
Simpler O(1) Query Algorithm for Level Ancestors

Sanjeev Saxena∗

Dept. of Computer Science and Engineering,

Indian Institute of Technology,

Kanpur, INDIA-208 016

July 30, 2024

Abstract

This note describes a very simple O(1) query time algorithm for finding level ancestors. This is basically

a serial (re)-implementation of the parallel algorithm of Berkman and Vishkin (O.Berkman and U.Vishkin,

Finding level-ancestors in trees, JCSS, 48, 214–230, 1994).

Although the basic algorithm has preprocessing time of O(n log n), by having additional levels or using

table lookup, the preprocessing time can be reduced to almost linear or linear.

The table lookup algorithm can be built in O(1) parallel time with n processors and can also be used to

simplify the parallel algorithm of Berkman and Vishkin and make it optimal.

Keywords: Level Ancestors; Rooted Trees; Algorithms; Graphs; Euler Traversal; Parallel Algorithms

1 Introduction

In the level ancestor problem, we are given a rooted tree, which is to be preprocessed to answer queries of

the type: find the kthancestor of a node v (here, both k and v are query parameters).

Several sequential and parallel algorithms are known for this problem [7, 3, 5, 10, 1, 13]. The level

ancestor algorithm of Bender and Farach-Colton[5] is conceptually simple and is usually used in teaching.

Their “simple algorithm” [5, Theorem 8] takes O(n log n) preprocessing time and can answer queries in O(1)

time. The algorithm uses long-path decomposition, ladders and jump pointers. Their algorithm can answer

queries using two table lookups. Macro-micro algorithm [5, Section 4], can be used to reduce preprocessing

time and space from O(n log n) to O(n). The macro-micro algorithm is conceptually simple; however, as per

one implementation [12], the algorithm has “significant implementation complexity with quite a few details

and subtleties”.

Berkman and Vishkin[7] describe a parallel algorithm for this problem. Their algorithm can be used to

∗E-mail: ssax@iitk.ac.in

1

answer queries in constant time with a single processor (serially). On the Concurrent Read Concurrent Write

model (CRCW), the parallel preprocessing time for the algorithm is O(log(m) n), with a near-optimal number

of processors, provided the levels of all nodes and Euler Traversal is given. Without these assumptions, or on

a weaker Concurrent Read Exclusive Write (CREW) model, the algorithm will take O(log n) preprocessing

time with nearly optimal number of processors. The sequential implementation of their algorithm will give

a O(1) query time algorithm with nearly linear preprocessing time.

Menghani and Matani [13] also describe another simple algorithm. However, their algorithm takes

O(log n) time to answer queries.

This note describes a very simple O(1) query time algorithm for finding level ancestors; the preprocessing

time is O(n log n). This is basically a serial (re)-implementation of the parallel algorithm of Berkman

and Vishkin [7]. Ben-Amram [3] also gave a serial version of their parallel algorithm [7]; however, the

proposed description of the “basic” constant-time algorithm is still simpler and more complete; almost all

implementation details are described.

This implementation of the Berkman-Vishkin algorithm will offer an alternative to the algorithm of

Bender and Farach-Colton. Students familiar with the Euler-Tour technique [14] may find this conceptually

even simpler and, almost certainly, easier to implement. The ancestor of node v at level “d” is the first node

after v having level d (in the Euler Traversal). Preprocessing time can be made linear by using table lookup

for small sets.

The proposed algorithm for table look-up is the usual standard algorithm. This, or a similar algorithm,

has been used, e.g., in finding the lowest common ancestors[6][11, Section 6.3.1] in serial setting and parallel

prefix sum problem in parallel setting[9]. The table can be constructed in linear serial or O(1) parallel time

with n processors. As a result, the parallel algorithm of Berkman and Vishkin[7] can also be simplified and

made optimal.

All nearest smaller algorithm, which is being used by the algorithms. is described in Section 2. The

preprocessing algorithm is discussed in Section 3. Answering of queries is discussed in Section 4. Techniques

for reducing preprocessing time are discussed in Section 5. Table construction is discussed in Section 6.

2 Preliminaries-Nearest Smallers

We use two techniques for our algorithm. These are Euler Traversal[14, 4] and nearest smallers[8]. The Euler

Traversal Technique is described in Section 3. Berkman, Schieber and Vishkin [8] introduced the Nearest

Smallers (NS) problem: given an array A[1 : n], for each i, find the smallest j > i such that aj < ai.

Thus, for each item, we have to find the index of first item (after it) which is smaller than it.

The nearest smaller problem can be solved serially in linear time using a stack. The stack will contain

indices of all those items whose nearest smaller has not (yet) been found; thus, “items in stack” will be in

increasing order. Stack initially contains “1”, the index of the first item. The remaining items are picked up

one by one. If the item on top of the stack is larger than the current item, the index of the current item is

the nearest smaller of the stack top. Thus, the algorithm to find the nearest smallers for array A is:

2

top= 1; S[1] = 1 /* stack S contains index of first item */

for i = 2 to n do /* look at items one by one */

while ((A[S[top]] > A[i])&& (top> 0)) do

t = S[top] /* index at top of stack */

NS[t] = i; top−− /* Pop item at top of stack */

top++;S[top] = i /* Push current item */

As we push an item at most once, the number of pushes is n. We can only pop items which were pushed

in the stack. Hence, the number of pop operations is O(n). Thus, the algorithm takes O(n) time.

The problem can also be solved without using a stack[2, Lemma 1] (see also [15]). Consider the following

algorithm for Nearest Smallers.

Initialise: A[0] = −∞ (default left smaller for items which are prefix minima). Thus, now each item in

array A[1 : n] has a left nearest smaller “NS”.

For first item NS[1] = 0

for i = 2 to n do

{

j := i− 1 /* item on left */

while ((A[j] ≥ A[i]) do /* we have not yet found a left smaller */

{

j := NS[j] /* As A[j] is larger, NS[i] has to be smaller than A[j] hence, test NS[j]

*/

}
NS[i] = j.

}

If we assign j = NS[j], then AS[j] is smaller than A[j] thus, A[j] can not be NS of any item right of A[i].

If we assign k = NS[i], then “i” will jump to “k” and “j” will never be seen again. Hence, assigment

j = NS[j] is done only once for any value of j. Or the while look can repeat at most n times, once for each

value of j.

Barbay, Jeremy; Fischer, Johannes; Navarro, Gonzalo (2012), ”LRM-Trees: Compressed indices, adap-

tive sorting, and compressed permutations”, Theoretical Computer Science, 459: 26–41, arXiv:1009.5863,

doi:10.1016/j.tcs.2012.08.010

3 Preprocessing

We are given a rooted tree, say T , which is to be preprocessed to answer queries of the type: find the

kthancestor of a node v in T .

3

The Euler-traversal technique requires the tree T to be in adjacency list form. If the initial tree is not

in this form, we look at each edge (say) (u, v) in turn and add vertex u to the adjacency list of v and vertex

v to the adjacency list of u. Thus, for each undirected edge (u, v), we are creating two directed edges (u, v)

and (v, u). As the in-degree of each node is the same as the out-degree, the graph is Eulerian, and an Euler

tour of the tree can be found [14, 4] as follows:

for each edge (u, v) do

The edge after (u, v) in the tour will be the edge (v, w), where w is the next vertex after u in the

adjacency list of v.

We can compute levels of each node (distance from root) in linear time. The level of the root is zero, and

if w is the parent of v, then level[v] = 1+level[w]. Levels can be computed in linear time by traversing the

tree.

Levels can also be computed using Euler Traversal[14]. Initially, level is initialised to 0. When moving

from parent to child, level is incremented, and when going back from child to parent, level is decremented.

If u and v are two successive vertices, then level[u] = 1±level[v]; thus, levels of two successive vertices differ

by exactly one (in absolute terms).

Let us put the vertices and their levels as they are encountered in an array (say) ET . Thus, the first

entry, ET [0] will be (root, 0). Each vertex may occur several times. We also store the index of any occurrence

(say the last) in another array, say “Position”. Thus, if Position[v] = i then, ET [i] = (v, level(v)).

To find the kthancestor of a node v in T , we first find i =Position[v], then we find the first ordered

pair (after i) having the first entry as “level(v) − k”. If the ordered pair is (level(v) − k, u) then u is the

kthancestor of v[7, 3]. Thus, it is sufficient to solve the following Find Smaller (FS) problem [3, 7]:

Process an array A[1 : n] such that, given query FS(i, x), find the smallest j ≥ i such that aj ≤ x.

The algorithm precomputes the result of some pre-determined queries. Answering FS-query is then just

a table look-up. If the query is FS(i, x), the numbers i and x are used to determine the location where the

answer (to the query) is available.

The table, called [7], FAR is an array of arrays. For each i, a different array FARi (of size depending on

i) is constructed.

The jthentry of the array, FARi[j] will contain the index of the first location right of ai having

a value less than or equal to ai − j.

Thus, FARi[1] will contain the index of the first location (after i) with value ai−1. For the level ancestor

problem, this is the node with one level less, i.e., it is the parent. FARi[2] will contain the index of the first

location with value ai − 2, corresponding to the grandparent. In general, FARi[j] will contain the index

of the jthancestor, i.e., if node v is at location i and if ai =level(v), the dthancestor of v will be at level

ai − d, this is FARi[d]. FAR-arrays are like storing ancestors for “ladder” in the algorithm of Bender and

Farach-Colton[5].

Again, from definition, if FARi[j] = h then h is the smallest index (with h > i) such that, ah ≤ ai − j.
Given query FS[i, x] we compute d = ai − x. Then FARi[d] is the first location right of ai having value less

than or equal to ai − d = ai − (ai − x) = x.

4

If the depth of the original tree T is d, computing all legal FARi values make take O(nd) time (and

space) hence only some of the FARi values are computed. If i − 1 = s2r, i.e., 2r is the largest power of 2

dividing i − 1, then we will be computing only 3 ∗ 2r entries in FARi. For each of the following numbers:

ai − 1, ai − 2, . . ., ai − 3 ∗ 2r, we have to find the left most index k, k > i such that ak ≤ ai − j, for

j = 1, 2, . . ., 3 ∗ 2r.

All FAR-arrays can be easily computed using Nearest Smallers: Assume NS[i] = q. Then, all items

ai+1, . . ., aq−1 are larger than ai. We can make FARi[1] = q. If d = ai − aq, then we can also make

FARi[2] = q,FARi[3] = q, . . . , FARi[d] = q. In case, we need to find FARi[d+ 1], we again find NS[q] and

proceed. Thus, if Nearest Smallers are known, then each FAR entry can be filled in O(1) time.

Lemma 1 All “FAR” arrays can be computed in O(n log n) time and space.

Proof: If i− 1 = s2r, i.e., 2r is the largest power of 2 dividing i− 1, then we be computing 3 ∗ 2r entries in

FARi.

As n
2i integers are multiple of 2i and n

2i+1 integers are multiple of 2i+1, it follows that n
2i −

n
2i+1 = n

2i+1

integers are multiple of 2i+1 but not of 2i. Or for n
2i+1 integers, the largest power of 2 which can divide i− 1

is 2i, hence for these i the size of FARi array will be 3 ∗ 2i
(

n
2i+1

)
, or size of all FAR-arrays together will be:

logn∑
i=1

3 ∗ 2i
(n

2i+1

)
=

logn∑
i=1

3

2
n =

3

2
n log n

Or computing all FAR-arrays will take O(n log n) time and space.

4 Query Answering

For query FS[i, x], d = ai − x is the difference in depths in the level ancestor problem. As the depths of

two adjacent locations can differ by at most one, we will not encounter our item if we do d − 1 places to

the left or to the right. Thus, for these 2(d− 1) + 1 = 2d− 1 items, the value less than or equal to x is the

same. Thus, we look at the index in this range divisible by the largest power of two. The item which we are

searching for would have been precomputed and stored. Details of the method are next described.

Let us assume that the query is FS[i, x]. Let d = ai − x. And let 2p be the largest power of 2 not larger

than d, i.e., 2p ≤ d < 2p+1. For query FS(i, x) , we have to find the first item after location i smaller than

x. We proceed as follows:

1. Let d = ai − x.

2. Let p be s.t., 2p ≤ d < 2p+1, i.e., 2p is the largest power of 2 not larger than d; or p is the number of

zeroes in d.

3. Let i1 be the largest index less than (or equal to) i s.t., 2p divides i1 − 1, i.e.,

i1 =

⌊
i− 1

2p

⌋
× 2p + 1

4. Return FARi1 [ai1 − x].

Correctness of the above method follows from:

5

Lemma 2 ([7, 3]) The first element to the right of ai with a value less than or equal to x is also the first

element to the right of ai1 with a value less than or equal to x.

Proof: As i − i1 < 2p, and as at and at+1 can differ by at most one, it follows, that for any i1 ≤ j ≤ i,

aj > ai − 2p > ai − d = x.

Thus, we can answer the query by also reporting FS[i1, x]. And FARi1 [ai1−x] is the first location right of

ai1 with value less than or equal to ai1− (ai1−x) = x. As ai1−x < ai +2p−x = d+2p < 2p+1 +2p < 3∗2p,

value FARi1 [ai1 − x] has been computed [7, 3].

5 Two Level Structure

We divide the array (containing levels) into parts of size k. For each part, we find and put the minimum

value of that part into another “global” array, say b. For these n/k minimum values, we construct a new

instance of the FS problem. However, the two adjacent (minimum) values may now differ by up to k. Thus,

we have to modify the algorithm of the previous sections [7, 3].

5.1 Modified FAR Array

Let us assume that original array A is divided into k parts and the minimum item of the ithpart is kept in

location bi of another array B. Now, as two adjacent items of B can differ (in absolute terms) by k, we scale

the items of B by dividing each item by k and keeping only the integer part. As a result, as one “scaled”

item differs from the next item by at most one, we can use the algorithm of the previous section. However,

instead of returning the next node with value d (when the query is for d/k), the query will return the next

node with value k
⌊
d
k

⌋
. Thus, we are getting an index with “coarse” or approximate location of the cell with

the value of d. To get “fine” or the exact index of the location with the value d, another array of size k is

used. A more detailed description is given next.

We will call the first array of this section the “modified” mod FAR array to differentiate it from the FAR

array of Section 3; this is actually the FAR array as defined in [7].

Let e =
⌊
bi
k

⌋
(thus, (e − 1)k < bi ≤ ek). Again, we let 2r be the largest power of 2 which divides i − 1.

Value mod FARi[j] will give the first location right of A[bi] with value less than or equal to (e− j)k, again

for 1 ≤ j ≤ 3 ∗ 2r.

Let i1 be as before. And let e1 =
⌊
bi1−x

k

⌋
. Then mod FARi1 [e1] will give the first location right of A[bi1]

with value less than or equal to (e− e1)k = k
(⌊

bi1
k

⌋
−
⌊
bi1−x

k

⌋)
≤ k

(
1 +

⌊
x
k

⌋)
≤ k + x.

For computing the mod FAR-values, we use another array C[1 : n], with ci = b bik c. And find the nearest

smallers in the C-array (assuming that in case of duplicates, the first entry is smaller). Now, e =
⌊
bi
k

⌋
= ci. If

mod FARi[j] = t, then bt is the first number right of bi in A with value less than or equal to (e−j)k = (ci−j)k;

or equivalently, bt/k is is the first number right of bi in B with value less than or equal to (ci − j). Thus,

the mod FAR-values can be computed as in Section 3, using array C instead (of A).

Remark To make sure that all divisions are by a power of 2, we can choose k to be a number between

6

1
8 log n and 1

4 log n which is a power of 2.

From previous analysis, we know that the number of entries of mod FAR will be O(n′ log n) = O(n
k log n)

If k = θ(log n), this will be O(n). Hence, we can preprocess the global array in O(n
k log n + n

k k) = O(n)

time, if k = θ(log n). Processing of local parts is discussed in Section 6 and in the appendix.

5.2 Near Array

Using the mod FAR array, we were able to get “coarse” location of the desired item. To get the “exact”

location, we use another array Near [7]. Neari[j], for 1 ≤ j ≤ k will give the first location right of bi with

value less than bi − j (just like the FAR array of Section 3). Note that we are storing k entries for each bi.

Thus, the total number of entries will be O
(
n
k k
)

= O(n). If d = bi − x. Then Neari[d] is the first location

right of bi having value less than or equal to bi − d = bi − (bi − x) = x (provided, d ≤ k).

Again, the Near-table can be filled using Nearest smallers value, with O(1) time per entry.

5.3 Query

We next describe the query algorithm on the array B. This is more or less the algorithm of Section 4.

Let us assume that the query is FS[i, x]. Let d = bi − x. And let 2p be the largest power of 2 not larger

than d, i.e., 2p ≤ d < 2p+1. For query FS(i, x) , we have to find the first item, in array B, after location i

smaller than x. We proceed as follows:

1. Let d = bi − x.

2. Let p be s.t., 2p ≤ d < 2p+1, i.e., 2p is the largest power of 2 not larger than d.

3. Let i1 be the largest index less than (or equal to) i s.t., 2p divides i1 − 1, i.e.,

i1 =

⌊
i− 1

2p

⌋
× 2p + 1

4. If bi1 − x < k, then return Neari1 [bi1 − x] else let i2 =mod FARi1 [bi1 − x].

5. return Neari2 [bi2 − x]

Again we have:

Lemma 3 ([7, 3]) First element to the right of bi with value less than or equal to x is also the first element

to the right of bi1 with value less than or equal to x.

Proof: As i − i1 < 2p, and as bt and bt+1 can differ by at most k, it follows, that for any i1 ≤ j ≤ i,

bj > bi − k2p > bi − d = x.

Thus, we can answer the query by also reporting FS[i1, x]. As 0 < bi1−x < 3k∗2p, we have 0 ≤ bi1
k −

x
k <

3 ∗ 2p, or 0 ≤ ci − x
k < 3 ∗ 2p.

7

6 Table Construction and Putting Everything Together

For queries to the original FS problem, we first determine the index of the “local” group (using the global

algorithm). Then, we have to determine the index in the corresponding local group (of k-items).

As in the FS problem, we are to return the first location for each group. Thus, it is sufficient to store the

first occurrence of each value in the group (i.e., the first occurrence of each level in the original problem).

As values in a group increase or decrease by one, there can be at most k different values in a group. Thus,

using an array of size k for each group is enough. A single scan can easily fill these arrays in O(k) time. In

parallel, on the Priority-CRCW model, the arrays can be filled in O(1) time with k processors.

However, it is quite possible that the answer to FS(i, x) lies in the same group containing i. Thus, we

need to preprocess each group to answer queries (assuming the answer is in that group). We can do this in

two different ways

• Process each group for FS(i, x) queries using the algorithm of Section 3. This approach is discussed in

the Appendix.

• Create a table and do a table lookup. This is discussed in the rest of this section.

Let us choose k to be a power of 2 between 1
8 log n and 1

4 log n. As adjacent entries (or levels) differ by

plus or minus one, we can interpret a string of k pluses or minuses as a binary string (say 1 for plus and 0

for minus). There are 2k such strings. Each string (or row in the table) can be interpreted as a hypothetical

input[9, 6].

We process each string of length k independently. As there are k entries in each string (or hypothetical

group), the largest legal index can be k for FAR-values. Using the algorithm of Section 3, for each item i in

the hypothetical group, FARi[1 : k] can be computed in O(k) time. Thus, we spend O(k2) time per group.

As there are 2k hypothetical groups, total time will be O(k22k) = O(n) if k ≤ (1− ε) log n, for any ε > 0.

Thus, we have the following lemma:

Lemma 4 There is an algorithm to solve FS-problem, in which two items differ by at most one with O(n)

preprocessing time and O(1) query time.

In the parallel setting, we process each row of the table or each hypothetical input in parallel using

the algorithm of Berkman and Vishkin[7, Section 3.1]. The parallel algorithm for each hypothetical input

takes O(1) time with k log3 k processors (see remarks after Step 1 in [7]); actually, we can also use the

“simpler” n2 processor, O(1) time algorithm for finding the minimum. As each hypothetical input is processed

independently and in parallel, the total time for preprocessing is O(1). Next k processors are assigned to

each hypothetical input; these query for at most k legal values (levels of ancestors); as query time is O(1),

the total time will remain O(1). Number of processors used will, by analysis similar to that of the serial

case, will be O(n), for k ≤ (1− ε) log n, for any ε > 0.

For each group, we have to store a pointer to the corresponding row in the table. Which can be done

in linear time in a sequential setting. In the parallel setting, we can proceed as in [9] (see precomputation

routine) if we do not have an instruction to “pack” a string of k bits into a single word. If we are to use n

processors, we should choose k = O(log log n).

8

Thus using the algorithm of Section 3.1 of [9] together with the proposed table construction and lookup

routines, we get a parallel algorithm with O(1) preprocessing time with n processors. Queries can be answered

in O(1) time with a single processor.

Acknowledgements

I wish to thank students who attended lectures of CS602 (2023-2024) for their comments and reactions on

a previous version.

References

[1] S.Alstrup and J.Holm, Improved Algorithms for Finding Level Ancestors in Dynamic Trees. ICALP

2000: 73-84 (2000)

[2] J.Barbay, J.Fischer abd G.Navarro, LRM-Trees: Compressed indices, adaptive sorting, and compressed

permutations, In: Giancarlo, R., Manzini, G. (eds) Combinatorial Pattern Matching. CPM 2011. Lecture

Notes in Computer Science, vol 6661. Springer, Berlin, Heidelberg. (also arXiv:1009.5863)

[3] A.M. Ben-Amram, The Euler Path to Static Level-Ancestors. CoRR abs/0909.1030 (2009)

[4] B.G.Baumgart, A polyhedron representation for computer vision, Proc. 1975 National computer conf.,

AFIPS conference proceedings vol 44, 589-596 (1975).

[5] M.A.Bender and M.Farach-Colton, The Level Ancestor Problem Simplified. Theor. Comput. Sci. 321:

5-12(2004).

[6] M.A.Bender and M.Farach-Colton, The LCA Problem Revisited. In: Gonnet, G.H., Viola, A. (eds)

Theoretical Informatics. LATIN 2000. LNCS 1776 (2000) Springer, Berlin, Heidelberg.

[7] O. Berkman and U. Vishkin. Finding level-ancestors in trees. J. of Comp. and Sys. Scie., 48(2):214-230

(1994).

[8] O.Berkman, B.Schieber and U.Vishkin: Optimal Doubly Logarithmic Parallel Algorithms Based on

Finding All Nearest Smaller Values. J. Algorithms 14(3): 344-370 (1993)

[9] R.Cole and U.Vishkin, Faster optimal parallel prefix sums and list ranking. Information and Computa-

tion 81 (3): 334–352 (1989).

[10] P. Dietz. Finding level-ancestors in dynamic trees. In 2nd Work. on Algo. and Data Struc., LNCS 1097,

32-40 (1991).

[11] G.M.Landau and U.Vishkin, Chapter 6: Approximate String Searching, in Pattern Matching Algorithms

Ed. Alberto Apostolico and Zvi Galil, Oxford University Press, 1997.

[12] M.Mabrey, T.Caputi, G.Papamichail, D.Papamichail, Static Level Ancestors in Practice. CoRR

abs/1402.2741 (2021)

[13] G.Menghani, D.Matani, A Simple Solution to the Level-Ancestor Problem, arXiv:1903.01387v2 (2021).

[14] R.E.Tarjan and U.Vishkin, An Efficient Parallel Biconnectivity Algorithm. SIAM J. Comput. 14(4):

862-874 (1985)

[15] All Nearest Smaller Values, Wikipedia

9

https://en.wikipedia.org/w/index.php?title=All_nearest_smaller_values&oldid=1188208021

Appendix A Multilevel Structure

Each local group of k items can be preprocessed using the algorithm of Section 3, to answer intra-group

queries. Time to preprocess each group will be O(k log k). As there are n/k groups, the total preprocessing

time will be O(n
k (k log k) = O(n log log n), if k = O(log n); query time is still O(1). Thus,

Lemma 5 There is an algorithm to solve FS-problem, in which two items differ by at most one with

O(n log log n) preprocessing time and O(1) query time.

Instead of using the basic algorithm of Section 3, for local groups, we can use the algorithm of Lemma 5

instead. We, as before, divide the array (containing levels) into parts of size k = θ(log n). But for each

part, we preprocess each group using the algorithm of Lemma 5 in O(k log log k) time. Or total time for

preprocessing all groups is O
(

n
k k log(3) n

)
= O(n log(3) n).

By using a constant number of levels, the preprocessing time can be made O(n log(r) n), for any r > 1.

Query time will be O(r).

Remark For most practical values of n, a two or three-level structure is likely to be enough (as log(3)N ≤ 3,

for N < 1075).

10

	Introduction
	Preliminaries-Nearest Smallers
	Preprocessing
	Query Answering
	Two Level Structure
	Modified FAR Array
	Near Array
	Query

	Table Construction and Putting Everything Together
	Multilevel Structure

