Multiplication tables from 1 to 10 in different number systems.

Juan Elias Millas Vera
juanmillaszgz@gmail.com

Zaragoza (Spain)

July 2022

0- Abstract:

This paper shows information for people who are interested in symbology and its applications. In a very didactic way it puts some of the necessary tools for the knowledge of the different number systems, using the multiplication tables. This paper go around Cuneiform, Old Egyptian, Classical Greek, Hebrew, Roman, Chinese Simplified, Binary, Hexadecimal and of course Eastern Arabic numerals.

1- Introduction:

The main reason to write this paper is to satisfy the curiosity of the people. Although it has some implicit reasons, for example, it is a very good experiment to proof that in old cultures the people was able to write basic arithmetic with the access of their writing systems tools. Other reason can be show abstraction in the mathematical thinking, which is necessary for new develop of every part of mathematics.

For the writing of the old civilizations systems I assume positional and addition mechanisms, I know it is not very accurate to the historical texts but I was necessary for my work and people for several millennia ago would have been able to deduce it in my opinion.

2- Cuneiform:

$10-, 20 \leadsto, 30 \longmapsto, 40 \leftrightarrows, 50 \leftrightarrows, 60$ I.
Note1: Numbers one and sixty have the same symbol. Context is necessary.

1. $1=1$	' . $\Pi=\Pi$	1 = $=171$	1. H = W	$1=\frac{H^{\prime \prime}}{}$
${ }^{1}=$ WW		$1 .$		$1 .-$

ITI . I ITI	$\begin{aligned} & \Pi \prime \\ & \Pi=W \end{aligned}$	$\begin{aligned} & I T \\ & m=W \end{aligned}$	$\begin{aligned} & I T \\ & H=-T \end{aligned}$	$\begin{aligned} & l l \\ & l / 2 \\ & W^{\prime \prime}=-H^{\prime \prime} \end{aligned}$
III	III	III	III	III
	$W=-1$	W $=-\boldsymbol{H}$	兴=- ${ }_{\text {W }}$	- =-m

H. $1=W$	H. $\Pi_{\text {\% }}^{\text {W }}$	$\begin{aligned} & W \\ & \Pi=-\Pi \end{aligned}$	$\begin{aligned} & H \\ & H=-W \end{aligned}$	H. $\mathrm{HV}^{\text {r }}=\cdots$
$\begin{aligned} & H \\ & H \\ & W=\sim H \end{aligned}$	$\begin{aligned} & H \\ & W \\ & W=-\cdots \end{aligned}$	$\begin{aligned} & H . \\ & W=W \end{aligned}$		H. $-=$

W Whew		$\begin{aligned} & W \cdot W_{i}=\cdots \\ & w \\ & w \end{aligned}$		
$\begin{aligned} & W \cdot W= \\ & =-W \end{aligned}$		$\begin{aligned} & \text { 㩊 }=1 \\ & -T \end{aligned}$		㘊

3- Old Egyptian:
$11_{10} \bigcap_{100}$ @

I_I	\|IIII	IIIIIII	IIII=IIII	\|		IIIII $=11$										
\|III IIIIIIII	\|											=				I กn

III, IIIIII= III, IIIIIII= III, IIIIIIII III, IIIIIIIIII . ก_ח

4- Classical Greek:

$1 \alpha, 2 \beta, 3 \gamma, 4 \delta, 5 \varepsilon, 6 \varsigma, 7 \zeta, 8 \eta, 9 \theta$,
$10 \iota, 20 \kappa, 30 \lambda, 40 \mu, 50 v, 60 \xi, 70$ о, $80 \pi, 90$ น , 100ρ.

| $\alpha \cdot \alpha=\alpha$ | $\alpha \cdot \beta=\beta$ | $\alpha \cdot \gamma=\gamma$ | $\alpha \cdot \delta=\delta$ | $\alpha \cdot$ | $\varepsilon=\varepsilon$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\alpha \cdot \varsigma=\varsigma$ | $\alpha \cdot \zeta=\zeta$ | $\alpha \cdot \eta=\eta$ | $\alpha \cdot$ | $\theta=\theta$ | $\alpha \cdot$ | $1=1$ |

| $\beta \cdot \alpha=\beta$ | $\beta \cdot \beta=\delta$ | $\beta \cdot \gamma=\varsigma$ | $\beta \cdot \delta=\eta$ | $\beta \cdot \varepsilon=$ | \imath |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\beta \cdot \varsigma=\imath \beta$ | $\beta \cdot \zeta=\imath \delta$ | $\beta \cdot \eta=\imath \varsigma$ | $\beta \cdot \theta=\imath \eta$ | $\beta \cdot$ | $\imath=\kappa$ |

| $\gamma \cdot \alpha=\gamma$ | $\gamma \cdot \beta=\varsigma$ | $\gamma \cdot \gamma=\theta$ | $\gamma \cdot \delta=\imath \beta$ | $\gamma \cdot$ | $\varepsilon=\imath \varepsilon$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\gamma \cdot$ | $\varsigma=\imath \eta$ | $\gamma \cdot \zeta=\kappa \alpha$ | $\gamma \cdot$ | $\eta=\kappa \delta$ | $\gamma \cdot$ | $\theta=\kappa \zeta$ | $\gamma \cdot$ | $\imath=\lambda$ |

| $\delta \cdot \alpha=\delta$ | $\delta \cdot \beta=\eta$ | δ | $\gamma=\imath \beta$ | $\delta \cdot \delta=\imath \varsigma$ | δ | \cdot | $\varepsilon=\kappa$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\delta \cdot$ | $\varsigma=\kappa \delta$ | $\delta \cdot \zeta=\kappa \eta$ | $\delta \cdot$ | $\eta=\lambda \beta$ | $\delta \cdot$ | $\theta=\lambda \varsigma$ | $\delta \cdot$ | $\mathfrak{l}=$ | μ |

| $\varepsilon \cdot \alpha=\varepsilon$ | $\varepsilon \cdot \beta=\imath$ | $\varepsilon \cdot \gamma=\imath$ | $\varepsilon \cdot \delta=$ | κ | $\varepsilon \cdot$ | $\varepsilon=\kappa \varepsilon$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\varepsilon \cdot \varsigma=\lambda$ | $\varepsilon \cdot \zeta=\lambda \varepsilon$ | $\varepsilon \cdot \eta=\mu$ | $\varepsilon \cdot$ | $\theta=\mu \varepsilon$ | $\varepsilon \cdot$ | $\imath=\gamma$ |

| $\varsigma \cdot \alpha=\varsigma$ | $\varsigma \cdot \beta=1 \beta$ | $\varsigma \cdot \gamma=1 \varsigma$ | $\varsigma \cdot \delta=\kappa \delta$ | $\varsigma \cdot \varepsilon=\lambda$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\varsigma \cdot \varsigma=\lambda \varsigma$ | $\varsigma \cdot \zeta=\mu \beta$ | $\varsigma \cdot \eta=\mu \theta$ | $\varsigma \cdot \theta=\nu \delta$ | $\varsigma \cdot 1=\xi$ |

$\zeta \cdot \alpha=\zeta$	$\zeta \cdot \beta=\kappa$	$\zeta \cdot \gamma=\kappa \alpha$	$\zeta \cdot \delta=\kappa \eta$	$\zeta \cdot \varepsilon=\lambda \varepsilon$
$\zeta \cdot \varsigma=\mu \beta$	$\zeta \cdot \zeta=\mu \theta$	$\zeta \cdot \eta=\nu \varsigma$	$\zeta \cdot \theta=\xi \gamma$	$\zeta \cdot 1=0$

| $\eta \cdot \alpha=\eta$ | $\eta \cdot \beta=1 \varsigma$ | $\eta \cdot \gamma=\kappa \delta$ | $\eta \cdot \delta=\lambda \beta$ | $\eta \cdot \varepsilon=\mu$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\eta \cdot \zeta=\mu \eta$ | $\eta \cdot \zeta=\nu \varsigma$ | $\eta \cdot \eta=\xi \delta$ | $\eta \cdot \theta=\alpha \beta$ | $\eta \cdot \varepsilon=\pi$ |

| $\theta \cdot \alpha=\theta$ | $\theta \cdot \beta=\eta$ | $\theta \cdot \gamma=\kappa \zeta$ | $\theta \cdot \delta=\lambda \varsigma$ | $\theta \cdot \varepsilon=\mu \varepsilon$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\theta \cdot \varsigma=v \delta$ | $\theta \cdot \zeta=\xi \gamma$ | $\theta \cdot \eta=\mathrm{o} \beta$ | $\theta \cdot \theta=\pi \alpha$ | $\theta \cdot \imath=\varkappa$ |

1 . $\alpha=1$	ı - $\beta=\kappa$	1 - $\gamma=\lambda$	ı - $\delta=\mu$	1 - $\varepsilon=v$
1- $\varsigma=\xi$	$1 \cdot \zeta=0$	1 - $\eta=\pi$	1- $\theta=n$	$1 \cdot \mathrm{l}=\rho$

5- Hebrew:

HinduArabic numerals	Hebrew numerals
0	-
1	(alef)
2	בב)
3	(gimel)
4	(dalet)
5	(he)
6	(vav)
7	(zayin)
8	(chet)
9	ט)
10	(yod),
11	יא
12	יב
13	יג
14	יד
15	ט"ויו יר"ה
16	ט"וֹ or לוף
17	יז
18	יח
19	יט
20	(kaf) \dagger or
30	(lamed) ל
40	(mem) \square or
50	(nun) ${ }^{\text {or }}$
60	(samekh)
70	('ayin)y
80	(pe)ๆ or
90	(tsadi) $)^{\text {or }}$ \%
100	(qof) p
*Table from wikipedia (https://en.wikipedia.org/wiki/Hebrew numerals)	

Note：The equations are write right to left and I use basic decimal position system．

א＝א • א	א • ב	ג＝ג－א	ד＝7 • א	א
ו＝－א	$\boldsymbol{T}=\boldsymbol{\top}$	$\Pi=\Pi \cdot \aleph$	א	＇＝＇• א

ユニК • ב	アニユ •	1ニג	ח＝〒 ב	－ニー
ב • ו	ב • ז	ב ．	ב • ט＝יח	ך

ג＝א • ג	1	ט＝】 • ג	－ג	ג • ה
－ג	אך＝「 • ג	ג	ג	ג＝，ג

¢ א • ד	ד	ד	ד	ד
ד	ד	ד •	ד • ט	ロ＝，ד

ה	－	ה •	$\boldsymbol{T}=\boldsymbol{\square}$	ה • ה＝דה
ה	ה •	ה	ה • ט＝םה	$\boldsymbol{\dagger}=$－

$\boldsymbol{\prime}=$ ¢－	－•	$\boldsymbol{\Pi}=$ ¢	ו	ו
ו • ¢＝לו	¢	ו	$17=0$.	$0=, \quad 1$

$\boldsymbol{T}=$ 人 • \boldsymbol{T}	בריד	T	Кך ${ }^{\text {¢ }}$	T	$\Pi \square$	T	ה＝לה	T
בロ＝• 「	¢		$17=\pi$	T	ט	T	$y=$	T

$\Pi=\aleph \cdot \Pi$	－	－$\dagger=$－	ח • ד＝לב	ח＝ה •
\cdots	ח	ח	ח	ๆ $=$ ¢

ט＝К • ט	ט • ב＝יח	ט	ט •	ט • ה＝םה
ד\％$=1 \cdot 0$	ג $ס=\uparrow \cdot 0$	ט	$\aleph ワ=0 \cdot 0$	$\boldsymbol{Y}=\boldsymbol{\square}$

，＝，，		ל $=$ ג •	$\square=7 \quad$ ，	$\boldsymbol{Y}=$ ה
$0=1$.	$y=\uparrow \cdot$ ，	7 7 \quad П	$\gamma=0$.	$P=, \quad$ ，

6- Roman:

$1 \mathrm{I}, 5 \mathrm{~V}, 10 \mathrm{X}, 50 \mathrm{~L}, 100 \mathrm{C}$.

$\mathrm{I} \cdot$	$\mathrm{I}=\mathrm{I}$	$\mathrm{I} \cdot$	$\mathrm{II}=\mathrm{II}$	I	\cdot	$\mathrm{III}=\mathrm{III}$	$\mathrm{I} \cdot$	$\mathrm{IV}=\mathrm{IV}$
$\mathrm{I} \cdot$	$\mathrm{VI}=\mathrm{VI}$	$\mathrm{I} \cdot$	$\mathrm{VII}=\mathrm{VII}$	$\mathrm{I} \cdot$	$\mathrm{V}=\mathrm{V}$			

II	$\mathrm{I}=\mathrm{II}$	II	$\mathrm{II}=\mathrm{IV}$	II	III=VI	II	IV=VIII	II	$V=X$
II	VI=XII	II	VII=XIV	II	VIII=XVI	II	IX=XVIII	II	$\mathrm{X}=\mathrm{XX}$

III • I=III	III - II=VI	III • III=IX	III • IV=XII	III • V=XV
III • VI=XVIII	III • VII=XXI	$\begin{aligned} & \text { III } \\ & \mathrm{V} \end{aligned}$	III - IX=XXVII	III • $\mathrm{X}=\mathrm{XXX}$

| IV • I=IV | IV \cdot II=VIII | IV \cdot III=XII | IV • IV=XVI | IV • V=XX | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| IV • VI=XXIV | IV
 II | VII=XXVI | IV
 II | VIII=XXX | IV
 I | IX=XXXV | IV • X=XL |

| $\mathrm{V} \cdot \mathrm{I}=\mathrm{V}$ | $\mathrm{V} \cdot \mathrm{II}=\mathrm{X}$ | $\mathrm{V} \cdot \mathrm{III}=\mathrm{XV}$ | $\mathrm{V} \cdot \mathrm{IV}=\mathrm{XX}$ | $\mathrm{V} \cdot \mathrm{V}=\mathrm{XXV}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V} \cdot \mathrm{VI}=\mathrm{XXX}$ | $\mathrm{V} \cdot \mathrm{VII}=\mathrm{XXXV}$ | $\mathrm{V} \cdot \mathrm{VIII}=\mathrm{XL}$ | $\mathrm{V} \cdot \mathrm{IX}=\mathrm{XLV}$ | $\mathrm{V} \cdot$ | $\mathrm{X}=\mathrm{L}$ |

| $\mathrm{VI} \cdot \mathrm{I}=\mathrm{VI}$ | $\mathrm{VI} \cdot \mathrm{II}=\mathrm{XII}$ | $\mathrm{VI} \cdot \mathrm{III}=\mathrm{XVIII}$ | $\mathrm{VI} \cdot \mathrm{IV}=\mathrm{XXIV}$ | $\mathrm{VI} \cdot \mathrm{V}=\mathrm{XXX}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{VI} \cdot \mathrm{VI}=\mathrm{XXXV}$ | $\mathrm{VI} \cdot \mathrm{VII}=\mathrm{XLII}$ | VI
 II | $\cdot \mathrm{VIII}=\mathrm{XLV}$ | $\mathrm{VI} \cdot \mathrm{IX}=\mathrm{LVI}$ | $\mathrm{VI} \cdot \mathrm{X}=\mathrm{LX}$ |

VII • I=VII	VII • II=XIV	VII • III=XXI	$\begin{aligned} & \text { VII } \\ & \text { II } \end{aligned}$	VII • V=XXXV
VII • VI=XLII	$\begin{aligned} & \text { VII } \cdot \\ & \mathrm{X} \end{aligned}$	VII • VIII=LVI	VII • IX=LXIII	VII • $\mathrm{X}=\mathrm{LXX}$

VIII • I=VIII	VIII • II=XVI	$\mathrm{VIII} \cdot \mathrm{III}=\mathrm{XXI}$	VIII • IV=XXX II	VIII • V=XL
$\begin{aligned} & \text { VIII } \cdot \mathrm{VI}=\mathrm{XLV} \\ & \mathrm{III} \end{aligned}$	VIII • VII=LVI	$\begin{aligned} & \text { VIII • VIII=LX } \\ & \text { IV } \end{aligned}$	$\begin{aligned} & \text { VIII } \cdot I X=L X X ~ \\ & \text { II } \end{aligned}$	$\begin{aligned} & \text { VIII } \cdot \mathrm{X}=\mathrm{LXX} \\ & \mathrm{X} \end{aligned}$

IX • I＝IX	IX • II＝XVIII	IX • III＝XXVII	$\begin{aligned} & \mathrm{IX} \cdot \mathrm{IV}=\mathrm{XXXV} \\ & \mathrm{I} \end{aligned}$	IX • V＝XLV
IX ．VI＝LVI	IX • VII＝LXIII	$\begin{aligned} & \text { IX } \cdot \mathrm{VIII}=\mathrm{LXX} \\ & \mathrm{II} \end{aligned}$	$\begin{aligned} & \text { IX } \cdot I X=L X X X \\ & I \end{aligned}$	IX • $\mathrm{X}=\mathrm{XC}$

| $\mathrm{X} \cdot \mathrm{I}=\mathrm{X}$ | $\mathrm{X} \cdot \mathrm{II}=\mathrm{XX}$ | $\mathrm{X} \cdot \mathrm{III}=\mathrm{XXX}$ | $\mathrm{X} \cdot \mathrm{IV}=\mathrm{XL}$ | $\mathrm{X} \cdot \mathrm{V}=\mathrm{L}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{X} \cdot \mathrm{VI}=\mathrm{LX}$ | $\mathrm{X} \cdot \mathrm{VII}=\mathrm{LXX}$ | X
 X | $\mathrm{VIII}=\mathrm{LXX}$ | $\mathrm{X} \cdot \mathrm{IX}=\mathrm{XC}$ | $\mathrm{X} \cdot$ | $\mathrm{X}=\mathrm{C}$ |

7－Chinese Simplified：

1 一， 2 二， 3 三， 4 四， 5 五， 6 六， 7 七， 8 八， 9 九， 10 十， 100 百．

三 ．－＝	三 • $=$ 六	三 • 三 $=$ 九	$\begin{aligned} & \text { 三 } \quad . \quad \text { 四 }=+~ \\ & \text { 二 } \end{aligned}$	五	$\text { 五 }=十$
$\begin{aligned} & \text { 三 } \\ & \text { 八 } \end{aligned} \quad \text { 六 }=十$	$\begin{array}{ll} \text { 三 } & \text { 七 }=\text { 二 } \\ +一 & \end{array}$	$\begin{aligned} & \text { 三 } \quad . \quad 八=\text { 二 } \\ & \text { 十 } \\ & \text { 四 } \end{aligned}$	$\begin{array}{ll} \text { 三 } & \text { 九 } \\ \text { 十 } & \text { 七 } \end{array}$	＋	= 三

四－一＝四	四－二＝八	$\text { 四 } \cdot \text { 三 }=+$	$\text { 四 } \cdot \text { 四 }=\text { 十 }$	$\begin{aligned} & \text { 四 } \\ & \text { 十 } \end{aligned} \quad \text { 五 }=\text { 二 }$
$\begin{aligned} & \text { 四 } \cdot \\ & \text { 十 四 } \end{aligned}$	$\left\lvert\, \begin{array}{ll} \text { 四 } \\ \text { 十 } & \text { 八 } \end{array}\right. \text { 七 }$	$\begin{aligned} & \text { 四 } \cdot ~ 八=\text { 三 } \\ & \text { 十 二 } \end{aligned}$	$\left\lvert\, \begin{array}{ll} \text { 四 } \cdot \text { 九 }=\text { 三 } \\ \text { 十 } \end{array}\right.$	$\begin{aligned} & \text { 四 } \\ & \text { 十 } \end{aligned} \quad 十=\text { 四 }$

六－一＝六	六 • 二 $=$ 十二	$\begin{aligned} & \text { 六 } \cdot \equiv=+~ \\ & \text { 八 } \end{aligned}$	$\begin{aligned} & \text { 六 } \cdot \text { 四 = 二 } \\ & \text { 十 四 } \end{aligned}$	$\begin{aligned} & \text { 六 } \cdot \\ & + \end{aligned} \quad \text { 五 }=\text { 三 }$
$\begin{aligned} & \text { 六 } \cdot \text { 六 }=三 \\ & \text { 十 六 } \end{aligned}$	$\begin{aligned} & \text { 六 } \cdot \quad \text { 七 }=\text { 四 } \\ & + \text { 二 } \end{aligned}$	$\begin{aligned} & \text { 六 } \quad \text { 八 }=\text { 四 } \\ & +\quad 八 \end{aligned}$	$\begin{aligned} & \text { 六 } \cdot \text { 九 }=\text { 五 } \\ & + \text { 四 } \end{aligned}$	$\begin{aligned} & \text { 六 } \cdot \quad+=\text { 六 } \\ & + \end{aligned}$

七．$\rightarrow=$ 七	$\left\lvert\, \begin{aligned} & \text { 七 } \cdot 二=+~ \\ & \text { 四 } \end{aligned}\right.$	$\begin{aligned} & \text { 七 } \cdot \text { 三= 二 } \\ & \text { 十一 } \end{aligned}$	$\begin{aligned} & \text { 七 } \cdot \text { 四 }=\text { 二 } \\ & \text { 十 八 } \end{aligned}$	$\begin{aligned} & \text { 七 } \cdot \text { 五 }=\text { 三 } \\ & \text { 十 五 } \end{aligned}$
$\begin{aligned} & \text { 七 } \cdot \text { 六 }=\text { 四 } \\ & + \text { 二 } \end{aligned}$	$\begin{array}{ll} \text { 七 } \cdot \text { 七 }=\text { 四 } \\ + & \text { 九 } \end{array}$	$\begin{aligned} & \text { 七•八 }=\text { 五 } \\ & \text { 十 六 } \end{aligned}$	$\begin{aligned} & \text { 七•九 }=\text { 六 } \\ & +\equiv \end{aligned}$	$\begin{array}{ll} \text { 七 } \\ + & +=\text { 七 } \end{array}$

八．一＝八	$\underset{\text { 八六 }}{\text { 八 }} \cdot \text { 二 }=+$	$\begin{aligned} & \text { 八 • 三 }=\text { 二 } \\ & \text { 十四 } \end{aligned}$	$\begin{aligned} & \text { 八 } \cdot \text { 四= 三 } \\ & \text { 十二 } \end{aligned}$	$\begin{aligned} & \text { 八 } \\ & + \end{aligned} \text { 五= 四 }$
$\begin{aligned} & \text { 八 } \cdot \text { 六= 四 } \\ & \text { 十八 } \end{aligned}$	$\begin{aligned} & \text { 八 } \cdot \text { t }=\text { 五 } \\ & \text { 十六 } \end{aligned}$	$\begin{aligned} & \text { 八 • 八= 六 } \\ & \text { 十四 } \end{aligned}$	$\begin{aligned} & \text { 八 } \cdot \text { 九 }=\text { 七 } \\ & \text { 十二 } \end{aligned}$	八 ．＋＝八十

九．$-=$ 九	九	$\begin{aligned} & \text { 九 } \cdot \equiv=\text { 二 } \\ & \text { 十七 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 九 \text { 九 四 }=\text { 三 } \\ & \text { 十六 } \end{aligned}\right.$	$\begin{aligned} & \text { 九 • 五= 四 } \\ & \text { 十五 } \end{aligned}$
$\begin{aligned} & \text { 九 } \cdot \text { 六= 五 } \\ & \text { 十四 } \end{aligned}$	$\begin{aligned} & \text { 九 } \cdot \text { 七= 六 } \\ & \text { 十三 } \end{aligned}$	$\begin{aligned} & \text { 九 • 八= 七 } \\ & \text { 十二 } \end{aligned}$	九 • 九= 八十	九 ．+ ＝九十

$\begin{aligned} & +\quad \text { • 六= 六 } \\ & + \end{aligned}$	$\left\lvert\, \begin{aligned} & + \\ & + \end{aligned} \quad\right. \text { 七= 七 }$	$\begin{aligned} & +\quad \cdot \text { 八= 八 } \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \\ & + \end{aligned} \text { 九= 九 }$	＋•＋${ }^{\text {百 }}$

8－Eastern Arabic：

$0,1,2,3,4,5,6,7,8,9$.

| $1 \cdot 1=1$ | $1 \cdot 2=2$ | $1 \cdot 3=3$ | $1 \cdot 4=4$ | $1 \cdot$ | $5=5$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1 \cdot 6=6$ | $1 \cdot 7=7$ | $1 \cdot 8=8$ | $1 \cdot 9=9$ | $1 \cdot 10=10$ | |

| $2 \cdot 1=2$ | $2 \cdot 2=4$ | $2 \cdot 3=6$ | $2 \cdot 4=8$ | $2 \cdot 5=10$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2 \cdot 6=12$ | $2 \cdot 7=14$ | $2 \cdot 8=16$ | $2 \cdot 9=18$ | $2 \cdot 10=20$ |

| $3 \cdot 1=3$ | $3 \cdot 2=6$ | $3 \cdot 3=9$ | $3 \cdot 4=12$ | $3 \cdot 5=15$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $3 \cdot 6=18$ | $3 \cdot 7=21$ | $3 \cdot 8=24$ | $3 \cdot 9=27$ | $3 \cdot 10=30$ |

| $4 \cdot 1=4$ | $4 \cdot 2=8$ | $4 \cdot 3=12$ | $4 \cdot 4=16$ | $4 \cdot 5=20$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $4 \cdot 6=24$ | $4 \cdot 7=28$ | $4 \cdot 3=32$ | $4 \cdot 3=36$ | $4 \cdot 10=40$ |

| $5 \cdot 1=5$ | $5 \cdot 2=10$ | $5 \cdot 3=15$ | $5 \cdot 4=20$ | $5 \cdot$ | $5=25$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $5 \cdot 6=30$ | $5 \cdot 7=35$ | $5 \cdot 3=40$ | $5 \cdot 3=45$ | $5 \cdot$ | $10=50$ |

| $6 \cdot 1=6$ | $6 \cdot 2=12$ | $6 \cdot 3=18$ | $6 \cdot 4=24$ | $6 \cdot 5=30$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $6 \cdot 6=36$ | $6 \cdot 7=42$ | $6 \cdot 3=48$ | $6 \cdot 9=54$ | $6 \cdot 10=60$ |

$7 \cdot 1=7$	$7 \cdot 2=14$	$7 \cdot 3=21$	$7 \cdot 4=28$	$7 \cdot 5=35$
$7 \cdot 6=42$	$7 \cdot 7=49$	$7 \cdot 8=56$	$7 \cdot 9=63$	$7 \cdot 10=70$

8	$\cdot 1=8$	8	\cdot	$2=16$	8	$3=24$	8	$4=32$	8	$5=40$		
8	$\cdot 6=48$	8	$\cdot 7=56$	8	\cdot	$8=64$	8	\cdot	$9=72$	8	\cdot	$10=80$

| 9 | $\cdot 1=9$ | 9 | $\cdot 2=18$ | 9 | \cdot | $3=27$ | 9 | $4=36$ | 9 | $5=45$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $9 \cdot 6=54$ | 9 | $\cdot 7=63$ | 9 | \cdot | $8=72$ | 9 | \cdot | $9=81$ | 9 | \cdot | $10=90$ |

10	$\cdot 1=10$	10	\cdot	$2=20$	10	\cdot	$3=30$	10	\cdot	$4=40$	10
10	$\cdot 6=60$	$10 \cdot 7=70$	$10 \cdot 3=50$								

9- Binary:

0,1 .

1	\cdot	$1=1$	1	\cdot	$10=10$	1	$11=11$	1	\cdot	$100=100$	1	\cdot	$101=101$
1	\cdot	$110=110$	1	\cdot	$111=111$	1	\cdot	$1000=1000$	1	\cdot	$1001=1001$	1	\cdot

$10 \cdot 1=10$	$10 \cdot 10=100$	$10 \cdot 11=110$	$10 \cdot 100=1000$	$10 \cdot 101=1010$
$10 \cdot 110=1100$	$10 \cdot 111=1110$	$\begin{aligned} & 10 \cdot 1000=1000 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \cdot 1001=1001 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \cdot 1010=1010 \\ & 0 \end{aligned}$

$11 \cdot 1=11$	$11 \cdot 10=110$	$11 \cdot 11=1001$	$11 \cdot 100=1100$	$11 \cdot 101=1111$
$11 \cdot 110=10010$	$11 \cdot 111=10101$	$\begin{aligned} & 11 \cdot 1000=1100 \\ & 0 \end{aligned}$	$\begin{aligned} & 11 \cdot 1001=1101 \\ & 1 \end{aligned}$	$\begin{aligned} & 11 \cdot 1010=1111 \\ & 0 \end{aligned}$

$100 \cdot 1=100$	$100 \cdot 10=1000$	$100 \cdot 11=1100$	$\begin{aligned} & 100 \cdot 100=1000 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \cdot 101=1010 \\ & 0 \end{aligned}$
$\begin{aligned} & 100 \cdot 110=1100 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \cdot 111=1110 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \cdot 1000=100 \\ & 000 \end{aligned}$	$\begin{aligned} & 100 \cdot 1001=100 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \cdot 1010=101 \\ & 000 \end{aligned}$

101 - $1=101$	$101 \cdot 10=1010$	101	$11=1111$	$\begin{aligned} & 101 \\ & 00 \end{aligned}$	$100=1010$	$\begin{aligned} & 101 \\ & 1 \end{aligned}$	$101=1100$
$\begin{aligned} & 101 \cdot 110=1111 \\ & 0 \end{aligned}$	$\begin{aligned} & 101 \cdot 111=1000 \\ & 11 \end{aligned}$	$\begin{aligned} & 101 \\ & 000 \end{aligned}$	$1000=101$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$	$1001=101$	$\begin{aligned} & 101 \\ & 010 \end{aligned}$	$1010=110$

$\left.\begin{array}{|ll|lll|ll|lll|lll|}\hline 110 & \cdot 1=110 & 110 & \cdot 10=1100 & 110 & \cdot & 11=10010 & \begin{array}{l}110 \\ 0\end{array} & & 100=1100 & 110 & \cdot & 101=1111 \\ 0\end{array}\right]$
$\left.\begin{array}{|ll|lll|ll|lll|lll|}\hline 111 & \cdot 1=111 & 111 & \cdot 10=1110 & 111 & \cdot & 11=10101 & \begin{array}{l}111 \\ 0\end{array} & & 100=1110 & 111 & \cdot & 101=1000 \\ 11\end{array}\right]$

1000	$1=1000$	$\begin{aligned} & 1000 \\ & 0 \end{aligned}$	$10=1000$	$\begin{aligned} & 1000 \\ & 0 \end{aligned}$	$11=1100$	$\begin{aligned} & 1000 \\ & 000 \end{aligned}$	$100=100$	$\begin{aligned} & 1000 \\ & 000 \end{aligned}$	$101=101$
$\begin{aligned} & 1000 \\ & 000 \end{aligned}$	$110=110$	$\begin{aligned} & 1000 \\ & 000 \end{aligned}$	$111=111$	$\begin{aligned} & 1000 \\ & 00000 \end{aligned}$	$1000=10$	$\begin{aligned} & 1000 \\ & 01000 \end{aligned}$	$1001=10$	$\begin{aligned} & 1000 \\ & 10000 \end{aligned}$	$1010=10$

1001 - $1=1001$	$\begin{aligned} & 1001 \cdot 10=1001 \\ & 0 \end{aligned}$	$\begin{aligned} & 1001 \cdot 11=1101 \\ & 1 \end{aligned}$	$\begin{aligned} & 1001 \cdot 100=100 \\ & 100 \end{aligned}$	$\begin{aligned} & 1001 \cdot 101=101 \\ & 101 \end{aligned}$
$\begin{aligned} & 1001 \cdot 110=110 \\ & 110 \end{aligned}$	$\begin{aligned} & 1001 \cdot 111=111 \\ & 111 \end{aligned}$	$\begin{aligned} & 1001 \cdot 1000=10 \\ & 01000 \end{aligned}$	$\begin{aligned} & 1001 \cdot 1001=10 \\ & 10001 \end{aligned}$	$\begin{aligned} & 1001 \cdot 1010=10 \\ & 11010 \end{aligned}$

$1010 \cdot 1=1010$	$\begin{aligned} & 1010 \cdot 10=1010 \\ & 0 \end{aligned}$	$\begin{aligned} & 1010 \cdot 11=1111 \\ & 0 \end{aligned}$	$\begin{aligned} & 1010 \cdot 100=101 \\ & 000 \end{aligned}$	$\begin{aligned} & 1010 \cdot 101=110 \\ & 010 \end{aligned}$
$\begin{aligned} & 1010 \cdot 110=111 \\ & 100 \end{aligned}$	$\begin{aligned} & 1010 \cdot 111=100 \\ & 0110 \end{aligned}$	$\begin{aligned} & 1010 \cdot 1000=10 \\ & 10000 \end{aligned}$	$\begin{aligned} & 1010 \cdot 1001=10 \\ & 11010 \end{aligned}$	$\begin{aligned} & 1010 \cdot 1010=11 \\ & 00100 \end{aligned}$

10- Hexadecimal:

$0,1,2,3,4,5,6,7,8,9,10 \mathrm{~A}, 11 \mathrm{~B}, 12 \mathrm{C}, 13 \mathrm{D}, 14 \mathrm{E}, 15 \mathrm{~F}$.

| $1 \cdot 1=1$ | $1 \cdot 2=2$ | $1 \cdot 3=3$ | $1 \cdot 4=4$ | $1 \cdot 5=5$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1 \cdot 6=6$ | $1 \cdot 7=7$ | $1 \cdot 8=8$ | $1 \cdot 9=9$ | $1 \cdot \mathrm{~A}=\mathrm{A}$ |

| $2 \cdot 1=2$ | $2 \cdot 2=4$ | $2 \cdot 3=6$ | $2 \cdot 4=8$ | $2 \cdot 5=\mathrm{A}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2 \cdot 6=\mathrm{C}$ | $2 \cdot 7=\mathrm{E}$ | $2 \cdot 8=10$ | $2 \cdot 9=12$ | $2 \cdot \mathrm{~A}=14$ |

| $3 \cdot 1=3$ | $3 \cdot 2=6$ | $3 \cdot 3=9$ | $3 \cdot 4=\mathrm{C}$ | $3 \cdot 5=\mathrm{F}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $3 \cdot 6=12$ | $3 \cdot 7=15$ | $3 \cdot 8=18$ | $3 \cdot 9=1 \mathrm{~B}$ | $3 \cdot \mathrm{~A}=1 \mathrm{E}$ |

| $4 \cdot$ | $1=4$ | $4 \cdot 2=8$ | $4 \cdot 3=\mathrm{C}$ | $4 \cdot 4=10$ | $4 \cdot$ | $5=14$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $4 \cdot 6=18$ | $4 \cdot 7=1 \mathrm{C}$ | $4 \cdot 8=20$ | $4 \cdot 9=24$ | $4 \cdot$ | $\mathrm{~A}=28$ | |

| $5 \cdot 1=5$ | $5 \cdot 2=\mathrm{A}$ | $5 \cdot 3=\mathrm{F}$ | $5 \cdot 4=14$ | $5 \cdot 5=19$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $5 \cdot 6=1 \mathrm{E}$ | $5 \cdot 7=23$ | $5 \cdot 8=28$ | $5 \cdot 9=2 \mathrm{D}$ | $5 \cdot \mathrm{~A}=32$ |

| $6 \cdot 1=6$ | $6 \cdot 2=\mathrm{C}$ | $6 \cdot 3=12$ | $6 \cdot 4=18$ | $6 \cdot 5=1 \mathrm{E}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $6 \cdot 6=24$ | $6 \cdot 7=2 \mathrm{~A}$ | $6 \cdot 8=30$ | $6 \cdot 9=36$ | $6 \cdot \mathrm{~A}=3 \mathrm{C}$ |

| $7 \cdot 1=7$ | $7 \cdot 2=\mathrm{E}$ | $7 \cdot 3=15$ | $7 \cdot 4=1 \mathrm{C}$ | $7 \cdot 5=23$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $7 \cdot 6=2 \mathrm{~A}$ | $7 \cdot 7=31$ | $7 \cdot 8=38$ | $7 \cdot 9=3 \mathrm{~F}$ | $7 \cdot \mathrm{~A}=46$ |

| $8 \cdot 1=8$ | $8 \cdot 2=10$ | $8 \cdot 3=18$ | $8 \cdot 4=20$ | $8 \cdot 5=28$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $8 \cdot 6=30$ | $8 \cdot 7=38$ | $8 \cdot 8=40$ | $8 \cdot 9=48$ | $8 \cdot \quad \mathrm{~A}=50$ |

| $9 \cdot 1=9$ | $9 \cdot 2=12$ | $9 \cdot 3=1 \mathrm{~B}$ | $9 \cdot 4=24$ | $9 \cdot 5=2 \mathrm{D}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $9 \cdot 6=36$ | $9 \cdot 7=3 \mathrm{~F}$ | $9 \cdot 8=48$ | $9 \cdot 9=51$ | $9 \cdot$ | $\mathrm{~A}=5 \mathrm{~A}$ |

| A $\cdot 1=\mathrm{A}$ | $\mathrm{A} \cdot 2=14$ | $\mathrm{~A} \cdot 3=1 \mathrm{E}$ | $\mathrm{A} \cdot 4=28$ | $\mathrm{~A} \cdot 5=32$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~A} \cdot 6=3 \mathrm{C}$ | $\mathrm{A} \cdot 7=46$ | $\mathrm{~A} \cdot 8=50$ | $\mathrm{~A} \cdot 9=5 \mathrm{~A}$ | $\mathrm{~A} \cdot \mathrm{~A}=64$ |

11- Conclusions:

As we have seen this are just examples of different approximations to the arithmetic in numerals, I did not include all the numerical systems just some of the most famous. Other important numeral systems are the Tamil, Devanagari, Tibetan, Armenian, Khmer, Thai. Also Abjad and Western Arabic or others East Asian numerals. Maya (in base $5+20$) is an important numeral system too. Nowadays we still develop numeral systems, e. i. Kaktovik. There is a lot of possible forms to write the same concepts and this is an important proof of the convergent evolution of mathematics.

Thanks for reading this paper.

