
A NOTE ON ELECTROMAGNETIC ENERGY

IN THE CONTEXT OF COSMOLOGY.

Ruslan Sharipov

Abstract. The density of electromagnetic energy and its flux are given by the well-
known formulas which are widely used in classical electrodynamics. We rederive

these formulas in the framework of special relativity and then extend them to the
context of cosmology with the Big Bang.

1. Introduction.

In classical physics an electromagnetic field in vacuum is described by two vectors
E and H. They present the intensity of an electric field and the intensity of a
magnetic field respectively. These vectors obey the Maxwell equations (see § 26
and § 30 in Chapter V of [1] or § 1 in Chapter II of [2]):

divH = 0, rotE = −
1

c

∂H

∂t
, (1.1)

divE = 4πρ, rotH =
4π

c
j +

1

c

∂E

∂t
. (1.2)

Here ρ is the charge density and j is the density of current. They obey the equation

∂ρ

∂t
+ div j = 0, (1.3)

which is called the charge conservation law (see § 29 in Chapter V of [1] or § 5 in
Chapter I of [2]).

Being a form of materia, an electromagnetic field can store energy, can transport
energy at a distance, and can transfer energy to other forms of materia. These
features of an electromagnetic field are expressed by the following formulas1:

ε =
|E|2 + |H|2

8 π
, S =

c

4 π
[E,H], w = (E, j). (1.4)

The quantity ε in (1.4) is the density of energy of an electromagnetic field (see § 2 in
Chapter II of [2]). The vector quantity S in (1.4) is the flux density for the energy
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product of three-dimensional vectors: [E,H] = E × H. Similarly, through round brackets with
comma we denote the dot product of three-dimensional vectors (E, j) = E · j.
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flow of an electromagnetic field. It is also known as Umov-Poynting vector (see [3]).
The scalar quantity w in (1.4) is called the specific rate of energy loss. If w > 0, it
indicates the amount of electromagnetic energy transferred to charged particles in
the unit volume per the unit of time. Otherwise, if w < 0, this quantity indicates
the specific amount of energy pumped back into electromagnetic field by charged
particles. The quantities ε, S, and w from (1.4) obey the following equation (see
§ 2 in Chapter II of [2]) similar to (1.3):

∂ε

∂t
+ divS = −w. (1.5)

Passing from classical physics to special relativity, we replace the three-dimensio-
nal space by the four-dimensional one, which is called the spacetime or the Minkow-
ski space. The time variable t multiplied by the speed of light constant c becomes
a coordinate in the Minkowski space

x0 = c t (1.6)

along with three other coordinates x1, x2, x3. In (1.6) and below throughout the
paper we use upper and lower indices according to Einstein’s tensorial notations
(see [4] and § 20 in Chapter I of [5]).

In special and general relativity the quantities ρ and j from (1.3) are incorporated
into a single four-dimensional vector:

j =

∥

∥

∥

∥

∥

∥

∥

j 0

j1

j2

j3

∥

∥

∥

∥

∥

∥

∥

, where j 0 = c ρ. (1.7)

Due to (1.6) and (1.7) the equation (1.3) is written as

3
∑

q=0

∇q j q = 0. (1.8)

In special relativity the covariant derivatives ∇i coincide with the partial deriva-
tives: ∇i = ∂/∂xi. In general relativity they are calculated in a more complicated
way, see formula (5.12) in § 5 of Chapter III in [6].

Despite the striking similarity of the equations (1.3) and (1.5), in special and
general relativity the quantities (1.4) are not considered at all. The main goal of
this paper is to discuss a way for introducing the analogs of the quantities (1.4) in
the framework of special and general relativity and then to construct their extension
to cosmology with the Big Bang.

2. The case of special relativity.

In special relativity the spacetime is a flat manifold topologically equivalent to
R

4 and equipped with the structure of an affine space and with a pseudo-Euclidean
metric g of the signature (+ − −−). This metric is known as the Minkowski
metric. Due to the structure of an affine space the spacetime of special relativity
admits Cartesian coordinates. Those of them which are orthonormal with respect to
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the Minkowski metric g are physically interpreted as inertial coordinate systems.
Coordinates of any two inertial coordinate systems are related to each other by
Lorentz transformations. In any inertial coordinate system the metric tensor and
the inverse metric tensor of the metric g are given by the following matrix:

gij = gij =

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∥

∥

∥

∥

∥

∥

∥

. (2.1)

An electromagnetic field in special relativity is presented by a skew-symmetric
tensor F whose components are given by the following matrices:

F pq =

∥

∥

∥

∥

∥

∥

∥

∥

∥

0 −E1 −E2 −E3

E1 0 −H3 H2

E2 H3 0 −H1

E3 −H2 H1 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

, Fpq =

∥

∥

∥

∥

∥

∥

∥

∥

∥

0 E1 E2 E3

−E1 0 −H3 H2

−E2 H3 0 −H1

−E3 −H2 H1 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (2.2)

In terms of the matrices (2.2) the Maxwell equations (1.2) are written as

3
∑

q=0

∂F pq

∂rq
= −

4π

c
jp. (2.3)

The other two Maxwell equations (1.1) are written similarly

3
∑

q=0

3
∑

k=0

3
∑

s=0

εpqks ∂Fks

∂rq
= 0. (2.4)

Here εpqks is the four-dimensional analog of the Levi-Civita symbol:

εpqks = εpqks =



































0, if among p, q, k, s there are at

least two equal numbers;

1, if (p q k s) is an even permutation

of the numbers (0 1 2 3);

−1, if (p q k s) is an odd permutation

of the numbers (0 1 2 3).

(2.5)

The above formulas (2.2), (2.3), (2.4), and (2.5), can be found in § 8 and § 9 of
Chapter III in the book [2].

The energy and momentum stored in any form of materia both are described by
its energy-momentum tensor T (see [7]). In the case of an electromagnetic field the
components of its energy-momentum tensor is given by the formula

T qj = −
1

4π

3
∑

p=0

3
∑

i=0

(

F pq gpi F ij −
1

4
Fpi F pi gqj

)

, (2.6)
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see formula (94.8) in § 94 of Chapter XI in [1] or formula (4.5) in § 4 of Chapter V
in [2]. The tensor (2.6) is symmetric and traceless. It obeys the following equality

3
∑

s=0

∇sT
ps = −

1

c

3
∑

s=0

F ps js, (2.7)

see formula (4.6) in § 4 of Chapter V in [2]. Remember that in special relativity the
covariant derivatives ∇s in (2.7) coincide with the partial derivatives: ∇s = ∂/∂xs.
The equality (2.7) encloses the equality (1.5) in the case p = 0, but it does not
reduce to (1.5) as a whole.

Our goal in this section is to separate the equation (1.5) from other equations
enclosed in (2.7). Assuming that some inertial coordinate system is chosen and
fixed, we take the unit vector along its time axis:

n = e0 =

∥

∥

∥

∥

∥

∥

∥

n0

n1

n2

n3

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

1
0
0
0

∥

∥

∥

∥

∥

∥

∥

. (2.8)

Then from (2.8) we derive

∇sn
p = 0, ∇snp = 0, (2.9)

since in special relativity covariant derivatives coincide with partial derivatives.
Applying (2.9), from (2.8) we derive

3
∑

p=0

3
∑

s=0

∇s(c T ps np) = c
3

∑

p=0

3
∑

s=0

∇s(T
ps) np = −

3
∑

p=0

3
∑

s=0

F ps js np. (2.10)

Due to (1.7), (2.1), (2.2), and (2.8) the right hand side of (2.10) is transformed as

−

3
∑

p=0

3
∑

s=0

F ps js np = −

3
∑

s=1

Es js = −(E, j) = −w. (2.11)

Looking at the left hand side of the equality (2.10), we define the four-dimensional
vector J with the following components:

Js =

3
∑

p=0

c T ps np. (2.12)

Using (2.1), (2.2), (2.6) and (2.8), we can calculate the components of the vector
(2.12) explicitly. It turns out that

J =

∥

∥

∥

∥

∥

∥

∥

J 0

J1

J2

J3

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

c ε
S1

S2

S3

∥

∥

∥

∥

∥

∥

∥

, (2.13)
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where ε is the density of electromagnetic energy from (1.4) and S1, S2, S3 are the
components of the Umov-Poynting vector from (1.4). Due to (2.11) and (2.12) the
equality (2.10) is written as the following equation:

3
∑

s=0

∇sJ
s = −w. (2.14)

It is easy to see that the equation (2.14) is an analog of the equation (1.8). Due
to (1.6) and (2.13) the equation (2.14) is a four-dimensional version of the three-
dimensional equation (1.5).

Thus, we have found a four-dimensional presentation for the equation (1.5) which
is analogous to the four-dimensional presentation (1.8) of the equation (1.3). How-
ever this presentation has no proper interpretation in special relativity. The matter
is that the choice of the vector n in (2.8) is bound to the choice of an inertial
coordinate system. There are infinitely many inertial coordinate systems in special
relativity, but none of them is preferable as compared to any other.

3. The case of general relativity.

The spacetime of general relativity is an arbitrary manifold equipped with a
pseudo-Euclidean metric g of the signature (+ − −−). Typically this metric is
not flat. Therefore typically in general relativity we have no Cartesian coordinate
systems and no inertial coordinate systems either. Moreover, covariant derivatives
in general relativity do not coincide with partial derivatives. Nevertheless we could
repeat the above arguments from section 2 provided we could find a vector field
n whose components satisfy the equations (2.9). Such a vector field is called co-
variantly constant. The matter is that typically in general relativity there are no
covariantly constant vector fields. Therefore in general relativity, as well as in
special relativity, we cannot solve our problem of finding proper four-dimensional
presentation of the equation (1.5) similar to the four-dimensional presentation (1.8)
of the equation (1.3).

4. The case of cosmology.

Cosmology differs from general relativity in that it studies not an abstract space-
time, but spacetimes associated with our real universe. Homogeneous and isotropic
cosmological models are based on the Friedmann-Robertson-Walker metric:

ds2 = (dx0)2 − R(x0)2
(

dr2

1− K r2
+ r2 dθ2 + r2 sin2 θ dφ2

)

. (4.1)

The metric (4.1) incorporates three models with different values of the constant K:

K =











+1 for the closed model,

0 for the flat model,

−1 for the hyperbolic model,

(4.2)

see Section 1.1.3 in [8]. The metric (4.1) means that the metric tensor g is presented
by a diagonal matrix with the following diagonal entries:

g00 = 1, g11 = −
R2

1 − K r2
,

(4.3)

g22 = −R2 r2, g33 = −R2 r2 sin2θ.
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The inverse metric tensor is also given by a diagonal matrix. Its diagonal compo-
nents are inverse to the components (4.3):

g00 = 1, g11 = −
1 − K r2

R2
,

(4.4)

g22 = −
1

R2 r2
, g33 = −

1

R2 r2 sin2θ
.

The constant K in (4.3) and (4.4) is given by the formula (4.2), while R = R(x0)
is some function of the variable x0. Let’s denote

u0 = x0, u1 = r, u2 = θ, u3 = φ. (4.5)

In terms of the coordinates (4.5) the components of the metric connection for the
metric (4.1) with the components (4.3) and (4.4) are given by the following well-
known formula (see § 7 in Chapter III of [6]):

Γk
ij =

1

2

3
∑

s=0

gks

(

∂gsj

∂ui
+

∂gis

∂uj
−

∂gij

∂us

)

. (4.6)

Here is the list of nonzero components of the metric connection (4.6):

Γ1
01 = Γ1

10 =
R′

R
, Γ2

02 = Γ2
02 =

R′

R
,

Γ3
03 = Γ3

30 =
R′

R
, Γ2

12 = Γ2
21 =

1

r
,

Γ3
13 = Γ3

31 =
1

r
, Γ0

11 =
R R′

1 − K r2
,

(4.7)

Γ1
11 =

K r

1 − K r2
, Γ0

22 = R R′, r2,

Γ1
22 = −(1 − K r2) r, Γ0

33 = R R′ r2 sin2θ,

Γ1
33 = −(1 − K r2) r sin2θ, where R′ =

dR

dx0
.

Now, using the coordinates (4.5), we define the following parametric lines:

u0(τ ) = τ, u1(τ ) = r = const,
(4.8)

u2(τ ) = θ = const, u3(τ ) = φ = const .

Using (4.7), one can easily show that the lines (4.8) are geodesic lines for the metric
(4.1). Indeed, they satisfy the equations of geodesic lines

d2uk

dτ2
+

3
∑

i=0

3
∑

j=0

Γk
ij

dui

dτ

duj

dτ
= 0,
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see § 8 in Chapter III of [6]. We denote trough n the tangent vectors to the geodesic
lines (4.8). Then in the coordinates (4.5) we have

n =

∥

∥

∥

∥

∥

∥

∥

n0

n1

n2

n3

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

1
0
0
0

∥

∥

∥

∥

∥

∥

∥

, where nk =
duk

dτ
for k = 0, 1, 2, 3. (4.9)

The formula (4.9) is similar to (2.8). However, unlike (2.8) the vector field n in (4.9)
is canonically defined. It is canonically associated with the Friedmann-Robertson-
Walker metric.

Fig. 4.1 illustrates the universe in the case of the closed model (see (4.2)). The
geodesic lines (4.8) are shown in yellow. They are called the evolution lines or

evolution trajectories. The red point in the center represents the Big Bang. The
black circle in Fig. 4.1 represents the current state of evolution. It is called the
evolution front. The length l0 of the evolution lines (4.5) measures the distance
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from the evolution front to the Big Bang. This distance is in temporal direction.
Therefore the quantity

t0 =
l0
c

(4.10)

is known as the current age of the universe. It is approximately 13.8 billion years
according to our present knowledge (see [9]).

The vector field n from (4.9) is presented by green vectors in Fig. 4.1. They
indicate the evolution direction. We choose the vector field (4.9) in order to use it
in the formula (2.12). Unlike the vector field (2.8) in special relativity, the vector
field (4.9) is not covariantly constant, i. e. it does not satisfy the equalities (2.9).
But we can calculate the covariant derivatives in (2.9) explicitly:

∇sn
p = Dp

s , ∇snp = Dsp. (4.11)

Here Dp
s and Dsp are two matrices representing the components of some tensor field

D. Using (4.7), we derive the following formula for Dp
s in (4.11):

Dp
s =

R′

R

∥

∥

∥

∥

∥

∥

∥

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥

∥

∥

∥

∥

∥

∥

. (4.12)

The components of the second matrix (4.11) are derived by means of the formula

Dsp =

3
∑

q=0

Dq
s gqp. (4.13)

Applying (4.4) and (4.9) to (4.12) and (4.13), we derive

Dp
s =

R′

R
(δp

s − ns np), Dsp =
R′

R
(gsp − ns np). (4.14)

Then, substituting (4.14) into (4.11), we get

∇sn
p =

R′

R
(δp

s − ns np), ∇snp =
R′

R
(gsp − ns np). (4.15)

Now we can use the formulas (4.15) in place of the formulas (2.9).

Definition 4.1. The four-dimensional energy current J of an electromagnetic field
in cosmology is defined by means of the formula

Js =

3
∑

p=0

c T ps np, (4.16)

where T ps are components of the energy-momentum tensor T of an electromagnetic
field and np are the components of the unit vector n tangent to the geodesic lines
of evolution and normal to the evolution front.
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Like in (2.10), one can derive the differential equation

3
∑

s=0

∇sJ
s = −w (4.17)

for the components of the energy current J in (4.16). Formally the equation (4.17)
coincides with the equation (2.14). However, the value of the scalar field w in the
right hand side of it is different:

w =

3
∑

p=0

3
∑

s=0

F ps js np − c

3
∑

p=0

3
∑

s=0

T ps ∇snp. (4.18)

The first term in the right hand side of (4.18) is a regular one. It reduces to (E, j)
like in (1.4) if we choose a comoving frame, i. e. a coordinate system, where the
vector n is given by the formula (4.9), see Section 1.1.3 in [8].

The second term in the right hand side of (4.18) is different. Applying (4.15) to
it, we derive the following formula:

−c

3
∑

p=0

3
∑

s=0

T ps ∇snp = −
c R′

R

3
∑

p=0

3
∑

s=0

T ps gsp +
c R′

R

3
∑

p=0

3
∑

s=0

T ps ns np. (4.19)

The energy-momentum tensor T of an electromagnetic field is traceless. Therefore
the first term in the right hand side of (4.19) does vanish. As a result we get

−c

3
∑

p=0

3
∑

s=0

T ps ∇snp =
c R′

R

3
∑

p=0

3
∑

s=0

T ps ns np. (4.20)

The variable x0 in (4.1) is associated with the time variable t through the formula
x0 = c t. This time variable corresponds to the cosmic time (see [10]). Applying

x0 = c t to the function R = R(x0), we get Ṙ = c R′. Therefore

c R′

R
=

Ṙ

R
= H = H(t). (4.21)

The value in the right hand side of (4.21) is known as the Hubble parameter. Its
value at present time is known as Hubble constant (see (4.10) and [11]):

H0 = H(t0) ≈ 73.4
km

s · Mpc
≈ 2.38 · 10−12 s−1. (4.22)

With the use of (4.21) the equality (4.20) is transformed as

−c

3
∑

p=0

3
∑

s=0

T ps ∇snp = H

3
∑

p=0

3
∑

s=0

T ps ns np. (4.23)

Now we can summarize the results obtained in the form of the following theorems.
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Theorem 4.1. The scalar field w in the right hand side of the equation (4.17) is

presented as the sum of two terms

w = wreg + wHub, (4.24)

the regular term and the Hubble term, which are given by the formulas

wreg =

3
∑

p=0

3
∑

s=0

F ps js np,

wHub = −c

3
∑

p=0

3
∑

s=0

T ps ∇snp.

(4.25)

Theorem 4.2. In a comoving frame the regular term wreg from (4.24) and (4.25)
reduces to wreg = (E, j), where E is the electric field and j is the three-dimensional

density of electric current.

Theorem 4.3. In a comoving frame the Hubble term wHub from (4.24) and (4.25)
reduces to wHub = H ε, where ε is the density of electromagnetic energy from (1.4)
and H is the Hubble parameter from (4.21).

Theorems 4.2 and 4.3 are proved by means of direct calculations using (4.21),
(4.20), (4.9), (2.6), (2.2), (2.1), and (1.7).

5. Conclusions.

Definition 4.1 and Theorems 4.1, 4.2, 4.3 along with the equation (4.17) consti-
tute the main result of the present paper. They are derived under the assumption
of a homogeneous and isotropic universe. This assumption is valid at large scales.
At smaller scales galaxies, nebulas, stars and black holes can substantially disturb
the smooth shape of the evolution front and evolution lines (see Fig. 4.1). Never-
theless Definition 4.1, the equation (4.17) and Theorems 4.1 and 4.2 remain valid
in the vicinity of these massive objects. As for Theorem 4.3, it should be properly
changed in each particular case.

Peculiar velocities of the Solar system as a whole and of most regular objects
on the Earth are much smaller than the speed of light. Therefore our results
do not affect engineering applications of electrodynamics which use the formulas
(1.4). The Hubble term from (4.24) and (4.23) also does not affect engineering
applications since the Hubble parameter H is very small, see (4.22). Nevertheless
the above results can be useful from the conceptual point of view, e. g. for defining
the coordinate presentation of the quantum wave function of an individual photon.
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