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ABSTRACT
Curvature-cosmology is a tired-light cosmology that predicts a well-defined static and stable uni-

verse. Since it is a complete challenge to the big bang paradigm, it can only be judged by its agreement
with direct cosmological observations. It predicts a universe of a hydrogen plasma with a temperature
of 2.456 × 109 K [observed: 2.62 × 109K] and a cosmic background radiation temperature of 2.736 K
[observed: 2.725K]. It has only one parameter which is the density of the cosmic plasma. In addition
this paper provides a new simpler raw data analysis for Type Ia supernova which provides excellent
predictions for the redshift variation of Type I supernova light curve width and magnitude. A new
discovery is intrinsic magnitude distribution. The analysis of 746,922 quasars provides important
cosmological information on the distribution on intrinsic magnitudes and the density distribution of
quasars. Other major observations that are shown to be consistent with Curvature-cosmology are:
Tolman surface density, galaxy clusters, angular size, galaxy distributions, X-ray background radia-
tion, and quasar variability. It does not need inflation, dark matter or dark energy.
Subject headings: Cosmology—supernova—quasars
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1. INTRODUCTION

This paper describes Curvature-cosmology that is
based on two hypothesise, Curvature-redshift and
Curvature-pressure, and shows excellent agreement with
observations. This new paradigm challenges the big
bang paradigm to see which provides the best agree-
ment with cosmological observations. Following the pre-
cepts of Thomas S. Kuhn (Kuhn 1970) it is essential
that each paradigm must be judged using its own analy-
sis. That is observations of non-static behavior observed
within the old paradigm cannot be used to invalidate the
new paradigm. They must be evaluated within the new
paradigm to have any validity.

Nearby Type Ia supernova are well known to have es-
sentially identical light curves that make excellent cosmo-
logical probes. The observational evidence for their time
dilation has a long history with notable papers being
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by Goldhaber et al. (2001, 1996); Blondin et al. (2008).
More recent contributions are by Kowalski et al. (2008);
Wood-Vasey et al. (2008); Kessler et al. (2009a); Aman-
ullah et al. (2010); Conley et al. (2011); Betoule et al.
(2014); Scolnic et al. (2018). All of these recent papers
use the SALT2 Guy et al. (2010, 2007) method to deter-
mine the widths and peak flux densities of the supernova
and they have used the ΛCDM expansion cosmology to
determine absolute magnitudes. These papers show that
type Ia supernova observations provide the major contri-
bution to cosmological models.

The common attribute of all ΛCDM , cosmologies is
that they are based on the assumption that the uni-
verse is expanding (Peebles 1993). An early alternative
was the steady-state theory of Hoyle, Bondi and Gold
Hoyle (1962) (described with later extensions by Hoyle
et al. (2000)) that required continuous creation of matter.
However steady-state theories have serious difficulties in
explaining the cosmic microwave background radiation.
This left ΛCDM as the dominant cosmology but still sub-
ject to criticism.

Lal (2010) and Joseph (2010); Ellis (1984); Lerner
(1991); Disney (2000); van Flandern (1991) and Peebles
(2020, 2022) have continued major earlier criticisms of
ΛCDM cosmologies. Whereas most of these criticisms
have been of a theoretical nature, this paper concen-
trates on whether observational data supports a static
cosmological model, Curvature-cosmology.

Table 14 provides a list of the important cosmologi-
cal characteristics predicted by Curvature-cosmology and
shows their excellent agreement with the observations.

The analysis of 746,922 quasars provides important
cosmological information on the distribution on intrin-
sic magnitudes and the density distribution of quasars.
The intrinsic magnitude distribution appears to be due
to the elimination of photons that have energies larger
than the ionisation energy of hydrogen.

A crucial property of Curvature-cosmology is that the
observed magnitude is the sum of an intrinsic magni-
tude, which is what would be observed by a nearby ob-
server and a cosmological magnitude which describes the
change in the average energy of the photons due to their
trajectory through the universe.

This paper has four major parts where the first part
is this introduction and the second part presents a new
static cosmology, Curvature-cosmology. It is an addition
to general relativity and fully accepts it as the best grav-
itational theory.

The third part provides a new analysis of Type Ia
supernova that is a much simpler method than does
the current standard SALT2 method. It analyzes raw
Type Ia supernova data in order to measure their light
curve widths and their peak flux densities. These results
are compared with the standard SALT2 method and it
shows that the SALT2 method is possibly flawed and
that Curvature-cosmology has a better agreement with
observations.

The fourth part provides a discussion of most of the
important cosmological observations and discuses their
results in the context of Curvature-cosmology. The fifth
part provides a summary of the results.

This paper is the culmination of many years of work
and is a complete re-synthesis of many approaches that
I have already published (Crawford 1987a,b, 1991, 1995,

1998, 1999a,b, 2006, 2009a,b). These papers are cited
to show the convoluted and historic path of Curvature-
cosmology. Because hypotheses and notations have
changed and evolved, direct references to these earlier
versions of the theory would be misleading and all rele-
vant results are published in this paper.

For convenience it is assumed that the wavelength de-
pendence of a band can be replaced by a single value, λ,
which is the mean wavelength for that band. The index
(above) is provided to assist the rapid access to all labels
with a mouse click and to return with ”backspace”.

2. PART A: CURVATURE-COSMOLOGY THEORY.

2.1. Introduction
Curvature-cosmology is a static tired-light cosmology

which is based on the two hypothesizes of Curvature-
redshift which is based on the propagation of a wave in of
curved space-time and Curvature-pressure which opposes
the mutual gravitational attraction in hot gases.

It uses the Friedmann equations with an additional
term that stabilizes the solution. This term called
Curvature-pressure is a reaction of high-speed particles
back on the material producing the curved space-time.
This sense of this reaction is to reduce the curvature.

The basic cosmological model is one in which the cos-
mic plasma dominates the mass distribution and hence
the curvature of space-time. In this first-order model, the
gravitational effects of stars and galaxies are neglected.
The geometry is that of a three-dimensional “surface”
of a four-dimensional hyper-sphere, which is common to
most cosmologies.

For a static universe, there is no ambiguity in the
definition of distances and times. One can use a uni-
versal cosmic time and define distances in light travel
times or any other convenient measure. In a statistical
sense Curvature-cosmology obeys the perfect cosmolog-
ical principle of being the same at all places and at all
times.

Curvature-cosmology makes quite specific predictions
that can be refuted. Thus, any observations that unam-
biguously show changes in the universe with time would
invalidate it. In Curvature-cosmology, there is a contin-
uous process in which some of the cosmic gas will aggre-
gate to form galaxies and then stars. The galaxies and
stars will evolve and eventually all their material will be
returned to the cosmic plasma. Thus, a characteristic of
Curvature-cosmology is that although individual galax-
ies will be born, live and die, the overall population will
be statistically the same for all characteristics.

2.2. Derivation of Curvature-redshift
The derivation of Curvature-redshift is based on the

fundamental hypothesis of Einstein’s general theory of
relativity that space is curved. As a consequence, the
trajectories of initially parallel, point particles, geodesics,
will move closer to each other, or further apart as time
increases. Consequently in space with a positive curva-
ture, the cross-sectional area of a bundle of geodesics will
slowly decrease.

In applying this idea to photons, we assume that a
photon is described in quantum mechanics as a localized
wave where the geodesics correspond to the rays of the
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wave. Note that this wave is quite separate from an elec-
tromagnetic wave that corresponds to the effects of many
photons. It is fundamental to the hypothesis that we can
consider the motion in space of individual photons.

Because the curvature of space causes the focusing of a
bundle of geodesics, this focusing also applies to a wave.
As the photon progresses, the cross-sectional area of the
wave associated with it will decrease. However, in quan-
tum mechanics’ properties such as angular momentum
are computed by an integration of a radial coordinate
over the volume of the wave and will be affected by the
focusing.

However, angular momentum is a quantized parameter
that for photons has a fixed value. The solution to this
dilemma is that, from symmetry, the photon splits into
two very low-energy photons and a third that has the
same direction as the original photon and nearly all the
energy.

Since in quantum mechanics protons and other parti-
cles are considered as waves, a similar process will also
apply to them. It is argued that protons and other par-
ticles will interact with curved space to lose energy by
the emission of very low-energy photons.

The equation for geodesic deviation can be written Mis-
ner, Thorne, & Wheeler (1973) as

d2ξ

dr2 = − ξ

R2 ,

where ξ is a distance normal to the trajectory and r is
measured along the trajectory. The quantity 1/R2 is the
Gaussian curvature at the point of consideration.

Assume that a photon can be described by a localized
wave packet that has finite extent both along and normal
to its trajectory. This economic description is sufficient
for the following derivation. From quantum mechanics
the frequency of a photon with energy E is ν = E/h and
its wavelength as λ = hc/E. The derivation requires that
the wavelength is short compared to the size of the wave
packet and that this is short compared to variations in
the curvature of space.

Furthermore, we assume that the rays follow null
geodesics and therefore any deviations from flat space-
time produce change in shape of the wave packet. In
other words, since the scale length of deviations from flat
space are large compared to the size of the wave packet
they act as a very small perturbation to the propagation
of the wave packet.

Consider a wave packet moving through a space of con-
stant positive curvature. Because of geodesic deviation,
the rays come closer together as the wave packet moves
forward. They are focused. In particular the direction
θ, of a ray (geodesic) with initial separation ξ after a
distance r is (assuming small angles)

θ = − rξ

R2 ,

where R is the radius of curvature.
Since the central geodesic is the direction of energy

flow, we can integrate the wave-energy-function times
the component of θ normal to the trajectory, over the
dimensions of the wave packet in order to calculate the
amount of energy that is now traveling normal to the
trajectory. The result is a finite energy that depends on

the average lateral extension of the wave packet, the local
radius of curvature, and the original photon energy.

The actual value is not important but rather the fact
that there is a finite fraction of the energy that is mov-
ing away from the trajectory of the original wave packet.
This suggests a photon interaction in which the pho-
ton interacts with curved space-time with the hypothesis
that the energy flow normal to the trajectory goes into
the emission of secondary photons normal to its trajec-
tory.

From a quantum-mechanical point of view, there is a
strong argument that some interaction must take place.
If the spin of the photon is directly related to the angular
momentum of the wave packet about its trajectory then
the computation of the angular momentum is a similar
integral.

Then because of focussing the angular momentum
clearly changes along the trajectory, which disagrees
with the quantum requirement that the angular momen-
tum, that is the spin, of the photon is constant. The
Heisenberg uncertainty principle requires that an incor-
rect value of spin can only be tolerated for a small time
before something happens to restore the correct value.
We now investigate the consequences.

Consider motion on the surface of a three-dimensional
sphere with radius r. As described above, two adjacent
geodesics will move closer together due to focusing. Sim-
ple kinematics tells us that a body with velocity v asso-
ciated with these geodesics has acceleration v2/r, where
r is the radius of curvature. This acceleration is directly
experienced by the body.

The geometry of a three-dimensional “surface” with
curvature in the fourth dimension is essentially the same
as motion in three dimensions except that the focusing
now applies to the cross-sectional area and not to the
separation.

Since a wave packet that is subject to focusing has
acceleration in an orthogonal dimension will also experi-
ence an acceleration of c2/r normal to the surface of the
sphere. Then a wave packet (and hence a photon) that
has its cross-sectional area focused by curvature in the
fourth dimension with radius R would have an energy
loss rate proportional to this acceleration. The essence
of the Curvature-redshift hypothesis is that the focusing
causes the photon to interact and that the energy loss
rate is proportional to c2/R.

In general relativity the crucial equation for the focus-
ing of a bundle of geodesics was derived by Raychaud-
huri (1955), also see Misner et al. (1973) and Ellis (1984)
and for the current context we can assume that the bun-
dle has zero shear and zero vorticity. Since any change
in geodesic deviation along the trajectory will not alter
the direction of the geodesics, we need consider only the
cross-sectional area A of the geodesic bundle to get the
equation

1
A

d2A

dr2 = −RαβUαUβ = − 1
R2 , (1)

where R is the Ricci tensor, U is the 4-velocity of the
reference geodesic and R is the local radius of curvature.
This focusing can be interpreted as the second order rate
of change of cross-sectional area of a geodesic bundle that
is on the three-dimensional surface in four-dimensional
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space. Then if we consider that a photon is a wave packet
we find that the rate at which the photon loses energy is

1
E

dE

dr
= − 1

R
. (2)

What is interesting about this equation is that, for the
Schwarzschild (and Kerr) solutions for the external field
for a mass, the Ricci tensor is zero; hence, there is no
focusing and no energy loss. A geodesic bundle passing
a mass such as the sun experiences a distortion but the
wave packet has not changed in area. Hence, this model
predicts that photons passing near the limb of the sun
will not suffer any energy loss due to curvature-redshift.

The question is what happens to the photon when the
change in momentum exceeds the Heisenberg uncertainty
principle. A reasonable answer is that it decays into two
very low energy photons and one large energy photon
that keeps the remaining energy. By symmetry the two
low energy photons have the same energy and are emitted
at right angles to the trajectory in opposite directions.
Thus the high energy photon retains the same trajectory.

For the primary photon the Heisenberg uncertainty
principle is σEσr ≥ cℏ/2 where σE is the uncertainty in
energy and σr is the uncertainty in distance. Since Eq.2
shows a rigid relationship between distance and energy
loss we get σE = Eσr/R hence

σ2
r = cℏR

2E = Rλ

4π , (3)

where λ is the primary wavelength.

2.3. Derivation of Curvature-pressure.
The hypothesis of Curvature-pressure is that for mov-

ing particles there is a pressure generated that acts back
on the matter that causes the curved space-time. In this
case, Curvature-pressure acts on the matter (plasma)
that is producing curved space-time in such a way as
to try to decrease the curvature.

Consider a Newtonian model where all of the particles
are constrained to lie on the surface of a sphere. From
Gauss’s law the gravitational acceleration at the radius
r is normal to the surface, directed inward. From simple
celestial mechanics, the particle velocity is v2 = GM/r.

However, the basis of the Curvature-pressure model is
that all particles are constrained to have the same radius
regardless of their mass or velocity with the value of the
radius set by the average radial acceleration. Thus for a
high temperature plasma with a distribution of velocities
we average over the squared velocities to get〈

v2〉
= GM

r
. (4)

The effect of this balancing of the accelerations against
the gravitational potential is seen within the shell as a
Curvature-pressure that is a direct consequence of the
geometric constraint of confining the particles to a shell.

If the radius r decreases then there is an increase in this
Curvature-pressure that attempts to increase the surface
area by increasing the radius. For a small change in
radius in a quasi-equilibrium process where the particle
velocities do not change the work done by this Curvature-
pressure with an incremental increase of area dA is pcdA
and this must equal the gravitational force times the

change in distance to give

pcdA = GM2

r2 dr,

where M =
∑
mi with the sum going over all the parti-

cles. Therefore, using Eq. 4 we can rewrite the previous
equation in terms of the velocities as

pcdA =
M

〈
v2〉
r

dr.

dA/dr = 2A/r, hence the Curvature-pressure is

pc =
M

〈
v2〉

2A .

This simple Newtonian model provides a guide as to
what the Curvature-pressure would be in the full three-
dimensional general relativistic model. We first change
dA/dr = 2A/r to dV/dr = 3V/r (where V is the volume)
and 3 is the number of degrees of freedom. The result is

pc =
〈
β2〉

Mc2

3V . (5)

Define the average density by ρ = M/V and allow-
ing for relativistic velocities, the cosmological Curvature-
pressure is

pc = −1
3

〈
γ2 − 1

〉
ρc2 (6)

where γ = 1/
√

1 + β2 is the Lorentz factor.
My hypothesis is that the cosmological model must in-

clude this Curvature-pressure. In particular, it is propor-
tional to an average over the squared velocities whereas
the thermodynamic pressure is proportional to an aver-
age over the kinetic energies. Eq. 6 is the basic equation
for Curvature-pressure.

2.4. The Curvature-cosmological model
Curvature-cosmology can now be derived by includ-

ing Curvature-redshift and Curvature-pressure into the
equations of general relativity. This is done by using a
homogeneous isotropic plasma as a model for the real
universe. The general theory of relativity enters through
the Friedmann equations.

The first-order model considers the universe to be a gas
with uniform density and complications such as density
fluctuations, galaxies, and stars are ignored. In addition,
we assume (to be verified later) that the gas is a high
temperature plasma. Based on the Robertson-Walker
metric, the Friedmann equations for the homogeneous
isotropic model with constant density and pressure with-
out the cosmological constant are (Longair 1991)

Ṙ2 = 8πGρ
3 R2 − c2 (7)

R̈ = −4πG
3

(
ρ+ 3p

c2

)
R,

where R is the radius of curvature as used in Eq.2, ρ is
the density, p is the pressure, G is the Newtonian grav-
itational constant and the superscript dots denote time
derivatives.
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The Curvature-pressure hypothesis is to use the pres-
sure from Eq. 6 (note that the thermodynamic pressure
is about 10−5 times the energy density and thus may be
ignored) and then the modified Friedmann equations are

Ṙ2 = 8πGρ
3 R2 − c2 (8)

R̈ = −4πGρ
3

[
2 −

〈
γ2〉]

R,

Clearly, there is a static solution with R̈ = 0 which means
that γ2 = 2.

The first Friedmann equation with Ṙ = 0 , provides
the radius of the universe, R0, which is

R0 =

√
3c2

8πGρ0
, (9)

= 1.272 × 1013/
√
ρ0 m,

= 3.110 × 1026/
√
NH m,

= 10.08/
√
NH Gpc,

where NH is the number density measured in number of
hydrogen atoms per m3. Later in section 4.1 the value
for this free variable is shown to be NH = 1.93. which
means R0 = 7.255 Gpc or R0 = 2.239 × 1026 m.

Using the equation E = ch/λ and since 1+z = λ/λ0 =
E0/E, then integrating Eq. 2 provides the first basic
equation for Curvature-cosmology that is

r = R0 log(1 + z). (10)

Whereas most cosmologies have a strong emphasis on
the redshift here the emphasis is on the distance r and
the effects of the cosmic medium on the progress of pho-
tons. Thus the importance of Eq. 10 is that provides the
relationship between r and redshift and is non-linear.

For example, the apparent redshift “velocity” is the
rate of change of z and since by definition dr/dt = c,
then

dz

dt
= c(1 + z)

R0
. (11)

Since this equation is valid for any observation that
is time dependent it means that the width of Type Ia
supernova light curves, and similar observations, must
have a (1 + z) width dependence on redshift. Thus a
static universe can produce a redshift dependence that is
identical to that from universal expansion.

The basic instability of the static Einstein model is well
known (Tolman 1934; Ellis 1984). On the other hand,
the effect of Curvature-pressure is opposite in effect to
the normal pressure thus Curvature-cosmology is intrin-
sically stable.

Of interest is that the distance to the furthest point
is r = πR0 which has a redshift of z = 22.141. The
light travel time to that point is 74.3 Myr. Note that
in principle photons can keep on travelling around the
universe.

Recently Naidu et al. (2022) has reported two high red-
shift galaxies that were observed by the James Web Space
Telescope (JWST). One GLASS-z10 has a redshift of 10.4
and Glass-z12 has a redshift of 12.4. They are incon-
sistent with current models of galaxy number densities.

Using Eq. 10 the distance at z = 12.4 is r = 18.8Gpc.
Of interest is that Glass-z12 is at 83% of the distance
through the galaxy.

The total volume of the universe is 2π2R3
0 = 2.24×1080

m3. Thus there are a total of 4.32×1080 hydrogen atoms
with a mass of 7.18 × 1053kg.

2.5. Distance modulus.
The geometry of Curvature-cosmology is that of a

three-dimensional “surface” of a four-dimensional hyper-
sphere with radius R0. For this geometry the area is

A(r) = 4π[R0 sin(r/R0)]2. (12)

Let a source have a luminosity L(ν) (W Hz−1) at the
emission frequency ν. Then if energy is conserved, the
observed flux density, F (ν) (W m−2 Hz−1) at a distance
parameter z is the luminosity divided by the area, which
is

F (ν)dν = L(ν) dν
4π[R sin(r/R0)]2 .

However, because of Curvature-redshift there is an en-
ergy loss that is proportional to (1 + z). The total en-
ergy loss is equivalent to an integral of the incremental
energy loss as a function of r. But what is required is
the total energy loss as a function of z. Using Eq. 11 this
will cancel the intrinsic energy loss to provide

F (ν0)dν0 = L(ν0) dν0

4π[R0 sin(r/R0)))]2 .

Since the absolute magnitude is the apparent magnitude
when the object is at a distance of 10 pc then

F10(ν0) dν0 = 1
10pc/R0

,

where because 10 pc is negligible compared to R, approx-
imations have been made. The flux density ratio is

F (ν0) =
[

10pc/R0

sin(r/R0)

]2
.

The apparent magnitude is defined as m = −2.5 log10(S)
where the constant 2.5 is exact and if M is the absolute
magnitude we get the distance modulus, µ = m−M with
NH = 1.93 to be

µ = 5 log10[sin(r/R0)] + 42.8. (13)
Using Eq.10 an alternative version is

µ = 5 log10[sin(log(1 + z))] + 42.8. (14)
Because the absolute magnitude is referenced to 10pc

the free parameter, NH = 1.93, only appears in the con-
stant term. Thus the absolute magnitude is completely
defined by the calibration of the flux density observa-
tions. There is no need for further calibration. Com-
pared to current distance modulus equations these equa-
tions are remarkably simple.

2.6. Temperature of the cosmic plasma
One of the most remarkable results of Curvature cos-

mology is that it predicts the temperature of the cosmic
plasma from fundamental constants.
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For a stable solution to Eq. 8 we need that < γ2 >= 2,
where the average is taken over the electron velocities.
Since the total energy for a particle is γmc2 the kinetic
energy is E = (γ−1)mc2. Thus for electrons the average
kinetic energy is s E = 0.414mc2. Assuming that the
electrons have a black body spectrum their temperature
is

T = 2.455 × 109 K. (15)

In section 4.1 on the X-ray background radia-
tion the observed temperature is measured to be
(2.62 ± 0.13) × 109 K, which assuming that the photon
temperature is the same as the electron temperature, and
shows excellent agreement with the predicted tempera-
ture.

2.7. Black holes and Jets
Consider a very small homogeneous mass with a ra-

dius R1. Its dynamics are described by the Friedmann
equations Eq. 7, and if the acceleration Ṙ1 = 0 is zero
then

8πGρ0R
2
1

3 = c2,

and substituting for the density ρ0 = 3m/(4πR3
1), the

radius is
R1 = 2Gm

c2 , (16)

which happens to be the Schwarzschild radius for a sim-
ple theoretical black hole.

Since the acceleration is zero, it is an absolute mini-
mum radius and smaller radii are inaccessible. This ob-
ject has all the external properties of a black hole, such
as accretion disks. Thus it looks like the theoretical black
hole but is not a black hole.

Since the radii smaller that R1 are inaccessible, there
is no problem with the divergence of space-time at zero
radius, that is there is no singularity, which may help the
understanding of quantum gravity.

If the compact object is rotating there is the tantalizing
idea that Curvature-pressure may produce the emission
of material in two jets parallel to the spin axis. The
limiting distance, R1, will be determined by the polar
radius. Thus radii greater than this, such as equatorial
radii will still be able to emit energy that can be seen.
Thus the object will appear like a doughnut with very
low radiation at the center and with a very broad jet
parallel to the spin axis.

This could be the ‘jet engine’ that produces the as-
trophysical jets seen in stellar-like objects and in many
huge galactic radio sources. More importantly it acts to
recycle its mass to the cosmic plasma.

2.8. Inhibition of Curvature-redshift
From the discussion above it is clear that the process of

Curvature-redshift requires a gradual focusing to a criti-
cal limit, followed by the emission of secondary photons.
It is as if the photon gets slowly excited by the focus-
ing until the probability of secondary emission becomes
large enough for it to occur. Eq.3 shows that the typical
interaction length is

σr =
√
Rλ/4π. (17)

For the cosmic plasma it is σr = 4.22 × 1012
√
λm. In

this case the 21 cm hydrogen line has an average inter-
action distance of 1.93 × 1012 m.

For other situations such as local cloud of hydrogen
with a number density of N it is reasonable to assume
that because the effects are local we can assume that the
interaction distance is same as that for a universe with
the same density. Thus we put

σr = 4.97 × 1012N−1/4λ1/2 m. (18)

If there is any other interaction the excitation due to
focusing will be nullified. That is, roughly speaking,
Curvature-redshift interaction requires an undisturbed
path length of at least σr for the interaction to occur.
Thus a suitable criterion for inhibition to occur is that
the competing interaction has an interaction length less
than σr.

Although Compton or Thompson scattering are pos-
sible inhibitors, there is another interaction that has a
much larger cross-section. This is the coherent multiple
scattering that produces refractive index.

In classical electromagnetic theory, the refractive index
of a medium is the ratio of the velocity of light in vac-
uum to the group velocity in the medium. However, in
quantum mechanics photons always travel at the veloc-
ity of light in vacuum. In a medium, a group of photons
appears to have a slower velocity because the individual
photons interact with the electrons in the medium and
each interaction produces a time delay.

Because the interaction of a photon is with many elec-
trons spread over a finite volume, the only possible result
of an interaction is the emission of another photon with
the same energy and momentum. Now consider the ab-
sorption of a wave. In order to cancel the incoming wave
a new wave with the same frequency and amplitude but
with opposite phase must be produced. Thus, the out-
going wave will be delayed by half a period with respect
to the incoming wave.

This simple observation enables us to compute the in-
teraction length for refractive index µ. If L is this inter-
action length then it is

L = λ

2 |µ− 1|
, (19)

where the modulus allows for plasma and other materials
where the refractive index is less than zero.

Note that L is closely related to the extinction length
derived by Ewald and Oseen (see (Jackson 1975) or Born
& Wolf (1999)) which is a measure of the distance needed
for an incident electromagnetic wave with velocity c to
be replaced by a new wave.

For plasmas the refractive index is µ =
√

1 − (νp/ν)2

where νp is the plasma frequency and where for prop-
agation we must have that ν is greater than νp. Thus
µ ∼= 1 − (1/2)(νp/ν)2. The plasma frequency is νp =√
e2Ne/πme where Ne is the electron density, and the

refractive index is

µ ∼= 1 −

√
e2Ne

2πmeν
,
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Then from Eq. 19 and putting ν = c/λ, we get

L =

√
2πmec2

e2λNe

∼= 1.49 × 1012/
√
λNe. (20)

Thus, we would expect the energy loss to be inhib-
ited if the average Curvature-redshift interaction dis-
tance is greater than that for refractive-index interac-
tions. Therefore, we can compute the ratio

σr/L = 3.33N3/4
H λ−1/2, (21)

where Ne is set equal to NH . This result shows that
Curvature-redshift will be inhibited if this ratio is greater
than one. For example, Curvature-redshift for the 21 cm
hydrogen line will be inhibited if the electron number
density is greater than about 14 m−3. Thus in many
parts of the galaxy the effects of Curvature-cosmology
will be inhibited at long wavelength radio transmission.

2.9. Possible laboratory tests.
It is apparent from the above analysis that to observe

the redshift in the laboratory we need to have sufficient
density of gas (or plasma) to achieve a measurable effect
but not enough for there to be inhibition by the refractive
index.

The obvious experiment is to use as a model is the
Mössbauer effect for γ-rays that enable very precise mea-
surement of their frequency. Simply put, the rays are
emitted by nuclei in solids where there is minimal recoil
or thermal broadening of the emitted ray.

Since the recoil momentum of the nucleus is large com-
pared to the atomic thermal energies and since the nu-
cleus is locked into the solid so that the recoil momentum
is precisely defined, then the γ-ray energy is also precisely
defined. The absorption process is similar and has a very
narrow line width.

Such an experiment has already been done by Pound
& Snider (1965). They measured gravitational effects
on 14.4 keV γ-rays from 57Fe being sent up and down
a vertical path of 22.5m in helium near room pressure.
They found agreement to about 1% with the predicted
fractional redshift of 7.5 × 10−15, whereas fractional
Curvature-redshift predicted by Eq. 2 for this density
is 7.5 × 10−13. Clearly, this is much larger.

The experimental method would use a horizontal (to
eliminate gravitational redshifts) tube filled with helium
and with accurately controlled temperature. Then we
would measure the redshift as a function of pressure. The
above theory predicts that if it is free of inhibition then
the redshift should be proportional to the square root of
the pressure.

Alternatively, it may be possible to detect the sec-
ondary photons. For helium with a pressure of 1 mm
Hg the expected frequency of the secondary radiation
from 57Fe is about 100 kHz. The expected power from
a 1 Cu source is about 5 × 10−22 W. Unfortunately, the
secondary radiation could be spread over a fairly wide
frequency band which makes its detection somewhat dif-
ficult but it may be possible to detect the radiation with
modulation tech

3. PART B: TYPE IA SUPERNOVA

3.1. Introduction
This part describes a new analysis method for Type Ia

supernova that is simple and can replace the standard
SALT2 method. A major difference from SALT2 is that
it explicitly estimates and uses intrinsic flux densities
that are a function of the intrinsic wavelength.

Although the intrinsic magnitude is the same as the ab-
solute magnitude, a different name is used because the
measurement method is different. The intrinsic magni-
tude can only be used when there are many bands and
relies on the fact that each band must have the same dis-
tance modulus. Whereas by using a distance modulus,
the absolute magnitude can be determined for a single
observation.

3.2. Analysis of Type Ia supernova
From WikipediA: “Type Ia Supernova is believed to re-

sult from mass accretion to a carbon-oxygen white dwarf
in a close binary system. When the white dwarf mass ex-
ceeds the Chandrasekhar limit, the degenerate electron
pressure can no longer support the accumulated mass
and the star collapses in a thermonuclear explosion pro-
ducing a supernova. The peak luminosity of supernova
Ia is set by the radioactive decay chain, and the observed
photometric correlation between the peak luminosity and
the time-scale over which the light curve decays from its
maximum is understood physically as having both the lu-
minosity and opacity being set by the mass of Nickel-56
synthesized in the explosion.

The major observational evidence for Type Ia super-
nova is a lack of hydrogen lines and a singly ionized silicon
(Si II) absorption feature at 0.615µm near peak bright-
ness.”

An example of the light curve for typical supernova,
PSc071032, is shown in Figure 1.

Fig. 1.— A plot of the Type Ia supernova PSc071032 light curve.
The plotted flux densities are relative to a fitted peak flux density
for each band. All the plotted epochs are relative to a common
peak epoch. Note that the longest wavelength (the I band) shows
evidence of a second maximum. This supernova has a redshift
z = 0.46 and has a light curve width of 1.28 ± 0.12.

A critical requirement in measuring the light curve
width of Type Ia supernova light curves is to have a refer-
ence light curve. The observed light curve must have the
same shape independent of redshift. Only its width and
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height will vary with redshift. Consequently this prop-
erty is assumed in this analysis. In order to remove any
possible bias, a standard independent template, the B
band Parab-18 from Table 2 in Goldhaber et al. (2001)
which has the first half-peak width at -10.1 days and
the second half-peak width at 22.3 days is used. Conse-
quently all widths are relative to this light curve.

3.3. The observations.
The Type Ia supernova data used here comes from

the Supernova Legacy Survey (SNSL), the Sloan Digi-
tal Survey (SDSS), (all sourced from the SNANA web-
site Kessler et al. (2009b)), and the Panoramic Survey
Telescope and Rapid Response System, (Pan-STARRS),
supernova survey Kaiser et al. (2010); Jones et al. (2018);
Scolnic et al. (2018) and those observed by the Hubble
Space Telescope (HST) Riess et al. (2007); Jones et al.
(2013). ,

The observations of Type Ia supernova from Pan-
STARRS, (PS1), were accessed from the site https://
archive.stsci.edu/prepds/ps1cosmo/jones and the
file datatable.html. In 2018 Pan-STARRS consisted
of two 1.8-m Ritchey-Chrétien telescopes located at
Haleakala in Hawaii and could record almost 1.4 billion
pixels per image. It is designed to detect moving or vari-
able objects on a continual basis. An image with a 30 to
60 second duration can record down to an apparent mag-
nitude of 22 mag. The whole visible sky will be surveyed
four times a month.

Although theoretically, the Type Ia supernova model
has a fixed absolute magnitude, its measurement is sub-
ject to the usual noise effects. This is why they can be ob-
served at redshifts beyond the nominal limit of the tele-
scope and are subject to Malmquist bias. However many
of the observations come from the PS1 survey which is es-
sentially providing a continuous record of the sky so that
the simple Malmquist bias is not applicable. However
for the LOWZ, SDSS, and SNLS supernova a Malmquist
bias of -1.382σ2 mag, where σ is the observed flux density
uncertainty has been applied.

The purpose of the light-curve analysis is to obtain
estimates of the peak flux density for each band, the
width (common to all bands) of the light-curve relative
to the template and the epoch offset of the light curve.
This offset is a nuisance parameter that allows for the
unknown epoch of the peak flux density and is defined
to be the epoch difference between the fitted light curve
relative to the observed epochs.

An initial problem is to determine this initial epoch
offset q. The solution used was to use the average of
the epochs of the maximum flux density for each band.
The analysis starts with the observed flux density, fi

for the epoch index i, and its uncertainty σi. Then for
each supernova and each band the maximum likelihood
method is used to determine the fitted maximum flux
density, F and its epoch.

Let the reference supernova light curve be C((pi −
q)/w) where pi is the epoch, w is the computed width,
and q is the epoch offset of the maximum of the fit-
ted light curve. Then, assuming a Gaussian flux density
noise distribution, the modified log-likelihood function is

L =
K∑

k=1

Nk∑
i=1

[(
fi − Fk × C((pi − q)/w)

σi

)2
]
, (22)

TABLE 1
Number of rejected observations

Catalogue Total Rejected
LOWZ 11,971 6,905
SDSS 25,288 3,694
SNLS 8,012 1,502
PS1 34,198 2,050
HST 111 9

where i is the observation index within each band with
epoch pi, and Nk is the number of observations in the
band and k is the band index. A constant term that
depends only on the measurement uncertainties is omit-
ted. Additionally the omission of the factor −1/2 means
that L is a χ2 variate. Thus the maximization of the
likelihood is identical to the minimization of L.

Although the peak flux density, Fk, is determined by
an analytic fit, the values for the epoch offset and width
are easily found by numerical minimization. Fortunately,
the flux density and width are almost orthogonal so that
a sequence of alternate fits rapidly converges.

Note that in Eq 22 each flux density and each peak
flux density is divided by its uncertainty which means
that the fitted width is independent of individual band
calibrations and all bands can be included in the same
expression.

One problem with the fitting is that there many ob-
servations that are clearly anomalous. These were deter-
mined by computing the goodness of fit

ψ =
∣∣∣∣fi − Fk × C((pi − q)/w)

σi

∣∣∣∣ , (23)

for each observation and rejecting that observation if was
greater than chosen limit. Since there were many itera-
tions this limit started very high and was slowly reduced
so that for acceptance ψ ≤ 5. For the Type Ia supernova
used, the total number of individual observations and the
number of rejected ones are shown in Table 1.

The first step of the analysis was to set the width to
(1+z) and iterate until all the anomalies were rejected
and the estimated peak epoch was stable. Next itera-
tions were done for both the width and the peak flux
densities. The supernova was rejected if it had three or
fewer observations of if its width estimate was greater
than 4.5. From the original 2,317 supernova, 2,272 were
accepted.

It must be noted that the fitting procedure is com-
pletely independent of the redshift and is also indepen-
dent of the band type. Although each band had its own
estimate of its peak flux density, the width is the result
of a common fit to all observations for each supernova.
Thus the computed parameters for each supernova are
its light curve width, and the estimated peak flux den-
sity for each band, which is the flux density for that band
at the maximum epoch of the common fitted light curve.
Finally the width is only accepted if it is less than 3.5
and greater than 0.3. The number of accepted supernova
are shown Table 2.

3.4. Results for the light curve width
The important result of this width analysis is a regres-

sion of wobs(z) as a function of (1 + z) for all the 2,250

https://archive.stsci.edu/prepds/ps1cosmo/jones
https://archive.stsci.edu/prepds/ps1cosmo/jones
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TABLE 2
Accepted number of supernova for each band

Band λ/µ N
B 0.445 189
V 0.551 183
R 0.658 112
I 0.806 117
g 0.481 1791
r 0.617 2052
i 0.752 2077
z 0.866 1777

F775W 0.767 5
F850LP 0.806 14
F125W 1.438 2

accepted observations which is
wobs = 0.067 ± 0.005 + (1.053 ± 0.027) × (1 + z). (24)
Although the ordinate is statistically different from

zero, it is this ordinate that is most sensitive to calibra-
tion and systematic errors such as having minor errors in
the reference light curve. However the coordinate shows
an excellent agreement with expected value of one. Note
that this width measurement is independent any cosmo-
logical model.

The widths for the 2,250 supernova are shown in Fig-
ure 1. It is clear that the slope (Eq.3.4) is completely con-
sistent with the expected dependence of w(z) = (1 + z).

Fig. 2.— A plot of the observed Type Ia supernova light curve
widths. The colours show the supernova’s survey. The black line
shows a (1 + z) dependence.

3.5. Supernova intrinsic magnitudes
All computed apparent magnitudes were calculated by

mk = 27.5 − 2.5 log10(Fk) where Fk is the peak flux den-
sity and k is the band index.

Since each supernova has a peak magnitude for each
observed band, they can be combined to provide an in-
trinsic magnitude for each band and an average magni-
tude for the supernova. The problem is to determine
these magnitudes from the observed redshifts for each
band. Traditionally the method has been to choose a
reference band (eg. B) and to use the other bands to
provide ad hoc colour adjustments.

An alternative approach is to note that each band has
an intrinsic wavelength (λ/(1 + z)) and to determine a

common distribution of magnitude as a function of intrin-
sic wavelength and then use these magnitudes to correct
the magnitudes for the different bands. Thus the differ-
ence between the observed magnitude for each band and
the average magnitude for that supernova provides an
intrinsic magnitude for each band.

The trick in the analysis is to assume that all the su-
pernova have the same intrinsic magnitude distribution.
This process is easily iterated until the distribution of
intrinsic magnitudes is stable. The common intrinsic
distribution was the average in 30 boxes that cover the
λ/(1 + z) range.

The individual intrinsic peak magnitude data points
for the supernova are shown in Figure 3. The black line
shows the average for each box. The short wavelengths of
the intrinsic distribution show a rapid decrease in average
luminosity as the wavelength decreases. This unexpected
result is discussed in the following section 3.9, on quasars.

Fig. 3.— The intrinsic magnitude of Type Ia supernova as a func-
tion of intrinsic wavelength, λ/(1 + z). The black curve shows the
average intrinsic magnitude as a function of intrinsic wavelength.
The colours show the survey for each supernova.

3.6. Absolute magnitudes
The apparent magnitude for each supernova was com-

puted using Eq. 22 with the assumption that the widths
were exactly (1 + z). The apparent magnitude is the
same for all bands of the supernova and is a result of
the fitting for intrinsic magnitudes. Figure 4 shows the
apparent magnitude for the 2,272 Type Ia supernova.
The black line shows the distance modulus (Eq. 13) as a
function of redshift for Curvature-cosmology.

M0 = −22.535 ± 0.012 − (0.075 ± 0.054) × (1 + z),
(25)

which shows excellent agreement with a constant value.
Thus the simple analysis described above provides excel-
lent estimates of the dependence of Type Ia supernova
light widths on redshift and also for their absolute mag-
nitudes. Furthermore the estimation for absolute mag-
nitude does not have any free parameters. These results
show very strong support for Curvature-cosmology.

For an overall check Table 3 shows the number of su-
pernova and relative absolute magnitude for each cata-
logue.
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Fig. 4.— This is the plot of 2,272 Type Ia supernova appar-
ent magnitudes as a function of redshift. For each supernova the
magnitude is the average magnitude for all the observed bands us-
ing the method described in section 3.5. The black line shows the
distance modulus Eq. 13.

TABLE 3
Relative absolute magnitude for each catalogue

Catalogue N M − M0
LOWZ 223 0.024 ± 0.046
SDDS 622 0.036 ± 0.027
SNLS 249 0.123 ± 0.024
PS1 1,161 −0.028 ± 0.013
HST 17 −0.198 ± 0.089

TABLE 4
Absolute magnitude regressions verses redshift

Model Regression
BB −(21.108 ± 0.007) − (0.178 ± 0.053) × z
BBa −(21.057 ± 0.008) + (0.051 ± 0.059) × z
CC −(22.634 ± 0.012) − (0.009 ± 0.092) × z

a The α term is not included.

Scolnic et al. (2017) suggests several distance moduli
that have a good fit to the PS1 Medium Deep Survey that
were analyzed with the SALT2 method. The simplest
is the oCDM model. The PS1 set (Jones et al. (2018)
table (1)) has a list of results from the Pan-STARRS su-
pernova survey and other catalogues. There are 1,015 of
these Type Ia supernova that used the SALT2 model and
ΛCDM cosmology that are common with the current set.
They make an excellent set of supernova for comparing
Curvature-cosmology (CC) with the SALT2 plus oCDM
(BB:Big Bang) cosmology.

The regression equations for the absolute magnitudes
for both cosmologies are provided in Table 4 and all show
good agreement with no redshift dependence.

Since the Curvature-cosmology is radically different
from the BB model and both have acceptable agreement
with the observations how can we judge which is the bet-
ter cosmology. Note that the difference in actual value
of the absolute magnitude ordinate is probably due to
calibration differences and is not relevant to the choice

of cosmologies. The next section has a brief summary of
the SALT2 model and the consequences of BB models
that shows that they are susceptible to regular errors.

3.7. SALT2
The current analysis of Type Ia supernova uses the

SALT2 procedure to get apparent magnitudes followed
by one of the ΛCDM models to provide the distance mod-
ulus to order to get absolute magnitudes.

To quote Guy et al. (2007, 2010) the aim of SALT2
is to model a spectral energy distribution (SED) of the
Type Ia supernova and its variation with a few dominant
components. Including a color variation with epoch. It
is important to note that SALT2 is modelling the light
curves with minimum restrictions on their shape or red-
shift dependence. This explains the complexity of the
process. The functional form is

F (p, λ) = x0 × [M0(p, λ) + x1M1(p, λ) + ...] × e[cCL(λ)],

where p is the epoch since B-band maximum luminosity,
and λ is the band wavelength, M0(p, λ) is the average
spectral sequence and Mk(p, λ) for k > 0, are additional
components that describe the main variability of the su-
pernova. The color c is c = (B − V )MAX− < B − V >,
and CL(λ) represents the average color correction law.
The components Mi(p, λ) are two-dimensional templates
with one dimension being the epoch and the other being
the flux density of the light curve with a total of 103,310
elements per component. The brilliance of SALT2 is that
has the minimal assumptions about the nature of super-
nova light curves. It does not require that use of a speci-
fied reference light curve that Curvature-cosmology does.

Thus the absolute magnitude, M , Scolnic et al. (2018)
is provided by

M = mB − µ(z) + αx1 − βc, (26)
where x1 is the light-curve shape parameter, c is the color
at maximum brightness magnitude. The first parameter,
α, is the coefficient of the relationship between luminosity
and stretch (which is the width divided by (1 + z)). The
second parameter, β, is the coefficient between color and
flux density.

The strength of the SALT2 method is that uses pre-
vious observations to train the internal parameters. In
other words, SALT2 is a sophisticated interpolation pro-
cedure that uses the calibrated flux densities of previous
supernova to determine its internal parameters and then
the light curve width and apparent flux density of a new
supernova from the observed data. Hence its results only
show self-consistency and do not provide validation of the
flux densities. Moreover if there is a systematic error in
the previous supernova measurements, it will be trans-
mitted to new observations. Hence these results only
show self-consistency and do not provide validation of the
flux densities. Over all the SALT2 procedure is obscure
and ad hoc with a large number of internal parameters.

Finally the apparent magnitudes are converted to ab-
solute magnitudes using one of the ΛCDM cosmologies.

3.8. Cosmology comparison
The major support for the BB model is that it de-

scribes the general relativistic model of an unstable ex-
panding universe. This is similar to assuming that a
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falling feather should have the same acceleration as a
falling stone, whereas we know that the difference is due
to air resistance and is not due to a deficiency in the
gravitational model. Maybe cosmology needs something
like air resistance such as Curvature-cosmology,

One possible source of error in the SALT2 analysis is
the α parameter. The α parameter is based Phillips rela-
tion 4.20 that showed that there was a good correlation
between the peak magnitude and the width of the light
curve for Type Ia supernova. If it is intrinsic to the su-
pernova then the final width must be product of it and
the cosmological redshift factor. But as shown in the
following section 3.8, on quasars, The observed intrin-
sic wavelength distribution is due to cosmological effects
and section 4.20 argues that it does not exist. The sec-
ond row in Table 4 shows that the regression for the BB
analysis with the α term omitted has a better fit than
the first row that includes the α term.

Crucially the ΛCDM requires the determination of sev-
eral the density parameters, which depend on assump-
tions of inflation, dark matter and dark energy. Since
none of these properties are substantiated by other in-
dependent observations, they do not provide any sup-
port for this cosmology. Thus minor errors in the SALT2
method can be compensated by these estimates. More-
over they are ad hoc models largely determined by su-
pernova observations. In other words, there are no ob-
servations other than those for Type Ia supernova that
show strong confirmation of the SALT2 analysis and
the ΛCDM model. The major criticism of SALT2 and
ΛCDM is that they a large number of ad hoc parame-
ters.

In contrast Curvature-cosmology is simple and trans-
parent in is application. It is different from SALT2 in
that assumes a common reference light curve whereas
SALT2 lets it be produced as part of the analysis by us-
ing many supernova. The excellent width fit shown in
Eq. 24 and the absolute magnitude fit shown in Eq. 25
and Table 4 all with no free parameters implies that the
assumption of a common light curve and the accuracy of
the analysis means that Curvature-cosmology provides a
valid description of these observation.

On the basis of simplicity, minimal parameters and
no dependence on multiple ad hoc cosmological models,
Curvature-cosmology is the clearly the better cosmolog-
ical model.

3.9. Quasars
The investigation of the intrinsic magnitude distribu-

tion shown in Figure 3 is helped by considering the dis-
tribution of quasar magnitudes.

From WikipediA: “A quasar also known as a quasi-
stellar object is an extremely luminous active galactic
nucleus (AGN), powered by a supermassive black hole,
with mass ranging from millions to tens of billions times
the mass of the Sun, surrounded by a gaseous accretion
disc. Gas in the disc falling towards the black hole heats
up because of friction and releases energy in the form of
electromagnetic radiation. The radiant energy of quasars
is enormous; the most powerful quasars have luminosi-
ties thousands of times greater than a galaxy such as the
Milky Way. Usually, quasars are categorized as a sub-
class of the more general category of AGN. The redshifts

of quasars are of cosmological origin.”
All quasar data used here is taken from the Sloan Dig-

ital Sky Survey Quasar Catalog: Sixteenth Data Release
(DR16Q) Lyke et al. (2020).

The majority of these quasars gave been discovered
by a flux density limited survey without knowledge of
the redshift and the observed magnitudes have a very
limited dependence on their observed redshift. Thus the
observation model is that the selection of each quasar
is determined by the cut-off flux density and the overall
telescope noise and it is assumed that these values are
the same for all the quasars. The selection of quasars is
that each magnitude uncertainty had to be less or equal
to 1.5.

Thus for each quasar discovered its apparent magni-
tude must lie in the range of magnitudes that are ac-
cepted by the telescope and it is completely independent
of the intrinsic magnitude of the quasar. Clearly they
are subject to Malmquist bias and -1.382σ2, where σ is
the magnitude uncertainty, is added to each magnitude.
Since all the observed bands for a quasar must have the
same distance modulus we can use the identical analysis
used for the supernova to determine the average intrinsic
magnitude distribution for quasars. Their advantage is
that the quasars cover a redshift range up to z = 7. Fig-
ure 5 shows the average intrinsic magnitude distribution
for these quasars.

Fig. 5.— The blue shows the average intrinsic magnitude of
SDSS quasars as a function of intrinsic wavelength, λ/(1 + z). The
position of the wavelength for the full ionization is shown in red.
The black line shows the intrinsic magnitude distribution of super-
nova from Figure 3.

Clearly, the intrinsic magnitude shows a strong de-
crease in luminosity as the wavelength decreases towards
that for full ionization. Although this does not rule
out an intrinsic dependence on the observed object, it
is strong evidence that the cause is due to propagation
in the cosmic plasma that has a major hydrogen compo-
nent. It appears that the presence of atomic hydrogen
can, by photo-ionisation, remove most of the very high
energy photons. Further investigation into this distribu-
tion is outside the scope of this paper.

An important cosmological property is that all red-
shifts have a redshift dependence of (1+z) that amounts
to an addition of 2.5(1 + z)) to the observed magnitude.
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TABLE 5
Average quasar coefficient for each band.

Band Number Coefficient
u′ 746,922 1.154± 0.004
g′ 746,922 0.779± 0.004
r′ 746,922 0.710± 0.003
i′ 746,922 0.669± 0.003
z′ 746,922 0.790± 0.003

Table 3.9 shows the results of a regression of the raw ob-
servations for each band verses the photon redshift. The
coefficient is the multiplier of 2.5(1+z)) which has an ex-
pected value of one. The average value of the coefficient
is 0.799. Since the quasar flux density distribution has a
strong Malmquist bias to smaller values, there is a bias in
the selection towards fainter quasars. The observed flux
density is the product of the actual flux density and the
2.5(1+z) term. Thus the observed flux density term will
include the distribution bias to smaller values. Although
the results are biased, they show strong support for the
presence of this redshift term in the quasar data.

There is another property of these quasars that war-
rants investigation in a static universe, that is their abso-
lute magnitude distribution. Since each quasar is seen at
its maximum redshift its expected density is proportional
the reciprocal of the volume of the universe at that red-
shift. The volume is proportional to this area times the
“vertical” distance. Since dz/dr = (1+z) this distance is
proportional to (1+z), thus the density for a quasar is in-
versely proportional to 4π(1+z)×(R0 sin(r/R0))2) where
R0 = 7.26 Gpc. The density shown by the redline has

Fig. 6.— Shows the reciprocal of the spatial density of quasars
as a function of the absolute magnitude. The red line is a linear
fit to the reciprocal density verses absolute magnitude.

the equation 1/density = (−12.00±0.02)−(0.60±0.02)×
M, where M is the absolute magnitude. The reciprocal
was chosen in order to make the distribution clearer.

To convert the densities displayed in Figure 6 to actual
values multiply them by 4πR3

0.

4. PART C: OBSERVATIONS

4.1. X-ray background radiation

Since Giacconi et al. (1962) observed the X-ray back-
ground there have been many suggestions made to ex-
plain its characteristics. Although much of the unre-
solved X-ray emission comes from active galaxies, there
is a part of the spectrum between about 10 keV and 1
MeV that is not adequately explained by emission from
discrete sources.

In ΛCDM cosmology for the intermediate X-ray range
of about 10–300 keV, the production of X-rays in hot
cosmic plasma through the process of bremsstrahlung
has been suggested by Hoyle (1962); Gould & Burbidge
(1963); Field & Henry (1964); Cowsik & Kobetich (1972).

In a review of the spectrum of the X-ray background
radiation Holt (1992) concluded that the measured spec-
tra of discrete sources are not consistent with the obser-
vations in the intermediate energy range but there is a
remarkable fit to a 40 keV (4.6 × 108 K) bremsstrahlung
spectrum from a diffuse hot gas.

However, in an expanding universe most of the X-
rays are produced at redshifts of z ≈ 3 where the den-
sity is large enough to scatter the CMBR. This scat-
tering known as the Sunyaev–Zel’dovich effect (see Sec-
tion 4.11), which makes a distinct change in the spectrum
of the CMBR. This predicted change in the spectrum has
not been observed and this is the major reason why the
bremsstrahlung model in ΛCDM is rejected.

In Curvature-cosmology, the basic component of the
universe is plasma with a very high temperature, and
with low enough density to avoid the Sunyaev–Zel’dovich
effect.

The background X-ray emission is produced in
this plasma by the process of free-free emission
(bremsstrahlung). The observations of the background
X-ray emission are analyzed in order to measure the
density and temperature of the plasma. In Curvature-
cosmology, this density is the only free parameter and it
determines the size of the universe.

The first step is to calculate the expected X-ray emis-
sion from high temperature plasma in thermal equilib-
rium. Here the dominant mechanism is bremsstrahlung
radiation from electron-ion and electron-electron colli-
sions. With a temperature T and emission into the fre-
quency range ν to ν+dν the volume emissivity per stera-
dian can be written as

jν(ν)dν=
(

16
3

) (π
6

)1/2
r3

0mec
2

(
mec

2

kT

)1/2

g(ν, T ) exp
(

− hν

kT

)
NH

∑
Z2

i Nidν, (27)

where g(ν, T ) is the Gaunt factor, NH is the electron
number density, Ni is the ion number density and r0
is the classical electron radius and the other symbols
have their usual significance (Nozawa, Itoh, & Kohyama
1998). The intensity, jν(ν), has the units of W m−3 Hz−1.

As it stands this equation does not include the electron-
electron contribution. Nozawa et al. (1998) and Itoh
et al. (2000) have done accurate calculations for many
light elements. Based on their calculations Profes-
sor Naoki Itoh (http://www.ph.sophia.ac.jp/) provides
a subroutine to calculate the Gaunt factor that is accu-
rate for temperatures greater than 3 × 108 K. It is used
here.
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Because of the very high temperature, we can assume
that all atoms are completely ionized. Thus, Eq. 27 in-
cluding the Gaunt factor provides the production rate of
X-ray photons as a function of the plasma temperature
and density.

The next step is to compute the expected intensity
at an X-ray detector. Consider an X-ray photon that
is produced at a distance r from the detector. During
its travel to the detector, it will have many Curvature-
redshift interactions. Although the photon is destroyed
in each interaction, there is a secondary photon produced
that has the same direction but with a slightly reduced
energy.

It is convenient to consider this sequence of photons as
a single particle and to refer to it as a primary photon.
The important result is that the number of these primary
photons is conserved. Therefore, we need the production
distribution of the number of photons per unit energy
interval. The number of photons emitted per unit volume
per unit time in the energy interval ε to ε + dε is given
by

jn(ε) dε = jν(ν)
ε

h dν, (28)

where ε = hν, h is Plank’s constant and jν(ν) is the
energy distribution per unit frequency interval.

Now consider the contribution to the number of X-
rays observed by a detector with unit area. Because the
universe is static, the area at a distance r from the source
is the same as the area at a distance r from the detector.
Since there is conservation of these photons, the number
coming from a shell at radius r per unit time and per
steradian within the energy interval ε to ε+ dε is

dn(r)
dt

dε = jn(ε)dεr dχ.

Next, we integrate the photon rate per unit area and per
steradian from each shell where the emission energy is ε
and the received energy is ε0 to get

In(ε0) dε0 = r

∫ χm

0
jn(ε) dε dχ,

where ε = (1 + z)ε0 and it is assumed that the flux is
uniform over the 4π steradian. Furthermore, it is use-
ful to change the independent coordinate to the redshift
parameter z.

Then using Eq. 28 we get

Iν(ν0) dν0 = c

H

∫ zm

0

jν(ν)
1 + z

dz dν0,

where H is the Hubble constant and the change in band-
width factor dν/dνo, cancels the (1+z) factor that comes
from the change in variable from dχ to dz but there is
another divisor of (1 + z) that accounts for the energy
lost by each photon.

Thus the energy flux per unit area, per unit energy
interval, per unit frequency and per solid angle is given
by Eq. 29 where Plank’s constant is included to change
the differential from frequency to energy. The zm limit
of 8.2 comes from the limit of χ ≤ π.

Iν =
(

16
3

) (π
6

)1/2 r3
0mec

3

h
(8πGMH)−1/2

(
mc2

kT

)1/2

TABLE 6
List of background X-ray data used.

Name Instrument Reference
Gruber HEAO 1 A-4 Gruber et al. (1999)
Kinzer HEAO 1 MED Kinzer et al. (1997)
Dennis OSO-5 Dennis et al. (1973)
Mazets Kosmos 541 Mazets et al. (1975)
Mandrou Balloon Mandrou et al. (1979)
Trombka Apollo 16, 17 Trombka et al. (1977)
Santalogo Rocket Santangelo et al. (1973)
Fukada Rocket Fukada et al. (1975)

TABLE 7
Background X-ray data: rejected points.

Source Energy Flux density χ2

keV keV/(keV cm2 s sr) (1 DoF)
Gruber 98.8 0.230±0.012 108.6
Gruber 119.6 0.216±0.022 65.2
Fukada 110.5 0.219±0.011 66.6
Gruber 152.6 0.140±0.022 50.9
Fukada 179.8 0.110±0.005 41.5
Gruber 63.9 0.484±0.034 25.1

=neniN
3/2
H

zm∫
0

g ((1 + z)ν0, T )
(1 + z) exp

(
−h(1 + z)ν0

kT

)
dz

= 1.9094 × 103 keV
keV m2 s sr

(
mc2

kT

)1/2

neniN
3/2
H

ε0

zm∫
0

g ((1 + z)ν0, T )
(1 + z) exp

(
−h(1 + z)ν0

kT

)
dz, (29)

where Iν is a function of ν0.
The density NH is obtained by fitting Eq. 29 to the

observed data as a function of the temperature T , and
then extracting NH from the normalization constant.

The X-ray data used is tabulated in Table 6. It con-
sists of the background X-ray data cited in the literature
and assessed as being the latest or more accurate results.
Preliminary analysis showed that there were some dis-
crepant data points that are listed in Table 7 in order of
exclusion.

Very hard X-rays cannot be produced even by this hot
plasma and are presumably due to discrete sources (Holt
1992).

The results of the fit of the data to this model of pure
hydrogen is a temperature of

(2.62 ± 0.13) × 109 K, (30)
which is good agreement with the predicted temperature
of 2.456 × 109 K in section 2.6. The measured density is

1.93 ± 0.13 H atoms per m3, (31)
which is the only free parameter in Curvature-cosmology.

Most of the X-ray flux below 10 keV and part of the
flux just above 10 keV is emission from discrete sources.
The deviation from the curve at energies above about
300 keV arises from X-rays coming from discrete sources.

In the intermediate region where bremsstrahlung
should dominate, there are clear signs of some minor
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Fig. 7.— Background X-ray spectrum. See Table 6 for list of
observations. The dashed (black) line is best fit from 10 keV to
300 keV for the pure hydrogen model.

systematic errors. In addition, there appears to be some
variation between the data sets. It is not clear whether
the discrepancy between the observed points and the pre-
dicted flux densities is due to an inadequate theory, inad-
equate X-ray emission model, or systematic errors in the
observations. After all the measurements are very diffi-
cult and come from a wide range of rocket, balloon and
satellite experiments. In particular, the recent HEAO
results Kinzer et al. (1997) differ from earlier results re-
ported by Marshall et al. (1980).

4.2. Cosmic microwave background radiation.
The cosmic microwave background radiation (CMBR)

is one of the major success stories for the standard model.
The observed radiation has a spectrum that is extremely
close to a black body spectrum which means that it can
be described by a single parameter, its temperature.

Observations of the CMBR spectrum were obtained
from the FIRAS instrument on the Cobe satellite by
Mather et al. (1990). They measured the temperature
of the CMBR to be 2.725 K. This temperature is in
agreement with the observations of Roth & Meyer (1995)
who measured a temperature of 2.729(+0.023,−0.031) K
using cyanogen excitation in diffuse interstellar clouds.
More recently Fixsen (2009) using data from the Wilkin-
son Microwave Anisotropy Probe (WMAP) and many
earlier results provides a temperature of 2.72548 ±
0.00057K.

Since electrons and nucleons have wave properties they
are subject to Curvature-redshift where the energy loss
is to low energy photons. In this case the energy loss
from the high energy protons in the cosmic plasma due
to Curvature-cosmology is the source of CMBR.

The basic energy loss is ∆E = E0r/R, where E0 is the
particle energy and r is the distance traveled. With a
velocity of βc the distance traveled is r = βct and the
rate of energy loss is

∆E
dt

= E0βc

R0
. (32)

The distribution of relativistic particles in equilibrium is
the Maxwell-Jüttner distribution. With γ = 1/

√
1 − β2

it is
f(γ) = γ2β

θK2(1/θ) exp(−γ/θ), (33)

where θ = kT/mc2 and K2 is the modified Bessel func-
tion of the second kind.

Here its application requires that θ is a constant value,
θ =

√
2, then the integral over the range of γ is

∆E
dt

= γ2β2c(γ − 1)mpc
2

R0
exp(−γ/θ)/A, (34)

where A is the normalization constant and it is

A =
∫ ∞

1
γ2β(exp(−γ/θ)dγ. (35)

As explained earlier this lost energy consists of a pair of
identical photons whose usual interaction with the elec-
trons and photons bring them into thermal equilibrium.
Since the total energy must be conserved, the energy lost
by Curvature-redshift must be radiated by the emittance
of these photons. Then allowing for the proton number
density NH = 1.93 ± 0.13m−3, section 4.1, their equi-
librium temperature is 2.736 ± 0.092 K. This radiation is
the cosmic microwave background radiation and is within
0.4% of the WMAP value. Considering that the theory
has only one free parameter, the agreement is exception-
ally good.

Clearly, the same analysis can be applied to the free
electrons. In this case the radiation has a temperature
of 0.419K with a typical wavelength of 34.4mm.

4.3. Tolman surface density.
This test, suggested by Tolman (1934), relies on the ob-

servation that the surface brightness (SB) of objects does
not depend on the geometry of the universe. Although it
is obviously true for Euclidean geometry, it is also true for
most non-Euclidean geometries. For a uniform source,
the quantity of light received per unit angular area is
independent of distance. However, the quantity of light
is also sensitive to non-geometric effects, which make it
an excellent test to distinguish between cosmologies. For
expanding universe cosmologies the surface brightness is
predicted to vary as (1+z)−4, where one factor of (1+z)
comes from the decrease in energy of each photon due to
the redshift, another factor comes from the decrease in
the rate of their arrival and two factors come from the
apparent decrease in area due to aberration. This aber-
ration is simply the rate of change of area for a fixed
solid angle with redshift. In a static, tired light, cosmol-
ogy (such as Curvature-cosmology) only the first factor
is present. Thus an appropriate test for Tolman surface
brightness is the value of this exponent.

The obvious candidates for surface brightness tests are
elliptic and S0 galaxies which have minimal projection
effects compared to spiral galaxies . The major problem
is that surface brightness measurements are intrinsically
difficult due to the strong intensity gradients across their
images. In a series of papers Sandage & Lubin (2001);
Lubin & Sandage (2001a,b,c) (hereafter SL01) have in-
vestigated the Tolman surface brightness test for ellipti-
cal and S0 galaxies. More recently Sandage (2010) has
done a more comprehensive analysis but since he came to
the same conclusion as the earlier papers and since the
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TABLE 8
Galactic properties for Petrosian radius η = 2.0

Cluster N log(SBB) mBB MBB

Nearby 74 4.69±0.28 22.56±0.84 -23.84±0.66
1324+3011 11 3.99±0.21 22.87±0.75 -23.28±0.65
1604+4304 6 4.05±0.17 22.34±0.60 -23.51±0.68
1604+4321 13 4.00±0.15 22.35±0.78 -23.33±0.64

earlier papers are better known this analysis will concen-
trate on them.

The observational difficulties are thoroughly discussed
by Sandage & Lubin (2001) with the conclusion that
the use of Petrosian metric radii helps solve many of
the problems. Petrosian (1976); Djorgovski & Spinrad
(1981); Sandage & Perelmuter (1990) showed that if the
ratio of the average surface brightness within a radius
is equal to η times the surface brightness at that radius
then that defines the Petrosian metric radius, η. The
procedure is to examine an image and to vary the angu-
lar radius until the specified Petrosian radius is achieved.

Thus, the aim is to measure the mean surface bright-
ness for each galaxy at the same value of η. The choice of
Petrosian radii greatly diminishes the differences in sur-
face brightness due to the luminosity distribution across
the galaxies. However, there still is a dependence of the
surface brightness on the size of the galaxy which is the
Kormendy relationship (Kormendy 1977).

The purpose of the preliminary analysis done by SL01
is not only to determine the low redshift absolute lumi-
nosity but also to determine the surface brightness verses
linear size relationship that can be used to correct for ef-
fects of size variation in distant galaxies. The data on
the nearby galaxies used by SL01 was taken from Post-
man & Lauer (1995) and consists of extensive data on the
brightest cluster galaxies (BCG) from 119 nearby Abell
clusters. All magnitudes for these galaxies are in the RC

(Cape/Landolt) system.
Since the results for different Petrosian radii are highly

correlated the analysis repeated here using similar pro-
cedures will use only the Petrosian η = 2 radius. Al-
though the actual value used for the Hubble constant
does not alter any significant results here, it is set to
h=50 km s−1 Mpc−1 for numerical consistency. A minor
difference is that the angular radius used here is pro-
vided by Curvature-cosmology whereas SL01 used the
older Mattig equation.

The higher z data comes from SL01. They made Hub-
ble Space Telescope observations of galaxies in three clus-
ters and measured their surface brightness and radii. The
names and redshifts of these clusters are given in Ta-
ble 8 which also shows the number of galaxies in each
cluster, N , the logarithm of the average metric radius
in kpc, log(SB), and the average apparent magnitude
and the absolute magnitude. In order to avoid confusion
in BB denotes a measurement made using the standard
ΛCDM cosmology. Note that the original magnitudes for
Cl 1324+3011 and Cl 1604+4304 were observed in the I
band.

In order to get a reference surface brightness at z = 0
all the surface brightness values, SB, of the nearby galax-
ies were reduced to absolute surface brightness by using
Eq. 36. Since all the redshifts are small, this reduction is

TABLE 9
Fitted exponents for distant clusters (η = 2.0)

.

Cluster Col z nBB nSL01
1324+3011 I 0.757 1.98±0.19 1.99±0.15
1604+4304 I 0.897 2.22±0.22 2.29±0.21
1604+4321 R 0.924 2.24±0.18 2.48±0.25

essentially identical for all cosmological models. However
the calculation of the metric radii for the distant galaxies
is very dependent on the cosmological model.

This procedure of using the same cosmology in analyz-
ing a test of that cosmology is discussed in SL01. Their
conclusion is that it reduces the significance of a positive
result from being strongly supportive to being consistent
with the model. Of interest is that Table 8 shows that on
average the distant galaxies are fainter than the nearby
galaxies.

Then a linear least squares fit of the absolute surface
brightness as a function of log(SBB), the Kormendy re-
lationship, for the nearby galaxies results in the equation

SB = 9.29 ± 0.50 + (2.83 ± 0.11) log(SBB), (36)
whereas SL01 found the slightly different equation

SB = 8.69 ± 0.06 + (2.97 ± 0.05) log(SBB). (37)
Although a small part of the discrepancy is due to

slightly different procedures, the main reason for the dis-
crepancy is unknown. Of the 74 galaxies used, there were
19 that had extrapolated estimates for either the radius
or the surface brightness or both. In addition there were
only three galaxies that differed from the straight line by
more than 2σ. They were A147 (2.9σ), A1016 (2.0σ)and
A3565 (-2.4σ). Omission of all or some of these galaxies
did not improve the agreement. The importance of this
preliminary analysis is that Eq. 36 contains all the infor-
mation that is needed from the nearby galaxies in order
to calibrate the distant cluster galaxies.

Next we use the galaxies’ radius and Eq. 36 to correct
the apparent surface brightness of the distant galaxies
for the Kormendy relation and then do least squares fit
to the difference between the corrected surface bright-
ness and its absolute surface brightness as a function
of 2.5 log(1 + z) to estimate the exponent, n, where
SB ∝ (1 + z)n. If needed the non-linear corrections
given by Sandage (2010) were applied to the nearby sur-
face brightness values. For the I band galaxies, the ab-
solute surface brightness included the color correction
< R− I >= 0.62 Lubin & Sandage (2001c).

The results for the exponent, n, for each cluster are
shown in Table 9 together with the values from SL01
(column 5) where the second column is the band (color)
in which the cluster was observed.

Because the definition of magnitude contains a nega-
tive sign the expected value for nBB in standard cosmol-
ogy is four. Nearly all of the difference between these
results and those from SL01 arise from the use of a dif-
ferent Kormendy relationship. If the Kormendy relation-
ship used by SL01 Eq. 37 is used instead of Eq. 36) the
agreement is excellent. If it is assumed that there is no
evolutionary or other differences between the three clus-
ters and all the data are combined the resulting exponent
is nBB = 2.16 ± 0.13.
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Clearly, there is a highly significant disagreement be-
tween the observed exponents and the expected exponent
of four. Both SL01 and Sandage (2010) claim that the
difference is due to the effects of luminosity evolution.
Based on a range of theoretical models SL01 show that
the amount of luminosity evolution expressed as the ex-
ponent, p = 4 − nB , varies between p =0.85–2.36 in the
R band and p =0.76–2.07 in the I band. In conclusion,
to their analysis, they assert that they have either (1) de-
tected the evolutionary brightening directly from the SB
observations on the assumption that the Tolman effect ex-
ists or (2) confirmed that the Tolman test for the reality
of the expansion is positive, provided that the theoretical
luminosity correction for evolution is real.

SL01 also claims that their results are completely in-
consistent with a tired light cosmology. Although this is
explored for Curvature-cosmology in the next subsection,
it is interesting to consider a very simple model. The es-
sential property of a tired light model is that it does not
include the time dilation factor of (1+z) in its angular ra-
dius equation. Thus assuming B but without the (1 + z)
term all values of log(SBB) will be increased by log(1+z).
Hence the predicted absolute surface brightness will be
(numerically) increased by (2.83/2.5)log(1 + z). For ex-
ample, the exponent for all clusters will be changed to

ntired light = 2.16 ± 0.16 − 2.83
2.5 = 1.03 ± 0.16.

This is clearly close to the expected value of unity pre-
dicted by a tired-light cosmology and thus disagrees with
the conclusion of SL01 that the data are incompatible
with a tired light cosmology.

There are two major criticisms of this work. The first is
that relying on theoretical models to cover a large gap be-
tween the expected index and the measured index makes
the argument very weak. Although SL01 indirectly con-
sider the effects of relatively common galaxy interactions
and mergers in the very wide estimates they provide for
the evolution, the fact that there is such a wide spread
makes the argument that Tolman surface brightness for
this data is consistent with ΛCDM possible but weak.

Ideally, there would be an independent estimate of p
based on other observations. The second criticism is that
the nearby galaxies are not the same as the distant clus-
ter galaxies. The nearby galaxies are all brightest clus-
ter galaxies (BCG) whereas the distant cluster galax-
ies are normal cluster galaxies. It is well known that
BCG (Blanton & Moustakas 2009) are in general much
brighter and larger than would be expected for the largest
member of a normal cluster of galaxies. Whether or not
this amounts to a significant variation is unknown but it
does violate the basic rule that like should be compared
with like.

Unsurprisingly it is found that using Curvature-
cosmology the relationship between absolute surface
brightness and radius is identical to that shown in Ta-
ble 8. What is different is the average radius, the abso-
lute magnitudes and the observed exponent n. These are
shown in Table 10.

The result for all clusters is n = 1.38 ± 0.13 which is in
agreement with unity. Note that the critical difference
from the standard analysis is in the size of the radii.
They are not only much closer to the nearby galaxy radii
but because they are larger they do not require the non-

TABLE 10
Radii and fitted exponents for distant clusters (η = 2.0)

Cluster N ¯log(S) M̄ n

nearby 74 4.70±0.28 -23.78±0.66
1324+3011 11 4.18±0.21 -22.41±0.66 1.19±0.19
1604+4304 6 4.27±0.17 -22.54±0.65 1.45±0.21
1604+4321 13 4.23±0.15 -22.33±0.68 1.48±0.17

linear corrections for the Kormendy relation. As before
we note that the nearby galaxies are BCG which may
have a brighter SB than the normal field galaxies. If
this is true, it would bias the exponent to a larger value.
If we assume that Curvature-cosmology is correct then
this data shows that on average the BCG galaxies are
−0.64 ± 0.08 mag (which is a factor of 1.8 in luminosity)
brighter than the general cluster galaxies.

The SL01 data for the surface brightness of elliptic
galaxies is consistent with ΛCDM but only if a large un-
known effect of luminosity evolution is included. The
data do not support expansion and are in complete agree-
ment with Curvature-cosmology.

4.4. Dark matter and Coma cluster
All observational evidence for dark matter comes from

the application of Newtonian gravitational physics to
either clusters of objects or the rotation of galaxies.
Galaxy rotation will be dealt with in Section 4.18. The
original concept for dark matter comes from applying the
virial theorem to the Coma cluster of galaxies (Zwicky
1937). The virial theorem is a statistical theorem that
states that for an inverse square law the average kinetic
energy of a bound system is equal to half the potential
energy (i.e. 2T + V = 0).

Then with knowing the linear size of the cluster and
measuring the mean square spread of velocities we can
estimate the total mass of the cluster. There is no doubt
that applying the virial theorem to the Coma and other
clusters of galaxies provides mass estimates that can be
several hundred times the mass expected from the to-
tal luminosity. Even the mass of intergalactic gas is not
enough to overcome this imbalance. In ΛCDM cosmol-
ogy dark matter has been introduced to make up for the
shortfall of mass.

However if Curvature-cosmology is valid then it is pos-
sible that the observed redshifts are not due to kinematic
velocities but are Curvature-redshifts produced by the
intra-cluster gas. The purpose of this section is to show
that Curvature-redshift can explain the galactic veloci-
ties without requiring dark matter.

For simplicity, we will use the Coma cluster as a test
bed. Not only is it very well studied, but it also has a high
degree of symmetry and the presence of an intergalactic
gas cloud is known from X-ray observations.

Watt et al. (1992) and Hughes (1989) have fitted the
density of the gas cloud to an isothermal model with the
form

ρ = ρ0

(
1 +

(
r

re

))−α

. (38)

The central density is obtained from the X-ray lumi-
nosity and has a strong dependence on the distance.
Watt et al. (1992) assumed a Hubble constant of h=50
km s−1 Mpc−1. With a mean velocity of 6,853 km s−1
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TABLE 11
Coma velocity dispersions for some distances.

Distance/Mpc 50 87 100 150
Dispersion /km s−1 318 554 636 955

(Colless & Dunn 1996) and with this Hubble constant,
the distance to the Coma cluster is 137 Mpc. Recently
Rood (1988) using the Tully–Fisher relation to measure
the distance modulus to the galaxies in the Coma clus-
ter, to observe a value of 34.4±0.2 mag whereas Liu &
Graham (2001) using infrared surface brightness fluctua-
tions get 34.99±0.21 mag. The average is 34.7 mag that
corresponds to a distance of 87.1 Mpc. This is consistent
with the distance of 85.6 Mpc given by Freedman et al.
(2001).

The galactic velocity data are taken from Beijersbergen
(2003) who provide information for 583 galaxies. They
find that early-type galaxies (E+S0+E/S0) have a mean
velocity of 9,926 km s−1 and a rms (root-mean-square)
velocity, of 893 km s−1. Let us assume that all the galac-
tic velocities are due to Curvature-redshift. That is we
assume that the actual velocities, the peculiar velocities,
are negligible. Then the redshifts for the galaxies are
calculated (in velocity units) by

v = v0 +
∫ Z

0
51.691

√
N (Z) dZ km s−1, (39)

where Z is the distance from the central plane of the
Coma cluster to the galaxy measured in Mpc, N(Z) is
the density of the intergalactic gas cloud and v0 is the av-
erage velocity of the galaxies in the cluster. The problem
here is that we do not know Z distances. Nevertheless,
we can still get a good estimate by assuming that the
distribution in Z is statistically identical to that in X
and in Y . In a Monte Carlo simulation, each galaxy was
given a Z distance that was the same as the X (or Y )
distance of one of the other galaxies in the sample chosen
at random. For 50 trials, the computed dispersion was
554kms−1 which can be compared with the measured
dispersion of 893kms−1. Curvature-cosmology has pre-
dicted the observed dispersion of galactic velocities in the
Coma cluster to within a factor of two.

Considering that this is a prediction of the cosmological
model without fitting any parameters and ignoring all
the complications of the structure both in the gas and
galactic distributions the agreement is remarkable.

Since the distance to the Coma cluster is an impor-
tant variable, the computed velocity dispersion from the
Monte Carlo simulation for some different distances (all
the other parameters are the same) is shown in Table 11.
Thus, the redshift dispersion (in velocity units) is approx-
imately a linear function of the Coma distance. This is
not surprising since in this context the distance is mainly
a scale factor.

Beijersbergen (2003) note that a better fit to the ve-
locity distribution is provided by the sum of two Gaus-
sian curves. Their best fit parameters for these two
Gaussians are v1 = 7, 501 ± 187 km s−1, with σ1 =
650 ± 216 km s−1 and v2 = 6641 ± 470 km s−1, with
σ2 = 1, 004 ± 120 km s−1. This double structure is sup-
ported by Colless & Dunn (1996) who argue for an on-
going merger between two sub clusters centered in pro-

jection on the dominant galaxies NGC 4874 and NGC
4889.

In addition, Briel, Henry, & Boehringer (1992) found
evidence for substructure in the X-ray emission and
Finoguenov et al. (2004) and White, Briel, & Henry
(1993) have measured the X-ray luminosity of individ-
ual galaxies in the Coma cluster showing that the model
for the gas used above is too simple. The net effect of
this substructure is that the observed velocity disper-
sion would be different from that predicted by a simple
symmetric model. Thus, it appears that substructure
makes it very difficult to achieve a more accurate test of
Curvature-cosmology using the Coma cluster.

There is an important difference between Curvature-
redshift and models that assume that the redshifts of the
galaxies within a cluster are due to their velocities. Since
the laws of celestial mechanics are symmetric in time,
any galaxy could equally likely be going in the opposite
direction. Thus a galaxy with a high relative (Z) velocity
could be in the near side of the cluster or equally likely
on the far side of the cluster. However, if the redshifts
are determined by Curvature-redshift then there will be
a strong correlation in that the higher redshifts will come
from galaxies on the far side of the cluster.

A possible test is to see if the apparent magnitudes are
a function of relative redshift. With a distance of 87.1
Mpc the required change in magnitude is about 0.025
mag Mpc−1. A simple regression between magnitude of
Coma galaxies (each relative to its type average) and
velocity did not show any significant dependence.

Although this was disappointing, several factors can
explain the null result. The first is the presence of the
substructure; the second is that the magnitudes for a
given galactic type have a standard deviation of about
one magnitude, which in itself is sufficient to wash out
the predicted effect; and thirdly mistyping will produce
erroneous magnitudes due to the different average veloc-
ities of different types. In support of the second factor,
we note that for 335 galaxies with known types and mag-
nitudes, the standard deviation of the magnitude is 1.08
mag and if we assume that the variance of the Z distribu-
tion is equal to the average of the variances for the X and
Y distributions then the expected standard deviation of
the slope is 0.076 mag Mpc−1. Clearly, this is such larger
than the expected result of 0.025 mag Mpc−1. It is ex-
pected that better measurements or new techniques of
measuring differential distances will in the future make
this a very important cosmological test.

In ΛCDM observations of the velocity dispersion of
clusters of galaxies cannot be explained without invok-
ing an ad hoc premise such as dark matter. However
Curvature-cosmology not only explains the observations
but also makes a good prediction, without any free pa-
rameters, of its numerical value.

4.5. Angular size
Closely related to surface brightness is relationship be-

tween the observed angular size of a distant object and
its actual linear transverse size.

The major distinction in angular size is that Curvature-
cosmology, like all tired-light cosmologies, does not in-
clude the (1 + z) aberration factor. Its relationship be-
tween the observed angular size and the linear size is very
close (for small redshifts) to the Euclidean equation.
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Gurvits, Kellermann, & Frey (1999) provide a compre-
hensive history of studies for a wide range of objects that
generally show a 1/z or Euclidean dependence. Most ob-
servers suggest that the probable cause is some form of
size evolution. Recently López-Corredoira (2010) used
393 galaxies with redshift range of 0.2 < z < 3.2 in order
to test many cosmologies.

Briefly, his conclusions are

: The average angular size of galaxies is approximately
proportional to z−α with α between 0.7 and 1.2.

: Any model of an expanding universe without evolution
is totally unable to fit the angular size data . . .

: Static Euclidean models with a linear Hubble law or sim-
ple tired-light fit the shape of the angular size vs z
dependence very well: there is a difference in am-
plitude of 20%–30%, which is within the possible
systematic errors.

: It is also remarkable that the explanation of the test re-
sults with an expanding model requires four coinci-
dences:

1. The combination of expansion and (very
strong evolution) size evolution gives nearly
the same result as a static Euclidean universe
with a linear Hubble law: θ ∝ z−1.

2. This hypothetical evolution in size for galaxies
is the same in normal galaxies as in quasars,
as in radio galaxies, as in first-ranked clus-
ter galaxies, as the separation among bright
galaxies in cluster

3. The concordance model gives approximately
the same (differences of less than 0.2 mag
within z < 4.5) distance modulus in a Hub-
ble diagram as the static Euclidean universe
with a linear law.

4. The combination of expansion, (very strong)
size evolution, and dark matter ratio varia-
tion gives the same result for the velocity dis-
persion in elliptical galaxies (the result is that
it is nearly constant with z) as for a simple
static model with no evolution in size and no
dark matter ratio variation.

With a redshift range of z < 3 the value of S is ap-
proximately proportional to z0.68 which shows that it is
consistent with these results. A full analysis requires a
fairly complicated procedure to correct the observed sizes
for variations in the absolute luminosity.

A simple example of the angular size test can be
done using double-lobed quasars. Using quasar cata-
logues, Buchalter et al. (1998) carefully selected 103
edge-brightened, double-lobed sources from the VLA
FIRST survey and measured their angular sizes directly
from the FIRST radio maps.

Since Buchalter et al. (1998) claim that three different
Friedmann ΛCDM models fit the data well but that a
Euclidean model had a relatively poor fit a reanalysis is
warranted.

Their angular sizes were converted to linear sizes for
each cosmology and were divided into six bins so that

there were 17 quasars in each bin. Because these double-
lobed sources are essentially one-dimensional a major
part of their variation in size is due to projection effects.

For the moment assume that in each bin they have the
same size, Ŝ, and the only variation is due to projection
then the observed size is Ŝ sin(θ) where θ is the projection
angle. Clearly, we do not know the projection angle but
we can assume that all angles are equally likely so that
if the N sources, in each bin, are sorted into increasing
size the i’th source in this list should have, on average, an
angle θi = π(2i− 1)/4N . Thus the maximum likelihood
estimate of Ŝ is

Ŝest =
∑N

i=1 sin(θi)Si∑N
i=1 sin2(θi)

.

Note that the sum in the denominator is a constant
and that the common procedure of using median values
is the same as using only the central term in the sum.

Next a regression was done between logarithm of the
estimated linear size in each bin and log(1 + z) where z
is the mean redshift. Then the significance of the test
was how close was the exponent, b, to zero. For ΛCDM
the exponent was b = −0.79 ± 0.44 and for Curvature-
cosmology, it was b = 0.16 ± 0.44. Although the large
uncertainties show that this is not a decisive discrim-
ination between the two cosmologies the slope for the
Curvature-cosmology suggests that no expansion is more
likely.

For angular size the conclusion is in favor of Curvature-
cosmology.

4.6. Galaxy distribution
Recently, large telescopes with wide fields and the use

of many filters have enabled a new type of galactic sur-
vey. The light-collecting capability of the large telescopes
enables deep surveys to apparent magnitudes of 24 mag
or better and the wide field provides a fast survey over
large areas.

A major innovation is the use of many filters whose
response can be used to classify the objects with great
accuracy. Thus, galaxies can be separated from quasars
without needing morphological analysis. This photomet-
ric method of analysis works because photometric tem-
plates are available for a wide range of types of galaxies
and other types of objects. In addition, accurate red-
shifts are obtained from fitting the templates without
the tedious procedure of measuring the spectrum of each
object.

A typical example of this photometric method is the
COMBO-17 survey (Classifying Objects by Medium-
Band Observations in 17 filters) provided by Wolf et al.
(2004). The goal of this survey was to provide a sample
of 50,000 galaxies and 1000 quasars with rather precise
photometric redshifts based on 17 colors.

In practice, such a filter set provides a redshift accuracy
of 0.03 for galaxies and 0.1 for quasars. The central
wavelength of the 17 filters varied from 364 nm to 914 nm
and consisted of 5 broadband filters (U,B, V,R, I) and 12
narrower-band filters. Wolf et al. (2003) have analyzed
this data and claim that there is strong evolution for
0.2 < z < 1.2.

Instead of using generic K-corrections, the intrinsic
(rest frame) luminosity of all galaxies are individually
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TABLE 12
M∗

C for SED Type 1 galaxy luminosity distributions.

z ∆µ M∗
r

a M∗
BB M∗

280
0.3 0.426 -20.49 -19.06 -17.38
0.5 0.642 -20.49 -19.15 -17.84
0.7 0.822 -20.77 -19.37 -17.62
0.9 0.975 -20.54 -19.09 -17.79
1.1 1.107 -20.87 -19.23 -18.23
χ2 3.70 2.32 12.81

aAbsolute magnitude for the SDSS r-band

measured from their 17-filter spectrum. For each galaxy,
three rest-frame pass bands are considered, (i) the SDSS
r-band, (ii) the Johnston B-band and (iii) a synthetic
UV continuum band centered at λrest= 280 nm with 40
nm FWHM and rectangular transmission function.

A spectral energy distribution, SED, was determined
for each galaxy by template matching. For the evolution
analysis, they were assigned to one of four types. The
only type that showed a well-defined peak in their lu-
minosity distribution was Type 1 which covers the E-Sa
galactic types. The characteristics of the luminosity dis-
tribution were obtained by fitting a Schechter function
which is

ϕ(L)dLϕ∗(L/L∗)αeL/L∗
dL,

where the luminosity L∗ (and its magnitude M∗) is a
measure of location and α is a measure of shape.

They found that a fixed value for α works quite well for
the luminosity functions of individual SED types. Ex-
amination of their estimate of M∗ for Type 1 galax-
ies showed that if they were converted to Curvature-
cosmology magnitudes they were independent of redshift.
This is shown in Table 12 where the data are taken from
the appendix to Wolf et al. (2003). The second column is
the difference, ∆µ = µC − µBB , between C, (Curvature-
cosmology) and B (standard), distance moduli. The re-
maining columns show the Curvature-cosmology abso-
lute magnitudes for the three rest-frame bands.

The last row shows the χ2 for the five magnitudes rel-
ative to their mean using the given uncertainties (all in
the range 0.14-0.23).

With four degrees of freedom, the first two bands show
excellent agreement with a constant value. The values
for M∗

280 have less than a 2.5% chance of being constant.
However since most of the discrepancy comes from the
z = 0.3 value of -17.38 mag and most of this band at
small redshifts is outside the range of the 17 filters this
discrepancy can be ignored.

If this value is ignored, the χ2 is reduced from 12.81
to 6.12 (with 3 D0F) which is consistent with being con-
stant. Since α is independent of redshift, the result is
that if the data had been analyzed using Curvature-
cosmology the magnitude for these Type 1 galaxies does
not vary with redshift.

Thus we have the surprising result that using ΛCDM a
class of galaxies has a well-defined luminosity evolution
that can be explained by Curvature-cosmology. In other
words, there is no expansion.

4.7. Quasar variability in time
One of the major differences between a tired-light cos-

mology and an expanding universe cosmology is that any
expanding universe cosmology predicts that time varia-

tions and clocks have the same dependence on redshift
as does the frequency of the radiation.

Hawkins (2010, 2003) has analyzed the variability of
800 quasars covering epoch scales from 50 days to 28
years. His data permitted the straightforward use of
Fourier analysis to measure the time scale of the variabil-
ity. He showed that there was no significant change in
the time scale of the variability with increasing redshift.
He considered and rejected various explanations includ-
ing that the time scales of variations were shorter in bluer
pass bands or that the variations were not intrinsic but
were due to intervening processes such as gravitational
micro-lensing. His conclusion was either that the quasars
are not at cosmological distances or that the expanding
universe cosmologies are incorrect in this prediction.

Curvature-cosmology predicts the observed quasar
epoch variability of zero.

4.8. The Butcher-Oemler effect
If there were evidence of significant change in the uni-

verse as a function of redshift, it would be a detrimental
to any static cosmology. Probably the most important
evidence for this cosmic evolution that appears to be in-
dependent of any cosmological model is the Butcher &
Oemler (1978) effect. Although the effect has been dis-
cussed in earlier papers, the definitive paper is Butcher
& Oemler (1984).

They observed that the fraction of blue galaxies in
galactic clusters appears to increase with redshift. Clus-
ters allow the study of large numbers of galaxies at a
common distance and out to large redshifts, which makes
them ideal for studies in evolution. The core regions in a
cluster are dominated by early-type (elliptical and lentic-
ular) galaxies, which have a tight correlation between
their colors and magnitudes.

We can calculate R30, the projected cluster-centric
radius that contains 30% of the total galaxy popula-
tion. The blue fraction, fB , is defined to be the fraction
of galaxies within R30 which are bluer than the color-
magnitude relationship for that cluster.

At first sight, this may appear to be a simple test
that could be done with apparent magnitudes. How-
ever to compare the ratio for distant clusters with that
for nearby ones the colors must be measured in the
rest frame of each cluster, hence the need to use K-
corrections.

The major advantage of the Butcher–Oemler effect is
that it is independent of the luminosity-distance relation-
ship that is used. Therefore, to be more precise fB is the
fraction that has an absolute magnitude MV , whose rest
frame (B-V) color is at least 0.2 magnitudes bluer than
expected. A review by Pimbblet (2003) summaries the
important observations.

In its original form the Butcher–Oemler effect is de-
pendent on the apparent magnitude cut-off limits. It is
essential that selection effects are the same in the rest
frame for each cluster. There are further complications
in that the percentage of blue galaxies may or may not
depend on the richness of the cluster and the effect of
contamination from background galaxies.

Although Pimbblet (2003) concluded there was a def-
inite effect, his Fig. 1 shows that this conclusion is
open to debate. Since then there have been several at-
tempts to measure an unambiguous effect. Even though
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they attempted to duplicate the original methodology of
Butcher & Oemler, Hawkins (2003) found essentially no
effect for K-selected galaxies.

Andreon, Lobo, & Iovino (2004) examined three clus-
ters around z=0.7 and did not find clear-cut evidence for
the effect. To quote one of their conclusions: Twenty
years after the original intuition by Butcher & Oemler,
we are still in the process of ascertaining the reality of
the Butcher–Oemler effect.

The Butcher-Oemler effect remains uncertain, and
therefore does not provide evidence to refute a static cos-
mology.

4.9. Fluctuations in the CMBR
In the model proposed for Curvature-cosmology these

fluctuations will also occur but in this case they are due
to variations in the density of the cosmic plasma. The
CMBR seen through the denser gas within a galactic
cluster will have lower than average temperature. Cabré
et al. (2006) show some support for this model in that
they have correlated data from the Wilkinson Microwave
Anisotropy Probe (WMAP) with galaxy samples from
the SDSS DR4 galaxy survey and found a significant cor-
relation for the intensity fluctuations with galaxy density.

4.10. Pioneer 10 acceleration.
Precise tracking of the Pioneer 10/11, Galileo and

Ulysses spacecraft (Anderson et al. 2002) have shown an
anomalous constant acceleration for Pioneer 10 with a
magnitude (8.74 ± 1.55) × 10−10 m s−2 directed towards
the sun.

The only method for monitoring Pioneer 10 is to mea-
sure the frequency shift of the signal returned by an
active phase-locked transponder. These frequency mea-
surements are then processed using celestial mechanics
in order to get the spacecraft trajectory.

The simplicity of this acceleration and its magnitude
suggests that Pioneer 10 could be a suitable candidate for
investigating the effects of Curvature-redshift. There is
a major problem in that the direction of the acceleration
corresponds to a blue shift whereas Curvature-redshift
predicts a redshift.

Nevertheless, we will proceed, guided by the counter-
intuitive observation that a drag force on a satellite actu-
ally causes it to speed up. This is because the decrease
in total energy makes the satellite change orbit with a
redistribution of kinetic and potential energy.

The crucial point of this analysis is that the only in-
formation available that can be used to get the Pioneer
10 trajectory is Doppler shift radar. There is no direct
measurement of distance.

Thus the trajectory is obtained by applying celestial
mechanics and requiring that the velocity matches the
observed frequency shift. Since the sun produces the
dominant acceleration, we can consider that all the other
planetary perturbations and know drag effects have been
applied to the observations and the required celestial me-
chanics is to be simple two-body motion.

If the observed velocity (away from the sun) is in-
creased by an additional apparent velocity due to
Curvature-redshift the orbit determination program will
compensate by assuming that the spacecraft is closer to
the sun than its true distance. It will be shown that this

distance discrepancy produces an extra apparent accel-
eration that is directed towards the sun. The test of this
model is whether the densities required by Curvature-
redshift agree with the observed densities.

Let the actual velocity of Pioneer 10 at a distance r,
be denoted by v(r), then since the effect of Curvature-
redshift is seen as an additional velocity, ∆v(r) where
from Eq. 2

∆v(r) = 2
√

8πG
∫ r

0

√
ρ(r) dr, (40)

where the factor of 2 allows for the two-way trip and
the density at the distance r from the sun is ρ(r). Since
Pioneer 10 has a velocity away from the sun, this redshift
shows an increase in the magnitude of its velocity.

We will assume that all the perturbations and any
other accelerations that may influence the Pioneer 10 ve-
locity have been removed as corrections to the observed
velocity and the remaining velocity, v(r), is due to the
gravitational attraction of the sun. In this case the en-
ergy equation is

v(r)2 = v2
∞ + 2µ

r
, (41)

where µ = GM is the gravitational constant times the
mass of the sun (µ = 1.327 × 1020 m3 s−2) and v∞ is the
velocity at infinity.

The essence of this argument is that the tracking pro-
gram is written to keep energy conserved so that an
anomalous change in velocity, ∆v(r), will be interpreted
as a change in radial distance which is

∆r = −

√
2r3

µ
∆v(r).

Thus an increase in magnitude of the velocity will be
treated as a decrease in radial distance which, in order to
keep the total energy constant, implies an increase in the
magnitude of the acceleration. Either by using Newton’s
gravitational equation or by differentiating Eq. 41 the
acceleration a(r) is given by

a(r) = − µ

r2 . (42)

Hence with v∞ = 0 and therefore v(r) =
√

2µ/r we get

∆a(r) = 2µ
r3 ∆r =

√
8µ
r3 ∆r,

and then to the first order an increase in velocity of
∆v(r) will produce an apparent decrease in acceleration
of ∆a(r), and

∆a= 8
√
πµGr−3/2

∫ r

0

√
ρ(r) dr

= 16
√
πµGr−1/2 <

√
ρ(r) >

= 6.90R−1/2 <
√
ρ(r) >,

where for the last equations we measure the distance in
AU so that r = 1.496 × 1011R and the angle brackets
show an average value.

Now fig. 7 from (Anderson et al. 2002) shows that af-
ter about 20 AU the anomalous acceleration is essentially
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constant. The first step is to get an estimate of the re-
quired density and see if is feasible.

Using the observed acceleration of aP = 8.74 × 10−10

m s−2 the required average density for the two-way path
is 1.60 × 10−20R kg m−3 and for R=20 it is 3.21 ×
10−19 kg m−3.

The only constituent of the interplanetary medium
that approaches this density is dust. One estimate by
Le Sergeant D’Hendecourt & Lamy (1980) of the inter-
planetary dust density at 1 AU is 1.3 × 10−19 kg m−3

and more recently, Grun et al. (1999) suggests a value
of 10−19 kg m−3 which is consistent with their earlier es-
timate of 9.6 × 10−20 kg m−3 (Grun, Zook, Fechtig, &
Giese 1985).

Although the authors do not provide uncertainties, it
is clear that their densities could be in error by a factor
of two or more. The main difficulties are the paucity of
information and that the observations do not span the
complete range of grain sizes.

The meteoroid experiment on board Pioneer 10 mea-
sures the flux of grains with masses larger than 10−10 g.
The results show that after it left the influence of Jupiter
the flux (Anderson et al. 2002) was essentially constant
(in fact there may be a slight rise) out to a distance of
18 AU.

It is thought that most of the grains are being contin-
uously produced in the Kuiper belt. As the dust orbits
evolve inwards due to Poynting-Robertson drag and plan-
etary perturbations, they achieve a roughly constant spa-
tial density. The conclusion is that interplanetary dust
could provide the required density to explain the anoma-
lous acceleration by a frequency shift due to Curvature-
redshift.

Overall, this analysis has shown that it is possible to
explain the acceleration anomaly of Pioneer 10 but that
a more definitive result requires Curvature-redshift to be
included in the fitting program and more accurate esti-
mates of the dust density are certainly needed. Subject
to the caveat about the dust density, Curvature-redshift
could explain the anomaly in the acceleration of Pioneer
10 (and by inference other spacecraft).

Not only can Curvature-cosmology explain the anoma-
lous Pioneer 10 acceleration, it has a feasible prediction
of its value.

4.11. The Sunyaev–Zel’dovich effect
The Sunyaev–Zel’dovich effect (Sunyaev & Zeldovich

1970; Peebles 1993) is the effect of Thompson scattering
of background radiation by free electrons in the inter-
vening medium. The technique depends on knowing the
spectrum of the background source and then measur-
ing the changes in the spectrum due to the intervening
plasma. For optical wavelengths the Thomson scatter-
ing wavelength is 6.65 × 10−27m2. Thus for an electron
density of 1.93m−3 the interaction length is 1.79×1025m.

In particular, it is the scattering in both angle and
frequency of the cosmic microwave background radia-
tion (CMBR) by electrons in the cosmic plasma. Be-
cause of the rapidly changing density (like (1 + z)3) with
redshift this is an important effect in ΛCDM cosmol-
ogy. The effect is often characterized by the dimension-
less y-parameter, which for a distance x through non-
relativistic thermal plasma with an electron density of

NH has the value

y = kTe

mec2σTNHx = 3.46 × 10−16NHTexMpc, (43)

where σT is the Thompson cross-section. An object
at redshift z is at the distance x = Rχ = 5.80 ×
103N

1/2
H log(1 + z) Mpc. Hence, using Te = 2.62 × 109 K,

NH = 1.93 m−3 we get y = 1.35 × 10−5 log(1 + z).
Using the CMBR as a source the Sunyaev–Zel’dovich

effect has been observed and Mather et al. (1990) re-
port an observed upper limit of y = 0.001, and more
recently Fixsen et al. (1996) report y = 1.5 × 10−5. Us-
ing this limit with Eq. 43 shows that there is no effect in
Curvature-cosmology if z < 2. (Longair 1991; Sunyaev
& Zeldovich 1980). Bielby & Shanks (2007) extend the
results of Lieu, Mittaz, & Zhang (2006) to show that not
only was the Sunyaev–Zel’dovich effect less than what
was expected but that it tendered to disappear as the
redshift went from 0.1 to 0.3. The conclusion is that
Curvature-cosmology is completely consistent with the
experimental observations of the Sunyaev–Zel’dovich ef-
fect on the CMBR. Thus the Sunyaev–Zel’dovich effect
may be important in standard cosmology but it is not
important in Curvature-cosmology.

4.12. Gravitational lensing.
There are many gravitational lens where a quasar or

distant galaxy has one or more images produced by a
nearer lensing galaxy or cluster of galaxies. A set of
these lensing systems has been examined in the context
of Curvature-cosmology to see if it offers a consistent and
possibly simpler explanation. The two important mea-
sures are the prediction of the mass of the lensing galaxy
and the determination of the Hubble constant from the
time delays between variations in the luminosity of differ-
ent images. Since the delay measurement is easily done,
all that is needed is to measure the different path lengths.
This path difference involves both geometric and general
relativistic corrections.

One of the remarkable properties of gravitational
lenses is that the geometry is completely determined by a
two-dimensional lensing potential which can be expressed
in terms of a surface density at the position of the lensing
galaxy. For thin lenses, any two systems with the same
surface density distribution have the same lens effect.
Now the usual way to determine the surface density is
to measure the widths of spectral lines, assume that the
width is due to velocity and then use the virial theorem
to obtain the surface density.

However in Curvature-cosmology the widths of spec-
tral lines are likely to have a large component due to the
effects of Curvature-redshift from dust and gas in the
lensing object. Thus the widths are not a reliable mea-
sure of area density and this method cannot be used.

4.13. Lyman alpha forest
. The Lyman-α (Lyα) forest is the large number of

absorption lines seen in the spectra of quasars. Most
of the lines are due to absorption by clouds of neutral
hydrogen in the line of sight to the quasar. Some of
the lines are due to other elements or due to Lyman-β
absorption.
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Because of the redshift between the absorbing cloud
and us, the lines are spread out over a range of wave-
lengths. Usually the analysis is confined to lines between
the Lyα (at a wavelength of 121.6 nm) and Lyβ (at 102.5
nm). Thus, each quasar provides a relatively narrow
spectrum of Ly-α lines at a redshift just less than that
for the quasar. Since the advent of spacecraft telescopes,
in which can observe the ultraviolet lines, and by us-
ing many quasars the complete redshift range up to the
most distant quasar has been covered. The large redshift
range makes the Lyman α spectra potentially a powerful
cosmological tool.

The obvious cosmological observation is the density of
lines as a function of redshift but as discussed by Rauch
(1998) in an excellent review, there are many important
observational problems.

The first, which has now been overcome, is that the
spectra must have sufficient resolution to resolve every
line. The second is that most lines are very weak and
the number of resolved lines can depend greatly on the
signal-to-noise ratio. This is accentuated because the
steep spectrum for the density of lines as a function of
their strength means that a small decrease in the ac-
ceptance level can drastically increase the number of
observed lines. The third problem is that each quasar
only provides a set of lines in a narrow range of redshift
and there are considerable difficulties in getting uniform
cross-calibrations.

In addition to these problems, it will be shown that
Curvature-redshift can have a profound effect on the in-
terpretation of the line widths and column densities.

Since in Curvature-cosmology, the distribution of
clouds is independent of time or distance the expected
density of lines as a function of redshift is

dn

dz
= AcNH

H(1 + z) , (44)

where Nc is the volume density and A is the average
area of a cloud. Most observers have fitted a power law
with the form (1+z)γ to the observed line densities with
a wide range of results. They vary from γ = 1.89 to
γ = 5.5 (Rauch 1998). All of which are inconsistent with
the Curvature-cosmology prediction of γ = −1.

In Curvature-cosmology, there is the additional ef-
fect that much of the line broadening may be due to
Curvature-redshift. Curvature-redshift will be operat-
ing within the clouds so that the observed line width
will be a combination of the usual Voigt profile and the
change in the effective central frequency as the photons
pass through the cloud. If the cloud has a density ρ(x) at
the point x, measured along the photon trajectory then
the change in frequency from the entering frequency due
to Curvature-redshift is

∆ν
ν

= 1
c

∫ √
8πGρ(x)dx.

In units of N(x) = ρ(x)/mH this is (with N in m−3 and
dx in kpc)

∆ν
ν

= −∆λ
λ

=
∫

1.724 × 10−7
√
N(x)dx.

Then the final profile will be the combination of the
natural line width, the Doppler width due to tempera-

ture, any width due to bulk motions and the Curvature-
redshift width. Now assuming pure hydrogen, the hydro-
gen column density is given by NH =

∫
N(x)dx.

Although it is unlikely that the line of sight goes
through the center of the cloud, it is reasonable to ex-
pect a roughly symmetric distribution of gas with a shape
similar to a Gaussian. We can define an effective density
width by

x2
w =

∫
(x− x)2

N(x)dx /
∫
N(x)dx.

Also define Nc = NH/xw and an effective velocity width
∆v = 51.68ηxw

√
Nc and where η is a small numeric con-

stant that depends on the exact shape of the density dis-
tribution. Eliminating the central density, we get (with
xw in kpc)

∆v2 = 8.656 × 10−17η2NHxw. (45)

For values NH = 1019 m−2, xw=1 kpc and with η=1 we
get ∆v=29 km s−1.

Since there is a wide variation in column densities and
the effective widths are poorly known, it is clear that
Curvature-redshift could completely dominate many of
the Lyman-α line widths and the others would require
a convolution of the Doppler profile with the Curvature-
redshift density effect. What is also apparent is that the
very broad absorption lines may be due to Curvature-
redshift acting in very dense clouds.

Although there is uncertainty about the observed re-
lationship between the line width and the column den-
sity, we note that for a fixed effective density width,
Eq. 45 predicts a square relationship that may be
compared with the exponent of 2.1 ± 0.3 found by
Pettini et al. (1990). Clearly, there needs to be a
complete re-evaluation of profile shapes, column densi-
ties, and cloud statistics that allows for the effects of
Curvature-cosmology. We must await this analysis to
see whether the Lyman-α forest can provide a critical
test of Curvature-cosmology.

4.14. Nuclear abundances
One of the successes of ΛCDM cosmology is in its

explanation of the primordial abundances of the light
elements. Since the proposed Curvature-cosmology is
static, there must be another method of getting the ‘pri-
mordial’ abundances of light elements. In Curvature-
cosmology, the primordial abundance refers to the abun-
dance in the cosmic gas from which the galaxies are
formed and the cosmic gas is pure hydrogen.

The first point to note is that in Curvature-cosmology
the predicted temperature of the cosmic plasma is 2.465×
109K at which temperature nuclear reactions can pro-
ceed.

It is postulated that in Curvature-cosmology there is a
continuous recycling of material from the cosmic plasma
to galaxies and stars and then back to the plasma. Be-
cause of the high temperature, nuclear reactions will take
place whereby the more complex nuclei are broken down
to hydrogen.

4.15. Galactic rotation curves
One of the most puzzling questions in astronomy is:

why the observed velocity of rotation in spiral galaxies
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does not go to zero towards the edge of the galaxy. Sim-
ple Keplerian mechanics suggest that there should be
a rapid rise to a maximum and then a decrease in ve-
locity that is inversely proportional to the square root
of the radius once nearly all the mass has been passed.
Although the details vary between galaxies, the observa-
tions typically show a rapid rise and then an essentially
constant tangential velocity as a function of radius out
to distances where the velocity cannot be measured due
to lack of material.

In Curvature-cosmology there is a Curvature pressure,
Eq.6, that acts to reduce any gravitational attraction.
In general the temperature of the galactic halo with in-
crease in the outer layers to eventually reach that of the
cosmic plasma, and the Curvature pressure has a strong
dependence on temperature its effect on the velocity of
the gas components in the galaxy is to decrease the ef-
fects of gravitational attraction and the gross velocities
of the galactic gas. A simple consequence is that the ro-
tation of the galaxy will look more like that of a rigid
body.

4.16. Redshifts in our Galaxy
In our Galaxy, the Milky Way, there is an interesting

prediction. The density of the interstellar ionized gas can
be high enough to inhibit Curvature-redshift for radio
frequencies.

From Eq. 21 it was shown that for radio wavelengths
the effect of refractive index in fully ionized plasma will
inhibit Curvature-redshift. Thus for sight lines close to
the Galactic plane we can assume a similar a similar in-
hibition with the result that the observed radio redshifts
can be correctly interpreted as genuine velocities. Thus,
there is little change needed to the current picture of
galactic structure and rotation derived from 21 cm red-
shifts. However, there may be some Curvature-redshift
present in sight lines away from the plane and especially
in the Galactic halo.

Since optical redshifts have the full effects of
Curvature-redshift, it should be possible to find objects
with discrepant redshifts where the optical redshift is
greater than the radio redshift. The difficulty is that the
two types of radiation are produced in radically different
environments: the optical in compact high temperature
objects, such as stars, and the radio in very low-density
cold clouds. In addition, there is the complication that
within the galactic plane, optical extinction due to dust
limits the optical range to about 1 kpc.

Curvature-redshift may help to explain an old stellar
mystery. There is a long history provided by Arp (1992)
of observations of anomalous redshifts in bright hot stars,
which is called the K-term or K-effect.

Allen (1976) states that B0 stars typically show an ex-
cess redshift of 5.1 m s−1, A0 have 1.4 km s−1 and F0
have 0.3 km s−1. This can be explained if these stars
have a large corona that produces Curvature-redshift.

It is probably no coincidence that such stars have large
stellar winds and mass outflows. In order to see if it is
feasible let us consider a simple model for the outflow
in which the material has a constant velocity v0, and
conservation of matter (Gauss’s Law) then requires that
the density has inverse square law dependence. Although
this is incorrect at small stellar radii, it is a reasonable
approximation further from the star.

TABLE 13
Velocity at, and average velocity within various

projected radii in the Coma cluster (distance = 87.1 Mpc).

]

Radiusa Velocity Mean velocity
/Mpc /km s−1 /km s−1

0.0 2327.7 2327.7
0.5 1477.7 1764.8
1.0 1033.4 1342.5
1.5 803.3 1096.9
2.0 658.6 933.2
2.5 557.0 814.4
3.0 481.0 723.3
3.5 421.7 650.7
4.0 374.0 541.2
4.5 334.8 541.2
5.0 302.0 498.7

Then if ρ1 is the density at some inner radius r1, then
out to a radius r2, the expected redshift in velocity units
is

v =

√
2GṀ
vo

log
(
r2

r1

)
,

where Ṁ is the observed stellar mass-loss-rate. Then
with Ṁ in solar masses per year, with v and v0 in km s−1,
the redshift is

v = 91.7

√
Ṁ

vo
log

(
r2

r1

)
km s−1,

With Ṁ = 10−5M⊙ yr−1 Cassinelli (1979), v0 =
1 km s−1 and r2/r1 = 103 the predicted redshift (in ve-
locity units) is 2 km s−1 which is in reasonable agreement
with the observed K-effects mentioned above.

4.17. Voids
If Curvature-cosmology is valid then the redshift of the

galaxies in the Coma cluster (Section 4.4) will have been
increased, on average, by the additional redshift due to
the intergalactic gas. Thus, they will have, on average,
a larger redshift than an isolated galaxy at the same dis-
tance.

Table 13 shows the predicted (effective) velocity for
a galaxy in the center plane of the Coma cluster as a
function of the projected radius. The second column is
the velocity at that exact radius and the third column
shows the average velocity of galaxies (uniformly spread
in area) within that radius. This simulation also showed
that the average velocity offset for the galaxies in the
Coma cluster is 1206 kms−1 which means that the red-
shift of the center of the Coma cluster is 6926-1206=5720
kms−1. This offset is important for calculating the Hub-
ble constant which from these figures is 5270/87.1=65.7
kms−1 Mpc−1.

In addition, the redshift of objects seen through a clus-
ter will be increased by Curvature-redshift from the in-
tergalactic gas.

Karoji, Nottale, & Vigier (1976) claim to have seen
this effect. They examined radio galaxies and classified
them into region A if their light does not pass through a
cluster and region B if their light passes through a clus-
ter. They found no significant differences in magnitudes
between the two regions but they did find a significant
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difference in the average redshift that was consistent over
the complete range.

Their result is that radio galaxies seen through a clus-
ter had an average extra redshift (in velocity units) of
2412±1327 km s−1. Overall the difference in the distance
modulus was µ = 0.16 ± 0.04, which is just significant.

Since the density and distribution of the gas in the clus-
ters is unknown and the limiting radius of the cluster is
not stated, it is impossible to get an accurate prediction.

Nevertheless, we note that for the Coma cluster with a
radius of 2 Mpc the average extra redshift (from Table 13
with a factor of two) corresponds to 1866 km s−1 showing
that Curvature-cosmology could explain the effect.

In a different study, Nottale (1976) and Nottale &
Vigier (1977) compared the magnitude of the brightest
galaxy in a cluster with that in another cluster with simi-
lar redshift. They found that there was no significant dif-
ference in magnitudes between clusters but that the clus-
ters with the largest number of galaxies had the higher
redshift difference between the pairs.

On average the redshift difference (in velocity units)
was 292±85 km s−1. This can be explained by the ex-
pected correlation between the number of galaxies and
size and density of the intergalactic gas. However it
should be noted that these observations have been dis-
puted by Rood & Struble (1982).

In his review of voids in the distribution of galaxies,
Rood (1988) quotes Mayall (1960) who observed a large
void in the distribution of galaxies in front of the Coma
cluster. This void has a magnitude of about 3000 kms−1,
which although somewhat larger, is not inconsistent with
the expected value of about 1200 km s−1.

In other words, the Coma cluster galaxies have an extra
Curvature-redshift due to the intergalactic gas. However,
the galaxies just outside the cluster nearer to us do not
have this extra redshift and would appear to be closer
to us. Hence, we see an apparent void in the redshift
distribution in front of the Coma cluster.

A consequence of gas clouds and Curvature-redshift
is that the distribution of redshifts is similar to but not
identical to the distribution of z distances. Galaxies that
are behind a cloud will have a higher redshift than would
be expected from a simple redshift distance relationship.

Thus, we would expect to see anomalous voids and
enhancements in the redshift distribution. This will be
accentuated if the gas clouds have a higher than average
density of galaxies.

de Lapparent et al. (1986) show a redshift plot for a
region of the sky that includes the Coma cluster. Their
data are from the Center for Astrophysics redshift survey
and their plot clearly shows several voids. They suggest
that the galaxies are distributed on the surfaces of shells.
However, this distribution could also arise from the ef-
fects of Curvature-redshift in clouds of gas.

4.18. Entropy
Consider a stellar cluster or an isolated cloud of gas in

which collisions are negligible or elastic. In either case
the virial theorem states that the average kinetic energy
K, is related to the average potential energy V , by the
equation V = V0 − 2K where V0 is the potential energy
when there is zero kinetic energy. Let U be the total
energy then U = K + V = V0 − K . Thus, we get the

somewhat paradoxical situation that since V0 is constant;
an increase in total energy can cause a decrease in kinetic
energy. This happens because the average potential en-
ergy has increased by approximately twice as much as
the loss in kinetic energy. Since the temperature is pro-
portional to (or at the least a monotonic increasing func-
tion of) the average kinetic energy, it is apparent that
an increase in total energy leads to a decrease in tem-
perature. This explains the often-quoted remark that a
self-gravitationally bound gas cloud has a negative spe-
cific heat capacity. Thus, when gravity is involved the
whole construct of thermodynamics and entropy needs
to be reconsidered.

One of the common statements of the second law of
thermodynamics is that (Longair 1991): The energy of
the universe is Constant: the entropy of the Universe
tends to a maximum, (Feynman 1965): the entropy of
the universe is always increasing or from Wikipedia the
second law of thermodynamics is an expression of the
universal law of increasing entropy, stating that the en-
tropy of an isolated system which is not in equilibrium
will tend to increase over time, approaching a maximum
value at equilibrium.

Now the normal proof of the second law considers the
operation of reversible and non-reversible heat engines
working between two or more heat reservoirs. If we use
a self-gravitating gas cloud as a heat reservoir then we
will get quite different results since the extraction of en-
ergy from it will lead to an increase in its temperature.
Thus if the universe is dominated by gravity the second
law of thermodynamics needs reconsideration. In addi-
tion, it should be noted that we cannot have a shield
that hides gravity. To put it another way there is no
adiabatic container that is beyond the influence of exter-
nal gravitational fields. Thus we cannot have an isolated
system.

This discussion shows that in a static finite universe
dominated by gravity simple discussions of the second
law of thermodynamics can be misleading. The presence
of gravity means that it is impossible to have an isolated
system. To be convincing any proof of the second law
of thermodynamics should include the universe and its
gravitational interactions in the proof.

4.19. Olber’s Paradox
For Curvature-cosmology, Olber’s Paradox is not a

problem. Curvature-redshift is sufficient to move dis-
tant starlight out of the visible band. Visible light from
distant galaxies is shifted into the infrared where it is
no longer seen. Of course, with a finite universe, there is
the problem of conservation of energy and why we are not
saturated with very low frequency radiation produced by
Curvature-redshift. These low-energy photons are even-
tually absorbed by the cosmic plasma. Everything is re-
cycled. The plasma radiates energy into the microwave
background radiation and into X-rays. The galaxies de-
velop from the cosmic plasma and pass through their nor-
mal evolution. Eventually all their material is returned
to the cosmic plasma.

4.20. Philips relation
Phillips (1993) Showed that there was a good correla-

tion between the peak magnitude and the width of the



Curvature-cosmology 25

light curve for Type Ia supernova. For the Philips rela-
tion to be meaningful, it must be between the absolute
magnitude and the width corrected for its (1 + z) depen-
dence. If it is intrinsic to the supernova then the final
width must be product of it and the cosmological redshift
factor. But as shown earlier the observed redshift can be
completely explained by the cosmology. Furthermore if
it intrinsic to the supernova it should be evident as a
function of intrinsic wavelengths of the bands. But as
shown in section 3.8, on quasars, The observed intrinsic
wavelength distribution is due to cosmological effects.

The slope of the regression of the absolute magnitudes
(using the oCDM model and the intrinsic analysis) of
Type Ia supernova for all the supernova versus the widths
divided by (1+z) is (−0.009±0.091). Which shows that
for these observations of Type I a supernova there is no
significant Phillips relation.

5. PART D: CONCLUSIONS

The major numerical results for Curvature -cosmology
are provided in Table 14.

Curvature-cosmology is a static tired-light cosmology
which is a static solution to the equation of general rela-
tivity that is described by the Friedmann equations with
an additional term that stabilizes the solution. This term
called Curvature-pressure is a reaction of high-speed par-
ticles back on the material producing the curved space-
time. This sense of this reaction is to try and reduce the
curvature.

The basic cosmological model is one in which the cos-
mic plasma dominates the mass distribution and hence
the curvature of space-time. In this first-order model, the
gravitational effects of stars and galaxies are neglected.
The geometry is that of a three-dimensional “surface”
of a four-dimensional hyper-sphere, which is common to
most cosmologies. Its main strengths are that it does not
have ad hoc additions to the model and it has exception-
ally good agreement with cosmological observations.

The only free parameter is the density of the cosmic
plasma which is defined by Eq. 31, repeated here as

1.93 ± 0.13 H atoms per m3. (46)
The major equation is the relationship between the

distance, r and the redshift z, which is defined by Eq. 10,
repeated here as

r = R0 log(1 + z),

where R0 = 1.008 × 104/
√
NH = 7.256 Gpc.

The second equation is that for the distance modulus
which is defined by Eq. 13, repeated here as

µ = 5 log10[sin(log(1 + z))] + 42.8
Finally the restriction that the maximum density is

restricted by the Schwarzschild radius for a simple the-
oretical black hole in that the radius of a very compact
object must be greater than 2Gm/c2.

A brief summary of the quantitative observations that
are relevant to the Curvature-cosmology model are:

Curvature-cosmology does not need dark matter to ex-
plain the velocity dispersion in clusters of galaxies or the
shape of galactic rotation curves.

For angular size the conclusion is in favor of Curvature-
cosmology.

An analysis of many galaxies that have multiple ob-
served bands show no evidence of evolution.

Curvature-cosmology predicts the observed quasar
epoch variability of zero.

The Butcher-Oemler effect not valid.
Not only can Curvature-cosmology explain the anoma-

lous Pioneer 10 acceleration, it has a feasible prediction
of its value.

Fluctuations in the CMBR can be explained a density
fluctuations in the cosmic plasma.

Overall for Curvature-cosmology there is remarkable
agrement between its predictions and observations, with-
out any serious problems.
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Cabré, A., Gaztañaga, E., Manera, M., Fosalba, P., & Castander,

F. 2006, Monthly Notices of the Royal Astronomical Society,
372, L23, doi: 10.1111/j.1745-3933.2006.00218.x

Cassinelli, J. P. 1979, Annual Review of Astronomy and
Astrophysics, 17, 275,
doi: 10.1146/annurev.aa.17.090179.001423

Colless, M., & Dunn, A. M. 1996, The Astrophysical Journal,
458, 435, doi: 10.1086/176827

Conley, A., Guy, J., Sullivan, M., et al. 2011, The Astrophyics
Journal Supplement Series, 192, 1,
doi: 10.1088/0067-0049/192/1/1

Cowsik, R., & Kobetich, E. J. 1972, The Astrophysical Journal,
177, 585, doi: 10.1086/151735

Crawford, D. F. ????, The Astrophysical Journal
—. 1987a, Australian Journal of Physics, 40, 459,

doi: 10.1071/PH870459
—. 1987b, Australian Journal of Physics, 40, 449,

doi: 10.1071/PH870449
—. 1991, The Astrophysical Journal, 377, 1, doi: 10.1086/170330
—. 1995, The Astrophysical Journal, 440, 466,

doi: 10.1086/175288
—. 1998, arXiv e-prints, astro.

https://arxiv.org/abs/astro-ph/9803009
—. 1999a, Australian Journal of Physics, 52, 753,

doi: 10.1071/PH98065
—. 1999b, arXiv e-prints, astro.

https://arxiv.org/abs/astro-ph/9904150
—. 2006, Curvature Cosmology
—. 2009a, arXiv e-prints, arXiv:0901.4169.

https://arxiv.org/abs/0901.4169
—. 2009b, arXiv e-prints, arXiv:0901.4172.

https://arxiv.org/abs/0901.4172
de Lapparent, V., Geller, M. J., & Huchra, J. P. 1986,

astrophysics Journal Letters, 302, L1, doi: 10.1086/184625
Dennis, B. R., Suri, A. N., & Frost, K. J. 1973, The Astrophysical

Journal, 186, 97, doi: 10.1086/152480
Disney, M. J. 2000, General Relativity and Gravitation, 32, 1125,

doi: 10.1023/A:1001981929727
Djorgovski, S., & Spinrad, H. 1981, The Astrophysical Journal,

251, 417, doi: 10.1086/159478

Ellis, G. F. R. 1984, Annual Review of Astronomy and
Astrophysics, 22, 157,
doi: 10.1146/annurev.aa.22.090184.001105

Feynman, R. P. 1965, Feynman lectures on physics. Volume 3:
Quantum mechancis

Field, G. B., & Henry, R. C. 1964, The Astrophysical Journal,
140, 1002, doi: 10.1086/148000

Finoguenov, A., Briel, U. G., Henry, J. P., et al. 2004, Astromomy
and Astrophysics, 419, 47, doi: 10.1051/0004-6361:20035765

Fixsen, D. J. 2009, The Astrophysical Journal, 707, 916,
doi: 10.1088/0004-637X/707/2/916

Fixsen, D. J., Cheng, E. S., Gales, J. M., et al. 1996, The
Astrophysical Journal, 473, 576, doi: 10.1086/178173

Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, The
Astrophysical Journal, 553, 47, doi: 10.1086/320638

Fukada, Y., Hayakawa, S., Ikeda, M., et al. 1975, Astrophysics
and Space Science, 32, L1, doi: 10.1007/BF00646232

Giacconi, R., Gursky, H., Paolini, F. R., & Rossi, B. B. 1962,
Physics Review Letters, 9, 439,
doi: 10.1103/PhysRevLett.9.439

Goldhaber, G., Boyle, B., Bunclark, P., et al. 1996, Nuclear
Physics B Proceedings Supplements, Vol. 51, 51, 123,
doi: 10.1016/S0920-5632(96)00493-8

Goldhaber, G., Groom, D. E., Kim, A., et al. 2001, The
Astrophysical Journal, 558, 359, doi: 10.1086/322460

Gould, R. J., & Burbidge, G. R. 1963, The Astrophysical Journal,
138, 969, doi: 10.1086/147698

Gruber, D. E., Matteson, J. L., Peterson, L. E., & Jung, G. V.
1999, The Astrophysical Journal, 520, 124, doi: 10.1086/307450

Grun, E., Kruger, H., Srama, R., et al. 1999, in AAS/Division for
Planetary Sciences Meeting Abstracts #31, AAS/Division for
Planetary Sciences Meeting Abstracts, 55.03

Grun, E., Zook, H. A., Fechtig, H., & Giese, R. H. 1985, Icarus,
62, 244, doi: 10.1016/0019-1035(85)90121-6

Gurvits, L. I., Kellermann, K. I., & Frey, S. 1999, Astromomy
and Astrophysics, 342, 378.
https://arxiv.org/abs/astro-ph/9812018

Guy, J., Astier, P., Baumont, S., et al. 2007, Astromomy and
Astrophysics, 466, 11, doi: 10.1051/0004-6361:20066930

Guy, J., Sullivan, M., Conley, A., et al. 2010, Astromomy and
Astrophysics, 523, A7, doi: 10.1051/0004-6361/201014468

Hawkins, M. R. S. 2003, MNRAS, 344, 492,
doi: 10.1046/j.1365-8711.2003.06828.x

—. 2010, MNRAS, 405, 1940,
doi: 10.1111/j.1365-2966.2010.16581.x

Holt, S. S. 1992, Annals of the New York Academy of Sciences,
655, 263, doi: 10.1111/j.1749-6632.1992.tb17076.x

Hoyle, F. 1962, Astronomy.
Hoyle, F., Burbidge, G., Narlikar, J. V., & Livio, M. 2000,

Physics Today, 53, 71, doi: 10.1063/1.1341928
Hughes, J. P. 1989, The Astrophysical Journal, 337, 21,

doi: 10.1086/167084
Itoh, N., Sakamoto, T., Kusano, S., Nozawa, S., & Kohyama, Y.

2000, The Astrophysical Journal Supplement Series, 128, 125,
doi: 10.1086/313375

Jackson, J. D. 1975, Classical electrodynamics
Jones, D., Scolnic, D., Riess, A., et al. 2018, in American

Astronomical Society Meeting Abstracts #231, Vol. 231, 308.06
Jones, D. O., Rodney, S. A., Riess, A. G., et al. 2013, The

Astrophysical Journal, 768, 166,
doi: 10.1088/0004-637X/768/2/166

Joseph, R. 2010, Journal of Cosmology, 6, 1547

http://doi.org/10.1093/mnras/258.4.800
http://doi.org/10.1051/0004-6361/201423413
http://doi.org/10.1111/j.1365-2966.2007.12456.x
http://doi.org/10.1146/annurev-astro-082708-101734
http://doi.org/10.1086/589568
http://doi.org/10.1086/305236
http://doi.org/10.1086/155751
http://doi.org/10.1086/162519
http://doi.org/10.1111/j.1745-3933.2006.00218.x
http://doi.org/10.1146/annurev.aa.17.090179.001423
http://doi.org/10.1086/176827
http://doi.org/10.1088/0067-0049/192/1/1
http://doi.org/10.1086/151735
http://doi.org/10.1071/PH870459
http://doi.org/10.1071/PH870449
http://doi.org/10.1086/170330
http://doi.org/10.1086/175288
https://arxiv.org/abs/astro-ph/9803009
http://doi.org/10.1071/PH98065
https://arxiv.org/abs/astro-ph/9904150
https://arxiv.org/abs/0901.4169
https://arxiv.org/abs/0901.4172
http://doi.org/10.1086/184625
http://doi.org/10.1086/152480
http://doi.org/10.1023/A:1001981929727
http://doi.org/10.1086/159478
http://doi.org/10.1146/annurev.aa.22.090184.001105
http://doi.org/10.1086/148000
http://doi.org/10.1051/0004-6361:20035765
http://doi.org/10.1088/0004-637X/707/2/916
http://doi.org/10.1086/178173
http://doi.org/10.1086/320638
http://doi.org/10.1007/BF00646232
http://doi.org/10.1103/PhysRevLett.9.439
http://doi.org/10.1016/S0920-5632(96)00493-8
http://doi.org/10.1086/322460
http://doi.org/10.1086/147698
http://doi.org/10.1086/307450
http://doi.org/10.1016/0019-1035(85)90121-6
https://arxiv.org/abs/astro-ph/9812018
http://doi.org/10.1051/0004-6361:20066930
http://doi.org/10.1051/0004-6361/201014468
http://doi.org/10.1046/j.1365-8711.2003.06828.x
http://doi.org/10.1111/j.1365-2966.2010.16581.x
http://doi.org/10.1111/j.1749-6632.1992.tb17076.x
http://doi.org/10.1063/1.1341928
http://doi.org/10.1086/167084
http://doi.org/10.1086/313375
http://doi.org/10.1088/0004-637X/768/2/166


Curvature-cosmology 27

Kaiser, N., Burgett, W., Chambers, K., et al. 2010, in
Ground-based and Airborne Telescopes III, Vol. 7733, 77330E,
doi: 10.1117/12.859188

Karoji, H., Nottale, L., & Vigier, J. P. 1976, Astrophysics and
Space Science, 44, 229, doi: 10.1007/BF00650484

Kessler, R., Becker, A. C., Cinabro, D., et al. 2009a, The
Astrophysical Journal Supplement Series, 185, 32,
doi: 10.1088/0067-0049/185/1/32

Kessler, R., Bernstein, J. P., Cinabro, D., et al. 2009b,
Publications of the Astronomical Society of the Pacific, 121,
1028, doi: 10.1086/605984

Kinzer, R. L., Jung, G. V., Gruber, D. E., et al. 1997, The
Astrophysical Journal, 475, 361, doi: 10.1086/303507

Kormendy, J. 1977, The Astrophysical Journal, 218, 333,
doi: 10.1086/155687

Kowalski, M., Rubin, D., Aldering, G., et al. 2008, The
Astrophysical Journal, 686, 749, doi: 10.1086/589937

Kuhn, T. S. 1970, The structure of scientific revolutions
Lal, A. K. 2010, Journal of Cosmology, 6, 1533
Le Sergeant D’Hendecourt, L. B., & Lamy, P. L. 1980, Icarus, 43,

350, doi: 10.1016/0019-1035(80)90180-3
Lerner, E. J. 1991, The big bang never happened
Lieu, R., Mittaz, J. P. D., & Zhang, S.-N. 2006, The

Astrophysical Journal, 648, 176, doi: 10.1086/505627
Liu, M. C., & Graham, J. R. 2001, The Astrophysical Journal,

557, L31, doi: 10.1086/323174
Longair, M. S. 1991, Astronomy, 19, 95
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