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Abstract 

Some interesting properties arise when value-counting the integers sequentially up to N using N digits or 
fingers and comparing the number of values to the prime-exact equation; with a simple method for 
testing primes and prime powers (particularly Mersenne and Fermat primes). 

Definition 

We’re going to be value-counting the integers up to a fixed integer N and use that integer to see which 
numbers, when counted by value, are counted within a row.  In other words, using our ten fingers as an 
example, we’re counting to see which numbers up to ten, when counted sequentially by value, would 
completely fall within a set of ten fingers. 

Value-Counting 

Odd Numbers 

As a child, Carl Friedrich Gauss is believed to have showed that the sum of the first N natural numbers 

(positive integers) is equal to 
𝑁×(𝑁+1)

2
. 

For any odd number N, the sum S = 
𝑁×(𝑁+1)

2
 is divisible by N.  When N is a prime or one less than a 

prime, S is divisible by that prime, with the exception of N = 2.  For any even number N, S = 
𝑁

2
 (mod N). 

If we count the value of the integers for the first 23 integers, we get the following table. 

Table 1 – Value-Counting Up to 23 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

0 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 7 7 

1 7 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 10 

2 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 12 12 12 

3 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 14 

4 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 

5 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 17 

6 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 

7 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 

8 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 

9 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 

10 21 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 

11 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 
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The first column was started at 0 to keep with all the reminders modulo N.  For each of the cells 
highlighted yellow, the total integers counted fit in one row. 

For each of the cells highlighted orange, the total integers counted sum to the Mth triangular number 
(OEIS A000217[1]) in reverse order (i.e., sum of positive integers less than N − M).  This arises from the 
fact that each number is one less than the number after it. 

For any odd number N, the following numbers will always fit in a row: 

• The first M numbers such that 
𝑀×(𝑀+1)

2
< 𝑁. 

o Note:  1 is always included.  For N = 23, M = 6. 

• p for being odd and dividing 
𝑁×(𝑁+1)

2
  or, equivalently, p dividing 

(𝑁−1)×𝑁

2
 since the last tally of p 

− 1 fits perfectly at the end of the last cell. 

o Note:  There are 
𝑝+1

2
 rows. 

• p − 1 for being one less than p and ending at the last cell. 

• p − M for the complementary symmetrical nature of the numbers where M + 1 is the first 
integer that does not fit in a row. 

The rest of the numbers require a more complicated test.  However, if one were to place all the 
numbers in a line, then one can see that each new number starts at one more than the triangular 
numbers (OEIS A000124[2]) mod N. 

Thus, for N = 23, the sequence (mod 23) is: 0, 1, 3, 6, 10, 15, 21, 5, 13, 22, 9, 20, 9, 22, 13, 5, 21, 15, 10, 
6, 3, 1, 0.  The sequence, starting from 0, is the triangular numbers.  The sequence from the end is N − n, 
with the last n starting at N and decreasing by the triangular numbers.  Thus, the sequence is symmetric 

about the 
𝑁+1

2
 position (20 in bold) for all odd N. 

Looking at the number of integers that fit and don’t fit for an odd prime number such as 23, we get the 
following pattern. 

Table 2 – Fits vs. Does Not Fit 

Fits 1 2 3 4 5 6 8 9 11 13 16 22 

Does Not Fit ‘22’ 21 20 19 18 17 15 14 12 10 7 ‘1’ 

Sum 23 23 23 23 23 23 23 23 23 23 23 23 

In addition to the number p, and adding the numbers 1 and p − 1 in quotes for Does Not Fit since they 

cancel with the two that Fit, we get an estimated value e(N) of the actual count a(N) as ⌈
𝑁

2
⌉ + 1, again 

due to the complementary symmetry of the fitting on the sums from both ends of the table when N is 
prime.  Thus, for N = 23, we have 13 integers that fit perfectly in a row and 10 that do not.  This, 
however, is only guaranteed to be true for odd primes p, their powers, and their power-of-two 
multiples.  See the Output section for a summary of the first 51 integers. 

Looking at half the numbers in the N = 23 sequence, we get two instances of each half of the numbers, 
with the exception of the middle number having only one.  This is the same as looking at the starting 
point of all the numbers (in bold) from Table 1 to get the following pattern. 
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Table 3 – n vs. 24 − n 

Place 0 1 3 6 10 15 21 5 13 22 9 20 

n 1 2 3 4 5 6 7 8 9 10 11 12 

24 − n 23 22 21 20 19 18 17 16 15 14 13 12 

Sum 24 24 24 24 24 24 24 24 24 24 24 24 

For odd numbers, this is due to the fact that the odd number fills up the last row.  Thus, the starting 
values of all numbers pair off against each other when N is odd. 

Starting backwards from N, we have some row parity relationship for (1, N) (i.e., either they have the 
same row parity or they don’t).  (2, N − 1) will have the opposite row parity relationship than (1, N), with 
the remaining row parity relationships alternating from the previous pair. 

Table 4 – Row Parity for N = 21 

k N − k + 1 row parity 

1 21 = 

2 20 ≠ 

3 19 = 

4 18 ≠ 

5 17 = 

6 16 ≠ 

7 15 = 

8 14 ≠ 

9 13 = 

10 12 ≠ 

11 11 = 

Even Numbers 

For 2N, every k starts at the same position as 2N − k + 1 in N columns.  Due to the half row shift at the 
end of 2N, k and 2N − k + 1 are always on opposite sides of their pairs in N. 

Miscellaneous 

As a result, for any N, if no numbers start at column k, then for M∈ℕ, no numbers shall start at k + m×N 
for M×N, where m < M (i.e., all columns = k (mod N) in an M×N table).  Similarly, for any number that 
starts at column k, all columns = k (mod N) shall have a starting number in an M×N table.  The case for M 
= 2, with k + N for 2N, follows from this.  The general argument follows similarly.  The case for N = 2n 
shows that every column has a number as its starting point starting with N = 1 and doubling. 

Equation Estimate 

Calculating the results for the first 1,000 integers, we get the following count signs when comparing the 

actual count to the equation estimate count (⌈
𝑁

2
⌉ + 1). 

Table 5 – Count Sign When Comparing Actual Count to Equation Estimate Count 

Sign Prime Non-Prime Count Integer Type 

< 1 9 10 Powers of 2 

= 167 264 431 Only one odd prime factor 

> 0 559 559 All others 
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Proof 

Theorems 

Theorem 1 

The actual count for an odd prime power (i.e., N = pn, where p is a prime) is equal to ⌈
𝑁

2
⌉ + 1 𝑜𝑟 

𝑝𝑛+3

2
. 

Note: For an odd prime power pn, 𝑇𝑘 = 0 (𝑚𝑜𝑑 𝑝𝑛) iff k = 1 or pn. 

Proof (I):  Since there are only two zeros for 𝑇𝑘 = 0 (𝑚𝑜𝑑 𝑝𝑛) and for any odd number N, the numbers 

1, N − 1, and N always fit, then every row in [1, ⋯ ,
𝑁+1

2
− 2] must end with a number that Does Not Fit 

(i.e., DNF count = 
𝑁−3

2
).  So, the actual count of N is 𝑁 −

𝑁−3

2
=

𝑁+3

2
. 

■ 

Proof (II):  For 0 ≤ k ≤ N − 1, k + 1 starts at 
𝑘(𝑘+1)

2
 and ends at 

𝑘(𝑘+1)

2
+ 𝑘 on a continuous line. 

Therefore, the positions of k + 1 is the closed set [
𝑘(𝑘+1)

2
 (𝑚𝑜𝑑 𝑁), ⋯ ,

𝑘(𝑘+1)

2
 (𝑚𝑜𝑑 𝑁) + 𝑘]. 

Thus, we need to show how many k’s have 
𝑘(𝑘+1)

2
 (𝑚𝑜𝑑 𝑁) + 𝑘 < 𝑁. 

Let 𝑇𝑘 =
(𝑘−1)𝑘

2
 to allow for T1 = 0. 

Note: There’s a slight confusion in differentiating between the numbers [1, …, N] and the column mods 
[0, …, N − 1]. 

For any odd N, the triangular numbers 𝑇𝑘 = 𝑇𝑁−𝑘+1 (𝑚𝑜𝑑 𝑁), 1 ≤ 𝑘 ≤ 𝑁.  The sequence is symmetric 
around 𝑇𝑁+1

2

. 

To prove the actual counts equation, we need only show that for N an odd prime power, k Fits iff N − k 
Does Not Fit, for 2 ≤ 𝑘 ≤ 𝑁 − 2, since the numbers 1, N − 1, and N will always Fit. 

If k Fits, then 
(𝑘−1)𝑘

2
(𝑚𝑜𝑑 𝑁) + 𝑘 − 1 = 𝑇𝑘(𝑚𝑜𝑑 𝑁) + 𝑘 − 1 < 𝑁. 

For N − k, where 2 ≤ 𝑘 ≤ 𝑁 − 2, 

(𝑁 − 𝑘 − 1) × (𝑁 − 𝑘)

2
 (𝑚𝑜𝑑 𝑁) + 𝑁 − 𝑘 − 1 = 𝑇𝑁−𝑘  (𝑚𝑜𝑑 𝑁) + 𝑁 − 𝑘 − 1 

= 𝑇𝑘+1 (𝑚𝑜𝑑 𝑁) + 𝑁 − 𝑘 − 1 
= (𝑇𝑘 + 𝑘) (𝑚𝑜𝑑 𝑁) + 𝑁 − 𝑘 − 1 
≥ (1 + 𝑘) + 𝑁 − 𝑘 − 1, 𝑠𝑖𝑛𝑐𝑒 𝑇𝑘(𝑚𝑜𝑑 𝑁) + 𝑘 − 1 < 𝑁 
= 𝑁 

Since the left-hand side is greater than or equal to N, it Does Not Fit. 

Note: For an odd prime power pn, 𝑇𝑘 = 0 (𝑚𝑜𝑑 𝑝𝑛) iff k = 1 or pn.  Since 𝑇𝑘  (𝑚𝑜𝑑 𝑁) + 𝑘 − 1 < 𝑁, Tk 
(mod N) can be replaced with greater than or equal to 1 since k ≤ N − 2 implies k + 1 < N even 
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without the mod and Tk is never zero for the k constraints.  Thus, (𝑇𝑘 + 𝑘) (𝑚𝑜𝑑 𝑁) ≥ 𝑘 + 1 and 
the previous inequality holds for the constraints 2 ≤ 𝑘 ≤ 𝑁 − 2. 

Similarly, if N − k Fits, then 
(𝑁−𝑘−1)×(𝑁−𝑘)

2
(𝑚𝑜𝑑 𝑁) + 𝑁 − 𝑘 − 1 = 𝑇𝑁−𝑘(𝑚𝑜𝑑 𝑁) + 𝑁 − 𝑘 − 1 < 𝑁. 

(𝑘 − 1)𝑘

2
 (𝑚𝑜𝑑 𝑁) + 𝑘 − 1 = 𝑇𝑘  (𝑚𝑜𝑑 𝑁) + 𝑘 − 1 

= 𝑇𝑁−𝑘+1 (𝑚𝑜𝑑 𝑁) + 𝑘 − 1 
= (𝑇𝑁−𝑘 + 𝑁 − 𝑘) (𝑚𝑜𝑑 𝑁) + 𝑘 − 1 
≥ (1 + 𝑁 − 𝑘) + 𝑘 − 1, 𝑠𝑖𝑛𝑐𝑒 𝑇𝑁−𝑘  (𝑚𝑜𝑑 𝑁) + 𝑁 − 𝑘 − 1 < 𝑁 
= 𝑁 

Since the left-hand side is at a greater than or equal to N, it Does Not Fit. 

Thus, 
𝑁−3

2
+ 3 =

𝑁+3

2
=

𝑝𝑛+3

2
 of the numbers belong to Fits and 

𝑁−3

2
=

𝑝𝑛−3

2
 of the numbers belong to 

Does Not Fit. 

■ 

Theorem 2 

If N is any odd number that is not a prime power, then the actual count is greater than the estimated 
count. 

Proof:  For an odd prime power pn, 𝑇𝑘 = 0 (𝑚𝑜𝑑 𝑝𝑛) iff k = 1 or pn. 

If N is not an odd prime power, then there exist at least two other numbers (k, N − k + 1) such that 𝑇𝑘 =
𝑇𝑁−𝑘+1 = 0 (𝑚𝑜𝑑 𝑁). 

Let c be the count of numbers that satisfy 𝑇𝑘 = 0 (𝑚𝑜𝑑 𝑁) (i.e., all numbers that start at column zero). 

Note: c is even and greater than zero.  c appears to be equal to twice the number of unique odd primes 
in N. 

For any integer N, N = ⌊
𝑁

2
⌋ + ⌈

𝑁

2
⌉. 

The total number of rows in N is ⌈
𝑁+1

2
⌉. 

Then the total number for Does Not Fit in any N is ⌈
𝑁+1

2
⌉ − 𝑐 and a(N) = 𝑁 − (⌈

𝑁+1

2
⌉ − 𝑐) = ⌊

𝑁−1

2
⌋ + 𝑐. 

Thus, 𝑎(𝑁) = ⌊
𝑁−1

2
⌋ + 𝑐 > ⌈

N+3

2
⌉ when N is odd and c > 2. 

Note: N = pn and c = 2 proves Theorem 1. 

■ 

Note: Thus, one way to test if an odd number is a potential prime is to check if the actual count for Fits 
is equal to the estimated value.  For Mersenne and Fermat numbers, this test would prove 
primality due to Catalan’s conjecture[3]. 
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Theorem 3 

The actual count for an even number (2N) is equal to the actual count of N plus ⌊
𝑁

2
⌋. 

Proof:  From Theorem 2, we have 𝑎(𝑁) = ⌊
𝑁−1

2
⌋ + 𝑐. 

𝑎(2𝑁) = ⌊
2𝑁 − 1

2
⌋ + 𝑐 

= ⌊
𝑁 − 1

2
⌋ + ⌊

𝑁

2
⌋ + 𝑐 

= 𝑎(𝑁) + ⌊
𝑁

2
⌋ 

■ 

Theorem 4 

The equality holds for all numbers divisible by exactly one odd prime (i.e., N = 2m×pn, where p is a single 
prime; OEIS A336101[4]). 

Proof by induction for N = 2m×pn since Theorem 1 covers the odd perfect prime powers. 

Proof:  Given a(pn) = ⌈
𝑝𝑛

2
⌉ + 1. 

Assume a(2m×pn) = ⌈
2𝑚×𝑝𝑛

2
⌉ + 1 for a fixed m ≥ 0. 

Then by Theorem 3, 

𝑎(2𝑁) = 𝑎(𝑁) + ⌊
𝑁

2
⌋ 

= 𝑎(2𝑚 × 𝑝𝑛) + ⌊
2𝑚 × 𝑝𝑛

2
⌋ 

= ⌈
2𝑚 × 𝑝𝑛

2
⌉ + 1 + ⌊

2𝑚 × 𝑝𝑛

2
⌋ 

= 2𝑚 × 𝑝𝑛 + 1 

= ⌈
2𝑚+1 × 𝑝𝑛

2
⌉ + 1 

Note: N = 2m×pn and c = 2 in Theorem 2 also proves this theorem. 

■ 

Theorem 5 

The less than occurs when N is a power of 2 (i.e., N = 2n).  The actual count is half that power of 2 (i.e., 
2n−1), while the estimated count is one more than the actual count (i.e., 2n−1 + 1). 

Proof:  Given a(1) = a(2) = 1. 

Assume 𝑎(2𝑛) = 2𝑛−1 for n ≥ 1. 
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By Theorem 3 and induction on n, we get  

𝑎(2𝑛+1) = 𝑎 (
2𝑛+1

2
) + ⌊

2𝑛+1

4
⌋ 

=  𝑎(2𝑛) + ⌊2𝑛−1⌋ 
= 2𝑛−1 + ⌊2𝑛−1⌋ 
= 2𝑛 

Note: N = 2n and c = 1 in Theorem 2 also proves this theorem. 

■ 

Note: Thus, one way to test if an even number is a power of two is to check if the actual count for Fits is 
(one) less than the estimated value.  1 also passes this test. 

The greater than is for the remaining types of N and appears to start with mostly a delta of 2.  However, 
running a modified version of the Main code up to 100,000 shows the interesting pattern that emerges 
as listed in the following table. 

Table 6 – Distribution of Deltas 

Delta (d) Count (≤ 100,000) 

−1 16 

0 21,172 

2 46,068 

6 27,999 

14 4,628 

30 117 

Conjectures 

Conjecture 1 

The delta sequence is 2 less than a power of 2 (a(n) = 2n − 2; OEIS A000918[5]). 

From Theorem 2, d = c − 2.  It suffices to show that c is a power of two. 

Note: The count density of these deltas appears to have a right-tailed distribution.  It would be 
interesting to see how this pattern grows. 

No pattern for which numbers have the same delta is easily apparent.  However, the first instance that 
results in a new value for each of these deltas is listed in the following table. 

Table 7 – First Instance of Delta 

Delta (d) First Instance (N) Primorial (p#) 

-1 1 2#/2 

0 3 3#/2 

2 15 5#/2 

6 105 7#/2 

14 1,155 11#/2 

30 15,015 13#/2 
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Another pattern that appears to relate to this is the count M for when 𝑇𝑛 = 0 (𝑚𝑜𝑑 𝑁), 1 ≤ 𝑛 ≤ 𝑁.  

The value of M increases for the first time and is equal to 2m when N = 
𝑝#

2
, the (m+1)th half-primorial 

(OEIS A070826[6]). 

Table 8 – Count M for When Tn = 0 (mod N) 

M = 2m First Instance (N) Primorial (p#) 

1 = 20 1 2#/2 

2 = 21 3 3#/2 

4 = 22 15 5#/2 

8 = 23 105 7#/2 

16 = 24 1,155 11#/2 

32 = 25 15,015 13#/2 

Conjecture 2 

The sequence of numbers that arises from selecting the first delta difference instance from our 

sequence of deltas is one half of the product of the first n primes (i.e., 
𝑝#

2
). 

Note: Another way of generating all primes is to keep track of the primorials for the first instance of the 
ever-increasing deltas. 

Proving these conjectures is beyond the scope of this paper. 

Corollaries 

Corollary 1 

Let d(𝑝𝑛+1) = 
𝑎(𝑝𝑛+1)−𝑎(𝑝)

𝑝
, where p is an odd prime, then 

𝑑(𝑝𝑛+1) = p × 𝑑(𝑝𝑛) + 𝑑(𝑝2) 

= p × 𝑑(𝑝𝑛) +
𝑝 − 1

2
 

=
𝑝𝑛 − 1

2
 

 a(𝑝𝑛+1) = 𝑎(𝑝) + 𝑝 ×
𝑝𝑛−1

2
. 

Proof:  A corollary of Theorem 1. 

■ 

Corollary 2 

𝑎(𝑝𝑛+1) = 𝑝 × 𝑎(𝑝𝑛) − 3 ×
𝑝−1

2
, where p is an odd prime and n > 1. 

Proof:  A corollary of Theorem 1. 

■ 
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Corollary 3 

𝑎(2𝑝) = 2𝑎(𝑝) − 2 = 𝑝 + 1, where p is an odd prime. 

Proof:  A corollary of Theorem 1 and Theorem 3. 

■ 

Corollary 4 

𝑎(2𝑘𝑝) = 2𝑘−1 × 𝑝 + 1, where p is an odd prime. 

Proof:  A corollary of Theorem 1 and Theorem 3. 

■ 

Corollary 5 

𝑎(3𝑝) = 3𝑎(𝑝) − 1, where p is an odd prime greater than 3. 

Proof:  By the Euclidean Algorithm[7], if (p, 3) = 1, then there exists integers r, s such that pr – 3s = 1. 

Let k = pr, then Tk = 0 (mod 3p). 

From Theorem 2, we’re assuming uniqueness of k so that c = 4 and 

𝑎(3𝑝) = ⌊
3𝑝 − 1

2
⌋ + 4 

=
3𝑝 + 7

2
 

= 3 (
𝑝 + 3

2
) − 1 

= 3𝑎(𝑝) − 1 

■ 

Note: Proving that c equals twice the number of unique odd primes is key here and has been left out. 

Corollary 6 

𝑎(3𝑝) = 𝑎(2𝑝) + 𝑎(𝑝) + 1, where the prime p ≠ 3. 

Proof:  Follows from Corollary 3 and Corollary 5. 

■ 

Corollary 7 

𝑎(3 × 2𝑛) = 3𝑎(2𝑛) + 1 = 3 × 2𝑛−1 + 1, for all n ≥ 1. 

Proof:  A corollary of Theorem 3. 

■ 
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Other Patterns 

𝑎(𝑘 × 𝑝) = 𝐶 + ∑ 𝐶𝑖 × 𝑎(𝑖 × 𝑝)

𝑘−1

𝑖=1

 

Table 9 – Other Actual Fit Patterns 

a(k×p), k = C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 p > k Exception(s) 

3 1 1 1              p > 3 p = 2 

4 -2 -1 1 1             p > 3  

5 0 -1 -1 1 1            p > 5  

6 -2 1 -1 1 1            p > 5 p = 3, 5 

7 -1 1 1 -1 -1 1 1          p > 7 p = 3 

8 -4 -1 1 1 -1 -1 1 1         p > 7  

9 -7 0 0 3             p > 7 p = 5, 7 

9 0 -1 1 1 1 -1 1          p > 7 p = 2, 7 

9 -2 0 -1 1 1 -1 -1 1 1        p > 7  

10 -4 0 0 -1 1 1 -1 -1 1 1       p > 7 p = 5 

11 -3 1 1 -1 -1 1 1 -1 -1 1 1      p > 11  

12 -4 -1 1 1 -1 -1 1 1 -1 -1 1 1     p > 11  

13 -2 0 -1 1 1 -1 -1 1 1 -1 -1 1 1    p > 13 p = 3 

14 -4 0 0 -1 1 1 -1 -1 1 1 -1 -1 1 1   p > 13 p = 3, 5 

15 1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1  p > 13 p = 2, 5, 7 

16 -10 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 p > 13  

Finding a pattern for which this equality holds is proving to be complicated.  Many of these coefficients 
have the (1, 1, −1, −1) pattern starting at k – 1 (e.g., an exception appears to be k = 6), but coming up 
with the constant C that’s only dependent on k and the other coefficients has proven elusive.  In 
general, the summation appears to hold true for a(k × p) when p > k. 

Note: The equality is not necessarily a unique summation for each k. 

Proof:  I’m tapping out. 

Observations 

Observation 1 

For any odd N, 
𝑁+1

2
 Fits for N = 8k + 1 and 8k + 3; otherwise, Does Not Fit; and 

𝑁−1

2
 Fits for N = 8k + 5 and 

8k + 7; otherwise, Does Not Fit. 

Proof:  For any odd N, if k Fits, then 
(𝑘−1)𝑘

2
(𝑚𝑜𝑑 𝑁) + 𝑘 − 1 < 𝑁. 

For N = 8k + 1, if 
𝑁+1

2
 Fits, then 

(
𝑁 − 1

2 ) (
𝑁 + 1

2 )

2
(𝑚𝑜𝑑 𝑁) +

𝑁 + 1

2
− 1 =

𝑁2 − 1

8
(𝑚𝑜𝑑 𝑁) +

𝑁 − 1

2
 

=
(8𝑘 + 1)2 − 1

8
(𝑚𝑜𝑑 8𝑘 + 1) +

8𝑘

2
 

=
8𝑘(8𝑘 + 2)

8
(𝑚𝑜𝑑 8𝑘 + 1) + 4k 

= 𝑘(8𝑘 + 2)(𝑚𝑜𝑑 8𝑘 + 1) + 4k 
= 𝑘 + 4k 
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= 5𝑘 
< 𝑁 

For N = 8k + 3, if 
𝑁+1

2
 Fits, then 

(
𝑁 − 1

2
) (

𝑁 + 1
2

)

2
(𝑚𝑜𝑑 𝑁) +

𝑁 + 1

2
− 1 =

𝑁2 − 1

8
(𝑚𝑜𝑑 𝑁) +

𝑁 − 1

2
 

=
(8𝑘 + 3)2 − 1

8
(𝑚𝑜𝑑 8𝑘 + 3) +

8𝑘 + 2

2
 

=
(8𝑘 + 2)(8𝑘 + 4)

8
(𝑚𝑜𝑑 8𝑘 + 3) + 4k + 1 

= ((4𝑘 + 1)(2𝑘 + 1))(𝑚𝑜𝑑 8𝑘 + 3) + 4k + 1 

= (𝑘(8𝑘 + 3) + (3𝑘 + 1))(𝑚𝑜𝑑 8𝑘 + 3) + 4k + 1 

= 3𝑘 + 1 + 4k + 1 
= 7𝑘 + 2 
< 𝑁 

For N = 8k + 5, if 
𝑁+1

2
 Does Not Fit, then 

𝑁2 − 1

8
(𝑚𝑜𝑑 𝑁) +

𝑁 + 1

2
− 1 = 9𝑘 + 5 ≥ 𝑁 

For N = 8k + 7, if 
𝑁+1

2
 Does Not Fit, then 

𝑁2 − 1

8
(𝑚𝑜𝑑 𝑁) +

𝑁 + 1

2
− 1 = 11𝑘 + 9 ≥ 𝑁 

For N = 8k + 1, if 
𝑁−1

2
 Does Not Fit, then 

(𝑁 − 3)(𝑁 − 1)

8
(𝑚𝑜𝑑 𝑁) +

𝑁 − 1

2
− 1 = 9𝑘 ≥ 𝑁 

For N = 8k + 3, if 
𝑁−1

2
 Does Not Fit, then 

(𝑁 − 3)(𝑁 − 1)

8
(𝑚𝑜𝑑 𝑁) +

𝑁 − 1

2
− 1 = 11𝑘 + 3 ≥ 𝑁 

For N = 8k + 5, if 
𝑁−1

2
 Fits, then 

(𝑁 − 3)(𝑁 − 1)

8
(𝑚𝑜𝑑 𝑁) +

𝑁 − 1

2
− 1 = 5𝑘 + 2 < 𝑁 

For N = 8k + 7, if 
𝑁−1

2
 Fits, then 

(𝑁 − 3)(𝑁 − 1)

8
(𝑚𝑜𝑑 𝑁) +

𝑁 − 1

2
− 1 = 6𝑘 + 5 < 𝑁 

■ 
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Observation 2 

For any even N, 
𝑁

2
 Fits for N ≠ 0 (mod 8); otherwise, Does Not Fit.  In addition, 

𝑁

2
 starts at 

(𝑛−1)×𝑁

4
 for N = 

8k + 2n. 

Proof:  Let M = 
𝑁

2
.  Then N = 2(4k + n) and M = 4k + n, where n = 0, 1, 2, or 3. 

If k Fits, then 
(𝑘−1)𝑘

2
(𝑚𝑜𝑑 𝑁) + 𝑘 − 1 < 𝑁. 

For M = 4k + n, if M Fits, then let the End Position (EP) = 

(𝑀 − 1)M

2
(𝑚𝑜𝑑 𝑁) + M − 1 =

(4𝑘 + 𝑛 − 1)(4𝑘 + 𝑛)

2
(𝑚𝑜𝑑 8𝑘 + 2𝑛) + 4𝑘 + 𝑛 − 1 

For n = 1, EP = 4k = 
𝑁

2
 – 1 < N = 8k + 2.  Thus, 

𝑁

2
 starts at 0 and the previous number (4k > 0) fits in N, but 

the next number (4k + 1) does not. 

For n = 2, EP = 6k + 2 = 
3𝑁

4
 – 1 < N = 8k + 4.  Thus, 

𝑁

2
 starts at 

𝑁

4
 and neither the previous number (4k + 1 > 

1) nor the next number (4k + 3) fit in N. 

For n = 3, EP = 8k + 5 = N – 1 < N = 8k + 6.  Thus, 
𝑁

2
 starts at 

𝑁

2
 and the previous number (4k + 2) and the 

next number (4k + 4) also fit in N. 

For n = 0, EP = 10k − 1 = 
5𝑁

4
 – 1 ≥ N = 8k.  Thus, 

𝑁

2
 starts at 

3𝑁

4
 and the previous number (4k + 3) and the 

next number (4k + 5) also fit in N. 

■ 

Observation 3 

Some interesting patterns arise when calculating 𝐶(𝑘, 𝑝) = 𝑝 − 2 × (𝑎((𝑘 + 1) × 𝑝) − 𝑎(𝑘 × 𝑝)), 

where k is a fixed positive integer and p is an odd prime that varies.  The result is a constant for p > k. 

Observation 4 

For any power of 2 (i.e., N = 2n), the number of starting columns used in N is N, while the number of 
starting columns unused is 0 (see Even Numbers). 

For any odd prime (i.e., N = p), the number of starting columns used in N is 
𝑝+1

2
, while the number of 

starting columns unused is 
𝑝−1

2
.  This is due to the fact that when N is prime, Ta ≠ Tb (mod N) for a ≠ b 

(mod N) and 
𝑁+1

2
= 𝑁 −

𝑁+1

2
+ 1 (mod N) for all odd N.  Thus, another and possibly faster approach to 

check if an odd number is prime is to count the number of starting columns used up to 
𝑁+1

2
 and see if it 

equals 
𝑁+1

2
. 

If N is odd but not a prime and greater than one, the number of starting columns used in N is less than 
the number of starting columns unused. 
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If N is even and divisible by at most a single unique odd prime number (i.e., N = 2npm, with n ≥ 1 and m ≤ 

1), then the number of starting columns used in N is 
𝑁+2𝑛

2
, while the number of starting columns unused 

is 
𝑁−2𝑛

2
. 

If N is even and has at least two prime factors, not necessarily distinct, the number of starting columns 
used in N is less than the number of starting columns unused. 

Table 10 – Number of Used vs. Unused Starting Columns 

Used Sign Unused Integer Type (N) 

N > 0 Powers of 2 (2n) 

𝑁 + 1

2
 > 

𝑁 − 1

2
 Odd primes 

unknown < unknown Odd non-primes > 1 

𝑁 + 2𝑛

2
 > 

𝑁 − 2𝑛

2
 

Even, with at most a single unique odd prime factor (2npm, with n ≥ 1 and m ≤ 1);   
Covers the first two conditions as well;  For m = 1, the Unused count is equal to 𝜑(𝑁) 

unknown < unknown All other even numbers 

unknown = unknown None 

Conclusion 

It’s interesting to see how there are patterns within patterns in the integer sequence and all the 
different ways an integer can be proven to be prime.  This method requires only simple algebra to prove 
whether any number is a perfect prime power or not. 

A similar pattern occurs if we use the powers of two for the equation estimate to make those deltas 
equal since the equation estimate would strictly be a division by two. 
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Code (Python) 

Main 

import math 
import os 
import sympy 
 
f = "counting.txt" 
if os.path.exists(f"{f}"): 
    os.remove(f"{f}") 
 
f = open(f"counting.txt", "a") 
# p = prime, a = actual count, s = sign, e = estimated count, d = delta, c = count increase 
f.write("n\tprime\ta\ts\te\td\tc\tlist\n") 
 
n = 1000 
s = “” 
c = 0 
 
for i in range(1, n + 1): 
    sum = 0 
    e = int(math.ceil(i/2) + 1) 
 
    a = 0 
    l = [] 
 
    for j in range(1, i + 1):    # The end can be modified to stop at N − M and adding two to a. 
        sum += j 
        if (sum <= i): 
            l.append(j) 
            a += 1 
        if (sum >= i): 
            sum -= i 
 
    if (a < e): 
        s = "<" 
    elif (a > e): 
        s = ">" 
    else: 
        s = "=" 
 
    f.write("%i\t%s\t%i\t%s\t%i\t%i\t%s\t[%s]\n" % (i, sympy.isprime(i), a, s, e, a - e, ("", str(a))[a > c], str(l)[1:-1])) 
 
    if (a > c): 
        c = a 
 
f.close() 
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Primality Testing 

# Note: This test normally verifies that an odd number is a potential prime since it could still be a prime power. 
# The code was designed for Mersenne numbers, but can be modified to test the primality of any odd number, 
# including Fermat numbers.  This approach can be improved for better efficiency. 
 
import math 
import sympy 
 
n = 32 
p = 1 
 
for i in range(1, n + 1): 
    # For Mersenne numbers, mp is not a prime if p is not a prime. 
    p = sympy.nextprime(p) 
 
    mp = 2**p - 1 
    e = int(math.ceil(mp/2) + 1) 
 
    sum = 0 
    a = 0 
    np = “” 
    stop = p - 2**int(p/2 + 1) + 1 
    pc = int(100*(i/n)) 
 
    for j in range(1, stop): 
        sum += j 
        if (sum <= mp): 
            a += 1 
            if (a + 2 > e): 
                np = "not " 
                break 
        if (sum >= mp): 
            sum -= mp 
        print(f"%{pc} - %{int(100*j/(stop-1))}  ", end="\r") 
 
    print(f"2 ^ %i - 1 = %i is %sa prime (%i, %i)." % (p, mp, np, a, e)) 
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Output 
Table 11 – Value-Counting Up to 51 

n prime a s e d c list 

1 False 1 < 2 -1 1 [1] 

2 True 1 < 2 -1  [1] 

3 True 3 = 3 0 3 [1, 2, 3] 

4 False 2 < 3 -1  [1, 2] 

5 True 4 = 4 0 4 [1, 2, 4, 5] 

6 False 4 = 4 0  [1, 2, 3, 4] 

7 True 5 = 5 0 5 [1, 2, 3, 6, 7] 

8 False 4 < 5 -1  [1, 2, 3, 5] 

9 False 6 = 6 0 6 [1, 2, 3, 5, 8, 9] 

10 False 6 = 6 0  [1, 2, 3, 4, 5, 7] 

11 True 7 = 7 0 7 [1, 2, 3, 4, 6, 10, 11] 

12 False 7 = 7 0  [1, 2, 3, 4, 6, 8, 9] 

13 True 8 = 8 0 8 [1, 2, 3, 4, 6, 8, 12, 13] 

14 False 8 = 8 0  [1, 2, 3, 4, 6, 7, 8, 10] 

15 False 11 > 9 2 11 [1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 15] 

16 False 8 < 9 -1  [1, 2, 3, 4, 5, 7, 9, 12] 

17 True 10 = 10 0  [1, 2, 3, 4, 5, 7, 9, 11, 16, 17] 

18 False 10 = 10 0  [1, 2, 3, 4, 5, 7, 8, 9, 11, 14] 

19 True 11 = 11 0  [1, 2, 3, 4, 5, 7, 8, 10, 13, 18, 19] 

20 False 11 = 11 0  [1, 2, 3, 4, 5, 7, 8, 10, 12, 15, 16] 

21 False 14 > 12 2 14 [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21] 

22 False 12 = 12 0  [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 17] 

23 True 13 = 13 0  [1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 16, 22, 23] 

24 False 13 = 13 0  [1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 16, 19] 

25 False 14 = 14 0  [1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 18, 24, 25] 

26 False 14 = 14 0  [1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 17, 21] 

27 False 15 = 15 0 15 [1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 17, 20, 26, 27] 

28 False 15 = 15 0  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 19, 23] 

29 True 16 = 16 0 16 [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 16, 18, 21, 28, 29] 

30 False 18 > 16 2 18 [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25] 

31 True 17 = 17 0  [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 17, 20, 23, 30, 31] 

32 False 16 < 17 -1  [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 17, 19, 22, 26] 

33 False 20 > 18 2 20 [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 17, 19, 21, 22, 25, 32, 33] 

34 False 18 = 18 0  [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 15, 16, 17, 19, 21, 24, 28] 

35 False 21 > 19 2 21 [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 20, 21, 23, 27, 34, 35] 

36 False 19 = 19 0  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 23, 26, 30] 

37 True 20 = 20 0  [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18, 20, 22, 25, 28, 36, 37] 

38 False 20 = 20 0  [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18, 19, 20, 22, 24, 27, 32] 

39 False 23 > 21 2 23 [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 21, 24, 26, 27, 30, 38, 39] 

40 False 21 = 21 0  [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 19, 21, 23, 26, 29, 34] 

41 True 22 = 22 0  [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 19, 21, 23, 25, 28, 32, 40, 41] 

42 False 24 > 22 2 24 [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 19, 20, 21, 23, 25, 27, 28, 31, 35, 36] 

43 True 23 = 23 0  [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 20, 22, 24, 27, 30, 34, 42, 43] 

44 False 23 = 23 0  [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 20, 22, 24, 26, 29, 32, 33, 37] 

45 False 26 > 24 2 26 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 20, 22, 24, 26, 29, 32, 35, 36, 44, 45] 

46 False 24 = 24 0  [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 18, 20, 22, 23, 24, 26, 28, 31, 34, 39] 

47 True 25 = 25 0  [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 18, 20, 21, 23, 25, 28, 30, 33, 37, 46, 47] 

48 False 25 = 25 0  [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 18, 19, 21, 23, 25, 27, 30, 32, 33, 36, 41] 

49 False 26 = 26 0  [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 18, 19, 21, 23, 25, 27, 29, 32, 35, 39, 48, 49] 

50 False 26 = 26 0  [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 18, 19, 21, 23, 24, 25, 27, 29, 31, 34, 38, 43] 

51 False 29 > 27 2 29 [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 24, 26, 28, 31, 33, 34, 37, 41, 50, 51] 
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