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Abstract

Starting with a brief review of our prior construction of n-ary alge-
bras in noncommutative Clifford spaces, we proceed to construct in full
detail the Clifford-Yang algebra which is an extension of the Yang al-
gebra in noncommutative phase spaces. The Clifford-Yang algebra al-
lows to write down the commutators of the noncommutative polyvector-
valued coordinates and momenta and which are compatible with the Ja-
cobi identities, the Weyl-Heisenberg algebra, and paves the way for a
formulation of Quantum Mechanics in Noncommutative Clifford spaces.
We continue with a detail study of the isotropic 3D quantum oscillator in
noncommutative spaces and find the energy eigenvalues and eigenfunc-
tions. These findings differ considerably from the ordinary quantum oscil-
lator in commutative spaces. We find that QM in noncommutative spaces
leads to very different solutions, eigenvalues, and uncertainty relations
than ordinary QM in commutative spaces. The generalization of QM to
noncommutative Clifford (phase) spaces is attained via the Clifford-Yang
algebra. The operators are now given by the generalized angular mo-
mentum operators involving polyvector coordinates and momenta. The
eigenfunctions (wave functions) are now more complicated functions of
the polyvector coordinates. We conclude with some important remarks.

Keywords : Strings; Branes; Clifford algebras; n-ary algebras; Noncommu-
tative Geometry.
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1 Introduction : Noncommutative Clifford Space
Coordinates and n-ary Algebras

After decades of string theory research its physical foundation is still unknown
and the question what is string theory remains unanswered. General relativity
is based on the principle of equivalence and general coordinate covariance. It
is desirable to decipher the principle governing string theory. We have learned
that string theory not only involves one-dimensional extended objects but higher
dimensional ones, p and D-branes. Furthemore, the quantization of membranes
and higher dimensional extended objects has been extremely difficult due to
the intrinsic nonlinearity. The aim of this work is an attempt to bridge these
conceptual obstacles by introducing Clifford spaces (C-spaces) [1].

Clifford algebras are deeply related and essential tools in many aspects in
Physics. The Extended Relativity theory in Clifford-spaces ( C-spaces ) is a nat-
ural extension of the ordinary Relativity theory [1] whose generalized polyvector-
valued coordinates are Clifford-valued quantities which incorporate lines, areas,
volumes, hyper-volumes.... degrees of freedom associated with the collective
particle, string, membrane, p-brane,... dynamics of p-loops (closed p-branes)
in D-dimensional target spacetime backgrounds. Namely, C-space Relativity
permits to study the dynamics of all (closed) p-branes, for different values of p,
on a unified footing [1].

Given X = XMΓM , a Clifford-valued coordinate associated to Clifford space
(C-space), it admits the following expansion in terms of the Clifford algebra
generators in D-dimensions : 1, γµ, γµ1 ∧ γµ2 , · · · , γµ1 ∧ γµ2 ∧ · · · ∧ γµD

X = x 1 + xµ γµ + xµ1µ2
γµ1 ∧ γµ2 + xµ1µ2µ3

γµ1 ∧ γµ2 ∧ γµ3 + ...... +

xµ1µ2µ3......µD
γµ1 ∧ γµ2 ∧ γµ3 ....... ∧ γµD (1.1)

The numerical combinatorial factors can be omitted by imposing the ordering
prescription µ1 < µ2 < µ3 · · · < µD. In order to match physical units in
each term of (1.1) a length scale parameter must be suitably introduced in the
expansion in eq-(1.1). In [1] we introduced the Planck scale as the expansion
parameter in (1.1), and which was set to unity, when one adopts the units
h̄ = c = G = 1.

The commuting scalar, vectorial, antisymmetric tensorial coordinates x, xµ,
xµ1µ2

= −xµ2µ1
, · · · , xµ1µ2···µD

are the scalar, vector, bivector, trivector, · · ·
components of the polyvector-valued coordinates in C-space. The xµ1µ2

bivector
(antisymmetric tensor of rank 2) corresponds to an oriented area element. The
trivector xµ1µ2µ3 (antisymmetric tensor of rank 3) corresponds to an oriented
volume element, and so forth.

A noncommutative extension of these polyvector-valued coordinates was de-
veloped in [3]. In this introduction, we briefly review such procedure to prepare
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the groundwork for the construction of the Clifford-Yang algebra and its rele-
vance in noncommutative Clifford phase spaces involving polyvector coordinates
and momenta.

We begin firstly by writing the commutators [ΓA,ΓB ]. For pq = odd one has
[2]

[ γb1b2.....bp , γa1a2......aq ] = 2γ
a1a2......aq

b1b2.....bp
−

2p!q!

2!(p− 2)!(q − 2)!
δ
[a1a2

[b1b2
γ
a3....aq ]

b3.....bp]
+

2p!q!

4!(p− 4)!(q − 4)!
δ
[a1....a4

[b1....b4
γ
a5....aq ]

b5.....bp]
− ......

(1.2)
for pq = even one has

[ γb1b2.....bp , γa1a2......aq ] = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1

[b1
γ
a2a3....aq ]

b2b3.....bp]
−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[a1....a3

[b1....b3
γ
a4....aq ]

b4.....bp]
+ ...... (1.3)

The anti-commutators for pq = even are

{ γb1b2.....bp , γ
a1a2......aq } = 2γ

a1a2......aq

b1b2.....bp
−

2p!q!

2!(p− 2)!(q − 2)!
δ
[a1a2

[b1b2
γ
a3....aq ]

b3.....bp]
+

2p!q!

4!(p− 4)!(q − 4)!
δ
[a1....a4

[b1....b4
γ
a5....aq ]

b5.....bp]
− ......

(1.4)
and the anti-commutators for pq = odd are

{ γb1b2.....bp , γa1a2......aq } = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1

[b1
γ
a2a3....aq ]

b2b3.....bp]
−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[a1....a3

[b1....b3
γ
a4....aq ]

b4.....bp]
+ ...... (1.5)

Let us write down the noncommutative algebra associated with the noncom-
muting polyvector-valued coordinates in D = 4 and which can be obtained from
the Clifford algebra by performing the following replacements (and relabeling
indices)

γµ ↔ Xµ, γµ1µ2 ↔ Xµ1µ2 , ........ γµ1µ2.....µn ↔ Xµ1µ2....µn . (1.6)

When the spacetime metric components gµν are constant, from the replacements
(1.6), and using the Clifford algebraic relations (1.2-1.5) (after one relabels in-
dices), one can then construct the following noncommutative algebra among
the polyvector-valued coordinates in D = 4, and obeying the Jacobi identities,
given by the relations [3]

[ Xµ1 , Xµ2 ] = Xµ1 Xµ2 − Xµ2 Xµ1 = 2 Xµ1µ2 . (1.7)
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As mentioned above, in most of the remaining commutators a suitable length
scale parameter must be introduced in order to match units. We shall set this
length scale (let us say the Planck scale) to unity. Secondly, by choosing the
C-space coordinates to behave like anti-Hermitian operators we avoid the need
to introduce i factors in the right hand side of (1.7), since the commutator of
two anti-Hermitian operators is anti-Hermitian.

The other commutators are

[ Xµ1µ2 , Xν ] = 4 ( gµ2ν Xµ1 − gµ1ν Xµ2 ) . (1.8)

[ Xµ1µ2µ3 , Xν ] = 2 Xµ1µ2µ3ν , [ Xµ1µ2µ3µ4 , Xν ] = −8 gµ1ν Xµ2µ3µ4 ±......
(1.9)

[ Xµ1µ2 , Xν1ν2 ] = − 8 gµ1ν1 Xµ2ν2 + 8 gµ1ν2 Xµ2ν1 +

8 gµ2ν1 Xµ1ν2 − 8 gµ2ν2 Xµ1ν1 . (1.10)

[ Xµ1µ2µ3 , Xν1ν2 ] = 12 gµ1ν1 Xµ2µ3ν2 ± ......... (1.11)

[ Xµ1µ2µ3 , Xν1ν2ν3 ] = − 36 Gµ1µ2 ν1ν2 Xµ3ν3 ± ...... (1.12)

[ Xµ1µ2µ3µ4 , Xν1ν2 ] = − 16 gµ1ν1 Xµ2µ3µ4ν2 ± ...... (1.13)

[ Xµ1µ2µ3µ4 , Xν1ν2 ] = − 16 gµ1ν1 Xµ2µ3µ4ν2 + 16 gµ1ν2 Xµ2µ3µ4ν1 − .........
(1.14)

[Xµ1µ2µ3µ4 , Xν1ν2ν3 ] = 48 Gµ1µ2µ3 ν1ν2ν3 Xµ4 − 48 Gµ1µ2µ4 ν1ν2ν3 Xµ3 + .....
(1.15)

[ Xµ1µ2µ3µ4 , Xν1ν2ν3ν4 ] = 192 Gµ1µ2µ3 ν1ν2ν3 Xµ4ν4 − .......... (1.16)

where

Gµ1µ2......µn ν1ν2......νn = gµ1ν1 gµ2ν2 ....... gµnνn + signed permutations
(1.17a)

etc......The metric componentsGµ1µ2......µn ν1ν2......νn in C-space can also be writ-
ten as a determinant of the n× n matrix G whose entries are gµIνJ

det Gn×n ≡ 1

n!
ϵi1i2.....in ϵj1j2....jn gµi1νj1 gµi2νj2 ....... gµinνjn . (1.17b)

i1, i2, ....., in ⊂ I = 1, 2, ....., D and j1, j2, ....., jn ⊂ J = 1, 2, ....., D. One must
also include in the C-space metric GMN the (Clifford) scalar-scalar component
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G00 (that could be related to the dilaton field) and the pseudo-scalar/pseudo-
scalar componentGµ1µ2.....µD ν1ν2......νD (that could be related to the axion field).

One must emphasize that when the spacetime metric components gµν are
no longer constant, the noncommutative algebra among the polyvector-valued
coordinates in D = 4, does not longer obey the Jacobi identities. For this reason
we restrict our construction to a flat spacetime background gµν = ηµν .

N -ary algebras have been known for some time since Nambu introduced his
bracket (a Jacobian) in the study of branes and the generalizations of Hamilto-
nian mechanics based on Poisson brackets. We shall recall next [3] how polyvec-
tor valued coordinates admit a very natural interpretation in terms of n−ary
commutators of vector-valued coordinates.

The ternary commutator for noncommuting coordinates is defined as

[X1, X2, X3] = X1 [X2, X3] + X2 [X3, X1] + X3 [X1, X2] =

1

2
{ X1, [X2, X3] } +

1

2
[ X1, [X2, X3] ] + cyclic permutations (1.18)

Due to the Jacobi identities, the terms

1

2
[ X1, [X2, X3] ] + cyclic permutations = 0. (1.19)

so that the ternary commutators become

[X1, X2, X3] =
1

2
{ X1, [X2, X3] } + cyclic permutations. (1.20)

After using the relations

[X2, X3] = 2 X23, { X1, X23 } = 2 X123. (1.21)

one gets finally

[X1, X2, X3] = 2 X123 + cyclic permutations = 6 X123. (1.22)

since X123 = X231 = X312 = −X132 = ......
After using the above noncommutative algebraic relations, after some labo-

rious but straightforward algebra, one arrives by recursion at the most general
n-ary commutator given by

[ X1, X2, ......., Xn ] = n! X123.....n. (1.23)

for all n = 2, 3, · · · , D [3].
The immediate consequence of the n-ary algebra of the noncommutative

polyvector-valued coordinates, associated with a quantum extension of the clas-
sical C-space, is that one must extend the usual formulation of Quantum Me-
chanics involving ordinary commutators of operators to one requiring n-ary
commutators. In other words, quantizing the classical Nambu-Poisson mechan-
ics [7].
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The momentum analog of eq-(1.23) is

[ P 1, P 2, ......., Pn ] = n! P 123.....n. (1.24)

where P 123.....n is the polyvector-valued momentum conjugate to the polyvector-
valued coordinate X123.....n in C-space. However, if one wishes to implement a
Weyl-Heisenberg algebra among the polyvector coordinates and momenta one
runs into difficulties if one must satisfy the Jacobi identities, and the general-
ized Jacobi identities (Nambu fundamental identities) associated with the n-ary
brackets (commutators).

For example, if one has the Jacobi identity

[ P 12, [X1, X2] ] + [ X1, [X2, P 12] ] + [ X2, [P 12, X1] ] = 0 (1.25)

one would arrive at [P 12, [X1, X2]] = 2[P 12, X12] = 0, when [X2, P 12] =
[P 12, X1] = 0, which is problematic since P 12 is the bivector canonical con-
jugate momentum to the bivector coordinate X12, and hence it should not have
a vanishing commutator. One would have to modify the Weyl-Heisenberg al-
gebra of all the coordinates and momenta accordingly in order to satisfy all the
(generalized) Jacobi identities, which is a very difficult task.

For these reasons in the next section we shall follow a different route and con-
struct what we coin the Clifford-Yang algebra that does not have these problems.
It allows to write down the commutators of the noncommutative polyvector
coordinates and momenta which are compatible with the Jacobi identities, and
the Weyl-Heisenberg algebra, and paves the way for a formulation of Quantum
Mechanics in Noncommutative Clifford spaces.

In section 3 we study in detail the isotropic 3D quantum oscillator in
noncommutative spaces and find the energy eigenvalues and eigenfunctions.
These findings differ considerably from the ordinary quantum oscillator in com-
mutative spaces. QM in noncommutative spaces leads to very different solutions,
eigenvalues, and uncertainty relations than ordinary QM in commutative spaces.
The generalization of QM in noncommutative (phase) spaces to noncommuta-
tive Clifford (phase) spaces is attained via the Clifford-Yang algebra described
in section 2. The operators are given by the generalized angular momentum
operators involving polyvector coordinates and momenta. The eigenfunctions
(wave functions) are now functions of the polyvector coordinates. We conclude
with some final remarks.

2 The Clifford-Yang Algebra and Noncommu-
tative Clifford Phase Spaces

The idea of a Quantum Spacetime where the spacetime coordinates do not com-
mute was proposed early on by Heisenberg and Ivanenko as a way to eliminate

6



infinities from Quantum Field Theory. Snyder published the first concrete ex-
ample [5] of a noncommutative algebra involving the spacetime coordinates, and
it was generalized shortly after by Yang [6], to include noncommuting momen-
tum variables as well. We learnt from General Relativity that the Poincare
algebra cannot be implemented on a curved spacetime, but only on its flat tan-
gent space (Minkowski spacetime). The momentum operators don’t commute
on a curved spacetime. And vice versa, by Born’s principle of reciprocity [12],
the coordinate operators do not commute on a curved momentum space. This
prompted the formulation of Quantum Mechanics and Quantum Field Theory
in Noncommutative spacetimes (also called Noncommutative QFT), and which
might cast some light in the formulation of Quantum Gravity by encoding both
key aspects of a curved and a noncommuting spacetime (a curved noncommuting
spacetime).

In [13] we suggested that Born’s Reciprocal Relativity Theory in Phase
spaces is the arena to implement a space-time-matter unification. More pre-
cisely : quantum matter curves noncommuting spacetime, and vice versa, non-
commuting spacetime curves quantum matter (quantum momentum space) as
a result of the back-reaction of quantum spacetime on quantum matter. We
believe that it is this Born’s reciprocity principle that holds important clues to
quantize gravity (geometry) in curved phase spaces within the context of Finsler
geometry.

It was shown in [14] that the radial spectrum associated with a fuzzy sphere
in a noncommutative phase space characterized by the Yang algebra, leads
exactly to a Regge-like spectrum GM2

l = l = 1, 2, 3, . . ., for all positive values
of the angular momentum l, and which is consistent with the extremal quantum
Kerr black hole solution that occurs when the outer and inner horizon radius
coincide r+ = r− = GM .

Given a flat 6D spacetime with coordinates Y A = {Y 1, Y 2, Y 3, Y 4, Y 5, Y 6},
and a metric ηAB = diag(−1,+1,+1, . . . ,+1), the Yang algebra [6] can be
derived in terms of the so(5, 1) Lorentz algebra generators described by the
angular momentum/boost operators

JAB = −(Y A ΠB − Y B ΠA) = i Y A ∂

∂YB
− i Y B ∂

∂YA
(2.1)

where ΠA = −i(∂/∂YA) is the conjugate momentum variable to Y A. Their
commutators are

[Y A, Y B ] = 0, [ΠA,ΠB ] = 0, [Y A,ΠB ] = i ηAB , A,B = 1, 2, 3, 4, 5, 6 (2.2)

The coordinates Y A commute. The momenta ΠA also commute, and Y A,ΠB

obey the Weyl-Heisenberg algebra in 6D.
Adopting the units h̄ = c = 1, the correspondence among the noncommuting

4D spacetime coordinatesXµ, the noncommuting momenta Pµ, and the Lorentz
so(5, 1) algebra generators leading to the Yang algebra [6] is given by
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Xµ ↔ LP Jµ5 = − LP (Y µ Π5 − Y 5 Πµ)

Pµ ↔ 1

L
Jµ6 = − 1

L
(Y µ Π6 − Y 6 Πµ), µ, ν = 1, 2, 3, 4 (2.3)

and which requires the introduction of an ultra-violet cutoff scale LP given
by the Planck scale, and an infra-red cutoff scale L that can be set equal to
the Hubble scale RH (which determines the cosmological constant). It is very
important to emphasize that despite the introduction of two length scales LP ,L
the Lorentz symmetry is not lost. This is one of the most salient features of the
Snyder [5] and Yang [6] algebras.

One must include also the remaining so(5, 1) generators

N ≡ J56 = −(Y 5 Π6 − Y 6 Π5), Jµν = −(Y µ Πν − Y ν Πµ), µ, ν = 1, 2, 3, 4
(2.4)

One can then verify that the Yang algebra is recovered after imposing the
above correspondence (2.3)

[Xµ, Xν ] = − i L2
P Jµν , [Pµ, P ν ] = − i (

1

L
)2 Jµν , η55 = η66 = 1 (2.5)

[Xµ, Jνρ] = i (ηµρ Xν − ηµν Xρ) (2.6)

[Pµ, Jνρ] = i (ηµρ P ν − ηµν P ρ ) (2.7)

[Xµ, P ν ] = − i ηµν
LP

L
N , [Jµν ,N ] = 0 (2.8)

[Xµ, N ] = i LPL Pµ, [Pµ, N ] = − i
1

LPL
Xµ (2.9)

and where the [Jµν , Jρσ] commutators are the same as in the so(3, 1) Lorentz
algebra in 4D. They are of the form

[ Jµ1µ2 , Jν1ν2 ] = − i ηµ1ν1 Jµ2ν2 + i ηµ1ν2 Jµ2ν1 +

i ηµ2ν1 Jµ1ν2 − i ηµ2ν2 Jµ1ν1 , h̄ = c = 1 (2.10)

The generators are assigned to be Hermitian so there are i factors in the right-
hand side of eq-(2.10) since the commutator of two Hermitian operators is anti-
Hermitian. The 4D spacetime metric is ηµν = diag(−1, 1, 1, 1).

Given the above correspondence (2.3), one can extend it further to the higher
grade polyvector coordinates and momenta as follows

Xµν ↔ L2
P Jµν5, Jµν5 ≡ − (Y µν Π5 − Y 5 Πµν) (2.11)

Pµν ↔ 1

L2
Jµν6, Jµν6 ≡ − (Y µν Π6 − Y 6 Πµν) (2.12)

Xµνρ ↔ L3
P Jµνρ5, Jµνρ5 ≡ − (Y µνρ Π5 − Y 5 Πµνρ) (2.13)
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Pµνρ ↔ 1

L3
Jµνρ6, Jµνρ6 ≡ − (Y µνρ Π6 − Y 6 Πµνρ) (2.14)

Xµνρτ ↔ L4
P Jµνρτ5, Jµνρτ5 ≡ − (Y µνρτ Π5 − Y 5 Πµνρτ ) (2.15)

Pµνρτ ↔ 1

L4
Jµνρτ6, Jµνρτ6 ≡ − (Y µνρτ Π6 − Y 6 Πµνρτ ) (2.16)

The correspondence in eqs-(2.11-2.16) is just the natural extension of the
correspondence in eq-(2.3). Working with dimensionless generalized angular
momenta allows to simply match the physical units in eqs-(2.11-2.16) by intro-
ducing numerical factors involving suitable powers of LP ,L as shown.

For example, the way to have a dimensionless Jµν5 = −(Y µν Π5 − Y 5 Πµν)
is by inserting suitable powers of a length λl and momentum scale λp parameter
as follows Jµν5 = −[(λl)

−1Y µν Π5 − Y 5 Πµν(λp)
−1)]. Another example is

Jµνρ5 = −[(λl)
−2Y µνρ Π5 − Y 5 Πµνρ(λp)

−2], and so forth. By setting the
parameters λl = 1 and λp = 1, it won’t be necessary to explicitly write them
down in all of our expressions. λl can be identified with the Planck length LP ,
and λp with the Planck mass in units of h̄ = c = G = 1. However, we shall
retain LP explicitly in our fundamental expressions as a book-keeping device.

From the correspondence in eqs-(2.3, 2.11-2.16) one can then read-off the rel-
evant commutators. For convenience, we shall omit the signs in the right hand
side of most of the commutators. One can always incorporate the signs from
the defining generalized angular momentum algebra in the 6D space. There-
fore, the commutators involving the noncommuting polyvector coordinates and
momenta of the Clifford phase space associated with the Clifford algebra in 4D
spacetime are then given by

[Xµ, Xν ] ∼ iL2
P Jµν , [Pµ, P ν ] ∼ iL−2 Jµν , (2.17)

The noncommuting bivector coordinates obey

[Xµ1µ2 , Xν1ν2 ] ∼ iL4
P η55 Jµ1µ2|ν1ν2 , Jµ1µ2|ν1ν2 ≡ −(Y µ1µ2 Πν1ν2 − Y ν1ν2 Πµ1µ2)

(2.18)
Y µ1µ2 is a bivector coordinate associated with the Cl(5, 1) algebra of the 6D
flat spacetime. Πµ1µ2 = −i(∂/∂Yµ1µ2) is the corresponding bivector momentum
conjugate. Their commutators are

[Y µ1µ2 , Y ν1ν2 ] = 0, [Πµ1µ2 ,Πν1ν2 ] = 0, [Y µ1µ2 , P ν1ν2 ] = i ηµ1µ2|ν1ν2 (2.19)

and from eq-(1.17b) one has that the generalized metric involving bivector in-
dices is

ηµ1µ2|ν1ν2 = ην1ν2|µ1µ2 = ηµ1ν1 ηµ2ν2 − ηµ1ν2 ηµ2ν1 (2.20)
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The noncommuting bivector momenta obey

[Pµ1µ2 , P ν1ν2 ] ∼ iL−4 η66 Jµ1µ2|ν1ν2 (2.21)

Similarly,

[Xµ1µ2µ3 , Xν1ν2ν3 ] ∼ iL6
P η55 Jµ1µ2µ3|ν1ν2ν3 (2.22)

Jµ1µ2µ3|ν1ν2ν3 ≡ − (Y µ1µ2µ3 Πν1ν2ν3 − Y ν1ν2ν3 Πµ1µ2µ3) (2.23)

Y µ1µ2µ3 is a trivector coordinate associated with the Cl(5, 1) algebra of the
6D flat spacetime. Πµ1µ2µ3 = −i(∂/∂Yµ1µ2µ3

) is the corresponding trivector
momentum conjugate. Their commutators are

[Y µ1µ2µ3 , Y ν1ν2ν3 ] = 0, [Πµ1µ2µ3 ,Πν1ν2ν3 ] = 0,

[Y µ1µ2µ3 , P ν1ν2ν3 ] = i ηµ1µ2µ3|ν1ν2ν3 (2.24)

ηµ1µ2µ3|ν1ν2ν3 = ην1ν2ν3|µ1µ2µ3 = ηµ1ν1 ηµ2ν2 ηµ3ν3 ± · · · (2.25)

where the terms · · · in the right hand side are obtained from permutations of
indices.

The noncommuting trivector momenta obey

[Pµ1µ2µ3 , P ν1ν2ν3 ] ∼ iL−6 η66 Jµ1µ2µ3|ν1ν2ν3 (2.26)

The commutator

[Xµ1µ2µ3µ4 , Xν1ν2ν3ν4 ] ∼ iL8
P η55 Jµ1µ2µ3µ4|ν1ν2ν3ν4 → 0 (2.27)

vanishes since in 4D the generator

Jµ1µ2µ3µ4|ν1ν2ν3ν4 ≡ Y µ1µ2µ3µ4 Πν1ν2ν3ν4 − Y ν1ν2ν3ν4 Πµ1µ2µ3µ4 → 0 (2.28)

vanishes identically.
Y µ1µ2µ3µ4 is a quadvector coordinate associated with the Cl(5, 1) algebra

of the 6D flat spacetime. Πµ1µ2µ3µ4 = −i(∂/∂Yµ1µ2µ3µ4
) is the corresponding

quadvector momentum conjugate. Their commutators are

[Y µ1µ2µ3µ4 , Y ν1ν2ν3ν4 ] = 0, [Πµ1µ2µ3µ4 ,Πν1ν2ν3ν4 ] = 0,

[Y µ1µ2µ3µ4 , P ν1ν2ν3ν4 ] = i ηµ1µ2µ3µ4|ν1ν2ν3ν4 (2.29)

ηµ1µ2µ3µ4|ν1ν2ν3ν4 = ην1ν2ν3ν4|µ1µ2µ3µ4 = ηµ1ν1 ηµ2ν2 ηµ3ν3 ηµ4ν4 ± · · · (2.30)

The quadvector momenta commutator also vanishes in 4D
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[Pµ1µ2µ3µ4 , P ν1ν2ν3ν4 ] ∼ iL−8 η66 Jµ1µ2µ3µ4|ν1ν2ν3ν4 → 0 (2.31)

The modified Weyl-Heisenberg algebra is

[Xµ, P ν ] =
LP

L
[Jµ5, Jν6] = − i

LP

L
ηµν N , N ≡ J56 (2.32)

[Xµ1µ2 , P ν1ν2 ] ∼ i
L2
P

L2
ηµ1µ2|ν1ν2 N (2.33)

[Xµ1µ2µ3 , P ν1ν2ν3 ] ∼ i
L3
P

L3
ηµ1µ2µ3|ν1ν2ν3 N (2.34

[Xµ1µ2µ3.µ4 , P ν1ν2ν3ν4 ] ∼ i
L4
P

L4
ηµ1µ2µ3µ4|ν1ν2ν3ν4 N (2.35)

The commutators where the polyvector coordinates are exchanged for polyvec-
tor momenta, and vice versa, are of the form

[Xµ, N ] = i LPL Pµ, [Pµ, N ] = − i
1

LPL
Xµ (2.36)

[N , Xµ1µ2 ] = L2
P [J56, Jµ1µ25] ∼ iL2

PL2 η55 Pµ1µ2 (2.37)

[N , Pµ1µ2 ] = L−2 [J56, Jµ1µ26] ∼ iL−2
P L−2 η66 Xµ1µ2 , · · · (2.38)

and so forth.
The commutator of the Clifford scalar coordinate X with the Clifford scalar

momentum P is simply [X,P ] = −iJ56 = −iN . X,P are chosen to be dimen-
sionless. This results from the correspondence between the 4D Clifford scalars
X,P and the 6D coordinates and momenta given by

X ↔ − (Y Π5 − Y 5 Π), P ↔ − (Y Π6 − Y 6 Π) (2.39)

where Y,Π are the Clifford scalar coordinate and scalar momentum associated
with the Cl(5, 1) algebra in 6D, and obeying [Y,Π] = i.

From the correspondence (2.11-2.16) one can write many other commutators,
but to simplify matters we shall stop here since the number of combinations is
very large. All the commutators have the same structural form of a generalized
angular momentum algebra as follows

[JA(r1)|B(r2), JC(s1)|D(s2)] = −i ηA(r1)|C(s1) JB(r2)|D(s2) +i ηA(r1)|D(s2) JB(r2)|C(s1) +

i ηB(r2)|C(s1) JA(r1)|D(s2) − i ηB(r2)|D(s2) JA(r1)|C(s1), h̄ = c = 1 (2.40)
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where the grades of the polyvector indices A(r1)B(r2), C(s1), D(s2) appearing
in the generators are r1, r2, s1, s2, respectively. The shorthand notation for
Ja1a2···ar1 |b1b2···br2 is JA(r1)|B(r2), · · ·. The generalized metric tensor ηA|C = 0 if
the grade of A is not equal to the grade of C. Similarly, ηA|D = 0 if the grade of
A is not equal to the grade of D, · · ·. Also, ηµ5 = ηµ6 = 0 since the 6D metric
is diagonal. The commutators (2.40) will ensure that the Jacobi identities are
satisfied.

The noncommutative polyvector coordinates and momenta described by
the algebraic relations in this section are the defining relations of what we may
call the Clifford-Yang algebra. It is a novel algebra to our knowledge. The
Clifford-Yang algebra displays Born’s Reciprocity. The commutators enjoy a
coordinate/momentum symmetry (reciprocity).

Reinstating h̄ which was set to unity, the modified uncertainty relations due
to the Yang algebra are obtained from the Robertson-Schrodinger inequalities

∆Xµ ∆Pν ≥ 1

2
|⟨ [Xµ, Pν ] ⟩| ⇒ ∆Xµ ∆Pν ≥ h̄LP

2L
δµν |⟨ J56 ⟩| =

|m̃|h̄LP

2L
δµν

(2.41)
after evaluating the expectation values with respect to the normalized eigen-
functions of J56 (rotations in the Y5 − Y6 plane) given by 1√

2π
eim̃ϕ, with m̃ an

integer that differs from the quantum number m corresponding to the Ylm(θ, φ)
spherical harmonics associated with the three-dim angular momentum opera-
tors. The eigenfunctions of the angular momentum operators J2

SN associated
with the N -dim sphere SN are given in terms of N angles θ1, θ2, · · · , θN , and
N quantum numbers l1, l2, l3, · · · , lN , and were studied long ago by [8]. In 5-
spatial dimensions one would require in general to study the eigenfunctions of
the angular momentum operators in S4 which are highly nontrivial.

The uncertainty relations involving the bivector coordinates Xµ1µ2 , Pν1ν2
,

with µ1 < µ2; ν1 < ν2, is given by

∆Xµ1µ2 ∆Pν1ν2
≥ 1

2
|⟨ [Xµ1µ2 , Pν1ν2

] ⟩| ⇒

∆Xµ1µ2 ∆Pν1ν2
≥ |m̃|h̄2L2

P

2L2
δµ1µ2
ν1ν2

(2.42)

δµ1µ2
ν1ν2

= δµ1
ν1

δµ2
ν2

− δµ1
ν2

δµ2
ν1

(2.43)

and so forth with the higher grade polyvectors coordinates and momenta.
Therefore, one learns that due to the noncommutative coordinates and mo-

menta, the uncertainty relations (2.41) differ from the ones in standard QM.
This is one of the salient features of the Yang algebra, and by extension, to
the polyvector coordinates and momenta of the Clifford-Yang algebra. In the
next section we shall study the isotropic quantum oscillator in noncommutative
spaces.
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3 The Quantum Oscillator in Noncommutative
Spaces

In [14] we discussed two approaches in the evaluation of the areal spectrum in 3D
and associated with noncommutative coordinates that we labeled as operators
as xi; i = 1, 2, 3. One approach was to write the operator L−2

P

∑i=3
i=1 xix

i (in

Planck units) as the difference
∑i,j=4

i,j=1 J
2
ij−

∑i,j=3
i,j=1 J

2
ij of the total orbital angular

momentum squared in D = 4 and D = 3. So the eigenvalues can be obtained
from the difference between the quadratic Casimirs of SO(4) and SO(3) given
by C2[SO(4)]−C2[SO(3)] = l3(l3+2)− l2(l2+1), where l3 is the orbital angular
momentum quantum number of the three-sphere S3, and l2 is the orbital angular
momentum quantum number of the two-sphere S2. In the very special case
when l3 = l2 the difference C2[SO(4)]−C2[SO(3)] is given by l2 and such that∑i=3

i=1 xix
i = l2L

2
P turns out to be linear in the angular momentum quantum

number of the two-sphere l2 = l.
However there is a subtlety because the eigenfunctions of the angular momen-

tum operators associated with S2 and S3 are not the same. The eigenfunctions
of the angular momentum operators J2

S2 associated with S2 are the spherical
harmonics Ylm(θ, φ) and which can be rewritten as Yl2l1(θ2, θ1)

Yl2l1(θ2, θ1) ≡ Ylm(θ, φ) = (−1)m
√

2l + 1

4π

√
(l −m)!

(l +m)!
Pm
l (cosθ) eimφ (3.1)

with l1 = m, l2 = l; θ2 = θ, θ1 = φ and where Plm(cosθ) are the associated
Legendre ploynomials.

The eigenfunctions of the angular momentum operators J2
S3 associated with

S3 are given in terms of three angles θ1 = φ, θ2 = θ, θ3 = ξ and three quantum
numbers l1, l2, l3, obeying l3 ≥ l2 ≥ |l1|, as follows [8]

Yl1l2l3(θ, φ, ξ) = Yl1l2(θ, φ)

√
2l3 + 2

2

(l3 + l2 + 1)!

(l3 − l2)!

√
sinξ P

−(l2+
1
2 )

l3+
1
2

(cosξ)

(3.2)

where P
−(l2+

1
2 )

l3+
1
2

(cosξ) is the associate Legendre function of the first kind that

can be written in terms of the hypergeometric function 2F1 as

P
−(l2+

1
2 )

l3+
1
2

(cosξ) ≡ 1

Γ(1 + l2 +
1
2 )

(
1− cosξ

1 + cosξ
)

1
2 (l2+

1
2 ) ×

2F1

(
−(l3 +

1

2
), (l3 +

1

2
) + 1; 1 + (l2 +

1

2
);

1− cosξ

2

)
(3.3)

Note that because Yl1l2l3(θ, φ, ξ) factorizes Yl1l2(θ, φ)Fl3l2(ξ), it can be seen
also as an eigenfunction of J2

S2 (the angular momentum operator associated with
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S2) because J2
S2Yl1l2l3(θ, φ, ξ) = l2(l2 +1)Yl1l2l3(θ, φ, ξ) due to the factorization

property and the trivial fact that J2
S2 does not act on the extra angle ξ.

Therefore one has

(

i=3∑
i=1

xix
i) Yl1l2l3 = L2

P (J2
S3 −J2

S2) Yl1l2l3 = L2
P [l3(l3 +2)− l2(l2 +1)]Yl1l2l3

(3.4a)
giving L2

P l2Yl1l2l3 for the right hand side in the special case when l3 = l2. Since
4πr2 is the area of a sphere, when the coordinates are noncommutative, we
can label r2 as the square of the radial operator, and the area spectrum of the
quantum sphere is 4πL2

P [l3(l3 + 2) − l2(l2 + 1)]. The areal spectrum becomes
linear in the angular momentum when l3 = l2 = l, so the areas are quantized
in multiples of the Planck area, not unlike the Schwarzschild black hole horizon
areas quantized in bits of Planck areas [15],

Repeating this whole procedure for the momentum, the spectrum of the
noncommutative momenta that we labeled as operators by pi, and that have a
correspondence with the angular momentum Ji5, is given by

(

i=3∑
i=1

pip
i) Yl1l2 l̃3

= L−2 (J2
S̃3 − J2

S2) Yl1l2 l̃3
=

L−2 [l̃3(l̃3 + 2)− l2(l2 + 1)] Yl1l2 l̃3
(3.4b)

where the 3-spheres are not the same S3 ̸= S̃3, because S3 lives in the (Y1, Y2, Y3, Y4)
space, while S̃3 lives in the (Y1, Y2, Y3, Y5) space. However, because there is
an S2-overlap of S3 and S̃3 in the (Y1, Y2, Y3) space, as result of this over-
lap one should have functions depending only on 4 angles, Yl1l2l3(θ, φ, ξ), and
Yl1l2 l̃3

(θ, φ, ξ̃), given by θ, φ, ξ, ξ̃, instead of 6 angles. For this reason the quan-

tum numbers describing the momentum eigenfunctions are l1, l2, l̃3. The areal
momentum (3.4b) is quantized in units of L−2. Setting L to the Hubble scale,
one finds that the areal momentum is quantized in bits of a minimal areal mo-
mentum. Likewise, the areas were quantized in bits of a minimal Planck area.

One could try to exploit the factorization property Yl1l2l3(θ, φ, ξ) =
Yl1l2(θ, φ)Fl3l2(ξ) in the study of the noncommuting 3D isotropic oscillator,
involving the noncommuting spatial momenta and coordinatesPi,Xi; i = 1, 2, 3.
Let us look for the energy eigenvalues and eigenfunctions associated with the
following Hamiltonian operator

(
P2

i

2m
+

mω2

2
X2

i )Ψ = E Ψ, i = 1, 2, 3 (3.5)

where m,ω is the mass and frequency of the oscillator. After using the corre-
spondence of the previous section between the noncommuting coordinates and
momenta with the angular momentum operators, eq-(3.5) becomes
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(
1

2mL2
(Yi∂5 − Y5∂i)

2 +
mω2

2
L2
p (Yi∂4 − Y4∂i)

2 + E

)
Ψ(Y1, Y2, Y3, Y4, Y5) = 0

(3.6)
Eq-(3.6) can also be written as

(
1

2mL2
(Ji5)

2 +
mω2

2
L2
p (Ji4)

2 − E

)
Ψ(Y1, Y2, Y3, Y4, Y5) = 0 (3.7)

Let us look for spherically symmetric solutions in 5 spatial dimensions by intro-
ducing the radial coordinate r2 = (Y1)

2 +(Y2)
2 +(Y3)

2 +(Y4)
2 +(Y5)

2, and the
4 angles associated with S4, to be of the form

Ψ = Ξ(r) Yl1l2l3l4(θ1, θ2, θ3, θ4) (3.8)

where the eigenfunctions Yl1l2l3l4(θ1, θ2, θ3, θ4) of the angular momentum op-
erators in S4 can be found in [8]. Ξ(r) governs the radial part that is not
affected by the angular momentum operators. One may set Ξ(r) = C to a con-
stant which can be fixed from the normalization condition of the wave function
C2

∫
Yl1l2l3l4Y

∗
l1l2l3l4

dΩ4 = 1 resulting from an integration over the four-dim
solid angle Ω4 in S4. One may note that the 4 angles θ1, · · · , θ4 encode al-
ready a functional dependence on the full 5 cartesian coordinates Y1, · · · , Y5.
For example, in 3D one has tan(φ) = y

x ; cos(θ) =
z
r .

After rewriting

i=3∑
i=1

( J2
i4 + J2

i5 ) =

i=3∑
i=1

(J2
i4 + J2

i5) +

i,j=3∑
i,j=1

J2
ij + J2

45 −

i,j=3∑
i,j=1

J2
ij − J2

45 = J2
S4 − J2

S2 − J2
S1 (3.9)

and setting m2L2 = ω2L2
P = 1, eq-(3.7) can be recast in the form

m

2
( J2

S4 − J2
S2 − J2

S1 − 2E

m
) Yl1l2l3l4(θ1, θ2, θ3, θ4) = 0 (3.10)

given in terms of the angular momentum operators corresponding to S4, S2, S1

respectively. S1 is spanned by the Y4, Y5 coordinates and associated to rotations
in the Y4−Y5 plane. Similarly, S2 is spanned by the Y1, Y2, Y3 coordinates, and
S4 is spanned by the 5 spatial coordinates Y1, Y2, · · · , Y5.

A set of commuting generalized orbital angular momentum operators in
N -dimensional polar coordinates can be defined, and their eigenvalues and si-
multaneous eigenfunctions can be determined by the use of results known from
the factorization method of solving eigenvalue problems [8]. Basically, if a
polar coordinate system in N -dim is known then a polar coordinate system in
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N + 1-dim can be constructed by iteration. Also, if two polar coordinate sys-
tems are known in N1, N2 dimensions a third polar coordinate systems can be
constructed in N1 +N2 dimensions [8]. From this construction one learns that

[J2
S4 , J2

S2 ] = 0, [J2
S4 , J2

S1 ] = 0, [J2
S2 , J2

S1 ] = 0 (3.11)

When the angles θ1, θ2, θ3, θ4 are arranged consistently with the nested set
of the spheres S1 ⊂ S2 ⊂ S3 ⊂ S4, due to the factorization property of
Yl1l2l3l4(θ1, θ2, θ3, θ4), as we saw earlier in the case of Yl1l2l3(θ, φ, ξ) in eq-(3.2),
then one has that Yl1l2l3l4(θ1, θ2, θ3, θ4) is a common eigenfunction of the angular
momentum operators but with different eigenvalues

J2
S4 Yl1l2l3l4(θ1, θ2, θ3, θ4) = l4(l4 + 3) Yl1l2l3l4(θ1, θ2, θ3, θ4) (3.12a)

J2
S2 Yl1l2l3l4(θ1, θ2, θ3, θ4) = l2(l2 + 1) Yl1l2l3l4(θ1, θ2, θ3, θ4) (3.12b)

J2
S1 Yl1l2l3l4(θ1, θ2, θ3, θ4) = (l1)

2 Yl1l2l3l4(θ1, θ2, θ3, θ4) (3.12c)

Therefore, from eqs-(3.10, 3.12) one obtains the energy eigenvalues

El4l2l1 =
m

2
[ l4(l4 + 3) − l2(l2 + 1) − (l1)

2], l4 ≥ l2 ≥ |l1| (3.13)

To ensure that El4l2l1 ≥ 0 one has to choose the values of l4, l2, l1 appropriately.
The result (3.13) was obtained in the very special case whenm2L2 = ω2L2

P =
1. When these conditions are not met then one cannot rewrite eq-(3.7) in the
form described by eq-(3.10) and this complicates matters. To find the eigen-
values and eigenfunctions in the more general case is a more difficult task. In
this case one would have a radial dependence as found in [14]. The conditions
m2L2 = ω2L2

P = 1 select a minimal mass for m given by the inverse of the
infrared cut-off scale (Hubble radius), and select a Planck energy for the value
of the frequency ω (h̄ = c = 1 units). The Yang algebra captures both physics in
the ultra-violet (small scales) and in the infra-red (large scales), a key property
that a successful theory of Quantum Gravity must have.

Compare the noncommutative isotropic 3D oscillator described by the dif-
ferential equation (3.6) involving 5 variables Y1, Y2, · · · , Y5 with the ordinary
isotropic 3D oscillator in QM involving a differential equation in 3 variables
associated with the 3 commuting coordinates [Xi,Xj ] = 0, and commuting
momenta [Pi,Pj ] = 0, with [Xi,Pj ] = ih̄δij . The energy eigenvalues are
E = (n1 + n2 + n3 + 3

2 )h̄ω, with n1, n2, n3 integers, and the eigenfunctions
factorize into products of Gaussians and Hermite polynomials. In spherical
coordinates the solutions are given by [9], [11]

Ψklm = Nkl r
l e−κr2 L

(l+ 1
2 )

k (2κr2) Ylm(θ, φ) (3.14)

where Nkl is a normalization constant. κ = Mω
2h̄ ; M is the mass of the particle.

L
(l+ 1

2 )

k (2κr2) are the generalized Laguerre poynomials, with k a non-negative
integer. Ylm(θ, φ) are the 3D spherical harmonics.

The energy eigenvalue is
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E = h̄ ω

(
2k + l +

3

2

)
(3.15)

and is usually described by the single quantum number n ≡ 2k + l which is
associated with the radial quantum number k and l. Whereas the energy eigen-
values found in eq-(3.13) depend only on the angular quantum numbers l4, l2, l1,
since there is no radial dependence of the wave function.

The degeneracy at every level is∑
l=···,n−2,n

(2l + 1) =
(n+ 1)(n+ 2)

2
(3.16)

where the sum starts from 0 or 1, according to whether n is even or odd. This
amounts to the dimensionality of a symmetric representation of SU(3) [10],
[11] the relevant degeneracy group. For details of the isotropic N -dimensional
quantum oscillator we refer to [11].

4 Conclusion

We found that QM in noncommutative spaces leads to very different solutions,
eigenvalues, and uncertainty relations than ordinary QM in commutative spaces.
The generalization of QM in noncommutative (phase) spaces to noncommuta-
tive Clifford (phase) spaces is attained via the Clifford-Yang algebra described
in section 2. The operators are given by the generalized angular momentum op-
erators involving polyvector coordinates and momenta as shown in (2.11-2.16 ).
The eigenfunctions (wave functions) are functions of the polyvector coordinates
Y, Yi, Yij , Yijk, · · ·. The differential equations required to solve are more compli-
cated than the ones described above. The relativistic case requires adding the
temporal coordinates leading to a formulation of QFT in Clifford spaces.

We avoided the need to use star products and symplectic Clifford Algebras
developed by Crumeyrolle in our treatment of noncommutative Clifford phase
spaces. Choosing the 6D metric ηAB = diag(−1, 1, 1, 1, 1,−1) leads to the con-
formal algebra so(4, 2) ∼ su(2, 2). The Clifford-Yang algebra does not change
much, one just needs to take into account that η66 = −1.

In [16] we extended Born’s principle of reciprocity [12] to the case of curved
spacetimes and constructed a deformed Born reciprocal general relativity the-
ory in curved spacetimes (without the need to introduce star products) as a local
gauge theory of the deformed Quaplectic group that is given by the semi-direct
product of U(1, 3) with the deformed Weyl-Heisenberg group. The Hermitian
metric is complex-valued with symmetric and nonsymmetric components and
there are two different complex-valued Hermitian Ricci tensors.

The relevance of this work [16] is that it bears many similarities with the
construction of the Yang algebra by invoking higher dimensions and the alge-
bras so(5, 1), so(4, 2). This is because the semi-direct product of U(1, 3) with

17



the deformed Weyl-Heisenberg group can be embedded into a U(1, 4) group as
shown in [16]. It is warranted to explore further relations between the noncom-
mutative Born reciprocal relativity theory and the Yang algebra.
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