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Abstract 
We extend in two dimensions the problem of prime numbers by introducing a triangular algorithm which 
attributes to each prime the number 1 and to each nonprime the number 0: 

n μn 

2 1 = 1 
3 1 = 1 · 1 
4 0 = 1 · 0 · 1 
5 1 = 1 · 1 · 1 · 1 
6 0 = 1 · 0 · 0 · 1 · 1 
7 1 = 1 · 1 · 1 · 1 · 1 · 1 
8 0 = 1 · 0 · 1 · 0 · 1 · 1 · 1 
9 0 = 1 · 1 · 0 · 1 · 1 · 1 · 1 · 1 

10 0 = 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 · 1 
It is shown that the positions of the primes within the set of integers are not arbitrary, but are the result of precise 
combinations of the vertical harmonic sequences forming this algorithm. The characteristic function μn defining the 
positions of the primes is obtained from the product of the elements of each row of the algorithm:    μ2 = 1  ; �� =  ��1 − 1�  ���� 	2
 �� ℓ����

ℓ��

���

���
=  � 1 ;  � �� � �����      

    0 ;  � �� ��� � �����     ;   � = 3,4,5, … 

The prime counting function ℼ(Ν) [equal to the number of primes that are smaller or equal to a given integer N≥2] 
and the index s= ℼ(p) of a prime p, are expressed as sums over μn: 

ℼ�N� =  ����

���
                        � =  ���	

���
   

so that ℼ(Ν)=(1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5,…)  ;  N=2, 3, 4, 5,…  is calculated exactly without resorting to the ζ-function 
and to Riemann’s hypothesis. Inversely, it is shown that the sth prime is given by  

�
 = 2 + 2
�� ���[�2� − 1��]���� ��� [2��/�

�

�

���
ℼ���] �� 

and the full set of primes ps = (2, 3, 5, 7, 11, 13, 17, 19,…)  ;  s=1, 2, 3,…  is derived in terms of harmonic functions. 
An alternative form of μn is also obtained by an additive harmonic triangular algorithm and the solution of equation  ����� 	2
 �� ℓ� = 0

���

ℓ��

���

���
 

is shown to define all the primes n=3, 5, 7, 11, 13, 17,…except n=2. 
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1. Introduction 

 
In his interesting book “The music of the primes” [1] Marcus du Sautoy describes the 

epic journey of finding order in the distribution of the most important numbers of 
mathematics: the primes. Are they infinite? Is there harmony in their positions among 
integers or they are governed by statistical laws? These questions led us from the original 
work of Euclid and Eratosthenes to the fundamental theories of Euler, Gauss, Dirichlet and 
Riemann. In particular, Gauss and Legendre by inspection of the tables of primes, proposed 
at the end of the 18th century an asymptotic formula for the number of primes ℼ(Ν) not 
exceeding a certain positive integer N>2: ℼ(Ν) ≈ N/lnN; N≫1. This conjecture was solved 
about hundred years later (1896) by Hadamard and de la Vallee Poussin and is now known 
as the prime number theorem [2]. On the other hand, Riemann [3] (1859) also proposed that 
the calculation of the nontrivial roots of the ζ-function, all existing on the line  � = �

�  of the 
complex plane (Riemann hypothesis), may lead to the derivation of ℼ(Ν) and the 
determination of the distribution of primes. Since then, many mathematicians have 
developed various theories about prime numbers leading, as it was well put by John 
Derbyshire in his excellent book [4], to a veritable “Prime Obsession”. 

Reading about the efforts made to study the problem of the primes, one may 
observe a connection to another equally difficult problem, this time in physics, that 
occupied the minds of many scientists over centuries: the question of the motion of the 
planets. Is their motion random? Or some periodic elements that are observed are related 
to deeper harmonic laws? Again, this problem started from the Greek philosophers and 
Ptolemy and it was completely solved by Copernicus, Kepler, Galileo and Newton. It is now 
recognized that the crucial step in the solution of the planetary motion was to transfer the 
origin of the frame of reference from the Earth to the Sun and subsequently to identify the 
orbits of the planets as two-dimensional (2-D) curves located on a plane where the 
harmonic nature of the motion is fully manifested. 
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The approach in the present article follows similar logic. Consider the following 
harmonic sequences: 

h1(n) = (1, 1, 1, 1, …) ; n = 1, 2, 3,… 
h2(n) = (2, 0, 2, 0,…)  ; n = 2, 3, 4,… 
h3(n) = (3, 0, 0, 3, 0, 0, …)  ; n = 3, 4, 5,… 
h4(n) = (4, 0, 0, 0, 4, 0, 0, 0,…)   ;  n = 4, 5, 6,…   

    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .           (1a) 
 
written compactly as  

           h�(n) = � cos �2π n
κ ℓ�   ;    n = κ, κ + 1, κ + 2, … ;  � = 1, 2, 3 …                                 (1b)

���

ℓ��
 

Using the above sequences as columns we construct a 2-D triangular matrix where 
n=1,2,3,…  is the index of the rows and  κ=1,2,3,…  is the index of the columns. From the 
way the matrix is constructed it becomes clear that the elements of each row of the matrix 
represent the divisors of the index  n  of that row: 
 

n             1 1            2 1 2           3 1 0 3          4 1 2 0 4         5 1 0 0 0 5        6 1 2 3 0 0 6       7 1 0 0 0 0 0 7      8 1 2 0 4 0 0 0 8     9 1 0 3 0 0 0 0 0 9    10 1 2 0 0 5 0 0 0 0 10   11 1 0 0 0 0 0 0 0 0 0 11  12 1 2 3 4 0 6 0 0 0 0 0 12 
           .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .           (2) 
Therefore, the above harmonic triangular matrix  leads to the important conclusion that the 
divisors of successive positive integers are not arbitrary and independent of each other but 
they are inter-related by harmonic laws.  In the present article, extending this idea to prime 
numbers and using again only harmonic sequences as columns, we construct another 
harmonic 2-D triangular matrix having elements (0,1) where again the elements of each 
row correspond to the divisors of the index n of that row. Then, we project this matrix 
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horizontally by taking the product of all elements of each row and form an algorithm 
defining a new column [μn] that identifies if the index n of each row is a prime number. It 
becomes therefore clear that the positions of primes within the set of integers are governed 
by precise harmonic laws in 2-D and it is the projection of 2-D to 1-D that makes the 
distribution of primes look complicated and even random. 

Taking a free parallel [5], we could say that the idea of a 2-D harmonic algorithm 
resembles the structure of polyphonic music where the vertical variation is based on 
harmony  and the horizontal variation produces the melody of each instrument. 

In section 2 of the present work, we define in detail the triangular algorithm of 
prime numbers in terms of vertical harmonic sequences and some properties of its 
elements are discussed. Also we derive from this algorithm explicitly the characteristic 
function μn that defines the positions of primes within the set of integers. In section 3, we 
obtain exactly the prime counting function ℼ(N) [equal to the number of primes that are 
smaller or equal to a given integer N≥2] as a sum over μn. In section 4, the index s of the sth 
prime p is expressed in terms of p also as a sum over μn and inversely p is expressed in 
terms of  s  by a series of harmonic integrals. Also, a formula for the next prime is derived.  
In section 5, an alternative form of μn is obtained by changing the elements of the triangular 
algorithm of the primes according to:  10  ;  0κ  where  κ  is the index of the column.  
Also, the product of the terms of each row is replaced by the sum of these terms. 
In section 6, we derive a harmonic equation the solution of which defines all prime 
numbers except 2. 

 
 

2. The triangular algorithm of prime numbers 
Consider the harmonic sequences   ακ(n)  ;  n≥κ+1  ;   κ=1, 2, 3,…. 

α1(n)  =  (1, 1, 1, 1, 1, …)  ;  n=2, 3, 4, … 
α2(n)  =  (1, 0, 1, 0, 1, …)  ;  n=3, 4, 5, … 
α3(n)  =  (1, 1, 0, 1, 1, 0…)  ;  n=4, 5, 6, … 
α4(n)  =  (1, 1, 1, 0, 1, 1, 1, 0…)  ;  n=5, 6, 7, … 
.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                (3) 

 



 
 

5 

For κ≥2 these sequences have the following important property: 
 

ακ(n) = �  1  ;  κ is not a divisor of n
0  ;  κ is a divisor of n                             (4) 

 
We construct next an algorithm in the form of a 2-D triangular matrix by using as 
columns the sequences ακ(n) of Eqs (3) where κ is the index of each column: 

n μn 

2 1 = 1 
3 1 = 1 · 1 
4 0 = 1 · 0 · 1 
5 1 = 1 · 1 · 1 · 1 
6 0 = 1 · 0 · 0 · 1 · 1 
7 1 = 1 · 1 · 1 · 1 · 1 · 1 
8 0 = 1 · 0 · 1 · 0 · 1 · 1 · 1 
9 0 = 1 · 1 · 0 · 1 · 1 · 1 · 1 · 1 

10 0 = 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 · 1 
11 1 = 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 
12 0 = 1 · 0 · 0 · 0 · 1 · 0 · 1 · 1 · 1 · 1 · 1 

       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .  .              (5) 
The separate column [n] represents the index of each row of the matrix starting from 
n=2 and the next column [μn] represents the product of all  n-1  elements of the nth row 
of the matrix: 

μn = α1(n) · α2(n) · α3(n) · . . . . · αn-1(n)    ;   n=2, 3, 4, …          (6) 
By the products (6), the matrix of (5) becomes an algorithm for the calculation of the 
sequence μn. We observe that, apart from its first element, the elements of the nth row of 
algorithm (5) characterize all divisors of n. This is due to the correct vertical alinement 
of the sequences ακ(n) forming the columns of the algorithm in accordance with 
property (4).  
Example:  n=10  row (1, 0, 1, 1, 0, 1, 1, 1, 1) with 9 elements:  
the 2nd element 0 means that 2 is a divisor of 10. 
the 3rd and 4th elements 1,1 mean that 3,4 are not divisors of 10. 
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the 5th element 0 means that 5 is a divisor of 10. 
the rest elements 1,1,1,1 mean that 6,7,8,9 are not divisors of 10. 
It is clear that if the nth row of algorithm (5) contains at least one zero element, then n is 
not a prime and Eq.(6) implies that μn=0, whereas if the nth row has no zero elements, 
then n is a prime and Eq.(6) implies that μn=1. Thus, μn is the characteristic function that 
defines exactly the positions of the primes within the set of positive integers:  
 

μn = �  � ;  � �� � ����	         
  
 ;  � �� ��� � ����	     ;        n=2, 3, 4, 5…..               (7) 

 
Definition (7) of μn will be discussed in detail later in this section after the derivation of 
an explicit formula for μn. It is interesting to notice that successive multiplication of the 
columns in algorithm (5) is equivalent to the mechanism of Eratosthenes sieve [4]. For 
instance, considering only the first two columns α1(n), α2(n) and keeping only 
α1(n)·α2(n) in the product of Eq.(6), we obtain μn=1 for the set {n=2, and all odd 
numbers n=3,5,7, …} and we exclude the even numbers n=4,6,8… where μn=0. Keeping 
next only  α1(n)·α2(n)·α3(n)  in the product of Eq.(6), we further exclude all odd 
multiples of 3 so that here μn=1 for n=2,3,5,7,11,13,17,19,23,25,29,… Increasing the 
terms of the product of Eq.(6) by adding new columns, we exclude gradually the 
multiples of 5,7,11, etc. until the full product of Eq.(6) removes all  non primes from the 
set of positive integers so that  μn=1  only for the set of primes (present theory). 
Apart from α1(n), the harmonic sequences of Eqs (3) can be expressed compactly for 
κ=2,3,4,…. as follows: 
 

        α�(n) =  1 − 1
κ � cos ( 2π n

κ ℓ)   ;      n = κ + 1, κ + 2, ….                                             (8)
���

ℓ��
 

 
We prove that  ακ(n)  defined by Eq.(8) has property (4): 
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Ι. If κ is not a divisor of n so that sin (π�
�) ≠ 0    we use the formula [6]: � cos �2π n

κ ℓ� = sin(πn)
sin(π n

κ) cos[�κ − 1�π n
κ ]

���

ℓ��
= 0                                                             (9) 

which gives     ακ(n) = 1                       (10a) 
 

II. If κ is a divisor of n viz.   �� = m  ;   m=2,3,4,...  we have  
ακ(n) = 1− �

�  	1 + cos�2πm� + cos�4πm� + ⋯ + cos
2�κ − 1�πm�� = 0           (10b) 
 
Hence, for κ=2,3,4,… Eq. (8) provides the harmonic sequences of Eqs(3) forming the 
columns of algorithm (5): 
 

ακ(n)=(1, 1, 1,…,1,  0,  1, 1, 1, …,1,  0, ….);    n=κ+1, κ+2, ….         (11) 
                   |κ-1  terms|            | κ-1  terms | 
 

Considering next the product of Eq.(6), with the elements ακ(n) of the nth row of 
algorithm (5) given by Eq.(8), the characteristic function μn [Eq.(7)] can be written 
explicitly as follows: 

                         μ2 = 1 

                  μ� = 
�1 − 1
κ � cos (2π n

κ ℓ) 
���

ℓ��
�   ;   n = 3,4,5, …                                               (12) 

���

���
 

 
The above result of Eq. (12) reproduces step by step the column  [μn]  of  
algorithm (5): 
 

μn = (1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, …)   ;   n=2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, …        (13) 
 

which defines the positions of the primes within the set of integers.  
In general we observe that for each index n=2, 3, 4, 5, … the κ-product of Eq. (12) has  
n-2 factors ακ(n) defined by Eq. (8) and characterized by the numbers  κ=2,3, …,n-1. 
 

Ι. If  n  cannot be divided by any of the numbers  κ=2, 3, …, n-1  which means that  
n is a prime, then all  n-2  factors have value ακ(n)=1 [see Eq. (10a)] so that μn=1. 
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ΙΙ. If  n  can be divided by one (or more than one )of the numbers  κ=2, 3, …, n-1  

(i.e.   �� = m ; m=2, 3, …) which means that  n is not a prime, then the corresponding factor 
(or factors) where this division is possible has the value ακ(n)=0 [see Eq. (10b)]  
so that  μn=0. 
Thus, μn expressed by Eq. (12) has the property (7) of the characteristic function of the 
prime numbers. An alternative form of μn is presented in section 5 of the present paper. 
 
 

3. The prime counting function ℼ(N) 
 
Let us consider next the number ℼ(N) of primes that are smaller or equal to a given 
integer N≥2. As it was mentioned in the introduction, the asymptotic behaviour 
ℼ(N)≈N/ lnN ;  N≫1 constitutes the prime number theorem [2], and it is expected [3] that 
the derivation of ℼ(N) may be achieved by the calculation of the nontrivial roots of the  
ζ-function, all existing on the line   x=�

�   of the complex plane (Riemann hypothesis). 
In the present work on the other hand, the latter theory will not be used and instead 
ℼ(N) will be expressed exactly as a sum over  μn  where  μn  is given by Eq. (12): 
 

 ℼ(N) = � μ� = (μ�,  μ� + μ�,  μ� + μ� + μ	,  μ� + μ� + μ	 + μ
,
  μ� + μ� + μ	 + μ
 + μ�, … ) ;   N = 2, 3, 4, . . .

                          (14)
�

���
 

 
In particular, replacing into Eq.(14)  μn  given by Eq.(12), we obtain explicitly ℼ(N) in 
terms of harmonic sequences:  
 

    ℼ(2) = 1 

ℼ�Ν� = 1 + �
�1 − 1
κ � cos (2π n

κ ℓ)
���

ℓ��
����

���

�

���
 ;    N = 3, 4, 5, …                                        (15) 
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Let us reproduce according to Eq. (15) the prime counting function ℼ(N)     
up to N=37: 
 

N 2 3 4 5 6 7 8 9 10 11 12 13 
ℼ(Ν) 1 2 2 3 3 4 4 4 4 5 5 6 

N 14 15 16 17 18 19 20 21 22 23 24 25 
ℼ(Ν) 6 6 6 7 7 8 8 8 8 9 9 9 

N 26 27 28 29 30 31 32 33 34 35 36 37 
ℼ(Ν) 9 9 9 10 10 11 11 11 11 11 11 12 

 
Table 1 

 
Table 1 is represented by the diagram below: 

 
Fig. 1   The prime counting function ℼ(Ν) ;   N=2, 3, 4,…. derived from Eq. (15). 
 
 
We observe that   ℼ(N)  can be also obtained directly from the characteristic function  
μN [Eq.(13)] via a triangular algorithm where the sequence μN forms the columns 
displaced downwards by one step. Summing up the terms of each row we get: 
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N ℼ(N) 

 
μN 

2 1 = 1 
3 2 = 1 + 1 
4 2 = 0 + 1 + 1 
5 3 = 1 + 0 + 1 + 1 
6 3 = 0 + 1 + 0 + 1 + 1 
7 4 = 1 + 0 + 1 + 0 + 1 + 1 
8 4 = 0 + 1 + 0 + 1 + 0 + 1 + 1 
9 4 = 0 + 0 + 1 + 0 + 1 + 0 + 1 + 1 

10 4 = 0 + 0 + 0 + 1 + 0 + 1 + 0 + 1 + 1 
11 5 = 1 + 0 + 0 + 0 + 1 + 0 + 1 + 0 + 1 + 1 
12 5 = 0 + 1 + 0 + 0 + 0 + 1 + 0 + 1 + 0 + 1 + 1 
13 6 = 1 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + 1 + 0 + 1 + 1 
14 6 = 0 + 1 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + 1 + 0 + 1 + 1 

    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .  .  .  .  .  .  .  .  .  .  .  .     (16) 
The row corresponding to the index N contains N-1 terms:  μ2, μ3, …, μΝ  so that the 
above algorithm is fully consistent with Eq.(14). Also we see that by applying 
successively algorithms (5,16) we can derive the prime counting function ℼ(N) without 
resorting to the ζ-function and to Riemann’s hypothesis.  
 
 

4. Harmonic representation of primes 
 

From Eq.(14), the relation between the sth prime p and its index s reads: 

            s =  ℼ�p� =  � μ�




���
                                                                                                          (17) 

where ℼ(p) is given explicitly by Eq. (15) at  N=p. 
Note that  s= ℼ(p) tell us the obvious fact that if there are s primes less or equal to a 
certain prime p, then p is the sth prime. In particular, introducing the primes  
p=2,3,5,7,11, … in Eq.(17) we obtain the corresponding index  s=1,2,3,4,5,… of each 
prime using Eq.(13) as follows: 

μ2 = 1 
μ2 + μ3 = 2 
μ2 + μ3 + μ4 + μ5 = 3 
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μ2 + μ3 + μ4 + μ5 + μ6 + μ7 = 4 
μ2 + μ3 + μ4 + μ5 + μ6 + μ7 + μ8 + μ9 + μ10 + μ11 = 5 
.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .  .  .           (18) 

 
Replacing next ℼ(p) of Eq.(17) by ℼ(N) of Eq.(15) at N=p, the index of the prime p is 
given explicitly by s=1; p=2  and 
 

s = 1 + �
�1 − 1
κ � cos (2π n

κ ℓ)
���

ℓ��
����

���




���
 ;    p = 3, 5,7,11, …                                            (19) 

 
From Eq.(19) and using Eq. (15), we can get for example the index of the primes p=3,5,7 
as   s= ℼ(3)=2  ;  s= ℼ(5)=3  ;  s= ℼ(7)=4. 
 
The inverse of Eq.(17) relating each prime ps to its index s, can be derived by defining 
the differences cm between successive primes : 
 

c1 = p2 − p1 =   3 − 2 = 1 
c2 = p3 − p2 =   5 − 3 = 2 
c3 = p4 − p3 =   7 − 5 = 2 
c4 = p5 − p4 = 11 − 7 = 4 
c5 = p6 − p5 = 13 − 11 = 2 
.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 
cs-1 = ps – ps-1                         (20) 

 
Adding up Eqs (20) we get: 

             

        p1 = 2 

p� = 2 + � c�  ; 
���

���
  s = 2,3,4, …                                                                                               (21) 

We observe that the numbers c1, c2, c3, … defined by Eqs (20) coincide respectively with 
the number of repetitions of the numbers 1, 2, 3, … occurring in Table 1 as values of 
ℼ(N) for N=2, 3, 4, … For instance, 1 occurs once and [c1=1] ; 2 occurs twice [c2=2] ; 3 
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occurs twice [c3=2] ; 4 occurs four times [c4=4] ; 5 occurs twice [c5=2] etc. In the same 
context, the numbers c1, c2, c3, … defined by Eqs (20) coincide respectively with the 
number of points of the successive steps formed by ℼ(N) in Fig.1.  For instance, the first 
step has one point at  N=2  so that  c1=1 , the second step has two points at  N=3, 4  so 
that  c2=2, the third step has also two points at  N=5, 6  so that  c3=2, the fourth step has 
four points at  N=7, 8, 9, 10  so that  c4=4, the fifth step has two points at  N=11, 12  so 
that  c5=2 etc. 
According to the above discussion, the calculation of the sequence cm=[c1, c2, c3, …] 
defined by Eqs (20) can be obtained directly from the prime counting function  ℼ(N) ;  
N=2, 3, 4, … given in Table 1, by adding the terms of the successive columns forming the 
following triangular algorithm: 
 

  c1 c2 c3 c4 c5 c6 

ℼ(N) 
          m         
N         1 2 3 4 5 6 

1 2 1           
2 3 0 1        
2 4 0 1        
3 5 0 0 1      
3 6 0 0 1      
4 7 0 0 0 1    
4 8 0 0 0 1    
4 9 0 0 0 1    
4 10 0 0 0 1    
5 11 0 0 0 0 1   
5 12 0 0 0 0 1   
6 13 0 0 0 0 0 1 
6 14 0 0 0 0 0 1 
6 15 0 0 0 0 0 1 
6 16 0 0 0 0 0 1 

 
            Table 2 
The structure of the above algorithm where N=2,3,4,… is the index of each row and 
m=1,2,3,… is the index of each column, is fully defined by the rules: 

Ι.   The number of terms of the Nth row of the algorithm is equal to ℼ(N). 
II. All terms of each row are equal to zero except the last term which is equal to one.  
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The sum of each column is shown on the top of Table 2 viz. 
c1 = 1 + 0 + 0 + 0 + 0 + 0+ … = 1 
c2 = 1 + 1 + 0 + 0 + 0 + 0+ … = 2 
c3 = 1 + 1 + 0 + 0 + 0 + 0+ … = 2 
c4 = 1 + 1 + 1 + 1 + 0 + 0+ … = 4 

    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                  (22) 
The functional link existing between cm and ℼ(N) may become precise by introducing 
the following sequence of harmonic functions based on ℼ(N) [Table 1]: 
 
cos[2x ℼ(N)] = (cos2x,  cos4x,  cos4x,  cos6x,  cos6x,  cos8x,  cos8x,  cos8x,   
                               cos8x,  cos10x,  cos10x, …)  ;   N=2,3,4, …                   (23) 
 
Subsequently, we construct the orthogonal sequences: 

ℒm(N)  =  4
π � cos�2mx� cos�2xℼ�N�� dx = �  1 ;  ℼ�N� = m 

 0 ;  ℼ(N) ≠ m                                   (24α)
π/2

0 
 

where  N=2,3,4,… ; m=1,2,3,4,…. In particular we have: 
 

ℒ1(N) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…) 
ℒ2(N) = (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,…) 
ℒ3(N) = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,…) 
ℒ4(N) = (0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,…) 
ℒ5(N) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,…) 
.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                  (24b) 
We observe that ℒm(N) given by Eq.(24b) is a representation of the columns of the 
algorithm of Table 2. Thus we can define cm in terms of ℼ(N) as 
 

c�  =  � ℒm�N� =  4
π � � cos�2mx� cos [2x

�/�

�

�

���

�

���
ℼ(N)]dx                                                 (25) 
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Note that since each sequence ℒm(N) has a finite number of nonzero terms, each N-series 
of Eq.(25) defines a finite number cm. Replacing cm into Eq.(21) and simplifying by using 
the formula 
 

sin
�2s − 1�x�
sinx =  �  1 ;  s = 1                                                

  1 + 2 � cos�2mx� ;   s = 2,3,4, …
���

���

                                                      (26)   

 

we obtain exactly the prime numbers: 
 

      p� = 2 + 2
π � � sin [�2s − 1�x]

sinx

�/�

�
cos [2x

�

���
ℼ(N)]dx                                                            (27) 

 

where s=1,2,3,4,,… and ℼ(N) is given by Eq. (15) and Table 1.  
Eq. (27) is the inverse of Eq.(17). Introducing the sequence (23) into Eq.(27), it is easy 
to derive the full set of primes: 

ps = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,…)   ;    s=1,2,3,4,…                 (28) 
 
We observe that formula (27) can be also derived directly by writing ps as follows: 

p� = 2 + � M�(N)
�

���
                                                                                                                        (29) 

where  
M��N� = �  1 ;   2 ≤ N < p�

  0 ;   2 ≤ p� ≤ N                                                                                                           (30) 
From the definition of ℼ(N) [Eq.(14)] we have  

 2 ≤ N < p�    ⇒     ℼ�N� =  � μ�

�

���
< � μ� = s


�

���
    ⇒   1 ≤ ℼ�N� ≤ s − 1                      �31� 

so that we can also write 
M��N� = �  1 ;   1 ≤ ℼ�N� ≤ s − 1

0 ;   1 ≤ s ≤ ℼ�N�                                                                                                      (32) 
 

As given by Eq. (32), Ms(N) can be expressed by the harmonic integral 
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M��N� = 2
π � sin
�2s − 1�x�

sinx

�
�

�
cos
2xℼ�N��dx                                                                         (33) 

Indeed, expanding sin[(2s-1)x]/sinx according to Eq.(26) we can easily prove that 
Eq.(32) is valid. Therefore, replacing Eq.(33) into Eq.(29) formula (27) is obtained. 
Introducing next ℼ(N) given by Eq.(15) into Eq.(27), we get an exact explicit formula for 
ps in terms of harmonic functions: 
 
       p1 = 2 

p� = 3 + 2
π � � sin [�2s − 1�x]

sinx

�/�

�

�

���
cos �2x �1 + �
�1 − 1

κ � cos �2π n
κ ℓ����

ℓ��
����

���

�

���
��dx   

where s=2, 3, 4,..                                 (34) 
 
From Eq.(27) we can also derive a formula for the next prime in terms of ℼ(N) given by 
Eq. (15): 

p��� = p� + 2
π � � sin
�2s + 1�x� − sin [�2s − 1�x]

sinx
�

�

�

���
cos
2xℼ�N��dx                            

 
which leads to 
 

      p��� = p� + 4
π � � cos�2sx�  cos[2x

�/�

�

�

���
ℼ�N�] dx                                                          (35) 

 

where p1=2; s=1,2,3,... In this case only the values of N for which  ℼ(N)=s  give nonzero 
terms equal to 1 in the N-series. For example if s=6 we have ℼ(N)=6 at N=13,14,15,16 
(Table 1): 
 

p� = p� + 4
π � � cos�12x� cos[2x

�/�

�

�

���
ℼ�N�]dx = 13 + 1 + 1 + 1 + 1 = 17                   (36) 
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Considering the definition of cs [Eq.(25)] we obtain from Eq.(35)  ps+1=ps+cs  which is 
fully consistent with Eqs (20). 
 
We observe that the primes ps can be also derived directly from a triangular algorithm 
based on the sequence  cm = (2, 1, 2, 2, 4, 2, 4, 2, 4, 6,…) of the differences between 
successive primes [Eqs (25)] enlarged by  c0 = 2.  
In this case [cm] forms all  the columns displaced downwards. Summing up the terms of 
each row we get  
 

s ps   
1 2 = 2 
2 3 = 1+2 
3 5 = 2+1+2 
4 7 = 2+2+1+2 
5 11 = 4+2+2+1+2 
6 13 = 2+4+2+2+1+2 
7 17 = 4+2+4+2+2+1+2 
8 19 = 2+4+2+4+2+2+1+2 
9 23 = 4+2+4+2+4+2+2+1+2 

10 29 = 6+4+2+4+2+4+2+2+1+2 
11 31 = 2+6+4+2+4+2+4+2+2+1+2 
12 37 = 6+2+6+4+2+4+2+4+2+2+1+2 
13 41 = 4+6+2+6+4+2+4+2+4+2+2+1+2 
14 43 = 2+4+6+2+6+4+2+4+2+4+2+2+1+2 

     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       (37) 
 

The row corresponding to the index  s  contains s terms: c0, c1, c2, c3, … , cs-1  so that the 
above algorithm is fully consistent with Eq.(21).  
With the result of Eqs (37), we complete the four steps needed for the derivation of all 
prime numbers from harmonic sequences by using triangular algorithms. 

Step 1 :  Derivation of the characteristic function [μn] of the primes based on 
harmonic sequences [Eqs (5)]. 

Step 2 :   Derivation of the prime counting function ℼ(N) from the characteristic 
function [μn] of the primes [Eqs (16)]. 

Step 3 :   Derivation of the differences [cm] between successive primes from the 
prime counting function ℼ(N) [Table 2]. 
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Step 4 :      Derivation of the sequence [ps] of all prime numbers from the differences 
[cm] between successive primes [Eqs (37)]. 

The result of the above four steps is expressed compactly by Eq.(34) where  ps  depends 
explicitly on harmonic functions. 
 
 

5. Alternative form of μn 
 
The characteristic function μn [Eq.(7)] defining the primes and given by Eq. (12), can be 
also derived in a different form as follows: 

Ι.   We transform the elements of the triangular algorithm (5) using   1  0  ;  0  κ  
where κ is the index of the column. 
 II. We replace the products of the elements of each row of algorithm (5) by sums. 
Thus, we obtain the column  [δn]  as below: 

n δn   2 0 = 0 
3 0 = 0+0 
4 2 = 0+2+0 
5 0 = 0+0+0+0 
6 5 = 0+2+3+0+0 
7 0 = 0+0+0+0+0+0 
8 6 = 0+2+0+4+0+0+0 
9 3 = 0+0+3+0+0+0+0+0 

10 7 = 0+2+0+0+5+0+0+0+0 
11 0 = 0+0+0+0+0+0+0+0+0+0 
12 15 = 0+2+3+4+0+6+0+0+0+0+0 

             .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .           (38) 
We observe here that, contrary to algorithm (5), the primes correspond to   δn=0  and 
the nonprimes to   δn0  and in addition  δn  represents the sum of proper divisors  
of  n  i.e. divisors that divide n apart from 1,n. 
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The harmonic sequences  βκ(n) ; n≥κ+1 ; κ=1,2,3,4,….  forming the columns of 
algorithm (38) are given by 

β1(n)  =  (0, 0, 0, 0, 0, 0,…)   ;  n=2, 3, 4, … 
β2(n)  =  (0, 2, 0, 2, 0, 2, …)   ;  n=3, 4, 5, … 
β3(n)  =  (0, 0, 3, 0, 0, 3,…)   ;  n=4, 5, 6, … 
β4(n)  =  (0, 0, 0, 4, 0, 0, 0, 4,…)   ;  n=5, 6, 7, … 
.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .               (39) 

 

Apart from β1(n), the sequences of Eqs (39) can be expressed compactly for κ=2,3,4,… 
as follows: 

        β�(n) =  � cos ( 2π n
κ ℓ)   ;      n = κ + 1, κ + 2, ….                                                         (40)

���

ℓ��
 

Note that  hκ(n)  defined by Eqs (1a,1b) in the introduction, is an enlarged version of 
βκ(n)  so that each row of index n of the matrix (2) includes apart from the proper 
divisors of  n  also the elements (1,n). 
 
Summing up all elements   βκ(n) ; κ=2,3,…, n-1  of the nth row of algorithm (38) we 
obtain:  
 

  δ2 = 0 

δ� = �   � cos �2π n
κ ℓ� =  �   0 ;   n is a prime           

   d�n� ;  n is not a prime
���

ℓ��

���

���
   ;    n = 3,4,5, …                     (41) 

 

where d(n) is the sum of proper divisors of n. 
 

Eq. (41) is an exact analytic form of column  [δn]  in algorithm (38). 
From the above results we can express in turn  μn  as 
 

μ� =  2
π � cos�2δ�x� dx                                                                                                              (42)

�/�

�
 

 

If n is a prime, then according to Eq. (41) we have  δn=0  and Eq.(42) gives  μn=1, 
whereas if n is not a prime, then according to Eq. (41) we have  δn0  and since δn is an 
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integer, Eq.(42) gives  μn=0. Hence, Eq.(42) obeys Eq.(7) and therefore provides with an 
alternative form of the characteristic function of prime numbers.  
 
 

6. Harmonic equation of the primes 
It is well known that the odd integers n=1,3,5,7,… can be obtained as solutions of the 
equation 

1+cos(πn) = 0                    (43a) 
and the even integers n=2,4,6,8,… can be obtained as solutions of the equation  

1−cos(πn) = 0                    (43b) 
We consider the question if within the context of the present work, a similar harmonic 
equation of the type  F(n) = 0   exists having as solutions only the set of prime numbers. 
In this respect we observe that according to Eq.(41), equation 
 

                   �� cos �2π n
κ ℓ� = 0                                                                                      (44)

���

ℓ��

���

���
 

indeed defines all the primes  n=3,5,7,11,13,17,… except  n=2  and is not satisfied if  n  is 
not a prime. 
 
Proof :  If  n  is a prime, the numbers  κ=2,3,…, n-1  forming the  κ-sum  of Eq.(44) do not 
divide n, so that according to Eq.(9), for each  κ=2,3,…, n-1  the ℓ-sum of Eq.(44) is equal 
to 0 and therefore  n  is a solution of Eq.(44). If  n  is not a prime, some of the numbers  
κ=2,3,…, n-1  divide  n  (i.e   �� = m  ;  m=2,3,…) and the ℓ-sum of Eq.(44) in this case is 
equal to the divisor  κ  of the number  n  [see Eq.(10b)]. Thus, if  n  is not a prime the LHS 
of Eq.(44) is equal to the sum d(n) of the proper divisors of  n  [Eq.(41)] so that  n  is not 
a solution of Eq.(44). 

 
As in the previous theory, the structure of Eq.(44) shows the internal relation between 
prime numbers and harmonic functions. 
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7. Conclusions 
 
We introduce an algorithm in the form of a triangular matrix [Eqs (5)] where the 
product of the elements of each row characterizes the index of that row. It is found that 
the positions of the primes within the set of integers are not arbitrary but are the result 
of precise combinations of the harmonic sequences [Eqs (3)] forming the columns of this 
algorithm. The characteristic function μn defining the positions of the primes [Eq. (7)] 
was obtained in terms of harmonic products [Eq. (12)]. The prime counting function 
ℼ(N) representing the number of primes that are smaller or equal to a given integer 
N≥2, has been derived as a sum over  μn  [Eq. (14)] and was expressed exactly in terms 
of harmonic functions by Eq. (15) without resorting to the ζ-function and to Riemann’s 
hypothesis. Also, it was shown that ℼ(N) can be obtained directly from a triangular 
algorithm [Eq. (16)] where all the columns are formed by [μN] and the terms of each row 
are summed up. From the definition of the prime counting function ℼ(N) it becomes 
clear that the relation between the sth prime p and its index s is given by  s = ℼ(p) 
[Eq.(17)]. Inversely, the sth prime ps [Eqs(27,34)] as well as the next prime [Eq. (35)] 
were expressed in terms of harmonic integrals depending explicitly on  s, and 
functionally on ℼ(N). It was also shown that  ps  can be derived directly from a triangular 
algorithm [Eqs (37)] where the columns are formed by the sequence of differences cm 
between successive primes that are in turn obtained from ℼ(N) in Table 2. 
Finally, an alternative form of the characteristic function μn [Eq. (7)] has been derived in 
Eq. (42) by transforming the elements of the triangular algorithm [Eqs (5)] using  
(1  0  ;  0  κ) where  κ  is the index of each column and by replacing the products of 
each row by sums [Eqs (38)]. This may lead to new expressions for ℼ(N)  and  ps . Also it 
was shown that all the prime numbers (except 2) and only them, are the solutions of a 
simple harmonic equation expressed by Eq.(44). 
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8. Discussion 
 
In the present article a relation between prime numbers and harmonic functions is 
established, so that the notion of the music of the primes [1]  is not only metaphoric but 
acquires a precise meaning. As mentioned in the introduction, the theory is based on the 
harmonic inter-relation between the divisors of positive integers that in turn constitute 
the building elements of the primes. The basic tools of the present work are the 
harmonic triangular algorithms  where harmonic columns of a triangular matrix, 
correctly alined, are projected  horizontally by a certain operation. Clearly, some results 
derived here are preliminary and deserve further analysis and justification. However, it 
is hoped that the ideas of the present theory will form the first step in exploring the 
harmonic world existing behind the prime numbers. 
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