Harmonic Theory of the Linear Representation of Partitions

Michalis Psimopoulos

on leave from Physics Dept. Imperial College, London, UK Kanari 26, Pefki 15121, Athens, Greece Email: m.psimopoulos@hotmail.com

Abstract

The number of partitions p_s of a positive integer s can be expressed in terms of p_{s-1} , p_{s-2} , ..., p_1 , p_0 ($p_0=1$) by the linear equations

$$p_{s} = \frac{1}{s} (\lambda_{1} p_{s-1} + \lambda_{2} p_{s-2} + \dots + \lambda_{s-1} p_{1} + \lambda_{s} p_{0}) \quad ; \quad s = 1, 2, 3, \dots$$

where each coefficient λ_n ; n=1, 2, 3, ..., s represents the sum of divisors of n and has universal numerical values $\lambda_n = \{1, 3, 4, 7, 6, 12, 8, 15, 13, 18, ...\}$ independent of s. In the present paper it is shown that λ_n can be obtained from a triangular algorithm where the columns are well defined harmonic sequences:

n	λ_{n}
1	$\lambda_1 = 1 = 1$
2	$\lambda_2 = 3 = 1 + 2$
3	$\lambda_3 = 4 = 1 + 0 + 3$
4	$\lambda_4 = 7 = 1 + 2 + 0 + 4$
5	$\lambda_5 = 6 = 1 + 0 + 0 + 0 + 5$
6	$\lambda_6 = 12 = 1 + 2 + 3 + 0 + 0 + 6$
7	$\lambda_7 = 8 = 1 + 0 + 0 + 0 + 0 + 0 + 7$
8	$\lambda_8 = 15 = 1 + 2 + 0 + 4 + 0 + 0 + 0 + 8$
9	$\lambda_9 = 13 = 1 + 0 + 3 + 0 + 0 + 0 + 0 + 0 + 9$
10	$\lambda_{10} = 18 = 1 + 2 + 0 + 0 + 5 + 0 + 0 + 0 + 0 + 10$

As a result λ_n is given exactly by the formula

$$\lambda_n = \sum_{\kappa=1}^n \sum_{\ell=0}^{\kappa-1} \cos\left(2\pi \frac{n}{\kappa}\ell\right)$$

Inversing the linear equations it is also shown that the partitions p_s are given in terms of $\lambda_1, \lambda_2, ..., \lambda_s$ by an s²-matrix establishing a new relation between partitions and harmonic functions.

1. Introduction

The study of partitions [1] is an old subject of number theory, still active today. The number of partitions p_s of a positive integer s is equal to the number of integer solutions of the equation

$$n_1 + 2n_2 + 3n_3 + \dots + sn_s = s \tag{1}$$

where $n_1 \ge 0$, $n_2 \ge 0$, $n_s \ge 0$. Therefore, partitions are also of importance in statistical mechanics ^[2] as they represent the number of states of macroscopic systems of N particles distributed among s discrete energy levels for $N \ge s$.

In two previous communications [3,4], Eq. (1) was used in order to express partitions by integrals over harmonic functions. The main result of this work is the exact formula

$$p_{s} = \frac{2}{\pi} \int_{0}^{\pi/2} \prod_{\kappa=1}^{s} \left\{ \frac{\sin[(s+\kappa)x]}{\sin(\kappa x)} \right\} \cos[(s^{2}-2s)x] dx$$
(2)

In the present paper, continuing on the same line of research, we establish a new matrix relation between partitions and harmonic sequences. The theory is based on a linear recursion formula of partitions connecting multiplicative with additive number theory, presented later in the text [Eq. (14)].

Euler, gave us the following recursion formula $^{[1]}$ of p_s :

$$p_s = p_{s-1} + p_{s-2} - p_{s-5} - p_{s-7} + p_{s-12} + p_{s-15} - p_{s-22} - p_{s-26} + \cdots$$
(3)

which can be written compactly in the form:

$$p_{s} = \sum_{\kappa=1}^{\infty} (-1)^{\kappa+1} \{ p_{s-\omega(\kappa)} + p_{s-\omega(-\kappa)} \}$$
(4)

where $\omega(\kappa) = \frac{1}{2} (3\kappa^2 - \kappa)$ are the pentagonal numbers of Pythagoras $\omega(\kappa) = (1,5,12,28,...)$.

Later, Theocharis ^[5] expressed also p_s by the recursion triangular algorithm:

$$p_{0} = 1 \} 1$$

$$p_{1} = p_{0} \} 1$$

$$p_{2} = p_{1} + p_{0}$$

$$p_{3} = p_{2} + p_{1}$$

$$p_{4} = p_{3} + p_{2} \} 3$$

$$p_{5} = p_{4} + p_{3} - p_{0}$$

$$p_{6} = p_{5} + p_{4} - p_{1} \} 2$$

$$p_{7} = p_{6} + p_{5} - p_{2} - p_{0}$$

$$p_{8} = p_{7} + p_{6} - p_{3} - p_{1}$$

$$p_{9} = p_{8} + p_{7} - p_{4} - p_{2}$$

$$p_{10} = p_{9} + p_{8} - p_{5} - p_{3}$$

$$p_{11} = p_{10} + p_{9} - p_{6} - p_{4} \} 5$$
(5)

where the summation of each line reproduces Eq.(3) and the steps of the algorithm are given by the symplectic sequence:

$$[1], 1, [3], 2, [5], 3, [7], 4, \dots$$
(6)

made up by the odd numbers in bracket and the positive integers. Summing up the above sequence we obtain the indices of Eq.(3):

1=1;
$$2=1+1;$$
 $5=1+1+3;$
7=1+1+3+2; $12=1+1+3+2+5;$ $15=1+1+3+2+5+3;$ (7)

Clearly, the latter theories do not provide evidence that partitions depend on harmonic functions. However, we argue that such dependence can be manifested if we express p_s in terms of p_{s-1} , p_{s-2} , p_{s-3} , ..., p_1 , p_0 , ($p_0=1$) by the linear representation

$$\mathbf{p}_{s} = \varepsilon_{1}\mathbf{p}_{s-1} + \varepsilon_{2}\mathbf{p}_{s-2} + \varepsilon_{3}\mathbf{p}_{s-3} + \dots + \varepsilon_{s-1}\mathbf{p}_{1} + \varepsilon_{s}\mathbf{p}_{0}$$

$$\tag{8}$$

where the coefficients ϵ_n ; n=1,2,...,s have *universal* numerical values independent of s and are consistent with Euler's expansion of Eq.(3).

$$\epsilon_{n} = \{ [1], 1, 0, 0, [-1, 0], -1, 0, 0, 0, 0, [1, 0, 0], 1, 0, 0, 0, 0, 0, 0, 0, [-1, 0, 0, 0], \\ -1, 0, 0, 0, 0, 0, 0, 0, 0, [1, 0, 0, 0, 0], 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \}$$

$$(9)$$

Example:

$$p_{50} = p_{49} + p_{48} - p_{45} - p_{43} + p_{38} + p_{35} - p_{28} - p_{24} + p_{15} + p_{10}$$

= 173525 + 147273 - 89134 - 63261 + 26015 + 14883 - 3718 - 1575
+ 176 + 42 = 204226 (10)

The structure of ε_n involves two separate groups of coefficients distinguished by brackets in sequence (9) and forming respectively two triangular algorithms:

We observe that the first column of each algorithm is the harmonic sequence (1, -1, 1, -1,...)and the rest of columns all have zero terms. This shows that if Euler's recursion formula [Eq.(3)] is extended in the form of Eq.(8), then a certain harmonic behaviour of ε_n and subsequently of p_s is manifested.

Inversing the linear Eqs (8), we obtain p_s in terms of ϵ_1 , ϵ_2 , ..., ϵ_s by the s²-matrix:

$$p_{s} = \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & \varepsilon_{1} \\ -\varepsilon_{1} & 1 & 0 & \cdots & 0 & 0 & \varepsilon_{2} \\ -\varepsilon_{2} & -\varepsilon_{1} & 1 & \cdots & 0 & 0 & \varepsilon_{3} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ -\varepsilon_{s-3} & -\varepsilon_{s-4} & -\varepsilon_{s-5} & \cdots & 1 & 0 & \varepsilon_{s-2} \\ -\varepsilon_{s-2} & -\varepsilon_{s-3} & -\varepsilon_{s-4} & \cdots & -\varepsilon_{1} & 1 & \varepsilon_{s-1} \\ -\varepsilon_{s-1} & -\varepsilon_{s-2} & -\varepsilon_{s-3} & \cdots & -\varepsilon_{2} & -\varepsilon_{1} & \varepsilon_{s} \end{vmatrix}$$
(12)

Example s=5:

$$p_{5} = \begin{vmatrix} 1 & 0 & 0 & 0 & \varepsilon_{1} \\ -\varepsilon_{1} & 1 & 0 & 0 & \varepsilon_{2} \\ -\varepsilon_{2} & -\varepsilon_{1} & 1 & 0 & \varepsilon_{3} \\ -\varepsilon_{3} & -\varepsilon_{2} & -\varepsilon_{1} & 1 & \varepsilon_{4} \\ -\varepsilon_{4} & -\varepsilon_{3} & -\varepsilon_{2} & -\varepsilon_{1} & \varepsilon_{5} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 1 \\ -1 & -1 & 1 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -1 & -1 \end{vmatrix} = 7$$
(13)

In the present article, we study an alternative linear representation of the partitions p_s in terms of p_{s-1} , p_{s-2} , p_{s-3} , ..., p_1 , p_0 , ($p_0=1$) having the form ^[1]:

$$p_{s} = \frac{1}{s} \left(\lambda_{1} p_{s-1} + \lambda_{2} p_{s-2} + \dots + \lambda_{s-1} p_{1} + \lambda_{s} p_{0} \right) \quad ; \quad s = 1, 2, 3 \dots$$
(14)

where each coefficient λ_n represents the sum of divisors of the number n. For instance n=6; $\lambda_6=1+2+3+6=12$.

Therefore, the sequence λ_n has *universal* numerical values :

$$\lambda_n = \{1, 3, 4, 7, 6, 12, 8, 15, 13, 18, ...\}; n=1, 2, 3, ...$$
(15)

independent of s. As mentioned in ref.[1], Eq.(14) is a remarkable relation connecting multiplicative with additive number theory.

Explicitly, Eq.(14) for s=1, 2, ..., 10 reads:

$$p_{1} = \frac{1}{1} \{p_{0}\}$$

$$p_{2} = \frac{1}{2} \{p_{1} + 3p_{0}\}$$

$$p_{3} = \frac{1}{3} \{p_{2} + 3p_{1} + 4p_{0}\}$$

$$p_{4} = \frac{1}{4} \{p_{3} + 3p_{2} + 4p_{1} + 7p_{0}\}$$

$$p_{5} = \frac{1}{5} \{p_{4} + 3p_{3} + 4p_{2} + 7p_{1} + 6p_{0}\}$$

$$p_{6} = \frac{1}{6} \{p_{5} + 3p_{4} + 4p_{3} + 7p_{2} + 6p_{1} + 12p_{0}\}$$

$$p_{7} = \frac{1}{7} \{p_{6} + 3p_{5} + 4p_{4} + 7p_{3} + 6p_{2} + 12p_{1} + 8p_{0}\}$$

$$p_{8} = \frac{1}{8} \{p_{7} + 3p_{6} + 4p_{5} + 7p_{4} + 6p_{3} + 12p_{2} + 8p_{1} + 15p_{0}\}$$

$$p_{9} = \frac{1}{9} \{p_{8} + 3p_{7} + 4p_{6} + 7p_{5} + 6p_{4} + 12p_{3} + 8p_{2} + 15p_{1} + 13p_{0}\}$$

$$p_{10} = \frac{1}{10} \{p_{9} + 3p_{8} + 4p_{7} + 7p_{6} + 6p_{5} + 12p_{4} + 8p_{3} + 15p_{2} + 13p_{1} + 18p_{0}\}$$
(16)

In the second part of the article it is shown that the coefficients λ_n can be obtained from a well defined triangular algorithm based on harmonic sequences that are given by a simple formula. In the third part of the article, inversing the linear Eqs(14), the partitions p_s are expressed in terms of λ_1 , λ_2 , ..., λ_s by an s^2 - matrix so that a new relation between partitions and harmonic functions is established.

2. Algorithm for the coefficients λ_n

Consider the harmonic sequences $h_{\kappa}(n)$; $n \ge \kappa$; $\kappa = 1,2,3,...$

$h_1(n) = (1, 1, 1, 1, 1, 1, 1, 1,)$;	n=1,2,3,4,
$h_2(n) = (2, 0, 2, 0, 2, 0, 2, 0,)$;	n=2,3,4,5,
$h_3(n) = (3, 0, 0, 3, 0, 0, 3, 0, 0,) ;$	n=3,4,5,6,
$h_4(n) = (4, 0, 0, 0, 4, 0, 0, 0,) ;$	n=4,5,6,7,

The above sequences have the following important property:

$$h_{\kappa}(n) = \begin{cases} \kappa & \text{if } \kappa \text{ is a divisor of } n \\ 0 & \text{if } \kappa \text{ is not a divisor of } n \end{cases}$$
(18)

We construct next an algorithm in the form of a 2-D triangular matrix by using as columns the sequences $h_{\kappa}(n)$ of Eqs (17) where the sum of the terms of each row provides the coefficients λ_n of Eq.(14):

n	λ_{n}	
1	$\lambda_1 = 1 = 1$	
2	$\lambda_2 = 3 = 1 + 2$	
3	$\lambda_3 = 4 = 1 + 0 + 3$	
4	$\lambda_4 = 7 = 1 + 2 + 0 + 4$	
5	$\lambda_5 = 6 = 1 + 0 + 0 + 0 + 5$	
6	$\lambda_6 = 12 = 1 + 2 + 3 + 0 + 0 + 6$	
7	$\lambda_7 = 8 = 1 + 0 + 0 + 0 + 0 + 0 + 7$	
8	$\lambda_8 = 15 = 1 + 2 + 0 + 4 + 0 + 0 + 0 + 8$	
9	$\lambda_9 = 13 = 1 + 0 + 3 + 0 + 0 + 0 + 0 + 0 + 9$	
10	$\lambda_{10} = 18 = 1 + 2 + 0 + 0 + 5 + 0 + 0 + 0 + 0 + 10$	
11	$\lambda_{11} = 12 = 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +$	
12	$\lambda_{12} = 28 = 1 + 2 + 3 + 4 + 0 + 6 + 0 + 0 + 0 + 0 + 0 + 12$	
		(19)

The non-zero terms of the nth row of algorithm (19) are all the divisors of n. This is due to the correct vertical alignment of the sequences $h_{\kappa}(n)$ forming the columns of the algorithm in accordance with property (18).

Therefore, the coefficients λ_n obtained from Eqs (19) coincide with the sequence of Eq.(15) and are given by

$$\lambda_n = \sum_{\kappa=1}^n h_\kappa(n) \tag{20}$$

The sequences $h_{\kappa}(n)$ introduced by Eqs (17) can be expressed for $\kappa = 1, 2, 3, ...$ compactly as follows:

$$h_{\kappa}(n) = \sum_{\ell=0}^{\kappa-1} e^{2\pi i \frac{n}{\kappa}\ell} \quad ; \quad n = \kappa, \kappa + 1, \kappa + 2, \dots$$
(21)

Example:

$$\kappa = 1 \ (\ell = 0) \ ; \ h_1(n) = 1 \ ; \ n = 1, 2, 3, ...$$
 (22)

$$\kappa = 2 \ (\ell = 0, 1) \ ; \ h_2(n) = 1 + e^{i\pi n} \ ; \ n = 2, 3, 4, 5, \dots$$
 (23)

In particular, the first four terms of sequence $h_2(n)$ read:

$$h_{2}(2) = 1 + e^{2\pi i} = 2 \qquad ; \qquad h_{2}(3) = 1 + e^{3\pi i} = 0$$

$$h_{2}(4) = 1 + e^{4\pi i} = 2 \qquad ; \qquad h_{2}(5) = 1 + e^{5\pi i} = 0 \qquad (24)$$

Therefore, $h_2(n) = (2, 0, 2, 0, ...)$; n=2, 3, 4, 5, ...(25)

$$\kappa = 3 \ (\ell = 0, 1, 2) \ ; \ h_3(n) = 1 + e^{\frac{2\pi}{3}in} + e^{\frac{4\pi}{3}in} \ ; \ n = 3, 4, 5, 6, \dots$$
 (26)

In particular, the first six terms of sequence $h_3(n)$ read:

$$h_{3}(3) = 1 + e^{2\pi i} + e^{4\pi i} = 3$$

$$h_{3}(4) = 1 + e^{\frac{8\pi}{3}i} + e^{\frac{16\pi}{3}i} = \frac{e^{8\pi i} - 1}{e^{\frac{8\pi}{3}i} - 1} = 0$$

$$h_{3}(5) = 1 + e^{\frac{10\pi}{3}i} + e^{\frac{20\pi}{3}i} = \frac{e^{10\pi i} - 1}{e^{\frac{10\pi}{3}i} - 1} = 0$$

$$h_{3}(6) = 1 + e^{4\pi i} + e^{8\pi i} = 3$$

$$h_{3}(7) = 1 + e^{\frac{14\pi}{3}i} + e^{\frac{28\pi}{3}i} = \frac{e^{14\pi i} - 1}{e^{\frac{14\pi}{3}i} - 1} = 0$$

$$h_{3}(8) = 1 + e^{\frac{16\pi}{3}i} + e^{\frac{32\pi}{3}i} = \frac{e^{16\pi i} - 1}{e^{\frac{16\pi}{3}i} - 1} = 0$$

$$h_{3}(8) = 1 + e^{\frac{16\pi}{3}i} + e^{\frac{32\pi}{3}i} = \frac{e^{16\pi i} - 1}{e^{\frac{16\pi}{3}i} - 1} = 0$$

$$(27)$$

$$h_{3}(n) = (3, 0, 0, 3, 0, 0, ...); n = 3, 4, 5, 6, ...$$

$$(28)$$

Therefore $h_3(n) = (3, 0, 0, 3, 0, 0, ...)$; n=3, 4, 5, 6, ...

We prove that $h_{\kappa}(n)$ defined by Eq.(21) has property (18):

If κ is a divisor of n viz. $\frac{n}{\kappa} = m$; m=2, 3, 4, ... we have $h_{\kappa}(n) = 1 + e^{2\pi i m} + e^{4\pi i m} + \dots + e^{2(\kappa-1)\pi i m} = \kappa$ (29a)

If κ is not a divisor of n we have

$$h_{\kappa}(n) = 1 + e^{2\pi i \frac{n}{\kappa}} + \left(e^{2\pi i \frac{n}{\kappa}}\right)^2 + \left(e^{2\pi i \frac{n}{\kappa}}\right)^3 + \dots + \left(e^{2\pi i \frac{n}{\kappa}}\right)^{\kappa-1} = \frac{e^{2\pi i n} - 1}{e^{2\pi i \frac{n}{\kappa}} - 1} = 0$$
(29b)

Taking the real part of each term of the ℓ -sum of Eq.(21), we can also obtain for κ =1,2,3,... another form of $h_{\kappa}(n)$:

$$h_{\kappa}(n) = \sum_{\ell=0}^{\kappa-1} \cos\left(2\pi \frac{n}{\kappa}\ell\right) \quad ; \quad n = \kappa, \kappa+1, \kappa+2, \dots$$
(30)

The previous examples of Eq. (21) are also derived for Eq.(30) as follows:

$$\kappa = 1 \ (\ell = 0)$$
 ; $h_1(n) = 1$; $n = 1, 2, 3, ...$ (31)

$$\kappa = 2 \ (\ell = 0, 1) \ ; \ h_2(n) = 1 + \cos(\pi n) \ ; \ n = 2, 3, 4, 5,...$$
(32)

In particular, the first four terms of sequence $h_2(n)$ read:

$$h_2(2) = 1 + \cos(2\pi) = 2$$
; $h_2(3) = 1 + \cos(3\pi) = 0$

$$h_2(4) = 1 + \cos(4\pi) = 2$$
; $h_2(5) = 1 + \cos(5\pi) = 0$ (33)

Therefore $h_2(n) = (2, 0, 2, 0, ...)$; n=2, 3, 4, 5, ... (34)

$$\kappa = 3 \ (\ell = 0, 1, 2) \ ; \ h_3(n) = 1 + \cos\left(\frac{2\pi}{3}n\right) + \cos\left(\frac{4\pi}{3}n\right) \ ; \ n = 3, 4, 5, 6, \dots$$
(35)

In particular, the first six terms of sequence $h_3(n)$ read:

$$h_{3}(3) = 1 + \cos(2\pi) + \cos(4\pi) = 3$$

$$h_{3}(4) = 1 + \cos\left(\frac{8\pi}{3}\right) + \cos\left(\frac{16\pi}{3}\right) = 0$$

$$h_{3}(5) = 1 + \cos\left(\frac{10\pi}{3}\right) + \cos\left(\frac{20\pi}{3}\right) = 0$$

$$h_{3}(6) = 1 + \cos(4\pi) + \cos(8\pi) = 3$$

$$h_{3}(7) = 1 + \cos\left(\frac{14\pi}{3}\right) + \cos\left(\frac{28\pi}{3}\right) = 0$$

$$h_{3}(8) = 1 + \cos\left(\frac{16\pi}{3}\right) + \cos\left(\frac{32\pi}{3}\right) = 0$$
(36)

Therefore
$$h_3(n) = (3, 0, 0, 3, 0, 0, ...)$$
; $n=3, 4, 5, 6, ...$ (37)

We prove that $h_{\kappa}(n)$ defined by Eq.(30) has property (18):

If
$$\kappa$$
 is a divisor of n viz. $\frac{n}{\kappa} = m$; m=2, 3, 4, ... we have
 $h_{\kappa}(n) = 1 + \cos(2\pi m) + \cos(4\pi m) + + \cos[2(\kappa - 1)\pi m] = \kappa$ (38a)

If κ is not a divisor of n so that $\sin\left(\pi\frac{n}{\kappa}\right) \neq 0$ we have ^[6]

$$h_{\kappa}(n) = \frac{\sin(\pi n)}{\sin\left(\pi\frac{n}{\kappa}\right)} \cos\left[(\kappa - 1)\pi\frac{n}{\kappa}\right] = 0$$
(38b)

Note that the imaginary part of the ℓ -sum in Eq.(21) is equal to zero:

If κ is a divisor of n viz. $\frac{n}{\kappa} = m$; m=2, 3, 4, ... we have

$$\sum_{\ell=1}^{\kappa-1} \sin(2\pi m\ell) = \sin(2\pi m) + \sin(4\pi m) + \dots + \sin[2(\kappa-1)\pi m] = 0$$
(39a)

If κ is not a divisor of n so that $\sin\left(\pi \frac{n}{\kappa}\right) \neq 0$ we use the formula ^[6]

$$\sum_{\ell=1}^{\kappa-1} \sin\left(2\pi\frac{n}{\kappa}\ell\right) = \frac{\sin(\pi n)}{\sin\left(\pi\frac{n}{\kappa}\right)} \sin\left[(\kappa-1)\pi\frac{n}{\kappa}\right] = 0$$
(39b)

Hence, for $\kappa=1, 2, 3, ...$ both Eqs(21,30) provide the harmonic sequences $h_{\kappa}(n)$ of Eqs (17) forming the columns of algorithm (19). Introducing Eqs (21,30) into Eq.(20), we obtain the coefficients λ_n of the linear representation of Eq.(14):

$$\lambda_n = \sum_{\kappa=1}^n \sum_{\ell=0}^{\kappa-1} e^{2\pi i \frac{n}{\kappa}\ell} = \sum_{\kappa=1}^n \sum_{\ell=0}^{\kappa-1} \cos\left(2\pi \frac{n}{\kappa}\ell\right) \tag{40}$$

in terms of harmonic functions. Note also that Eq.(40) is an exact formula for the sum of the divisors of n.

Let us calculate explicitly λ_1 , λ_2 , ..., λ_8 from Eq.(40):

n=1

$$\lambda_1 = \sum_{\kappa=1}^{1} \sum_{\ell=0}^{\kappa-1} \cos\left(2\pi \frac{\ell}{\kappa}\right) = \cos(2\pi 0) = 1$$
(41)

n=2

$$\lambda_2 = \sum_{\kappa=1}^2 \sum_{\ell=0}^{\kappa-1} \cos\left(4\pi \frac{\ell}{\kappa}\right) = \cos(4\pi 0) + \left\{\cos(2\pi 0) + \cos(2\pi)\right\} = 3$$
(42)

n=3

$$\lambda_{3} = \sum_{\kappa=1}^{3} \sum_{\ell=0}^{\kappa-1} \cos\left(6\pi \frac{\ell}{\kappa}\right)$$

$$\lambda_{3} = \cos(6\pi 0) + \left\{\cos(3\pi 0) + \cos(3\pi)\right\} + \left\{\cos(2\pi 0) + \cos(2\pi) + \cos(4\pi)\right\} = 4 \quad (43)$$

n=4

$$\lambda_{4} = \sum_{\kappa=1}^{4} \sum_{\ell=0}^{\kappa-1} \cos\left(8\pi \frac{\ell}{\kappa}\right)$$

$$\lambda_{4} = \cos(8\pi 0) + \left\{\cos(4\pi 0) + \cos(4\pi)\right\} + \left\{\cos\left(\frac{8\pi}{3}0\right) + \cos\left(\frac{8\pi}{3}\right) + \cos\left(\frac{16\pi}{3}\right)\right\}$$

$$+ \left\{\cos(2\pi 0) + \cos(2\pi) + \cos(4\pi) + \cos(6\pi)\right\} = 7$$
(44)

n=5

$$\lambda_{5} = \sum_{\kappa=1}^{5} \sum_{\ell=0}^{\kappa-1} \cos\left(10\pi \frac{\ell}{\kappa}\right)$$

$$\lambda_{5} = \cos(10\pi 0) + \{\cos(5\pi 0) + \cos(5\pi)\} + \left\{\cos\left(\frac{10\pi}{3}0\right) + \cos\left(\frac{10\pi}{3}\right) + \cos\left(\frac{20\pi}{3}\right)\right\}$$

$$+ \left\{\cos\left(\frac{5\pi}{2}0\right) + \cos\left(\frac{5\pi}{2}\right) + \cos(5\pi) + \cos\left(\frac{15\pi}{2}\right)\right\}$$

$$+ \left\{\cos(2\pi 0) + \cos(2\pi) + \cos(4\pi) + \cos(6\pi) + \cos(8\pi)\right\} = 6$$
(45)

n=6

$$\lambda_{6} = \sum_{\kappa=1}^{6} \sum_{\ell=0}^{\kappa-1} \cos\left(12\pi \frac{\ell}{\kappa}\right)$$

$$\lambda_{6} = \cos(12\pi0) + \{\cos(6\pi0) + \cos(6\pi)\} + \{\cos(4\pi0) + \cos(4\pi) + \cos(8\pi)\} + \{\cos(3\pi0) + \cos(3\pi) + \cos(6\pi) + \cos(9\pi)\} + \{\cos\left(\frac{12\pi}{5}0\right) + \cos\left(\frac{12\pi}{5}\right) + \cos\left(\frac{24\pi}{5}\right) + \cos\left(\frac{36\pi}{5}\right) + \cos\left(\frac{48\pi}{5}\right)\} + \{\cos(2\pi0) + \cos(2\pi) + \cos(4\pi) + \cos(6\pi) + \cos(8\pi) + \cos(10\pi)\} = 12 \quad (46)$$

$$\lambda_{7} = \sum_{\kappa=1}^{7} \sum_{\ell=0}^{\kappa-1} \cos\left(14\pi \frac{\ell}{\kappa}\right)$$

$$\lambda_{7} = \cos(14\pi 0) + \left\{\cos(7\pi 0) + \cos(7\pi)\right\} + \left\{\cos\left(\frac{14\pi}{3} 0\right) + \cos\left(\frac{14\pi}{3}\right) + \cos\left(\frac{28\pi}{3}\right)\right\}$$

$$+ \left\{\cos\left(\frac{7\pi}{2} 0\right) + \cos\left(\frac{7\pi}{2}\right) + \cos(7\pi) + \cos\left(\frac{21\pi}{2}\right)\right\}$$

$$+ \left\{\cos\left(\frac{14\pi}{5} 0\right) + \cos\left(\frac{14\pi}{5}\right) + \cos\left(\frac{28\pi}{5}\right) + \cos\left(\frac{42\pi}{5}\right) + \cos\left(\frac{56\pi}{5}\right)\right\}$$

$$+ \left\{\cos\left(\frac{7\pi}{3} 0\right) + \cos\left(\frac{7\pi}{3}\right) + \cos\left(\frac{14\pi}{3}\right) + \cos(7\pi) + \cos\left(\frac{28\pi}{3}\right) + \cos\left(\frac{35\pi}{3}\right)\right\}$$

$$+ \left\{\cos(2\pi 0) + \cos(2\pi) + \cos(4\pi) + \cos(6\pi) + \cos(8\pi) + \cos(10\pi) + \cos(12\pi)\right\} = 8$$

$$(47)$$

n=7

n=8

$$\lambda_{8} = \sum_{\kappa=1}^{8} \sum_{\ell=0}^{\kappa-1} \cos\left(16\pi \frac{\ell}{\kappa}\right)$$

$$\lambda_{8} = \cos(16\pi0) + \{\cos(8\pi0) + \cos(8\pi)\} + \left\{\cos\left(\frac{16\pi}{3}0\right) + \cos\left(\frac{16\pi}{3}\right) + \cos\left(\frac{32\pi}{3}\right)\right\}$$

$$+ \{\cos(4\pi0) + \cos(4\pi) + \cos(8\pi) + \cos(12\pi)\}$$

$$+ \left\{\cos\left(\frac{16\pi}{5}0\right) + \cos\left(\frac{16\pi}{5}\right) + \cos\left(\frac{32\pi}{5}\right) + \cos\left(\frac{48\pi}{5}\right) + \cos\left(\frac{64\pi}{5}\right)\right\}$$

$$+ \left\{\cos\left(\frac{8\pi}{3}0\right) + \cos\left(\frac{8\pi}{3}\right) + \cos\left(\frac{16\pi}{3}\right) + \cos(8\pi) + \cos\left(\frac{32\pi}{3}\right) + \cos\left(\frac{40\pi}{3}\right)\right\}$$

$$+ \left\{\cos\left(\frac{16\pi}{7}0\right) + \cos\left(\frac{16\pi}{7}\right) + \cos\left(\frac{32\pi}{7}\right) + \cos\left(\frac{48\pi}{7}\right) + \cos\left(\frac{64\pi}{7}\right) + \cos\left(\frac{80\pi}{7}\right) + \cos\left(\frac{96\pi}{7}\right)\right\}$$

$$+ \left\{\cos(2\pi0) + \cos(2\pi) + \cos(4\pi) + \cos(6\pi) + \cos(8\pi) + \cos(10\pi)$$

$$+ \cos(12\pi) + \cos(24\pi)\right\} = 15$$
(48)

Extending Eqs(19) of the algorithm and developing Eqs(40), the sequence λ_n up to n=50 reads:

$$\lambda_{n} = \{1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, \\31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, \\48, 124, 57, 93\}$$
(49)

Replacing the above coefficients into Eq.(14) we get p_{50} as a sum of 50 terms:

$$p_{50} = \frac{1}{50} \left\{ \frac{\lambda_1 p_{49}}{173525} + \frac{\lambda_2 p_{48}}{441819} + \frac{\lambda_3 p_{47}}{499016} + \frac{\lambda_4 p_{46}}{738906} + \frac{\lambda_5 p_{45}}{534804} + \frac{\lambda_6 p_{44}}{902100} + \frac{\lambda_7 p_{43}}{506088} \right. \\ \left. + \frac{\lambda_8 p_{42}}{797610} + \frac{\lambda_9 p_{41}}{579579} + \frac{\lambda_{10} p_{40}}{672084} + \frac{\lambda_{11} p_{39}}{374220} + \frac{\lambda_{12} p_{38}}{728420} + \frac{\lambda_{13} p_{37}}{302918} + \frac{\lambda_{14} p_{36}}{431448} \right. \\ \left. + \frac{\lambda_{15} p_{35}}{357192} + \frac{\lambda_{16} p_{34}}{381610} + \frac{\lambda_{17} p_{33}}{182574} + \frac{\lambda_{18} p_{32}}{325611} + \frac{\lambda_{19} p_{31}}{136840} + \frac{\lambda_{20} p_{30}}{235368} + \frac{\lambda_{21} p_{29}}{146080} \right. \\ \left. + \frac{\lambda_{22} p_{28}}{133848} + \frac{\lambda_{23} p_{27}}{72240} + \frac{\lambda_{24} p_{26}}{146160} + \frac{\lambda_{25} p_{25}}{60698} + \frac{\lambda_{26} p_{24}}{66150} + \frac{\lambda_{27} p_{23}}{50200} + \frac{\lambda_{28} p_{22}}{56112} + \frac{\lambda_{29} p_{21}}{23760} \right. \\ \left. + \frac{\lambda_{30} p_{20}}{45144} + \frac{\lambda_{31} p_{19}}{15680} + \frac{\lambda_{32} p_{18}}{24255} + \frac{\lambda_{33} p_{17}}{14256} + \frac{\lambda_{34} p_{16}}{12474} + \frac{\lambda_{35} p_{15}}{8448} + \frac{\lambda_{36} p_{14}}{12285} + \frac{\lambda_{37} p_{13}}{3838} \right. \\ \left. + \frac{\lambda_{38} p_{12}}{4620} + \frac{\lambda_{39} p_{11}}{3136} + \frac{\lambda_{40} p_{10}}{3780} + \frac{\lambda_{41} p_{9}}{1260} + \frac{\lambda_{42} p_{8}}{5112} + \frac{\lambda_{43} p_{7}}{660} + \frac{\lambda_{44} p_{6}}{924} + \frac{\lambda_{45} p_{5}}{546} + \frac{\lambda_{46} p_{4}}{360} \right. \\ \left. + \frac{\lambda_{47} p_{3}}{144} + \frac{\lambda_{48} p_{2}}{248} + \frac{\lambda_{49} p_{1}}{57} + \frac{\lambda_{50} p_{0}}{93} \right\} = \frac{10211300}{50} = 204226$$
 (50)

3. Matrix representation of partitions

Inversing linear Eqs(14), we obtain the partitions p_s in terms of $\lambda_1, \lambda_2, ..., \lambda_s$ in the form of the determinant of an s^2 -matrix. The method can be developed by the following steps:

For s=1,2 and p₀=1, Eqs(14) read

$$1p_1+0p_2=\lambda_1$$

$$-\lambda_1p_1+2p_2=\lambda_2$$
(51)
where

where

$$D_2 = \begin{vmatrix} 1 & 0 \\ -\lambda_1 & 2 \end{vmatrix} = 2!$$
(52)

Solution

$$p_{2} = \frac{1}{D_{2}} \begin{vmatrix} 1 & \lambda_{1} \\ -\lambda_{1} & \lambda_{2} \end{vmatrix} = \frac{1}{2!} \begin{vmatrix} 1 & 1 \\ -1 & 3 \end{vmatrix} = 2$$
(53)

For s=1,2,3 and $p_0=1$, Eqs(14) read

$$1p_{1}+0p_{2}+0p_{3}=\lambda_{1}$$

- $\lambda_{1}p_{1}+2p_{2}+0p_{3}=\lambda_{2}$
- $\lambda_{2}p_{1}-\lambda_{1}p_{2}+3p_{3}=\lambda_{3}$ (54)

where

$$D_{3} = \begin{vmatrix} 1 & 0 & 0 \\ -\lambda_{1} & 2 & 0 \\ -\lambda_{2} & -\lambda_{1} & 3 \end{vmatrix} = 3!$$
(55)

Solution

$$p_{3} = \frac{1}{D_{3}} \begin{vmatrix} 1 & 0 & \lambda_{1} \\ -\lambda_{1} & 2 & \lambda_{2} \\ -\lambda_{2} & -\lambda_{1} & \lambda_{3} \end{vmatrix} = \frac{1}{3!} \begin{vmatrix} 1 & 0 & 1 \\ -1 & 2 & 3 \\ -3 & -1 & 4 \end{vmatrix} = 3$$
(56)

For s=1,2,3,4 and $p_0=1$, Eqs(14) read

$$1p_{1}+0p_{2}+0p_{3}+0p_{4}=\lambda_{1}$$

- $\lambda_{1}p_{1}+2p_{2}+0p_{3}+0p_{4}=\lambda_{2}$
- $\lambda_{2}p_{1}-\lambda_{1}p_{2}+3p_{3}+0p_{4}=\lambda_{3}$
- $\lambda_{3}p_{1}-\lambda_{2}p_{2}-\lambda_{1}p_{3}+4p_{4}=\lambda_{4}$ (57)

where

$$D_4 = \begin{vmatrix} 1 & 0 & 0 & 0 \\ -\lambda_1 & 2 & 0 & 0 \\ -\lambda_2 & -\lambda_1 & 3 & 0 \\ -\lambda_3 & -\lambda_2 & -\lambda_1 & 4 \end{vmatrix} = 4!$$
(58)

Solution

$$p_{4} = \frac{1}{D_{4}} \begin{vmatrix} 1 & 0 & 0 & \lambda_{1} \\ -\lambda_{1} & 2 & 0 & \lambda_{2} \\ -\lambda_{2} & -\lambda_{1} & 3 & \lambda_{3} \\ -\lambda_{3} & -\lambda_{2} & -\lambda_{1} & \lambda_{4} \end{vmatrix} = \frac{1}{4!} \begin{vmatrix} 1 & 0 & 0 & 1 \\ -1 & 2 & 0 & 3 \\ -3 & -1 & 3 & 4 \\ -4 & -3 & -1 & 7 \end{vmatrix} = 5$$
(59)

For s=1,2,3,4,5 and $p_0=1$, Eqs(14) read

$$1p_{1}+0p_{2}+0p_{3}+0p_{4}+0p_{5}=\lambda_{1}$$

$$-\lambda_{1}p_{1}+2p_{2}+0p_{3}+0p_{4}+0p_{5}=\lambda_{2}$$

$$-\lambda_{2}p_{1}-\lambda_{1}p_{2}+3p_{3}+0p_{4}+0p_{5}=\lambda_{3}$$

$$-\lambda_{3}p_{1}-\lambda_{2}p_{2}-\lambda_{1}p_{3}+4p_{4}+0p_{5}=\lambda_{4}$$

$$-\lambda_{4}p_{1}-\lambda_{3}p_{2}-\lambda_{2}p_{3}-\lambda_{1}p_{4}+5p_{5}=\lambda_{5}$$
(60)

where

$$D_{5} = \begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ -\lambda_{1} & 2 & 0 & 0 & 0 \\ -\lambda_{2} & -\lambda_{1} & 3 & 0 & 0 \\ -\lambda_{3} & -\lambda_{2} & -\lambda_{1} & 4 & 0 \\ -\lambda_{4} & -\lambda_{3} & -\lambda_{2} & -\lambda_{1} & 5 \end{vmatrix} = 5!$$
(61)

Solution

$$p_{5} = \frac{1}{D_{5}} \begin{vmatrix} 1 & 0 & 0 & 0 & \lambda_{1} \\ -\lambda_{1} & 2 & 0 & 0 & \lambda_{2} \\ -\lambda_{2} & -\lambda_{1} & 3 & 0 & \lambda_{3} \\ -\lambda_{3} & -\lambda_{2} & -\lambda_{1} & 4 & \lambda_{4} \\ -\lambda_{4} & -\lambda_{3} & -\lambda_{2} & -\lambda_{1} & \lambda_{5} \end{vmatrix} = \frac{1}{5!} \begin{vmatrix} 1 & 0 & 0 & 0 & 1 \\ -1 & 2 & 0 & 0 & 3 \\ -3 & -1 & 3 & 0 & 4 \\ -4 & -3 & -1 & 4 & 7 \\ -7 & -4 & -3 & -1 & 6 \end{vmatrix} = 7$$
(62)

Clearly, the coefficients $\,\lambda_1,\,\lambda_2,\,...,\,\lambda_{s\text{-}1}\,$ provide for any $\,s\,$ the determinant

$$D_{s} = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ -\lambda_{1} & 2 & 0 & \dots & 0 & 0 & 0 \\ -\lambda_{2} & -\lambda_{1} & 3 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ -\lambda_{s-3} & -\lambda_{s-4} & -\lambda_{s-5} & \dots & s-2 & 0 & 0 \\ -\lambda_{s-2} & -\lambda_{s-3} & -\lambda_{s-4} & \dots & -\lambda_{1} & s-1 & 0 \\ -\lambda_{s-1} & -\lambda_{s-2} & -\lambda_{s-3} & \dots & -\lambda_{2} & -\lambda_{1} & s \end{vmatrix} = s!$$
(63)

and the general solution for the partition $\,p_s$ reads

$$p_{s} = \frac{1}{s!} \begin{vmatrix} 1 & 0 & 0 & \dots & 0 & 0 & \lambda_{1} \\ -\lambda_{1} & 2 & 0 & \dots & 0 & 0 & \lambda_{2} \\ -\lambda_{2} & -\lambda_{1} & 3 & \dots & 0 & 0 & \lambda_{3} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ -\lambda_{s-3} & -\lambda_{s-4} & -\lambda_{s-5} & \dots & s-2 & 0 & \lambda_{s-2} \\ -\lambda_{s-2} & -\lambda_{s-3} & -\lambda_{s-4} & \dots & -\lambda_{1} & s-1 & \lambda_{s-1} \\ -\lambda_{s-1} & -\lambda_{s-2} & -\lambda_{s-3} & \dots & -\lambda_{2} & -\lambda_{1} & \lambda_{s} \end{vmatrix}$$
(64)

Example: Using coefficients λ_n [Eq.(49)] up to n=10, Eq.(64) gives

Since the coefficients λ_n have already been expressed in terms of harmonic sequences by Eqs (19,40), it is clear that the s²-matrix representation of p_s in terms of λ_n [Eq.(64)] establishes a new relation between partitions and harmonic functions. Note that previous work ^[3,4] has already shown that partitions can be represented by harmonic integrals [Eq.(2)].

4. Conclusions

We study the linear representation of the partitions p_s [Eq.(14)] where each coefficient λ_n is the sum of divisors of the number n. It is shown that the coefficients λ_n are universal numbers [Eq.(15)] obtained by a well defined triangular algorithm [Eqs.(19)].

The columns of this algorithm are harmonic sequences $h_{\kappa}(n)$ defined by Eqs(17) and given explicitly by Eqs(21,30) so that λ_n can be expressed in terms of harmonic functions by Eqs(40). Inversing the linear Eqs(14), it is also shown that the partitions p_s depend on $\lambda_1, \lambda_2, ..., \lambda_s$ by an s^2 -matrix [Eq.(64)], establishing a new relation between partitions and harmonic functions.

Acknowledgment

The author would like to express his deep gratitude to Mania Manoussaki for her invaluable help and support during his investigations in the theory of partitions.

References

- T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York (1976)
- [2] M. Psimopoulos and E. Dafflon, The Principle of equal Probabilities of Quantum States, arxiv.org/2111.09246 (2021)
- [3] M. Psimopoulos, Harmonic Representations of Combinations and Partitions, arxiv.org/1102.5674 (2011)
- [4] M. Psimopoulos, Reduced Harmonic Representation of Partitions, arxiv.org/1103.1513 (2011)
- [5] T. Theocharis, Private Communication (1987).
- [6] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Academic Press, London (1980)