeros Average entries per row

Level | My =0.01 My =0.092 | Moo =0.01 My =0.092 | Mo =0.01 My =0.092

A™ 4000 4000 69424 69424 17.3 17.3
Amtl 2000 2000 37023 44173 18.5 22
Amt2 968 983 26865 27449 27.7 27.9
AmF3 449 504 17971 19374 40 38.4
Amti 205 268 8541 10661 41.6 39.7
AmHS 91 - 3219 - 35.3 -

12.10 Rocket engine

A rocket in its simplest form is a chamber enclosing a gas under pressure. A small
opening at one end of the chamber allows the gas to escape, and it results in a
thrust that propels the rocket in the opposite direction. The gas is produced by
burning propellant that can be solid or liquid. A solid propellant is usually aligned
along the inside walls of a cavity called the combustion chamber. The propellant
is burned leading to build-up high temperature and pressure. The expanding gas
escapes through the nozzle.

In this final numerical experiment I will analyze the flow through a solid pro-
pellant rocket, under all the assumptions of potential flow. The engine geometry
(shown in Figure 74) is based on the nozzle from the previous example. The ratio
of the chamber area to the throat area is AAZ'" = 5.75 and the ratio of the exit

throat
Aout

area and the throat area is A, = 1.75. The computational mesh is shown in
Figure 75. The mesh size is 96 x 48 and it is clustered close to the upper and
lower walls vertically and in the throat horizontally, with a stretch factor of 1.1.

Injection Wall

Pl

Wall I Outlet

PTTTTT

Injection Wall

Figure 74: A diagram of the converging-diverging nozzle.
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Figure 75: Mesh used for the 2D rocket test case.

12.10.1 Boundary conditions

1. The solid propellant is characterized by the bottom and upper walls (see the
diagram). Turbulence effects significantly influence the flow processes close
to the combustion surface. A full treatment of this region would include the
modeling and resolution of complex physical and chemical phenomena that
take place during the propellant combustion process. This process occurs in
a very thin layer at the grain surface and is usually the subject of dedicated,
detailed investigations, which are not part of this work. Therefore, in this
simulation, the burning surface is simply treated as a wall through which
mass injection is applied at a constant rate.

2. The mass conservation determines the outflow velocity through the nozzle.
In practice, ghost cells were used in order to determine the axial velocity.

In order to perform an analysis of the flow in the rocket chamber with injection
from the upper and lower walls, it is necessary to calculate the typical flow condi-
tions (pressure, velocity, and sound speed) close to a burning propellant in a real
life problem.

Before doing detailed quantitative analysis of the simulation results, the overall
characteristics of flow field were examined to make sure that the solution reflected
the expected behavior. All the flows that will be shown were computed on the
96 x 48 mesh. Figure 76 demonstrates the results of computations with subsonic
and transonic flow. The Mach contours for the various cases of inlet flow velocities
are considered in this investigation. The pressure coefficient distribution on the
upper wall is plotted in Figure 77. One can readily show that when the Mach
number near the upper and lower walls is V,, = 0.028 we get a choked throat and
it is exactly the Mach number that results in the proper area ratio, as described
in Eq. (204). The fifth case of V,, = 0.03 results in highly supersonic pockets
with strong shock waves at the diverging section of the nozzle. The maximum
Mach number at the shock was 2.28. It is clear that in this case the potential flow
model is not valid anymore, since it implies a constant entropy and has therefore
no mechanisms to generate entropy variations over the shock. The reason that this



12 APPLICATIONS 178

case is demonstrated is that it is the closest case that describes a typical working
point of a rocket engine. There is a very good agreement between these results
and the theory as can be seen in Shapiro [14].
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Figure 76: Mach number isolines computed on the (96 x 48) mesh, for the follow-
ing flow conditions: a) V,, = 0.001, b) V,, = 0.008, c¢) V,, = 0.018, d) V,, = 0.028,
e) V,, = 0.03. Observe the shocks in the diverging section appearing at V,, = 0.028
and V,, = 0.03.
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Figure 77: The distribution of pressure coefficient using a (96 x 48) mesh size
for the following cases: V,, = 0.001, V,, = 0.008, V,, = 0.018, V,, = 0.028, and
Vi = 0.03.

12.10.2 AMG performance

A fixed threshold parameter was imposed for the subsonic cases of V,, = 0.001 —
0.018, while for V,, = 0.092 the dynamic threshold was applied. The first coarse-
level for each case described above is sketched in Figures 78 and 79. When the flow
is incompressible, the operator is nearly isotropic and the points that construct
the coarse-level are distributed uniformly in a red-black pattern, as can be seen in
Figures 78(a). It is interesting to see that the coarsening in the throat area (where
the distance between the upper and lower walls is minimal) is in the direction of
the strong connectivity, in the y-direction, where the anisotropy is largest. The
divergent and convergent areas are characterized by an increased velocity gradient.
Due to the setting € = 0.25, however, the coarsening algorithm still distributes the
coarse points uniformly (possibly because it treats all the connections contained
in this area as strong). Approaching the outlet region the cell’s aspect ratio is
increased and it contributes to strong connections in the z-direction. This effect
is clearly visible in the one-dimensional coarsening pattern adjacent to the outlet
area. As the Mach number increases more coarse points were chosen where the
nonlinearity is largest (at the throat); however, the overall coarsening pattern is
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essentially the same. It is interesting that the situation was much different if a
dynamic threshold was applied for this specific problem, as is sketched in Figure
80 for V,, = 0.001 and the same mesh size.
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(a)
(b)

(c)

Figure 78: The finest and first coarse-level obtained for the flow through the rocket
chamber for three Mach numbers: a) V,, = 0.001, b) V,, = 0.008, ¢) V,, = 0.018.
Blue cell corresponds to an F-point and red cell corresponds to a C-point. The
mesh size is (96 x 48). A fixed threshold was applied for all the these cases.
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(a)
(b)

Figure 79: The finest and first coarse-level obtained for the flow through the
rocket chamber for five Mach numbers: a) V,, = 0.028, b) V,, = 0.03. Blue cell
corresponds to an F-point and red cell corresponds to a C-point. The mesh size
is (96 x 48). A fixed threshold was applied for all the these cases.
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Figure 80: A magnified view of the rocket nozzle. The finest and first coarse-level
obtained for the flow through the rocket chamber with V,, = 0.001. Blue cell
corresponds to an F-point and red cell corresponds to a C-point. The mesh size
is (96 x 48). A dynamic threshold was applied.

Convergence factor Cy and Ly-norm of the residual ||R™||, are presented in
Table 45. We see that after 12 V-cycles, the residual Ly-norm reached 1071 and
the process attained an asymptotic convergence factor of 0.05 per V-cycle. Clearly,
the AMG converges as rapidly for this problem as for the previous model problem
(nozzle), where we saw a convergence factor of about 0.08. When V,, = 0.001 the
equation is nearly isotropic and the entries in the coefficient matrices A, A, and
A* may vary, though also very little, even in the throat area where the velocity
gradient is maximal. Consequently, the setup phase needs to be performed only
once, at the beginning of the solving phase. This case was solved with 12 V-
cycles. As the Mach number increases the effect of the compressibility becomes
significant. In these cases the matrices including the transfer operators could not
be “frozen” but rather updated while the setup phase is has to be performed more
frequently. For instance, in the case of V,, = 0.008, the setup phase is repeated
three times followed by four V-cycles each time. The cases of V,, = 0.018 and
Vi = 0.028 required the setup phase to be performed six times with two V-cycles
between each update.

In this context, the effect of the nonlinearity and the presence of shock waves
is well observed in the convergence properties for V,, = 0.028, where the first three
cycles are slow to converge and then the residual reduction is stabilized around
0.1 for the rest of the V-cycles. It takes around four “waste” cycles to converge
close enough to the solution so that the nonlinearity effects stop hampering the
further convergence process.

Figure 81 shows the convergence histories for the algorithm consisting of V-
cycles, which was used for solving the problem for various Mach numbers. We can
observe that the convergence behavior is comparable to that of the nozzle problem
except that the convergence is slightly slower here. Ten cycles are needed in the
fastest case, V,, = 0.001, to reduce the residual by 10 orders of magnitude.
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Table 45: Results of the AMG V-cycles applied to the flow through a rocket
chamber. The second norm of the residual ||R™||, and the convergence factor Cy
are presented for each AMG V-cycle. The mesh size 96 x 48.

Vw = 0.001 Vw = 0.008 Vw = 0.018 Vw = 0.028 Viw = 0.03
V-cycle | [[R™]l,  Cy IR™ly  Cf [R™ly  Cf IB™l,  Cp I1R™ ]y Ct
0 2.112e-04 - 4.741e-04 - 1.071e-03 - 1.533e-03 - 1.646e-03 -
1 2.467e-05 0.11 | 1.302e-04 0.27 | 2.217e-04 0.20 | 2.705e-04 0.17 | 2.95le-04  0.17
2 1.178e¢-06  0.05 | 8.108e-06 0.06 | 1.368e¢-05 0.06 | 1.343e-04 0.50 2.137e-04 0.72
3 5.791e-08  0.05 | 3.323e-07 0.04 | 7.179e-07 0.05 | 3.037e-05 0.23 1.363e-04 0.64
4 2.830e-09  0.05 | 1.650e-08 0.05 | 3.744e-08 0.05 | 1.051e-05 0.35 1.299e-04 0.95
5 1.399e-10  0.05 | 4.221e-10  0.03 | 2.947e-09 0.08 | 2.118e-06 0.20 | 7.072e-05 0.54
6 6.769e-12  0.05 | 3.154e-11  0.07 | 3.502¢-10  0.12 | 5.294e-07 0.25 | 1.009e-05  0.14
7 3.372e-13  0.05 | 3.500e-12  0.11 | 4.283e-11 0.12 | 6.131e-08 0.12 2.629¢-06 0.26
8 1.642e-14  0.05 | 4.799e-13  0.14 | 5.424e-12  0.13 | 9.002e-09 0.15 4.687e-07 0.18
9 8.320e-16  0.05 | 6.659e-14 0.14 | 6.841e-13 0.13 | 1.094e-09 0.12 7.186e-08 0.15
10 5.493e-17  0.07 | 9.483e-15 0.14 | 8.637e-14  0.13 | 1.558e-10 0.14 | 1.020e-08  0.14
11 3.527e-17  0.64 | 1.346e-15 0.14 | 1.089e-14  0.13 | 1.954e-11 0.14 | 1.412¢-09  0.14
12 3.772e-17  1.07 | 2.389%¢-16 0.18 | 1.389e-15 0.13 | 2.680e-12  0.14 | 1.947e-10  0.14
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Figure 81: Convergence histories.
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Table 46: Grid complexity Cq and operator complexity C', for four cases of Mach
number.
Complexities | V,, = 0.001 | V,, = 0.008 | V,, =0.018 | V,, =0.028 | V,, = 0.03
Cq 1.63 1.63 1.70 1.90 1.90
Cr 2.19 2.22 2.43 2.76 4.76

A grid convergence study has been conducted to verify the independence of
the AMG algorithm on the grid resolution; three levels of resolution have been
used with (32 x 12), (48 x 24), and (96 x 48) grid points in the axial and vertical
directions. It is important to remember that our main interest here is to verify the
robustness of the algorithm rather than achieving the greatest efficiency. Therefore
in each resolution the AMG components (for instance, dynamic threshold, coarse-
level parameter 7, second pass) were “fixed”, that is, they were not locally adjusted
to particular requirements of a given resolution. These components remain exactly
the same for all levels of resolution.

The Ly-norm of the residual | R™||, and the convergence rate C'y are shown in
Table 47. For each of the grid resolution the results demonstrate rapid convergence
for all the four cases of Mach numbers. For each Mach number there is a minor
degradation in the convergence rate with the increase of resolution. For instance,
for the case V,, = 0.008 the convergence rate of C'y = 0.1 was obtained in mesh size
(32 x 12) compared to Cy = 0.15 in mesh size (48 x 24). There are two possible
reasons for this degradation. First, the interpolation is much less accurate as the
resolution decreased, especially where the irregularity of the grid is dominant.
Second, for small resolution the SGS method serves not only as a smoother (on
the fine and coarse-levels as well) but also actually serves as a solver. In this case
better convergence rates can be achieved.

Let us examine the storage requirements for four cases of Mach numbers. When
the flow is subsonic, V,, < 0.018, the problem was solved with five levels and the
properties are presented in Table 38. The coarsening is relatively fast while the
initial coarse-level, A™*! has less than half the number of points on the finest
level, A™. Subsequent coarsening is even faster while each succeeding coarse-level
has approximately one-third the number of points on the next finer level. The
coarse-level operator on the second level can be seen to correspond to an average
of a 30-point stencil. That is, although the reduction of points is substantial,
the number of nonzeros in the second level matrix is still not far from that on
the finest level. This fast coarsening (for V,, < 0.018) is well reflected in the
relatively lower complexities presented in Table 46. For V,, = 0.028 the situation
is different. The percentage of nonzeros is increased for the first coarse-level.
Unfortunately, the operator complexity is slightly adversely affected (increase from
Cp, =~ 2.2 in the subsonic case to C, &~ 2.5 in the transonic case). Considering the
strong nonlinearity and extreme anisotropy of this problem, this increase of the
complexities is quite acceptable.
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Table 47: The results of AMG V-cycles applied to the flow through a rocket
chamber. The second norm of the residual after each V-cycle |R™], and the
convergence factor C'y are detailed for two different mesh sizes.

Vw = 0.001 Vw = 0.008
grid 24 x 12 48 x 24 24 x 12 48 x 24
V-eycle | [[R™l, Gy | IR™l, Gy | IIR™l, Gy | IIR™, ¢
0 3.555e-04 — 2.692e-04 — 2.846e-03 — 7.565e-04 —
1 5.183e-05 0.15 | 2.601e-05 0.09 | 4.549e-04 0.16 | 1.637e-04 0.21
2 3.660e-06 0.07 | 7.855e-07 0.03 | 3.451e-05 0.08 | 5.539¢-06 0.03
3 2.444e-07 0.07 | 7.165e-08 0.09 | 3.021e-06 0.09 | 6.032¢-07 0.11
4 1.858¢-08 0.08 | 8.680e-09 0.12 | 3.032e-07 0.10 | 7.827¢-08 0.13
5 1.506e-09 0.08 | 1.125¢-09 0.13 | 3.176e-08 0.10 | 1.057e-08 0.14
6 1.242e-10 0.08 | 1.472e-10 0.13 | 3.339e-09 0.11 | 1.442¢-09 0.14
7 1.029e-11  0.08 | 1.930e-11 0.13 | 3.491e-10 0.10 | 1.971e-10 0.14
8 8.545e-13  0.08 | 2.530e-12 0.13 | 3.626e-11 0.10 | 2.694e-11 0.14
9 7.095e-14 0.08 | 3.315e-13 0.13 | 3.749¢-12 0.10 | 3.681e-12 0.14
10 5.873e-15 0.08 | 4.344e-14 0.13 | 3.864e-13 0.10 | 5.030e-13 0.14
11 4.998¢-16 0.09 | 5.692e-15 0.13 | 3.966e-14 0.10 | 6.873e-14 0.14
12 6.390e-17 0.13 | 7.461e-16 0.13 | 4.190e-15 0.11 | 9.379¢-15 0.14
Cq 1.87 1.74 1.87 1.75
CL 2.17 2.28 2.17 2.28
Vi = 0.018 Vi = 0.028
grid 24 x 12 48 x 24 24 x 12 48 x 24
Vcyce | [R™l, Gy | IR™ly Gy [ IR™ly  Cp [ IR™l,  Cy
0 6.427e-03 — 4.873e-03 — 4.105e-03 — 2.672e-03 —
1 9.452e-04 0.14 | 4.840e-04 0.10 | 1.412e-03 0.34 | 5.101e-04 0.19
2 1.027e-04 0.11 | 3.435e-05 0.07 | 5.224e-04 0.37 | 2.697e-04 0.53
3 7.939¢-06 0.08 | 2.673e-06 0.08 | 1.374e-04 0.26 | 5.996e-05 0.22
4 3.197e-07 0.04 | 9.496e-08 0.04 | 1.051e-05 0.08 | 1.023e-05 0.17
5 2.100e-08 0.07 | 3.444e-09 0.04 | 1.276e-06 0.12 | 2.583e-06 0.25
6 1.677e-09 0.08 | 1.148e-10 0.03 | 2.208e-07 0.17 | 4.325e-07 0.17
7 1.431e-10 0.09 | 5.066e-12 0.04 | 2.583e-08 0.12 | 6.744e-08 0.16
8 1.235e-11  0.09 | 2.110e-13 0.04 | 2.250e-10 0.01 | 1.020e-08 0.15
9 1.067e-12 0.09 | 1.028e-14 0.05 | 1.216e-11 0.05 | 1.523e-09 0.15
10 9.224e-14  0.09 | 5.259e-16 0.05 | 2.852e-13 0.02 | 2.260e-10 0.15
11 7.915e-15 0.09 | 1.201e-16 0.23 | 1.639e-14 0.06 | 3.342¢-11 0.15
12 6.857e-16 0.09 | 1.162e-16 0.97 | 9.412e-16 0.06 | 4.937e-12 0.15
Ca 1.82 1.79 1.79 1.66
CL 2.17 2.46 2.27 2.80
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Table 48: Properties of the matrix A*for AMG applied to the rocket engine prob-
lem. The mesh size is 96 x 48.

Number of rows Number of nonzeros Average entries per row

Vw— | 0.001 0.008 0.018 0.028 | 0.001 0.008 0.018 0.028 | 0.001 0.008 0.018 0.028

Level

A™ 4608 4608 4608 4608 80088 80088 80088 80184 17.3 17.3 17.3 17.4
Amtl 2024 2011 2048 2307 57867 60373 62854 71928 28.6 30 30.7 31.1
Amt2 648 650 829 1132 27398 27101 32176 39015 42.2 41.7 38.8 34.4
AMF3 197 194 328 529 8857 8669 14326 20816 45 44.6 43.6 39.3
Amta 56 56 129 240 1836 1836 5735 9918 32.7 32.7 44.4 41.3

It was already mentioned that as the anisotropy is increased we expect a cer-
tain degradation of the AMG complexities since the final value of the operator
complexity is influenced by the stencil size on the coarse-levels. As a consequence,
the coarse-level operator tends to become larger towards coarser levels. However,
this effect is limited by truncating the coarse-level matrices. The complexities pre-
sented above were obtained while truncating the coarse-level operator with a value
of = 107*. The Ls-norm of the residual, convergence rate, and the complexities
are presented in Table 49, while applying © = 107°. Although the convergence is
fast, the grid complexity is Cq = 2.01, while the operator complexity substantially
increased to C', = 5.32. According to our requirements, this increase in the total
solution cost is not acceptable.

Table 49: The results of AMG V-cycles applied to the flow through a rocket engine
when the inlet Mach number is 0.028. The second norm of the residual after each
V-cycle, the convergence factor, grid, and operator complexities are presented for
80 x 50 mesh size. The coarse-level truncation parameter is p = 107>,

Ve = 0.028
V-cycle |R™ |5 Cy
0 5.970e-03 -
1 3.334e-04 0.55
2 8.776e-05 0.26
3 2.364e-05 0.27
4 1.929e-06 0.08
5 8.074e-08 0.04
6 5.299e-09 0.07
7 2.955e-10  0.06
8 1.510e-11  0.05
9 7.448e-13  0.05
10 3.573e-14 0.05
11 1.737e-15 0.05
12 3.523e-16  0.20
Cq 2.01
Cy, 5.32
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13 Extending the 2D supersonic scheme to 3D

The 2D upwind numerical scheme for the supersonic flow regime can be extended
to 3D discretization. Our main purpose is to demonstrate that such an extension
ion will facilitate a construction of stable pointwaise relaxation, as well as in
2D. We are to do this while applying the same approach as applied in 2D (see
Section 7). As already stated, the equation changes type when the flow becomes
supersonic. This switching changes the diffusive character of the elliptic flow field
to the propagation dominated behavior associated with the hyperbolic equation.
Therefore, the discretization in the supersonic region must be inside the domain
of dependence, within the characteristic cone. A common approach to implement
this change is by using the rotated difference scheme that was introduced by
Jameson [26]. In this part of the work, the difference scheme for the FPE in the
quasi-linear form is designed to deal with problems characterized by flow in an
arbitrary direction. The idea is to rearrange the equation as if it were locally
expressed in a coordinate system aligned with the flow. The derivation of the
three-dimensional FPE in the rotated difference scheme is based on the results
introduced by Jameson [26]. First the 3D FPE in the quasi-linear form will be
presented. More information on the derivation can be found in [12]. The steady
continuity equation is given as follows:

S (o) + 5L (o) + 2 () = 0. (209

Next, the x, y, and z momentum equations for an inviscid, steady fluid flow are
written in a nonconservative differential form, after expanding and using the chain
rule:
ou  Ou ou 10P 1 0P 0p a’ dp
U— +V—FW—=——-—— = ———— = —— —,
Ox dy 0z p Ox p Op Ox p Ox
v ov ov 1oP  10P9dp  a*0p

— — —_——= = = — = 206
u@x+vay+w02 p Oy p Op Oy p Oy’ (206)
ow  Ow Ow 10P 10P 0p a?0p
b—+V—t W =————=————=———
Ox dy 0z p 0z p Op 0z p 0z
since from the isentropic relation of the pressure and density we get,
dP  d|CpY P
— = Cr] =~7Cp' ™ =y=— =yRT = d°. (207)
dp dp p
The potential function ¢ is now defined for 3D flow, % = u, g—‘; =, % = w.
Finally, the nonconservative FPE comes directly from substituting the terms of

density g—g, g—;’, and g—g from (206) into the continuity equation,

(a2 — u2) Gzz + ((12 — 02) Gyy + (a2 — wz) G2 — 2UuVPgy — 2uWy, — 20w, = 0.
(208)
Now, let us denote S as the stream direction, as sketched in Figure 82.
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streamline

___________________________

Figure 82: Cartesian coordinate system s —n in 3D. The s-axis is aligned with the
flow direction, and the n-axis is normal to it. The angle # is the azimuth angle
and the angle v is the zenith angle.

Then Eq. (208) can be written as follows:

(CL2 - q2) ¢ss + Cl2 (v2¢ - ¢ss) = 07 (209)
where ¢ is the flow speed determined by ¢* = u*+v?*+w? and V2¢ = @ty + 0.

The direction of the flow is calculated as § = cos (0), ¢ = sin(0), ¢ = cos (¥),
where 6 is the azimuthal angle in the x — y plane from the z-axis and ) is the
polar angle, measured from the x —y plane to the velocity vector. The streamswise

second derivative can be expressed as

1
gbss = ? (UQQme + U2¢yy + w2¢zz + 2uv¢xy + 27}w¢yz + 2uw¢xz) . (210)

When the flow is subsonic all the derivatives are approximated by central difference
formulas. If the flow is supersonic (¢ > a), then the terms appearing within ¢
must be shifted in the direction of the flow while all contributions to the remaining
terms are approximated by central difference formulas. The one-sided difference
operators are biased in the upstream sense in all three coordinate directions. For
simplification only a “narrow” approximation in the flow direction will be used.
The discretized operators inside ¢, are as follows:
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oy = (Dijrk — 20i—1k + Pi2,jk)
xrx sz 9
_ Dijk — 20i5-1k T Dij2k
Qbyy - Ay2 )
b = Gijk — 20ij k-1 + ijr—2
zZZ AZQ Y
e (211)
¢ _ gbz,g,k ¢l—1,j k — ¢Z,] 1,k + sz 1,7—-1 k
w AxAy
ey = Gijk — Pi-1,jk — Pijh—1 + Pie1jk— 1
w Ax/Nz
& :¢i,j,k—¢i,j—1k Gijk—1 T Dij—1k— L
vz AyNz
All the remaining terms are approximated by central differencing:
s = Git14k — 20i4k + Pim1jk
xrxr AxQ Y
_ Gijrrk — 200kt Gijo1k
¢yy - AyQ I
b, = Gijk+1 — 2054k + Dijr—1
zZz AZ2 ) (212)
oy = Qit1,j+1,k — Pic1 41,k — Pit1,j—1k + Pic1j—1 k
Y 4Nx Ny
boy = Git1,jh+1 — Pie1jkt1 — Pit1jh—1 T Die1j - L

VAN AN

Gijt1 k-1 F Dij—1 k- 1

6., = Gi 11 — Pij—1 o1 —
yz =

ANyNz

Since we restrict ourselves in this work to usage of a pointwise relaxation, while
applying Gauss—Seidel and using Von-Neumann analysis, we get, as expected, an
unstable scheme. Therefore the product operator LL must be applied in order to
achieve stability. From several numerical experiments we see that the difference
operator resulting in the matrix A (see section 8), for the cases of 0° < 6 < 45°
was chosen to be the same as was applied in the 2D case but written in 3D form.
Compared to the 2D case, there are many more possibilities to construct the
operator L, which results in a stable operator LL.

I = (lsm2(9) + 1sm(«9)cos(9)) Gi1,j41,k

_|_

1
4

+

1
—cos®

1

4

— —sm 0)cos(0 )) it j+1.k

¢Z,j+1 k

1( )
+gsm
1
(5 - —sm 9 ) ¢z’+1,j,k

—3@71(«9)003(9)) Dit1j—1k — Dijk-

(213)
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For simplicity the operator L is discretized on the r—y plane with no derivation
in the z-direction. As a simple example, the product operator LL under the flow
conditions 8 = 0°, ¢ = 0°, and M., = 1.1, is written as follows:

LL = 0.25¢i41, -2,k — 0.05250 1 j—1 k1 — 0.2305 -1 k=101 — 0.790; j_1 k1
+0.125¢; j—1 k1,0 — 0.05250;41 j—1 k-2, + 0.210i11 51810 — 021511 -1k
+ 0125012 1610 — 0.1250512 1 k41,0 T 0.210 25k nt1 + 0.920; 1 k1,041
—0.945¢; 1 j knt+1 — 0.50i—1 j k1,0 + 0.21¢5  k—2n41 — 1.305 j k1,41 + 3.260; j k. n+1
+0.25¢; j k1,0 — 0.1050i 41,5 5—2,n — 0.080i11 5 k10 — 0920541 550 + 0-50i41 5 k+1,n
+0.250i42j k1,0 — 0.25¢i12 5 k+1,n — 0.05250;—1 j11,6m — 0.2305 j+1,6-1,0 — 0.790; j 11 km
+0.125¢; ji1 k1,0 — 0.05250;41 j+1 k-2, + 0.210i11 j11.5—1,0 — 021511 j 41k
+0.125¢12 511 k-1, — 01250042 541 k41,0 + 0.250i11 512, k.-
(214)
The numerical stability analysis of the product operator while applying the
damped Gauss-Seidel relaxation, with a an under relaxation parameter of w = 0.8,
was verified by Von-Neumann analysis. The stability condition requires that the
modulus of the amplification factor should be lower than or equal to one. It is
interesting to note that in the supersonic region, no additional terms were needed
for the operator L written in 2D form, for the stability of the scheme, in all flow
directions. Three views of the amplification factor as a surface over the regions
[—7, 7] x [, 7] X [0], [=7, 7] X [—7, 7| X [-7], and [—7, 7] X [—7, 7] X [7], are given
in Figures 87-86 for different flow conditions. The computations were done using
the Maple mathematical commercial software (Maple version 11). If the operator
is not stable, it is likely to be a result of the slower modes (6, ~ 0, 6 ~ 0, 63 ~ 0).
Although the operator was checked for —m < z < 7, for presentation three cases
of z = [—m,0, 7] are enough to present stability. Each surface corresponds to the

variation of |G (01, 60s,05)] over — < 0; < w and —7 < 0y < 7 for a fixed value of
5.
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Figure 83: Amplification factor, |G (6;,0s,03)|, for the Gauss—Seidel method ap-
plied to the model problem in three dimensions, shown as a surface over the re-
gions: a) [—m, 7| X [, 7| x[0], b) [—7, 7] X [-7, 7| X [-7], ¢) [-7, 7] x [—7, 7] X [7].
The flow conditions are: M., = 1.1, 6 = 0°, ¢» = 0°.
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Figure 84: Amplification factor, |G (61, 0,,03)|, for the Gauss-Seidel method ap-
plied to the model problem in three dimensions, shown as a surface over the re-
gions: a) [—m, | x [—m, 7| x[0], b) [, 7| X [—7, 7| X [=7], ¢) [—7, 7] x [-7, 7| X [~].

The flow conditions are: M, = 1.1, 6 = 45°, ¢p = 45°.
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Figure 85: Amplification factor, |G (61, 0,,03)|, for the Gauss-Seidel method ap-
plied to the model problem in three dimensions, shown as a surface over the re-
gions: a) [—m, 7| X [—m, 7| x[0], b) [—m, 7] X [-7, 7] X [=7], ¢) [—7, 7] x [—7, 7] x [7].
The flow conditions are: My, = 1.1, 6 = 45°, ¢ = 22.5°.
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Figure 86: Amplification factor, |G (61, 6,,03)|, for the Gauss-Seidel method ap-
plied to the model problem in three dimensions, shown as a surface over the re-
gions: a) [—m, | x [—m, 7| x[0], b) [, 7| X [—7, 7| X [=7], ¢) [—7, 7] X [-7, 7] X [~].
The flow conditions are: M., = 1.1, 8 = 30, ©» = 60°.

Some analysis and experimentation reveals that a better smoothing factor is
obtained when the the operator L includes points in the z-direction. As an exam-
ple, the discretization of L in the streamwise direction is as follows:
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L= @i1jk+ Git1 41,k T Qit1j—1k (215)
+ Qit1jk+1 + Pit1 k-1 — ik

The amplification factor as a surface over the regions [—m, 7| x [—7, 7] x [0],
[—m, 7] x [=m, 7] x [=x], and [—7, 7| X [—7, 7| x [«n], is given in Figure 87 for

My =1.2and (6 = 0°, ¢ = 0°).
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Figure 87: Amplification factor, |G (61, 0,,03)|, for the Gauss-Seidel method ap-
plied to the model problem in three dimensions, shown as a surface over the re-
gions: a) [—m, | x [—m, 7| x[0], b) [, 7| X [—7, 7| X [=7], ¢) [—7, 7] x [-7, 7| X [~].
The flow conditions are: M, = 1.1, 8 = 30°, v = 60°.

It is evident that the scheme is numerically stable whenever the velocity co-
incides with one of the three coordinate directions. These examples present good
results, which indicate that the approach of solving the supersonic flow regime by
applying a pointwise relaxation method is promising, both in the subsonic and
supersonic flow regimes.

14 Conclusions

The objective of this thesis is to develop a highly efficient solver for the Full
Potential Equation (FPE) that will be able to compute transonic external and
internal flows attaining a (nearly) linear computational complexity. The FPE
is obtained by the assumptions that the flow is inviscid and irrotational, and
the Navier-Stokes equations are reduced down to a single equation. The FPE
is useful for design and analysis of airfoil, wings, diffusers, etc. Computations
are usually much less resource-consuming than those solving the Euler or Navier-
Stokes equations. The FPE can be used for transonic flows, where a lot of design
issues are of interest. The key innovation of this work is the solver’s efficiency
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and also the fact that it is achieved by means of adapting and applying the AMG
approach to solving the problem.

The transonic flow problem is a rather complex one from the computational
point of view. One of the main difficulties is the fact that the differential op-
erator changes its type between elliptic for subsonic flow regime and hyperbolic
(with respect to the flow direction) in the supersonic flow regime. Another (sub-
)difficulty is that the subsonic flow regime itself presents two extremities (and all
the possible cases between): nearly isotropic operator for the low speed case and
a highly anisotropic operator for a nearly sonic flow speed. While the standard
AMG algorithm can treat the latter with difficulty, it has never been applied yet,
to the best of our knowledge, to the supersonic regime. The difficulties here begin
with the fact that a simple pointwise relaxation procedure (a desirable component
of AMG) appears unstable in the hyperbolic case. One of the main achievements
of this work is the development of a pointwise relaxation procedure that is stable
(and constitutes a good smoother - in the algebraic sense) for both the subsonic
and supersonic flow regimes. Second, we constructed a variant of an AMG algo-
rithm that employs the new relaxation procedure and allows to achieve very good
convergence for both elliptic and hyperbolic cases.

We restricted ourselves in this work to use of a pointwise relaxation. There-
fore, we have to ensure there is a variant of such a relaxation at our disposal that
not only is stable for all the cases of interest, but also provides a good smooth-
ing. While the simple damped Jacobi and Gauss—Seidel relaxation schemes are
suitable for the subsonic case, both of them are unstable in the supersonic case.
This was verified by the Von-Neumann analysis. In this work we developed a
pointwise relaxation procedure that is stable (and constitutes a good smoother —
in the algebraic sense) both in the subsonic and supersonic flow regimes. Second,
we constructed a variant of an AMG algorithm that employs the new relaxation
procedure and allows achieving a very good convergence in both elliptic and hyper-
bolic cases. This is demonstrated by a variety of numerical experiments concerning
various flow regimes and flow directions (with respect to the grid). The results
clearly show that the convergence rates and complexities are independent of the
problem size (resolution).

The innovative aspects of the proposed AMG algorithm are as follows:

e The main achievement of this work is in developing a stable pointwise
direction-independent relaxation for the supersonic and subsonic flow regimes.
This development is a prerequisite for considering application of AMG to the
transonic flow problem.

e An improved coarsening process is proposed. Instead of using a fixed thresh-
old parameter in order to select the coarse-level points, we developed a dy-
namic threshold parameter as a measure of the strength of connection be-
tween the matrix variables. The coarsening by the dynamic threshold was
shown to be less effective for certain elliptic problems (subsonic flow). How-
ever, for transonic and supersonic flow regimes, where the operator does not
form an M-matrix, we obtained much better performance. In some cases
where an irregular grid is involved, shock waves, and extreme nonlinearity,
the dynamic threshold is very essential just in order to reach convergence.
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e A new algorithm based on [93] was implemented for the construction of the
restriction operator and the coarse-level equations. The proposed algorithm
significantly improves the convergence rate for all the cases relevant for the
purpose of this work.

e A modified formulation of the interpolation operator is presented. While
the standard interpolation is suitable mainly for the M-matrix problems
(subsonic flow), the proposed formula is more accurate and can be used for
more general matrix problems. The proposed interpolation operator includes
the choice of negative weights, which is necessary in some cases.

e Development of the FMG approach in the context of AMG - the MG V-cycles
were replaced by AMG V-cycles. This approach significantly improved the
initial condition, especially in nonlinear cases where the initial approxima-
tion is critical, to start the iterative procedure from a good initial approxi-
mation. This approach is very essential in our specific problems, for instance
where a circulation calculation is involved.

In this research work we developed a structured 2D body-fitted grid FPE solver
that is based on the AMG method. The flow solver is capable of resolving flows
velocity from subsonic to transonic and supersonic regimes. The flow solver can
accommodate complex geometries in different resolutions. The numerical perfor-
mance is almost independent of the problem size. With these features, the present
flow solver is a valuable tool for engineers. Solutions from the FPE are useful
for design analysis and for initialization of Euler flow solvers. The efficiency of
the constructed solver can be very useful during the design process where mul-
tiple computations need to be performed as small changes to the geometry are
performed.

As a first problem to check how the AMG can deal with nonlinear problems
(also in finite differences approach), we presented the capabilities of the algebraic
multigrid to deal with the nonlinear small disturbance equation. The mathemat-
ical difficulties of the problem are associated primarily with the mixed hyperbolic
and elliptic type of the equations and the presence of discontinuities. The compu-
tational method predicted the shock formation, and the problem was solved with
a convergence factor of less than an order of magnitude.

Several two-dimensional flow calculations have been performed to test the per-
formance of the algebraic multigrid method implemented on the FPE under the
body-fitted structured grid configurations. The tests were chosen from two major
aspects: First, the flow model has to agree with the potential flow limitations.
Second, the idea is to check the capability of the algorithm to deal with irregular
structured grids together with an equation that becomes extremely anisotropic
near the sonic case and changes type to hyperbolic in the supersonic flow regime.
Other critical areas of the algorithm were also discussed, including the Kutta-
Joukowski condition and circulation. The Kutta-Joukowski condition is imple-
mented to allow for computing flow around lifting airfoils. In order to evaluate
the circulation efficiently we applied the FMG method in the context of AMG. As
far as we know this is a new approach.

Finally, it was demonstrated that the approach used to construct 2D upwind
numerical scheme for the supersonic flow regime and a stable pointwise relaxation
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can be extended to 3D case. Since the discretization process results in a matrix A
with a “stronger” diagonal, the 3D approach appears even more robust than the
2D one. This was verified by numerical stability analysis in various flow directions.

This algorithm is far from being optimal. The purpose of this work was not to
design an algorithm which is fine-tuned for a specific problem with the aim to ob-
tain the highest possible efficiency, but a robust algorithm which can address most
of the relevant cases regarding the FPE and achieve a good performance without
tuning its parameters any further. The AMG algorithm and all its components
are constructed on the basis of compromise between the general applicability for
the FPE and overall efficiency. Our main interest was to use the new algorithmic
components and implement them as fixed strategies, rather than adjusting the
algorithm to the particular requirement of a given specific problem.
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Appendix A

Linear Algebra Definitions

Definition 1. Sparse matrix - a large percentage of the elements are zero.

Definition 2. Weakly diagonal dominant matrix - in magnitude, the diagonal
element is at least the sum of the off-diagonal elements in the same row:

n
Z laij| < lail forl <i <n.
J#i
Definition 3. Define a positive definite matrix as, for all vectors u # 0, we have
u? Au > 0. A symmetric positive definite matrix has real and positive eigenvalues.

Definition 4. Define an M-matrix to be an N x N matrix A that is positive
definite, diagonally positive, and off-diagonally non-positive.

Definition 5. Define the spectral radius of a matrix A as:
p(A) =max |\, i=1,2,....N,
where \; are the eigenvalues of A.

Definition 6. The discrete L2 norm for a d-dimensional domain with uniform
grid spacing h as:

I, = (hdZ(wf)z)é-

7
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