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Abstract :  

From the mathematical aspects of the Schwarzschild's metric, we present different methods of changing variables which tend to prove 

that the central singularity hypothesis does not exist. The geometric interpretation of the black hole is not mathematically convincing 

from the Schwarzschild metric. We recall the different mathematical approaches of several authors, the examples of the Painleve 

metric and its complex variant, then of the Schwarzschild metric, to deduce a metric with a throat sphere which leads to a mirror 

spacetime.  Subsequently, we deduce the possibility of a bi-metric tangent to the Schwarzschild metric's throat sphere.  We will also 

show that a false interpretation of the variables of the Schwarzschild metric can lead to false physical deductions and in particular to 

the concept of singularity. We compute the general solution of Einstein's equations in the presence of a non-zero energy tensor, i.e., 

for a homogeneous fluid ball with energy conditions. Our method of resolution involves a reformulation of the Einstein equation and 

the integration of the differential system. The metrics found are asymptotic to the Schwarzschild metric outside the fluid ball. We 

will present assumptions for the pressure inside the fluid ball and derive the corresponding metrics. Then, by solving the continuity 

equation of the energy-impulse tensor, we deduce an expression for the pressure inside the star which permits the expressing of the 

interior and exterior metrics.  

 

A- Introduction 

The Schwarzschild metric has become popular since 

the beginning of the 20th century for two main reasons. 

First, is that it was announced as one of the first explicit 

solutions of Einstein's equations in the vacuum, which 

was demonstrated significant advancement for general 

relativity. The enthusiasm of cosmologists about the 

Schwarzschild metric was later undermined by 20th 

century mathematicians and physicists Painlevé and 

Eddington (1921) [1,2] and then in the 21st century 

Vankov (2011), Mizony and Crothers (2015) [8, 

21,26,27] who have addressed the subject. The physical 

interpretation of variables in the metric cannot be 

subject to untested theories of time reversion, 

singularity, or even spacetime rupture. However, the 

popular science press, eager for sensationalism, and the 

science fiction’s movies have contributed to make 

people forget the basis of Einstein's equations and 

consequently of the role of variables in a metric. 

The second reason for this popularity is that the 

gravitational field deduced from the metric answers the 

problem of the “advance of Mercury's perihelion” and 

the gravitational lensing effects. The scientific basis of 

this discovery has been poorly disseminated and 

misunderstood. The cinema and the popular press, as 

well as the computational simulation playing, under the 

pretext of educating and entertaining the general public, 

have made erroneous representation of the phenomena. 

Until very recently, the radiophotography of the M87* 

black hole into galactic center of the same designation 

has still confused both the public and some serious 

physicists. This image reconstructed from the contrast 

of radio radiation is certainly of great interest but cannot 

confirm that it is a black hole. It may be a very massive 

neutron star or “strange star” for a redshift magnitude 

of 5 to 6 surrounded by a disk of hot material. 

Also, many mathematicians and physicists have warned 

about the interpretation of the Schwarzschild metric. 

Even if it seems to meet some physical assumptions 

such as stability, asymptotic convergence at infinity to 

a Minkowski metric and spherical symmetry, the 

questions raised by this metric and especially by the 

description of the black hole it describes are of three 

kinds. 

First, this metric is deduced from the Einstein tensor 

expressed in a vacuum. The equations deduced from it 

express both the vacuum and the presence of a central 

mass! This contradiction is still not resolved. 

Secondly, the Schwarzschild radius, the limit beyond 

which space-time seems to be no longer real, does not 

have a coherent physical interpretation. The various 

papers on the black hole problem seem to omit the 
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reality of the 4-dimensional topology and continue to 

explain a 3-dimensional time-dependent phenomenon, 

which is not the same physical phenomenon. 

Thirdly, Birkhoff's theorem is often misused by some 

physicists, who instead of considering a 4D spherical 

symmetry, continue to solve Einstein's equations with 

the assumption of a 3D central symmetry, which leads 

to misinterpretation of Penrose and Hawking's 

theorems (1965-1970) [9, 11] on the emergence of the 

singularity by gravitational collapse. 

In this work, we present, from mathematical 

calculations, alternative physical interpretations of the 

Schwarzschild metric and the probable nature of the 

singularity. Also, we study the general inner and outer 

solution of the Einstein equations for a homogeneous 

fluid star. 

B- Reminder on the Schwarzschild metric in 

vacuum. 

We search a metric that is expressed in the following 

form: 

𝑑𝑠2 = 𝐴𝑑𝜉2 − 𝐵𝑑ℛ2 − 𝐸𝑑𝑤2 (1) 

with    𝑑𝑤2 = (𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜑2) 

𝐴, 𝐵, 𝐸 are functions of the variable ℛ and they must 

verify the equations of Einstein in a vacuum. 

 

From the physical point of view, the problem is less 

obvious and has raised many questions (Painlevé 1921, 

Chazy 1930, Edditon 1960, , Mizony 2015,  Crothers 

2015) [1,4, 8, 26,27]. 

We recall that Albert Einstein, was the first to raise the 

Schwarzschild problem and gave an approximate 

solution before Schwarzschild gave an exact solution in 

1916 through two remarkable publications. 

One can, in a quick way, solve the mathematical 

problem in vacuum, then interpret the constants by the 

presence of a central mass, by prejudging the 

interpretation of the variables of the metric. The latter 

is adapted to the physical problem posed a posteriori, 

that of the black hole. 

This method, used in many articles and which is also 

taught, has often been contested. 

We first define the variable (𝜉, ℛ, 𝜃, 𝜑) of the space-

time where the metric will be calculated. 

The variable «ℛ » is not the radial distance but is a 

monotonic function of the radial distance 𝑂𝑀 = 𝑟, and 

when r becomes very large, we can assimilate r to ℛ .  

Then we have: ℛ(𝑟) ≈ 𝑟 very far from the star. 

After mathematical resolution of the equations (2) in 

vacuum, we finally find the expression of the following 

metric: 

𝑑𝑠2 = (1 +
𝐶

ℛ
)𝑑𝜉2 − (1 +

𝐶

ℛ
)
−1

𝑑ℛ2

− ℛ2𝑑𝑤2 

(3) 

  

whose determinant is equal to: 

𝑑𝑒𝑡(𝑔) = −ℛ4𝑠𝑖𝑛2(𝜃) 

The constant C will be determined according to the 

physics laws compelled by system’s limit conditions.  

Whit the correct constant, this metric is a spherical 

symmetric, static, and asymptotically equivalent to the 

Minkowski metric at infinity.  It is written as the 

Schwarzschild metric, with 

 𝐶 = −𝑅𝑠 = −
2𝑀𝐺

𝑐2
; 

M being the mass of the star, G the gravitational 

constant, c the speed of light which is taken to be equal 

to 1 in the following and 𝑅𝑠  called the Schwarzschild 

radius or the black hole horizon. In many scientific 

papers, the variables 𝜉 and ℛ are arbitrarily and 

respectively assimilated to time t  and  radial distance 

𝑟. 

We have: 

𝑑𝑠2 = (1 −
𝑅𝑠
𝑟
)𝑑𝑡2 −

1

(1−
𝑅𝑠
𝑟 )

𝑑𝑟2

− 𝑟2𝑑𝑤2 

(4) 

We note that equation (4) shows the presence of 2 

singularities, in 𝑟 = 0 and in 𝑟 = 𝑅𝑠  the horizon of the 

black hole. 

In this paper, we consider that far from the star of mass 

M and radius "a" , 𝑟 ≫ 𝑎, the variables 𝜉 and ℛ are 

respectively assimilated to t the time and r the radial 

distance.  Close to the star and inside the star, we cannot 

consider these variables to time and radial distance. 

𝐺𝑖𝑘 = 𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 = 0 

(2) 
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C- On the changes of variables in the metric 

By making changes in variables, i.e. without changing 

the physical cause, what impact do we observe on the 

metric and curvature?   

Let us posit: ℛ = ℛ(𝑟)  ⟹ 𝑑ℛ =
𝜕ℛ

𝜕𝑟
𝑑𝑟 

the Schwarzschild metric (3) is written : 

𝑑𝑠2 = (1+
𝐶

ℛ(𝑟)
)𝑑𝜉

2

− (
𝜕ℛ

𝜕𝑟
)

2

(1 +
𝐶

ℛ(𝑟)
)

−1

𝑑𝑟2

−ℛ2(𝑟)𝑑𝑤2 

(5) 

It satisfies the physical compatibility conditions if and 

only if it is asymptotically flat for large r , that is  

[(
𝜕ℛ

𝜕𝑟
)
2

⟶ 1 𝑤ℎ𝑒𝑛 𝑟 ⟶ ∞

ℛ(𝑟) ⟶ 𝑟  𝑤ℎ𝑒𝑛 𝑟 ⟶ ∞

 

Exemples : 
ℛ(𝑟) = (𝑟𝑛 + 𝑎𝑛)

1
𝑛

ℛ(𝑟) = 𝑟 + 𝑎
ℛ(𝑟) = 𝑟 + 𝑓(𝑟)

 ,             (5.1) 

with 𝑓(𝑟) a function derivable and monotone on 

[0 ; +∞], asymptotically flat at infinity. The examples 

are infinitely numerous. 

All these metrics (5.1) verify the Einstein equation in 

vacuum 𝐺𝑖𝑘 = 0, are spherically symmetric, are static, 

and are asymptotically flat. By change of variables, 

there are infinitely many metrics equivalent to the 

Schwarzschild metric. 

Particular metric 

We can also make the change of variable on the variable 

𝜉 by posing 𝜉 = 𝑡 − ∫𝜓(ℛ) which is translated by 

𝑑𝜉 = 𝑑𝑡 − 𝜓𝑑ℛ 

𝜓 is a continuous and differentiable function on 

[0 ; +∞]. 

Therefore, the Schwarzschild metric is written : 

𝑑𝑠2 = (1 +
2𝐶

ℛ
)𝑑𝑡2 

−((1 +
2𝐶

ℛ
)
−1

− 𝜓2 (1 +
2𝐶

ℛ
))𝑑ℛ2 

−2𝜓(ℛ) (1 +
2𝐶

ℛ
)𝑑𝑡𝑑ℛ − ℛ2𝑑𝑤2 

 

with     𝑙𝑖𝑚
ℛ→∞

𝜓(ℛ) = 0 

Discussion on sign of the constant 

If  𝑪 ≤ 𝟎  , 𝒘𝒊𝒕𝒉  𝑪 = −𝑹𝒔 

We choose 𝜓(ℛ) = (
𝑅𝑠

ℛ
)

1

2
(1 −

𝑅𝑠

ℛ
)
−1

, and  : 

𝑑𝜉 = 𝑑𝑡 −√
𝑅𝑠
ℛ
(1 −

𝑅𝑠
ℛ
)
−1

𝑑ℛ 

With this change of variable, the metric is written : 

𝑑𝑠2 = (1 −
𝑅𝑠
ℛ
)𝑑𝑡2 − 𝑑ℛ2 − 2√

𝑅𝑠
ℛ
𝑑𝑡𝑑ℛ

− ℛ2𝑑𝑤2 

(6) 

This formulation is called the Painleve-Gullstrand 

metric, Gullstrand (1922), Fric (2013), Crothers 

(2015)[3, 23,26].  

It can also be written: 

𝑑𝑠2 = 𝑑𝑡2 −(𝑑ℛ + √
𝑅𝑠
ℛ
𝑑𝑡)

2

− ℛ2𝑑𝑤2 

( 7) 

If  𝑪 ≥ 𝟎   

We choose 𝜓(ℛ) = 𝑖 (
𝑅𝑠

ℛ
)

1
2
(1 +

2𝐶

ℛ
)
−1

 

And the metric be written : 

𝑑𝑠2 = (1+
2𝐶

ℛ
)𝑑𝑡2 − 𝑑ℛ2 − 2𝑖√

2𝐶

ℛ
𝑑𝑡𝑑ℛ

− ℛ2𝑑𝑤2 

( 8) 

It is a Riemannian metric on a holomorphic fibration 

tangent to the space ℂ2 which is isomorphic to ℝ4 

Dumitrescu (2001) [17]. 
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It can also be written : 

𝑑𝑠2 = 𝑑𝑡2 −(𝑑ℛ + 𝑖√
𝑅𝑠
ℛ
𝑑𝑡)

2

− ℛ2𝑑𝑤2 

( 9) 

We do not wish to make a physical interpretation of the 

metric. Our approach is to find a mathematical 

expression of the metrics, by solving a tensor equation. 

The physical interpretation will be done as needed. 

Remark 

For the case 𝑪 ≤ 𝟎     𝑪 = −𝑹𝒔, we can see from 

equation (6) that the singularity in 𝑟 = 𝑅𝑠  does not exist 

and equation (6) is written : 

𝑑𝑠2 = 

(1 −
𝑅𝑠

ℛ(𝑅𝑠)
)𝑑𝑡2 − 𝑑ℛ2 − 2√

𝑅𝑠
ℛ(𝑅𝑠)

𝑑𝑡𝑑ℛ

− ℛ2(𝑅𝑠)𝑑𝑤
2 

( 10) 

  

On the Minkowski’s vacuum metric 

The Minkowski metric which represents an empty 

spacetime is written : 

𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝑟2 − 𝑟2𝑑𝑤2 

The determinant of this metric is equal to : 

−𝑟4𝑠𝑖𝑛2(𝜃) 

From the Minkowski metric, let us apply the following 

changes of variables: 

𝑑𝑡 = 𝑑𝑇 +
𝛷

1 − 𝛷2
𝑑𝑅 

𝑑𝑟 = 𝛷𝑑𝑇 +
1

1 −𝛷2
𝑑𝑅 

With 𝛷 = 𝛷(𝑅) continuous function except at 

localized points, and the function 𝛷(𝑅) tends 

asymptotically to 0 at infinity. 

The change of variable is written in matrix form: 

(𝑑𝑡; 𝑑𝑟) = ℳ (
𝑑𝑇
𝑑𝑅
) = (

1
𝛷

1 − 𝛷2

𝛷
1

1 − 𝛷2

)(
𝑑𝑇
𝑑𝑅
) 

With ℳ the matrix of change of variable. It is an 

isometry since the determinant of this matrix is equal to 

1. 

The metric is written : 

𝑑𝑠2 = (1− 𝛷2)𝑑𝑇2 − (1 − 𝛷2)−1𝑑𝑅2

− 𝑟2(𝛷(𝑅))𝑑𝑤2 

Even if we posit 𝛷(𝑅) = √
𝑅𝑠

𝑅
 , this metric cannot be 

interpreted as a Schwarzschild metric. 

There is indeed a difference between the so-called 

Schwarzschild solution and the empty space metric. 

We will assume that the Schwarzschild metric is the 

particular solution of the Einstein’s equation.   

To consider that the energy tensor is zero ( 𝑇𝜇
𝜈 = 0 )and 

that the solution represents a central mass is 

nonsensical. We demonstrate that the solution of the 

Einstein’s equation with second term allows to find a 

general solution in a non-empty space-time, and that the 

particular solution is asymptotically the Schwarzschild 

one (see Chapter F) 

 

D- Remarks on singularity 

All  Schwarzschild metrics seem to have a physical 

singularity at the center of mass, i.e. at ℛ(𝑟) = 0. 

The Kretschmann scalar for these metrics is written 

using the Riemann tensor: 

𝑅𝜇𝜈𝜎𝜎𝑅𝜇𝜈𝜎𝜎 =
48𝑅𝑠

2

ℛ6(𝑂𝑀)
 

This shows first that the singularity in 𝑟 = 𝑅𝑠  is purely 

geometric, that the variable ℛ is not the radial distance, 

so there is no singularity in OM=0 unless ℛ(0) = 0. 

According to equation (5.1), there always exists a 

metric solution of the Einstein equations such that 

ℛ(0) ≠ 0. 

ℛ(0) = (0𝑛 + 𝑎𝑛)
1
𝑛                            

  ℛ(0) = 0 + 𝑎                       𝑖𝑓 𝑎 ≠ 0  

ℛ(0) = 0 + 𝑓(0), 𝑖𝑓  𝑓(0) ≠ 0  

 

According to current definitions, gravitational 

singularities in general relativity are locations in 

spacetime where the gravitational field becomes 

infinite. Some physicists such as Dewitt (1967), Dvali 
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2014, Farnes 2018, Barrau 2019) and philosophers such 

as Saint-Ours (2011), [10, 25, 28,32,20] propose that 

because the density of matter seems to tend towards 

infinity in the singularity, the laws of behavior of 

spacetime are no longer compatible with classical 

physics. This has given rise to a multitude of theories, 

such as quantum gravity, loop quantum gravity, string 

theory applied to black holes, space-time reversing, 

etc... 

Yet, regarding the definition of singularities, there on 

still debates and order general disagreement many  the 

physicists, mathematicians and philosophers 

community regarding the definition of singularity. 

(Saint Ours 2011, Fromholz 2014) [20,24]. 

Although it changes the local geometry, it seems 

difficult to speak of a singularity as a point that lies at a 

location in spacetime. Therefore, some physicists and 

philosophers cautiously propose to speak of "singular 

space-time" instead of "singularities". The most 

important definitions refer either to incomplete paths or 

to the idea of "missing space" in space-time. The idea 

is often called "singular structure with pathological 

behavior". (Curiel and Bokulich 2018). [29] 

R. Penrose and S. Hawking and [9,11, 13] managed to 

show the existence of a "singularitý" during 

gravitational collapse. However, one should be careful 

with the meaning of this term. In their work, these 

authors do not prove the existence of a point where the 

geometry of spacetime would become singular in the 

mathematical sense. What they have explained is the 

existence of half-geodesics time-light specific to, which 

are incomplete. A zone of space-time where the history 

of the objects that penetrate it stop after a finite time. 

To illustrate schematically this mathematical object, let 

us write 𝑡 = 𝐶𝑡𝑒 and 𝜃 =
𝜋

2
 in the Schwarzschild 

metric. We have: 

𝑑𝑠2 = −(1 −
𝑅𝑠
ℛ
)
−1

𝑑ℛ2 − ℛ2𝑑𝜑2 

Let's look for a representation in a space such that: 

𝑑𝑠2 = −𝑑𝑧2 − 𝑑ℛ2 − ℛ2𝑑𝜑2  

= −(1 + (
𝑑𝑧

𝑑ℛ
)
2

)𝑑ℛ2 − ℛ2𝑑𝜑2  

By identifying the two relations we have: 

(1 + (
𝑑𝑧

𝑑ℛ
)

2

) =
1

1 −
𝑅𝑠
ℛ

 

The visualization of the Schwarzschild space-time is 

obtained with the help of a 2D surface immersed in a 

space-time of dimension 3. The Schwarzschild surface 

thus visualized by the function 𝑧(ℛ), for 𝑡 = 𝐶𝑡𝑒 and 

𝜃 =
𝜋

2
  is written: 

𝑧(ℛ) = ∫ 𝑑𝑢√

𝑅𝑠
𝑢

1 −
𝑅𝑠
𝑢

ℛ

0

= 2√𝑅𝑠(ℛ − 𝑅𝑠) + 𝑧0 

i.e 

𝑧2 = (4𝑅𝑠(ℛ − 𝑅𝑠)) + 4𝑧0√𝑅𝑠(ℛ − 𝑅𝑠) + 𝑧0
2 

It is a Flamm paraboloid, with a throat circle for ℛ =
𝑅𝑠  . This figure represents in 3D space two 2D 

parabolic layers connected by a 1D throat circle of 

parameter ℛ = 𝑅𝑠. 

For r very large, i.e. far from the center of mass, we 

have : 

(1 + (
𝑑𝑧

𝑑𝑟
)
2

) ≈ 1 

𝑧(𝑟) = 𝑧0 

At infinity, this 2-dimensional surface immersed in a 3-

dimensional space is a visualization of Schwarzschild's 

asymptotic space-time, i.e. Minkowski's flat space-

time. 

 

Figure 1. 3D visualization of the Schwarzschild hyper-

surface 

The physical singularity at 𝑟 = 0 does not exist since 

the “throat circle” at 𝑟 = 𝑅𝑠   is the physical limit for 

any object plunging into the Schwarzschild metric. An 

object coming from the upper sheet which dives 

towards the center of mass following a parabolic 

geodesic crosses the gorge then slides towards the 
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lower sheet and disappears forever.  For us, its story 

ends. In these interpretations of the black hole, it is the 

zone of no return where the history of the object stops. 

The hypothesis that consists in presenting the throat 

circle as impossible to cross because of the pulsation of 

the circle remains to be verified.  

Note : The above visualization of the Schwarzschild 

space is a sheet of dimension 2 with a hole, but the 

reality, with 4 dimensions, would rather be a 

hyperplane of dimension 4 with a throat sphere of 

dimension 3. 

An object coming from the upper sheet and having a 

slightly oblique trajectory will go around the throat one 

or more times before passing on the other sheet and 

disappearing forever. The throat sphere acts as a 

transition zone between our space-time and another 

space-time to be determined. 

We will call the upper space-time 𝐸+ that of the upper 

sheet, the one in which we live and the lower space-

time 𝐸−, the complementary space-time of the lower 

sheet. 

We will then define a metric on each Space-Time: 𝑔𝑖𝑘
+ 

and 𝑔𝑖𝑘
− and an Einstein tensor for each of the metrics 

such that 𝐺𝑖𝑘
+ and 𝐺𝑖𝑘

− will have to verify the 

equations of relativity respecting the continuity on the 

throat sphere of between the two Space-times. 

We have:        
𝐺𝑖𝑘

+ = 𝑅𝑖𝑘
+ −

1

2
𝑅+𝑔𝑖𝑘

+

𝐺𝑖𝑘
− = 𝑅𝑖𝑘

− −
1

2
𝑅−𝑔𝑖𝑘

−
 

This defines two metrics . 

In our space-time, with positive masses 

 

𝑑𝑠2+ = (1 −
𝑅𝑠
ℛ
)𝑑𝜉2 − (1−

𝑅𝑠
ℛ
)
−1

𝑑ℛ2

− ℛ2𝑑𝑤2 

(11) 

 

And in the mirror space-time with negative 

masses. 

 

  

 

𝑑𝑠2− = (1 +
𝑅𝑠
ℛ
)𝑑𝜉2 − (1 +

𝑅𝑠
ℛ
)
−1

𝑑ℛ2

− ℛ2𝑑𝑤2 

(12) 

This hypothesis of negative mass has been developed 

and is perfectly accepted by contemporary physics. The 

consequences on the conception of energy, frequencies, 

momentum of mechanics are to be reviewed from these 

new concepts. 

E- On the complementary space-times 

A. Sakharov (1980) [15] was the first to express a bi-

metric representation of space-time. Subsequently, 

Bondi (1957), Rosen (1973), Hossenfelder (2008) 

Hassan (2012), Damour (2019), Petit (2021) 

[7,12,18,22,31,34] developed their models on this 

basis. Boyle, Finn, and Turok [30] published a 

cosmological model based on the existence of a mirror 

universe, populated by antimatter and "going back in 

time", like the Sakharov’. The scientific literature 

shows that the absence of negative mass matter in our 

known universe, supports the hypothesis of a bimetric 

of space-time that separates the known matter from this 

negative mass matter. 

Many researchers, starting with Dirac, predicted 

intuitively that the mirror Universe (at the antipodes of 

our Universe), should be sought not in our space, but 

rather in a space where the particles have masses and 

energies of opposite sign. Since the masses of our 

Universe are positive, those of the mirror Universe will 

be negative according to Borissova and Rabounski 

(2009) [19]. 

Both Newton's and Einstein's theories of gravitation 

predict a non-intuitive behavior of negative masses. For 

two bodies of equal and opposite masses, the positive 

mass attracts the negative mass, but the latter repels the 

positive mass; the two masses pursue each other. The 

motion along a line joining the centers of mass of the 

considered bodies, would thus be a motion in constant 

acceleration. 

Between these spacetimes, the throat sphere that 

separates our Universe from the mirror universe and 

prevents particles of negative and positive mass from 

curing into contact, thus prohibiting any particle 

annihilation, except for the quantum tunneling effect. 

From the geometrical point of view, the throat sphere 

3D  contains  particles of null mass  is tangent to the 

regions occupied by particles characterized by 𝑚 >  0, 

or 𝑚 <  0. It follows those particles of zero mass, can 

interact both with the particles of our Universe 𝑚 >  0, 

and with those of the Mirror Universe, 𝑚 <  0. 

The throat sphere contains only energy in the form of 

elementary particles of zero mass described by 

quantum fields. This energy contributes to generate the 

gravity field. 

F- Solving Einstein's general equation in a 

nonempty space. 

In this chapter we will present the mathematical 

solution of Einstein's equations in a non-empty space-

time. We suppose that a spherical object of radius a, 
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massive, fluid, and homogeneous generates a 

gravitational field inside and outside the object. 

Let M =
4π

3
(a3 −Rs

3) be the mass of the homogeneous 

fluid contained in the sphere of radius a . It is assumed 

in this paper that the Schwarzschild radius of the star is 

such that 𝑅𝑠 ≪ 𝑎.  

The matter in the interior of the star is described by a 

fluid of energy-impulse tensor 𝑇𝜇
𝜈 proposed by 

Schwarzschild, cf J. Haag (1931), Brilloin (1935) [5,6]. 

The energy tensor is written : 𝑇𝜇
𝜈 = 𝜌𝑈𝜇𝑈

𝜈 − 𝑃𝜇
𝜈 

where 𝜌(ℛ) represents the proper density and 𝑃𝜇
𝜈 the 

internal pressure tensor, and 𝑈𝜈 the quadratic 

components of the generalized velocity. 

It is also assumed we search the metric of the general 

form 

𝑑𝑠2 = 𝐴𝑑𝜉2 −𝐵𝑑ℛ2 − ℛ2𝑑𝑤2 

With 𝐴(ℛ) and 𝐵(ℛ) two functions of the variable ℛ.  

We define the metric tensor by :  

𝑔𝜉𝜉 = 𝐴(ℛ), 𝑔ℛℛ = −𝐵(ℛ), 𝑔𝜃𝜃 = −ℛ
2, 

𝑔𝜑𝜑 = −ℛ2𝑠𝑖𝑛2(𝜃), 

The pressure in the fluid is described by an equation of 

state 𝑃𝜇
𝜈 = 𝑃𝜇

𝜈(𝜌, ℛ) and because of homogeneity we 

assume that :𝑃𝜇
0 = 𝑃0

𝜈 = 0 

𝑃𝜇
𝜈 = 0(𝜇 ≠ 𝜈) 

𝑃1
1 = 𝑃(ℛ); 𝑃2

2 = 𝑃3
3 = 𝑄(ℛ) ; the pressure tensor is 

then written: 

𝑃𝜇
𝜈 = (

0 0 0 0
0 −𝑃(ℛ) 0 0
0 0 −𝑄(ℛ) 0
0 0 0 −𝑄(ℛ)

) 

The pressure has a normal component P(ℛ) and a 

transversal component Q(ℛ). 

The energy tensor in the star is then written: 

𝑇𝜇
𝜈 = (

𝜌(ℛ) 0 0 0

0 −𝑃(ℛ) 0 0

0 0 −𝑄(ℛ) 0
0 0 0 −𝑄(ℛ)

) 

Considering the metric, we have: 

𝑇𝜇𝜈 = (

𝜌𝐴 0 0 0
0 𝑃𝐵 0 0
0 0 𝑄ℛ2 0

0 0 0 𝑄ℛ2𝑠𝑖𝑛2(𝜃)

) 

 

With 𝑃(ℛ) = 𝑄(ℛ) = 𝜌(ℛ) = 0 located outside the 

fluid sphere, so 𝑇𝜇
𝜈 = 0 located outside the star. 

This hypothesis is compatible with the presence of a 

fluid with density 𝜌(ℛ) and the structure of the gravity 

field of the star is thus determined by 4 functions 

𝐴, 𝐵, 𝑃, 𝜌 depending on the variable ℛ. 

 

 

The general equations of Einstein are written: 

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈 = ℵ𝑇𝜇𝜈 

𝑅 is the curvature radius of the metric, 𝑔𝜇𝜈 the metric 

tensor, ℵ = 8𝜋𝐺. 

As, 

  𝑔𝑖𝜇𝑔𝑗𝜈𝐺
𝑖𝑗 = 𝐺𝜇𝜈 , and   𝑔𝜇𝜈 (𝑅

𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈) = −𝑅 

Then  

 𝑔𝜇𝜈𝑇
𝜇𝜈 = 𝑇  𝑡ℎ𝑒𝑛   𝑅 = −ℵ𝑇  

The Einstein equations are written : 

𝑅𝜇𝜈 = ℵ(𝑇𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑇) 

(13) 

After calculation, the Ricci tensor is written: 

{
 
 
 
 

 
 
 
 𝑅𝜉𝜉 =

𝐴

𝐵
[
𝐴′′

2𝐴
+
𝐴′

4𝐴
(
𝐴′

𝐴
+
𝐵′

𝐵
) −

𝐴′

ℛ𝐴
]

𝑅ℛℛ =
𝐴′′

2𝐴
−
𝐴′

4𝐴
(
𝐴′

𝐴
+
𝐵′

𝐵
) −

𝐵′

ℛ𝐵

𝑅𝜃𝜃 =
ℛ

𝐵
(
𝐴′

𝐴
−
𝐵′

𝐵
+
2

ℛ
−
2𝐵

ℛ
)

𝑅𝜑𝜑 = 𝑠𝑖𝑛
2(𝜃)𝑅𝜃𝜃

 

As the trace of the energy tensor is written : 

𝑇 = 𝑇𝑖
𝑖 = 𝜌(ℛ) − 𝑃(ℛ) − 2𝑄(ℛ) 

with 

𝑇ℛℛ = 𝑃(ℛ)𝐵(ℛ);         𝑇𝜃𝜃 = 𝑄(ℛ)ℛ
2 

𝑇𝜑𝜑 = 𝑄(ℛ)ℛ
2𝑠𝑖𝑛2(𝜃) 



 8 

𝑇𝜉𝜉 = 𝜌(ℛ)𝐴(ℛ) 

Then, equation (13) is expressed by the following 

system of 4 nonlinear differential equations: 

{
 
 
 

 
 
 𝑅𝜉𝜉 = ℵ𝐴

1

2
(𝜌 + 𝑃 + 2𝑄)

𝑅ℛℛ = ℵ𝐵
1

2
(𝜌 + 𝑃 − 2𝑄)

𝑅𝜃𝜃 =
1

2
ℵℛ2(𝑃 − 𝜌)

𝑅𝜑𝜑 = 𝑠𝑖𝑛
2(𝜃)ℵℛ2

1

2
(𝑃 − 𝜌)

 

i.e  

{
 
 
 

 
 
 
𝐴′′

2𝐴
−
𝐴′

4𝐴
(
𝐴′

𝐴
+
𝐵′

𝐵
)+

𝐴′

ℛ𝐴
= ℵ𝐵

1

2
(𝜌 + 𝑃 + 2𝑄)     (𝑎)

𝐴′′

2𝐴
−
𝐴′

4𝐴
(
𝐴′

𝐴
+
𝐵′

𝐵
)−

𝐵′

ℛ𝐵
= ℵ𝐵

1

2
(2𝑄 − 𝑃 − 𝜌)         (𝑏)

(
𝐴′

𝐴
−
𝐵′

𝐵
) −

2𝐵

ℛ
+
2

ℛ
= ℵℛ𝐵(𝑃 − 𝜌)                   (𝑐)

 

𝐴(ℛ), 𝐵(ℛ) are functions defining the desired interior 

and exterior metrics. These functions depend on the 

parameters of the energy tensor 𝑃, 𝑄, 𝜌, ℵ. 

We calculate 

(𝑎) − (𝑏)  →  
1

ℛ
(
𝐴′

𝐴
+
𝐵′

𝐵
) = ℵ𝐵(𝜌 + 𝑃) 

i.e.  

(
𝐴′

𝐴
+
𝐵′

𝐵
) = ℵℛ𝐵(𝑃 + 𝜌) 

(14) 

To the equation (𝑐) we show : 

 

(
𝐴′

𝐴
−
𝐵′

𝐵
) =

2𝐵 − 2

ℛ
+ ℵℛ𝐵(𝑃 − 𝜌) 

 

(15) 

Differentiating and adding the two equations (14) and 

(15) , we show : 

𝐴′

𝐴
=
𝐵 − 1

ℛ
+ ℵℛ𝐵𝑃(ℛ) 

(16) 

𝐵′

𝐵
=
1 − 𝐵

ℛ
+ ℵℛ𝐵𝜌(ℛ) 

(17) 

.  

 

 

To resolve these equations, in a first time, we assume 

some mathematical hypothesis as density is constant, or 

the pression is a simple explicit function of the variable 

R. In a second time we show energy conditions in the 

fluid will determine the metric. Equations relating the 

pressure and the density of the fluid determine these 

energy conditions. 

Hypothesis F.1 : 

We consider in the following that the density 𝜌 = 𝜌0 is 

constant in all the fluid. This assumption is compatible 

with the physics of classical stars.  

If the pressure in the fluid is a function of  ℛ (this is a 

mathematical hypothesis) with       : 

 𝑃(𝑎) = 𝑃(𝑅𝑠) = 0. Then it can be written:  

𝑃(ℛ) = 𝑃0 (1 −
ℛ

𝑎
)(
ℛ

𝑅𝑠
− 1) , 𝑅𝑠 ≤ ℛ ≤ 𝑎 

 The general solution of equation (17) is: 

𝐵(ℛ) =
3ℛ

3𝐶 + 3ℛ − ℵ𝜌0ℛ3
 

(18) 

For 𝜌0 = 0, we find the particular solution of the metric 

outside the star: 

𝐵0(ℛ) =
ℛ

ℛ + 𝐶
= (1+

𝐶

ℛ
)
−1

 

Since the density is constant in the star and given the 

general expression for 𝐵(ℛ), we write equation (16): 

𝐴′

𝐴
=
−1

ℛ
+
3(1 + ℵℛ2𝑃(ℛ))

3𝐶 + 3ℛ − ℵ𝜌0ℛ3
 

(19) 

 

The solution of this equation is: 

 

𝐴(ℛ) = 𝑒𝜁(ℛ)∏
(ℛ− 𝑧𝑗)

𝛽𝑗

ℛ

3

𝑗=1

 

(20) 

𝜁(ℛ) =
3𝑃0

2𝑎𝑅𝑠𝜌0
ℛ2 −

3𝑃0(𝑅𝑠 + 𝑎)

𝜌0𝑎𝑅𝑠
ℛ, 𝑅𝑠 ≤ ℛ ≤ 𝑎 

 𝐾(ℛ) = 3𝐶 + 3ℛ − ℵ𝜌0ℛ
3 is a polynomial, with 

roots 𝑧𝑗 and 𝛽𝑗 are coefficients depending on the 

constants 𝐶, 𝑎, 𝑅𝑠, ℵ𝜌0. 
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For 𝜌0 → 0,𝑃(ℛ ≥ 𝑎) = 0, we find the particular 

solution of the metric located outside the star: 

𝐴0(ℛ) =
ℛ + 𝐶

ℛ
= 1 +

𝐶

ℛ
 

 Hypothesis F.2 : If the pressure in the fluid is a function 

of  ℛ ( this is a mathematical hypothesis) with 

 𝑃(𝑎) = 𝑃(𝑅𝑠) = 0. Then it can be written:  

𝑃(ℛ) = 𝑃0 (
𝑎

ℛ
− 1) (1 −

𝑅𝑠
ℛ
) 

We find solutions for the Einstein equations in the form 

(18) and (20) having made assumptions of continuity 

for the pressure and of limit conditions (ℛ = 𝑎) and 

(ℛ = 𝑅𝑠). 

we have: 

𝑑𝑠2 = 𝐴(ℛ)𝑑𝜉2 − 𝐵(ℛ)𝑑ℛ2 − ℛ2𝑑𝑤2 

with 

𝐴(ℛ) =∏
(ℛ − 𝑤𝑗)

𝛾𝑗

ℛ

3

𝑗=1

𝐵(ℛ) =
3ℛ

3𝐶 + 3ℛ − ℵ𝜌0ℛ3

 

Then  

𝐴𝐵 =∏
(ℛ − 𝑤𝑗)

𝛾𝑗

(ℛ− 𝑧𝑗)
𝛽𝑗

3

𝑗

 

For 𝜌0 → 0,𝑎𝑛𝑑  𝑃(ℛ ≥ 𝑎) = 0, we find the 

particular solution of the metric located outside the star: 

𝐴0𝐵0 = 1 

𝐵0(ℛ) =
ℛ

ℛ + 𝐶
= (1+

𝐶

ℛ
)
−1

 

G- Physics of pressure and density in the star 

It is known that the divergence of the energy tensor 

verifies the following physical property because of 

Einstein's equations, the energy conditions is: 

𝜕𝑖𝑇
𝑖𝑗 = 0 

i.e.  

𝑃′ +
(𝑃 + 𝜌)

2

𝐴′

𝐴
+
(𝑃 − 𝑄)

ℛ
= 0 

In a perfect fluid sphere, we have :  𝑃 = 𝑄 

The equation reduces to the following expression:  

𝑃′ +
(𝑃 + 𝜌)

2

𝐴′

𝐴
= 0 

(21) 

We deduce from this 𝑃(ℛ) and 𝜌(ℛ), and we can 

calculate 𝐵(ℛ) and 𝐴(ℛ). 

Hypothesis G.1 

For 𝑃 + 𝜌 = 𝐶𝑡𝑒 = 𝐾 ≠ 0 then 

𝑃′ =
−𝐾

2

𝐴′

𝐴
 

𝑃(ℛ) = 𝑙𝑛(
1 +

𝐶0
𝑎

𝐴(ℛ)
)

𝐾
2

;  𝜌(ℛ) = 𝐾 − 𝑃(ℛ) 

The general solution of equation (17) is: 

𝐵(ℛ) =
1

1 −
ℵ
ℛ𝑀(ℛ)

 

With  

𝑀(ℛ) = ∫𝑢2𝜌(𝑢)𝑑𝑢

ℛ

𝑅𝑠

 

Equation (14) give  

(
𝐴′

𝐴
+
𝐵′

𝐵
) = ℵ𝐾𝐵ℛ 

then 

𝐿𝑛(𝐴𝐵) = ℵ𝐾∫ 𝑢𝐵(𝑢)
ℛ

𝑅𝑠

𝑑𝑢 

i.e 

𝐴𝐵 = 𝑒𝑥𝑝 (ℵ𝐾∫ 𝑢𝐵(𝑢)
ℛ

𝑅𝑠

𝑑𝑢) 

For 𝜌(ℛ ≥ 𝑎) = 0 𝑎𝑛𝑑 𝑃(ℛ ≥ 𝑎) = 0, we find the 

particular solution of the metric located outside the star: 

𝐴0𝐵0 = 1 
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𝐵0(ℛ) =
ℛ

ℛ + 𝐶
= (1+

𝐶

ℛ
)
−1

 

Hypothesis G.2 

The density is constant: 𝜌 = 𝜌0 

With 𝑃(𝑎) = 0, and 𝜌 = 𝜌0 then equation (21) give: 

𝑃 + 𝜌0 = 𝜌0

√1 +
𝐶0
𝑎

√𝐴(ℛ)
 

Since 𝐴(𝑎) = 𝐴0(𝑎) = 1 +
𝐶0

𝑎
 

The condition  √1 +
𝐶0

𝑎
> √𝐴(𝑅𝑠) > 0 will decide on 

the critical conditions for the density 𝜌0. ([5]. Haag J. 

1931) 

Let's calculate the general expression of the function 

𝐴(ℛ) 

The equation (14) can be written: 

(
𝐴′

𝐴
+
𝐵′

𝐵
) = ℵ𝐵ℛ𝜌0

√1 +
𝐶0
𝑎

√𝐴(ℛ)
 

(22) 

We deduce   : 

𝐴′

√𝐴
= −

𝐵′√𝐴

𝐵
+ ℵ𝐵ℛ𝜌0√1+

𝐶0
𝑎

 

Let’s  𝑈 = 𝐴1/2 then 2𝑈′ = 𝐴′𝐴−1/2 

then we have : 

2𝑈′ = −𝑈
𝐵′

𝐵
+ ℵ𝐵ℛ𝜌0√1+

𝐶0
𝑎

 

(23) 

In a first case, by choosing 𝐶 = 0 for B in the equation 

(18) , we find a simple equation easier to solve as the 

same of Schwarzschild.  

2𝑈′ = −

2ℵ𝜌
0

3
ℛ

1 −
ℵ𝜌

0

3
ℛ2
𝑈 +

ℵ𝜌
0
ℛ

1 −
ℵ𝜌

0

3
ℛ2
√1+

𝐶0
𝑎

 

whose solution is to the nearest constant: 

𝑈 =
−1

2
√1 −

ℵ𝜌
0

3
ℛ2 +

3

2
√1 +

𝐶0
𝑎

 

This solution was found by Schwarzschild in 1916 , 

with 

2𝑚 =
ℵ𝜌0
3
𝑎3 𝑎𝑛𝑑 𝐶0 = −2𝑚 

𝐴(ℛ) = (
3

2
√1 −

2𝑚

𝑎
−
1

2
√1 −

2𝑚

𝑎3
ℛ2)

2

 

In the second case, by choosing 𝐶 ≠ 0 , the solution of 

the inhomogeneous equation to explain the function 

𝐴(ℛ) is a more difficult problem that involves hyper 

elliptic integrals. 

The general solution of equation (23), is  

𝑈(ℛ) =

(

 
ℵ𝜌0√1+

𝐶0
𝑎

2√𝐵
∫ 𝑡𝐵3/2𝑑𝑡

ℛ

0

+
1

√𝐵
)

  

and 

𝐴(ℛ) =
1

𝐵(ℛ)

(

 
ℵ𝜌0√1+

𝐶0
𝑎   

2
∫ 𝑡𝐵(𝑡)3/2𝑑𝑡

ℛ

0

+ 1

)

 

2

 

Remark : 

If 𝜌0 → 0 , then : 

𝐴0(ℛ) =
1

𝐵0(ℛ)
 

It is the particular solution of the Einstein equations out 

of the star. 

Hypothesis G.3 

We assume le star is a special fluid where 

𝑃 + 𝜌 = 0 and 𝑃 − 𝑄 ≠ 0 as energy condition 

For 𝜌 > 0 then 𝑃 < 0, i.e energy is negative, 

Or For 𝜌 < 0 then 𝑃 > 0, i.e mass is negative, 

Then the energy conditions can be write 
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𝑃′ +
(𝑃 − 𝑄)

ℛ
= 0 

The solution of equation (14) is  

𝐴𝐵 = 1 

Assume that 𝑄 = 2𝑃0ℛ then 

𝑃(ℛ) = 𝑃0 (ℛ −
𝑎2

ℛ
)𝑎𝑛𝑑 𝑃(𝑎) = 0 

Eq (17) give  

𝐵′

𝐵
=
1 − 𝐵

ℛ
− ℵ𝐵𝑃0(ℛ

2 − 𝑎2) 

The interior solution is a particular De Sitter-

Schwarzschild metric : 

𝐵(ℛ) =
4ℛ

4𝐶 + 4ℛ − 2ℵ𝑃0𝑎2ℛ2 + ℵ𝑃0ℛ4
 

𝐴(ℛ) =
1

𝐵(ℛ)
 

And the exterior solution is : 

𝐴0(ℛ) =
1

𝐵0(ℛ)
= 1 +

𝐶

ℛ
 

H- Conclusions 

We have shown in this article, through mathematical 

assumptions and a more attentive reading the second 

article of Schwarzschild (1916) that the physical 

interpretation of the variable 𝒓 is not a radial distance 

when located  closer to the star.  

We have also addressed the problem of the singularity 

of this metric by explaining what S. Hawking and R. 

Penrose have said about gravitational collapse. 

Starting from this principle of non-singularity, we have 

constructed a metric from the Einstein tensor in a 

vacuum. This metric, asymptotic to a plane metric far 

away from the star and tangent to a throat sphere near 

the center, extends to a mirror metric. In the mirror 

metric, the masses are negative, and the time is 

reversed.  

In the last part of this article, we explained the general 

solution of the Einstein equation, i.e., with second term, 

considering assumptions on the pressure and density 

inside the fluid ball representing the star. 

For 𝑷+ 𝝆 = 𝑲 ≠ 𝟎 then  

𝐴(ℛ)𝐵(ℛ) = 𝑒𝑥𝑝 (ℵ𝐾∫ 𝑢𝐵(𝑢)
ℛ

𝑅𝑠

𝑑𝑢) 

For 𝑷+ 𝝆 = 𝟎 then  

𝐴(ℛ)𝐵(ℛ) = 1 

With  

𝐵(ℛ) =
4ℛ

4𝐶 + 4ℛ − 2ℵ𝑃0𝑎2ℛ2 + ℵ𝑃0ℛ4
 

It is a particular De Sitter-Schwarzschild’s metric in a 

special fluid. 

For 𝝆 = 𝝆𝟎 then  

𝑩(𝓡) =
𝟑𝓡

𝟑𝑪 + 𝟑𝓡 − ℵ𝝆𝟎𝓡
𝟑
 

𝑨(𝓡)𝑩(𝓡) =

(

 
ℵ𝝆𝟎√𝟏+

𝑪𝟎
𝒂
  

𝟐
∫ 𝒕𝑩(𝒕)𝟑/𝟐𝒅𝒕

𝓡

𝟎

+ 𝟏

)

 

𝟐

 

It is the hyper-elliptic interior solution who generalize 

the interior Schwarzschild’s solution. 

 

In a next paper, we will make new physical assumptions 

about the dimension 3 throat’s sphere. We will study 

the physics and the nature of zero mass and relativistic 

particles, which can pass through that throat sphere.  

The topology of the 𝑺𝟑  sphere immersed in a space of 

dimension 4 is not visualizable easily. Indeed, the 

stereographic projection of the 𝑺𝟑 sphere in our space 

is the whole ℝ𝟑 space plus a point at infinity according 

to our viewpoint. The gorge sphere is then isomorphic 

to ℝ𝟑 in which time have been stopped. The sphere 𝑺𝟑 

is the junction of our paraboloid space -time with the 

mirror space-time who have property of negative mass. 
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