FERRARI'S METHOD

Edgar Valdebenito

July 5, 2022

Abstract
 Solving quartics via Ferrari's method

Introduction: Ferrari's method for quartic equation

1. The basic idea: We will reduce the main quartic equation in two quadratic equation and as method for solution of quadratic equation is known we can easily solve main equation.
2. Let the quartic equation is given as

$$
\begin{equation*}
f(x)=a x^{4}+4 b x^{3}+6 c x^{2}+4 d x+e=0 \tag{1}
\end{equation*}
$$

3. We use the fact that

$$
\begin{equation*}
M^{2}-N^{2}=0 \Rightarrow(M+N)(M-N)=0 \Rightarrow(M+N)=0 \operatorname{or}(M-N)=0 \tag{2}
\end{equation*}
$$

4. We start with

$$
\begin{equation*}
\left(a x^{2}+2 b x+s\right)^{2}-(2 m x+n)^{2}=0 \tag{3}
\end{equation*}
$$

for some s, m, n

$$
\begin{gather*}
(3) \Rightarrow\left(a^{2} x^{4}+4 b^{2} x^{2}+s^{2}+4 a b x^{3}+2 a s x^{2}+4 b s x\right)-\left(4 m^{2} x^{2}+n^{2}+4 m n x\right)=0 \tag{4}\\
(4) \Rightarrow a^{2} x^{4}+4 a b x^{3}+\left(4 b^{2}+2 a s-4 m^{2}\right) x^{2}+(4 b s-4 m n) x+\left(s^{2}-n^{2}\right)=0 \tag{5}
\end{gather*}
$$

By equation (1) we have

$$
\begin{equation*}
a \cdot f(x)=a^{2} x^{4}+4 a b x^{3}+6 a c x^{2}+4 a d x+a e=0 \tag{6}
\end{equation*}
$$

Comparing equation (5) and (6) we get

$$
\begin{equation*}
2 a s+4 b^{2}-4 m^{2}=6 a c \quad, \quad 4 b s-4 m n=4 a d \quad, \quad s^{2}-n^{2}=a e \tag{7}
\end{equation*}
$$

So we have

$$
\begin{equation*}
a s+2 b^{2}-2 m^{2}=3 a c \quad, \quad b s-m n=a d \quad, \quad s^{2}-n^{2}=a e \tag{8}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
(8) \Rightarrow(b s-a d)^{2}=\left(\frac{a s+2 b^{2}-3 a c}{2}\right)\left(s^{2}-a e\right) \tag{9}
\end{equation*}
$$

Simplifying and solving this equation for one value of s with trial and error method or as it will be cubic equation in s we can use cardano method to find one real value of s, using that find value of $m \& n$.
Then using (3) we can have two quadratic equations and hence we can solve the main quartic equation.

Main Example

$$
\begin{equation*}
x^{4}-3 x^{2}-2 x+1=0 \tag{10}
\end{equation*}
$$

Roots

$$
\begin{align*}
& x_{1}=-\frac{1}{2} \sqrt{3+2 s}-\frac{1}{2} \sqrt{3-2 s-\frac{4}{\sqrt{3+2 s}}} \tag{11}\\
& x_{2}=-\frac{1}{2} \sqrt{3+2 s}+\frac{1}{2} \sqrt{3-2 s-\frac{4}{\sqrt{3+2 s}}} \tag{12}\\
& x_{3}=\frac{1}{2} \sqrt{3+2 s}-\frac{1}{2} \sqrt{3-2 s+\frac{4}{\sqrt{3+2 s}}} \tag{13}\\
& x_{4}=\frac{1}{2} \sqrt{3+2 s}+\frac{1}{2} \sqrt{3-2 s+\frac{4}{\sqrt{3+2 s}}} \tag{14}
\end{align*}
$$

where

$$
\begin{equation*}
s=-\frac{1}{2}+\frac{1}{6}(135-6 \sqrt{249})^{1 / 3}+\frac{1}{6}(135+6 \sqrt{249})^{1 / 3} \tag{15}
\end{equation*}
$$

$$
\text { On } u=x_{3}
$$

Recall that

$$
\begin{equation*}
\pi=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\ldots\right) \tag{16}
\end{equation*}
$$

Let

$$
\begin{equation*}
u=x_{3}=\frac{1}{2} \sqrt{3+2 s}-\frac{1}{2} \sqrt{3-2 s+\frac{4}{\sqrt{3+2 s}}} \tag{17}
\end{equation*}
$$

We have

$$
\begin{gather*}
\pi=4 \sqrt{2 u} \sum_{n=0}^{\infty}\left(-\frac{u}{2}\right)^{n}\binom{2 n}{n} \sum_{k=0}^{[n / 2]} \frac{2^{-4 k}}{2 n-4 k+1}\binom{n}{2 k}\binom{2 n-4 k}{n-2 k}^{-1} \tag{18}\\
\pi=4 \sum_{n=0}^{\infty} u^{n+1} \sum_{k=0}^{[n / 2]} \frac{(-1)^{k}}{2 k+1}\binom{n}{n-2 k}+12 u^{2}+12 \sum_{n=1}^{\infty}(-3)^{-n} u^{2 n+2} \sum_{k=\left[\frac{n-1}{4}\right]}^{[n / 2]} \frac{(-1)^{k} 3^{4 k}}{2 k+1}\binom{2 k+1}{n-2 k} \tag{19}
\end{gather*}
$$

Sequence for $u=x_{3}$

$$
\begin{gather*}
u_{n}=\sum_{m=0}^{[n / 4)} \sum_{k=0}^{\left[\frac{n-2 m}{2}\right]}(-1)^{m} 2^{n-2 m-2 k} 3^{-m+k}\binom{k}{m}\binom{n-k-2 m}{k}, n=1,2,3, \ldots \tag{20}\\
\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=u=x_{3} \tag{21}\\
\left\{u_{n}: n \geq 0\right\}=\{1,2,7,20,60,178,529,1572,4671,13880, \ldots\} \tag{22}\\
\left\{\frac{u_{n}}{u_{n+1}}: n \geq 0\right\}=\left\{\frac{1}{2}, \frac{2}{7}, \frac{7}{20}, \frac{1}{3}, \frac{30}{89}, \frac{178}{529}, \frac{529}{1572}, \frac{524}{1557}, \frac{4671}{13880}, \ldots\right\} \tag{23}
\end{gather*}
$$

Remark: $[x]=$ floor (x), is the floor function.

References

1. D. Herbison-Evans, Solving quartics and cubics for graphics, 2005. http://linus.it.uts.edu.au/~don/pubs/solving.html
2. T. Strong, Elementary and Higher Algebra, Pratt and Oakley, 1859.
3. H.W. Turnbull, Theory of Equations, fourth ed., Oliver and Boyd, London, 1947.
4. S. Neumark, Solution of Cubic and Quartic Equations, Pergamon Press, Oxford, 1965.
