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Abstract. A new non-Archimedean approach to interacted qumafiiteids is presentedin proposed approach, a field operator
¢(x,t) no longer a standard tempered operator-valuedhditbn, but a non-classical operator-valued fiorctWe prove using
this novel approach that the quantum field theaith WamiltonianP (¢), exists and that the correspondifig algebra of
bounded observables satisfies all the Haag-Kastiems except Lorentz covariance. We prove thaffge), quantum field
theory model is Lorentz covariant.
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8§ 1. INTRODUCTION

Extending the real numbeRsto include infinite and infinitesimal quantitiesginally enabled D. Laugwitz [1] to
view the delta distributiofi(x) as a nonstandard point function. IndependentliRdébinson [2] demonstrated that
distributions could be viewed as generalized pafyiads. Luxemburg [3] and Sloan [4] presented aeratite re-
presentative of distributions as internal functiarithin the context of canonical Robinson's themfirponstandard
analysisFor further information on nonstandard real analysie refer to [5]-[6].

Abbreviation 1.1.1In this paper we adopt the following notationst &standard sét we often writeE,,. For a set
Eg let°E be a s&tE,, = {*x|x € E4}. We identifyz with °z i.e.,z = ?z for allz € C. HencelEy = E if E € C,
e.g..°C=C,°R=R,°P =P, 9L, =L, etc. Let'R. "Rey "Rgn, “Ro, and*N,, denote the sets of infinitesimal
hyper-real numbers, positive infinitesimal hypestnreumbers, finite hyper-real numbers, infinite arpeal
numbers and infinite hyper natural numbers, re$pegt Note thatRg, = "R\*R,,, "*C = "R+ i'R, "Cq, =
"Rfin + 1"Reip -

Definition 1.1Let {X, 0} be a standard topological space andXebe the nonstandard extensiornXoiLet 0, de-
note the set of open neighbourhoods of peiatX. The monadnon, (x) of x is the subset of X defined by
mony(x) =N {*0|0 c 0,}.The set of near standard points'¥fis the subset ofX defined bynst (*X) =U
{mon, (x)|x € X}. Itis shown thafX, 0} is Hausdorff space if and onlyxf# y impliesmon,(x) N mon,(y) =
@. Thus for any Hausdorff spgcg 0}, we can define the equivalence relatigmhonnst (*X) so thate =, y if and
only if x € mon,(z) andy € mon,(z) for somez € X.

Definition 1.2 The standard Schwarspace of rapidly decreasing test function®R3mm € N is the standard
function space is defined b§(R™, C) = {f € C*(R", O)|Va, B € N"[|fllop < |}, where

Il = supcern |x* (DF£ ()|



Remark 1.11f f is a rapidly decreasing function, then foreake N™ the integral ofx*D# f (x)| exists
f]Rn|x“D5f(x)|d”x < o0,

Definition 1.3 The internal Schwartzpace of rapidly decreasing test functionsigb, n € *N is the function space
defined by "SC'R™, *C) = {*f € "C* ('R, *C)|Va, B € "N"[*||"fllop < "]}, where

W fllas = sup {x= (DPf)) x € R7}

Remark 1.2 If f is a rapidly decreasing functiofi,€ S(R", C), then for alle, B € *N™ the internal integral of
*x*DP*f (x)| exists

*f*]Rn

*x*DP*f(x)| d"x < *oo.

HereD#*f(x) = (D £(x)).

Definition 1.4 The Schwartspace of essentially rapidly decreasing test fonstion*R™, n € *N is the function
space defined by

“Sin('R™, "C) =
{'f € C=CRY " OIV(a B)(@ B € NY)3cap(cap € Ren )Vx(x € RY) [[x* ("D £ ()| < cap}-

Remark 1.31f *f € *Sg, ("R™, *C), then for alla € *N™ the internal integral df x*D#*f(x)| exists and finitely
bounded above

g XEDP ()| d"x < dyp, dag € Ry -

Abbreviation 1.2 The standard Schwarspace of rapidly decreasing test function®Rdnwve will be denote by
S(R™). Let’'S(*R™), n € *N denote the space t-valued rapidly decreasing internal test functionsR",n € *N
and let'Sg, (*R™), n € "N denote the set s, -valued essentially rapidly decreasing test funstioriR™, n € *N.
If h(w,x):R X R® andf: R™ - C are Lebesgue measurable BA" we shall write(*h, *f) for internal Lebesgue
integral*f*]Rn *h*f d™x with *f € *Sg, ("R™). Certain internal function®i(w, x): "R X "R™ — *C define classical

distributiont(f) by the rule [3][4]:
7(f) = st(("h, "f ). (1.1)

Herest(a) is the standard part afandst((*h, *f)) exists [5].

Definition 1.5 We shall say thath(w, x) with w = @ € *R,, is an internal representative to distributidif) and
we will write symbolically (x4, ..., x,) = "h(w, x4, ..., x,,) if the equation (1) holds.

Definition 1.6 [6] We shall say that certain internal functioh§w, x): *R X *R™ — *C is a finite tempered
distribution if *f € *Sg, C'R™) implies|*h, *f| € °R = R. A functions*h(w, x): "R X *R™ - *C is called
infinitesimal tempered distribution iff € *Sg, ("R™) implies|*h, *f| € *R. .The space of infinitesimal tempered
distribution is denotedyb*S. (*R™).

Definition 1.7 We shall say that certain internal functich§w, x): *R x *R** — *C is a Lorentzs -invariant
tempered distribution if f € *Sg, "R™) andA € oLl implies (*h, *f (Axy, ..., Ax,)) = (°h, *F (X1, o) X))

Example 1.1 Let us consider Lorentz invariant distribution



D(x) = — [z e 22 @3k =L 5(r2 — t?)sign(t). (1.2)

(2m)3

Here w = |k| = ki + k3 + k3 and r = (xy, x5, x3), 7 = y/x{ + x5 + x5. It easily verify that distributio® (x)
has the following internal representative

1 ikr Sinwt ;3
@ fllewe — d°k. (1.3)

D(x, ) =
Herew € "R.. By integrating in (1.3) over angle variables we ge

1
8m2r

D(x, @) = *fm{eiw(r—t) + e iw(r—t) _ plo(r+t) _ e—iw(r+t)} dw (1.4)
) 0 . .
From (1.4) by canonical calculation finally we get

D(x, @) =

1 [sinw(r—t) _ sin w(r+t)] - S(r-t)-56(r+t) _
an2r = an2r -

—5(r? — t?)sign(t). (1.5)

r—t r+t

Example 1.2 We consider now the following Lorentz invarianstdibution:

D,(x) = — fRSeikrwl‘“dBk—il (1.6)

(2m)3 T omz 2
It easily verify that distributio® (x) has the following internal representative

1

Dl(x' 'GJ) = (2m)3 fllem

ellr S22 g3k, (1.7)

Herew € "R,,. By integrating in (1.7) over angle variables we ge

i * . _ i _ . i
Dl(x, ’(IS) a~ — — fo {ezw(r t) _ p-iw(r-t) + elw(r+t) _ o lw(r+t)} dw. (1.8)
From (1.8) finally we get
o i -2 -2 2cosw(r—-t) , 2cosw(r+t) 11
Dy (r, @) ~ 8m2r [i(r—t) i(r+t) i(r—t) i(r+t) = omz x2 (19)
Example 3.We consider now the following Lorentzarignt distribution
@)(_; 2
__ 1 ithr—eGiole) 4% _ _ m i (-imT7)
Ac(x) 2(2m)3 flR3 € (k) 8 my|x2| (1.10)
Here—x? < 0, e(k) = /| k2| + m? andHfz) is a Hankel function of the second kind. It easgyify that
distributionA, (x) has the following internal representative
—_t iCkr—e()|tl) 4°K
A (x, @) e flklsme @ (1.11)

From (1.10)-(1.11) it follows*A.(x) = A.(x, @) + A.(x) where

X __t = i(kr—g(R)|]) 4k
Be() = 5555 fgo €7 e 0D 2L (1.12)



Note that for alA € °L',, A.(Ax) € *S.(*R™) and therefore for alt € °L',, A.(Ax, @) =~ A.(x, ), i.e.,A.(x, @)

C
is a Lorentz= -invariant tempered distribution, see definitionThus we can set= 0 in (1.11).By integrating in
(1.112) over angle variables and using substitutiovariables k| = m sinh(u) we get

A(x, @) = anlr f e €xp(imrsinh(u) )du. (1.13)
Note that
*H(Z) (x) = —f exp(tmrsmh(u))du A.(x,w) + E(x, w), (1.14)
Ex, @) = %f_*lgw exp(imrsinh(w) )du + fl;j; exp(imrsinh(w) )du. (1.15)
From (1.13)-(1.15) finally we obtain,(x, @) ~ H® (x) , sinceE(x, @) € *S.("R")
Example 1.4 Let us consider Lorentz invariant distribution
ACx —y) = [{exp[=ip(x — y)] — explip(x — )} 6(p* —m*)I(p°)d*p. (1.16)
From (1.16) one obtains(x —y) = E,(x —y) — E,(x — y), where
E1(x — ) = [{exp{lip(x = )] — i@ (x° — y)}} =5 W’ (1.17)
(1.18)

2 (=) = ffexp{[—p(x = )] + @) (x° — ¥} =,

Jp? + m?. It easily verify that distribution (1.17) and 18) has the following internal representatives

w(p) =
(119

8 (= 3,@) = o lexp{lip( = )] — 0@ — y))) .
@p (1.20)

20—y ®) = fjyepl—exp[p(x = P + 0@ =y} -

Note that *A(x — y) = [E,(x — ¥, @) + E,(x — y,®@)] + [, (x — y, @) + E;,(x — y, ®)], where
(1.21)

Jrsotexpllip(x — »] - iw@)(x° -y} +5 =

flkl>w{ exp|[ip(x — Y] + iw(P)(x° — y9)]} J% (1.22)

E(x—-yw) =

(x—ym)=

[1K
N

Note that for alA € °L%,, Z,(A(x — ), @) + £, (A(x — y), ) € *S.(*R™) and therefore for all
A€°Ll, *A(A(x - y)) ~AA(x —y), @) =E,(A(x—y),©) + E,(A(x — y),w), i.e.,A(x — y,w) is a Lorentz
~-invariant tempered distribution, see definitiod.1lcrom (1.20) by replacemept— —p we obtain
featexpllip(x — )] + iw @) (x° - YO == JW (1.23)

E(x—y @)=~

From (1.19) and (1.23) we get
AGx =y, @) = 5 (x = y,®) + B (x —y,@) = [, sin[w(@)(x° - y)explip(x — y)] == W (1.24)



Thus for any pointg andy separated by space-like interval from (1.24) wiiobthat
Alx —y, @) =0, (1.25)

sinceA(x — y,w) is a Lorentzz-invariant tempered distribution. From (1.25) foyaointsx andy separated by
spacelike interval we obtain that{A(x — y,@)) = 0.

Definition 1.8 [8] Let for eachn > 0: H,, = {p € R*|p - p = m%, m >,p, > 0}, wherep = (p°, —p?, —p?, —p3).
Here thesetsH,, which are standard mass hyperboloids, are invianiagier’L,.. Let j,, be the homeomorphism of
H,, ontoR? given by j,,: (pg, P1, P2, P3) = (1,02, p3) = p. Define a measurg,, (E) onH,, by

3
Qi (E) = f;’m(s)ﬁ :
The measur@,,(E) is °L% -invariant [8].
Theorem 1.1[8] Let u is a polynomially bounded measure with suppoitinif u is °L, = L', - invariant, there
exists a polynomially bounded measpr@n[0,0) and a constantso that for any’ € S(R*)

f(\/Ip|2+m2.P1.Pz,P3)d3p> . (1.26)

IR4de:Cf(0)+fo dp(m)<fR3 \/W
Theorem 1.2 Let i is a polynomially boundet!. - invariant measure with supportifp. Let F(f) be a linear
x-continuous functiondf: *Sg, (*R*) - "Ry, defined by"f*m{4 *f d uand there exists a polynomially bounded

measurg on[0,00) such thai_;f(:oo d *p (m) € "Rg, and a constant€ “Rg;,. Then for anyf € *S . (“R*) and for
anyx € "R, the following property holds

(1.27)

T(*f) ~ c*f(O) + fo*oo dp (m) < flplsx V(Wpl@z,?s)d 3p>

VIp[2+m?

Definition 1.9 Let y(x%, p) be a function such thay (s, p) = 1 if |p| <, (e, p) = 0if |p| > x, x € *R,,.Define
internal measur&,,, ,, on*H,, by

_ xGep)d®p
Qo (E) = [y o (1.28)
Theorem 1.3 [8] Let W, (x4, x,) be the two-point function of a field theory sajisfy the Wightman axioms and the
additional condition thafy,, ¢ (f)y,) = 0 for all f € S(R*). Then there exists a polynomially bounded positive
measurep(m) on [0,00) so that for all for alf € S(R*)

Wo(F) = (o 0 (e (o) = [ Fr)f () Wy = x)d*xd?y = [ ([, fdQu,)dp(m). (1.29)

Theorem 1.4 Let W, (x4, x,) be the two-point function of a field theory memtgal in Theorem 1.3. Then for all
f € Sun CR*) and for anyr € *R., the following property holds

W)~ 1,7 (fop flms) dpCm). (1.30)

Definition 1.10 (1) Let L(H) be algebra of the all densely defined linear dpesan standard Hilbert spadé.
Operator-valued distribution oR™, that is a mapp: S( R™) — L(H) such that there exists a dense subspace
D c H satisfying:

1. for eachf € S(R™) the domain of¢p containsD,



2. the induced mapS — End(D), f = ¢ (f), is linear,
3. for eachh; € D andh, € H the assignmenf — (h,, o(f)h,) is a tempered distribution.
(2) Certain operator-valued internal functipr(*f, @): *S( *Rn) - *L(*H) is an internal representative for standard

operator valued distributiop (f) if for each near standard vectatg € *D and h, € *H the equality holds

(ha, @(Ry) = st(*(hy, @ Cf, @)hy)), (1.31)
whereh, =~ h, andh, =~ h,.
Definition 1.11]9] Let H be a Hilbert space and denotel% then-fold tensor producH™ = HQ H® --- ®H. Set
H° = Cand defineF (H) = H™. F(H) is called the Fock space over Hilbert spHcéNoticeF (H) will be
separable iff is. We set now! = L,(R?) then an elemenp € F(H) is a sequence o€ -valued functions
Y = {Wo, Y1(x1), Y (x1, x3), W (X1, X, X3), oo, Wr (x4, ..., x,)}, n € N and such that the following condition holds

[Wol? + Xne n(S 195 (21, ., 1) 12d"x) < co.

Definition 1.12 [8] Let us define now external operatgip) onF, with domainDg by

(@@P)® =Vn+ 1P (p, ky, ... ky,). (1.32)

The formal adjoint of the operata(p) reads
(@ @™ = £3589 P — kYD ks ki, Ky, k) (1.33)

Definition 1.13 [8] Letyfi™ be a vectorfin = {1/;(")}::1 for whichy™ = 0 for all except finitely many: is
called a finite particle vector. We will denote thet of finite particle vectors . The vectorQ, = (1,0,0, ...) is
called the vacuum.

Definition 1.14 We let now'D-s = {"y|"y € *F, "™ € *S ("R®"),n € *N} and for eactp € "R*" we define an
internal operatota(p) on*F, with domain*D«s by

Ca@P)® = vVn+ 1T 9p™+D(p, ky, ... ky). (1.34)

The formal«-adjoint of the operatdiz reads

1

(*aT (P)lp)(n) = \/_ﬁ =1 *5(3) (P - kl)*ll’(n_l) (k1; ey kl—l' kl+1' ey kn)- (1-35)

We express the free internal scalar field andithe zero fields with hyperfinite momentum cut-offe "R, in
terms of*a’ (p) and*a(p) as quadratic forms o+ by

D (3, 8) =
@02 [, (e r@)t = ) 'at () + (exp(u®)t + i) "a ()} s, (1.36)
"G, t) = @02 {(exp(=ip0)at (@) + (exp(ipx))"a (1)} J% : (1.37)
T (,8) = @) 2" [ {(exp(=ipx))at () + (exp(ip))°a (p)} J% . (1.38)

Theorem 1.5 Let®,,(x,t) and @,,(x, t), m,,(x, t) be the free standard scalar field and the time fielas
respectively. Then for arwy € IR, the operator valued internal functions (1.35)-{}) @ives internal



representatives for standard operator valued bligtans @, (x, t) and @,,,(x, t), 1, (x,t) respectively.
Definition 1.15 Let{X, ||-||} be a standard Banach space.#ear*X ande > 0, e = 0 we define the opes-ball
aboutx of radiuse to be the seB.(x) = {y € *X|*||lx — y|| < &}.

Definition 1.16 Let {{X, ||-||} be a standard Banach spae; X, thus*'Y c *X and letx € *X.Thenx is anx-
accumu-lotion point ofY if for anye € *R., there is a hyper infinite sequer{oq};‘ﬁlin *Y such that{xn};":1 n
(B:CO\{x} = ).

Definition 1.17 Let {{X, ||-||} be a standard Banach spaceYet *X,*Y is = -closed if any-accumulation point of
Y is an element ofY.

Definition 1.18 Let {{X, ||-|[} be a standard Banach space. We shall say thatahteyper infinite sequence
{xn};‘zlin *X is*-converges ta € *X asn — *oo if for anye € "R, there isN € *N such that for any >

N:"lx —y|l < e.

Definition 1.19 Let {{X, |I'l|x}, {{Y, lIlly} be a standard Banach spaces. A linear internahtipel: D(4) € *X —
*Y isx*-closed if for every internal hyper infinite sequel{mn};‘ﬁ1 in D(A) = -converging toc € *X such that
Ax, » y € *Y asn - o one hasx € D(4) andAx = y. Equivalently A is *-closed if its graph is -closed in the
direct sum'X @ *Y.

Definition 1.20 Let H be a standard external Hilbert space. The grapiheofternal linear transformatidh *H —
*H is the set of pairf(g, Te)|@ € D(T)}. The graph of’, denoted by (T), is thus a subset 6ff x *H which is
internal Hilbert space with inner produto,, 1), {®,, ¥»)) = (@1, ¢2) + (P41, ¥,).The operator is called a
*-closed operator if"(T) is ax* -closed subset of Cartesian produ€tx *H.

Definition 1.21 Let H be a standard Hilbert space. [etandT be internal operators on internal Hilbert spaée
Note that ifT (T;) o I['(T), thenT; is said to be an extension®fand we writel; o T. Equivalently,T; o T if and
only if D(T;) © D(T) andT,¢p = T¢ for allp € D(T).

Definition 1.22 Any internal operatof on*H is *-closable if it has a-closed extension. Everyclosable internal
operato!T has a smallest-closed extension, called isclosure, which we denote ByT.

Definition 1.23 Let H be a standard Hilbert space. [ebe ax-densely defined internal linear operator on irgérn
Hilbert space€H. Let D(T™*) be the set op € *H for which there is a vectdre *H with (Ty, @) = (¢, &) for all

Y € D(T), then for eaclp € D(T*), we defineT*¢ = £. T* is called the--adjoint ofT. Note thatS c T implies

T cS™.

Definition 1.24 Let H is a standardiilbert spaceA *-densely defined internal linear operafoon internal Hilbert
space'H is called symmetric (or Hermitian)df c T*. Equivalently, T is symmetric if and only ifT ¢, ) =

(o, TY) for all @, € D(T).

Definition 1.25 Let H be a standard Hilbert spadesymmetric internal linear operat@ron internal Hilbert space
*H is called essentially self-adjoint if its x-closurex-T is self =-adjoint. If T is =-closed, a subsé c D(T) is
called ax-core forT if - (T D) =T.If T is essentially self-adjoint, then it has one and only one

self «-adjoint extension.

Theorem 1.6 Letn,,n, € N and suppose tha (ky, ...k, Py, ..., Pn, ) € "Ly ("R3M1#m2)) where

W (ky, ... kn,, D1, e, Py, ) is @"C -valued internal function ofR*™1#72). Then there is a unique operafyy on
*F(*L,(*R®)) so that'D-; < D(Ty,) is a* - core forT,, and

(1) as*C-valued quadratic forms GiD«g X *D+g

TW = *LR3(TL1+"2) W(kl’ knl: P1s ey pnz) (H:L:l1 *af(ki))(n?:zl *a(pi))dnlkdnzp
(2) As *C-valued quadratic forms AP X D+g

TI/T/ = *fo3(n1+n2) W(kl! knl'pl! 'pnz) (H?:ll *aT (kl))(l_[:;zl *a(pi))dnlkdnzp



(3) On vectors ifF, the operatordy, and Ty, are given by the explicit formulas

N (I-ny+nq)
(Tw () 2 =
K(l,ny,n,)*S [ flpllsw *f|Pn2|Sw W (ke o Ky D1y oes Py ) WO (D1 s Py Kty o i, )d372 p], (1.39)

(T{{,(*l/)))n =0ifn <n; —n,,

(I-ni+nz) _

(T C¥))

K(l, n,, n1)*s [ flpllsm *flpn2|Sm W(k1; knl' D1, ---,pnz)*lp(l)(pl, v Dnys kl! knl)d3n1 k] (140)

(Tiy C)" = 0,ifn < ny —ny.

U(l+ng —np)1 /2 .
W] ,ny,ny, € N, € "N,
Proof For vectorsy € D« we definely, (") by the formula (39). By the Schwarz inequality ahe fact thats is

a projection we get

HereS is the symmetrization operator defined in [9] &{d n,, n,) = [

(*||(TW(*¢))U_”2+”1) )2 < K(,ny,ny)’ “w, (1.41)

(v)

Let us now define the operatfif, (*y) onD-¢ by the formula (39), then for &lp, "y € D+, then one obtains
directly *( "o, Ty, ") = *(Ty, "o, "¢). Thus,Ty, is * -closable andy, is the restriction of the -adjoint of T, on

D-¢. We will useTy, to denotex -T;;, andT;;, to denote the -adjoint ofT},. By the definition ofT;;,, D-¢is ax -core
and further, sincdy, is bounded on theparticle vectors iD-; we get'F, c D(T, ). Since the right-hand side of
(39) is also bounded on tlgarticle vectors, equation (38) represehison alll-particle vectorsThe proof of the
statement (2) abo®;, is the same.

Definition 1.26 [8] Define standard -space by) =x;_; R. Leto be thes-algebra generated by infinite products
of measurable sets R and selt = ®j_, iy With du, = m=*/2exp(—x2/2). Denote the points @f by g =

(91,92, .- )- Then(Q, u) is a measure space and the set of the all fursctibthe formP,(q) = P(q1, 92, ---» qn),
whereP, (q) is a polynomial and € N is arbitrary, is dense ik, (Q, du). Remind that there exists a unitary map
S: F.(H) - L,(Q, du) of Fock spac&;(H) ontoL,(Q, du) so thaSp(f;,)S™! = g, andSQ, = 1. Here{f,}o=, is

an orthonormal basis féf. Then by transfer one obtains internal measuressig@ecu) = (*Q, *u) and internal
unitary map'S: F,(H) - *L,(*Q,d*u) so that'Se(f,)*S™! = q,, r € *N and*SQ, = 1. Here{fr}:‘f1 is an
orthonormal basis foiH.

Theorem 1.7 Let "¢, (x, t) be internal free scalar boson field of masat timet = 0 with hyperfinite momentum
cutoff x in four-dimensional space-time. Lgtx) be a real-valued internal functiorfIn (*R?) n *L; (*R?). Then
the operator

“Hip(g) = 200) “[ops () : " (0): d3x (1.42)

is a well-defined internal symmetric operator'dng, . Here: "¢ (x) = "¢ (x) + d, (%) (*(pi(x)) +d,(3).
where the coefficientd, (») andd, (x) are independent af LetS denote the unitary map 8f(H) ontoL,(Q, du)
considered in [8]. Thel = *S*H,,,(g)*S™* is multiplication by internal functioH, ,,(q) which satisfies:

(@) Vi (@) € "L, ("Q.d") for allp € 'N, (b)exp (—tV;,.(q)) € "Ly ("Q,d") for all t € [0,"00).



Proof Note that for each € *R3, the operatotS(*¢,,(x))*S™! is just the operator on internal measurable space
*L,(*Q, d*w) on which this operator acts by multiplying by foection Z;‘fl ¢ (x, %) qy, Wherec, (x, %) =

(2m)3/2 (fk, (M(p))l/zexp(ipx)). Furthermorez;:llck(x, n)|? = (211)3/2* u(P)l/ZHE so*S (*(pi(x)) *S~land

*S (*¢i(x)) *S~1 are in*L,(*Q, d*u) and the correspondirig, (*Q, d*u)-norms are uniformly bounded in

Therefore, sincg € *L, (*R®) the operatotS (*H,,%(g)) *S~1 is just the operator on internal measurable space

*L,(*Q, d*u) on which this operator acts by multiplying by ttig(*Q, d “u)-function which we denote B, ; (q).
Let us consider now the expression iy, (g)*Q, obviously this is a vectd0,0,0,0,%*,0, ...) with

A6 g @) T4 LxGep)] exp(—ix BT p;)dx
¢4(p1! D2,P3, p4) = f*RS (2n)3/2 ]-[4 [ZH(Di)]l/Z : (3)4

i=1

Herex(»,p) = 1if |p| < x, x(¢,p) = 0 if |p| > #, x € *R,,. We choose now the paramefier 1(x) ~ 0 such
2 * 2

that*|[y*]13 € R and therefore we obtail| *H,,,{,,l(,f)(g)ﬂo||2 € R, since || *H,_H,A(H)(g)ﬂonz = *|lp*||3. But,

since*S*Q, = 1, we get the equalities

*

L(CQd'w)

*|| "Hi e AGe) (9)90”2 = |I"S Hison00 (@) S 71| Vise100(@) (1.44)

Ly(Qd W)

From (1.43) we get thal|V; . 100 ()

LL o € R and it is easily verify, that each polynomkdlq,, q;, ---, qn),
20Q.a

isn € "N in the domain of the operatdf; ,, 1) (q) and*S *H; ,, 166 (9)*S™" = V1,200 (q) on that domain. Since
*Qg is in the domain OTle;f/l(x)(g)’p € "N, 1 is in the domain of the operatiéf, ,, ;,,(q) for allp € *N. Thus,
forallp € "N V,100(q) € "L, (Q,d"p), since’u (*Q ) is finite, we conclude thaf;,, 3, (q) € "L, ("Q,d"p) for
allp € *N.

(b) Remind Wick's theorem asserts thap;, , (x) = ¥/2(—1) ﬁc‘};*(pé{;w (x) with
= *(pm,%(x)*QOHZ. Forj = 4 we get—0(c2) <: “pp ,.(x): and therefore — (*f*wg(x) d3x) 0(c2) <
2

*Hy100(9). Finally we obtain*f*Q exp (—t(: o (x): )) d *u < exp(0(c?)) and this inequality finalized the
proof.

Theorem 1.8 [8] Let (M, u) be ag-measure standard space wilfM) = 1and letH, be the generator of a hyper-
contractive semigroup aiy, (M, du). LetV be aR-valued measurable function 6M, i) such thal’ € L,(M, du)
forallp € [1,00) andexp(—tV) € L, (M, dy) for allt > 0. ThenH, + V is essentially self-adjoint 06> (H, ) N
D(V) and is bounded below. He®” (H, ) = Npeny D(HY).

Theorem 1.9 Let (M, u) be as-measure space with(M) = 1and letH, be the generator of a hypercontractive
semi-group ori., (M, du). LetV be a"R-valued internal measurable function{©m, “u) such thav € "L,("M,d"u)
for all p € [1, *0) and*exp(—tV) € *L, (*M,d*y) for all t > 0. Assume that a s€t*(*H, ) n D(V) is internal.
Then operatotH, + V is essentially selé--adjoint internal operator o6 *(*H, ) n D(V) and it is hyper finitely
bounded below. Her€ *(*Hy ) = Ny D(*HY).

Proof. It follows immediately by transfer from theorem 8.

Remark 1.4 LetV; ,, ; be operator on internal measurable sgég€™Q, d*u) on which this operator acts by
multiplying by the*L, (*Q, d "u)-functiorV/,,, , , see proof to Theorem 1.7. Note that for this apera set

C°(*Hy) N D(V,,M) is not internal and therefore Theorem9 no longdds But without this theorem we cannot
conclude that operatdH, + V;,, ,; is essentially sel#--adjoint internal operator 08 (*Hy ) N D(V,,,M). Thus
Robinson’s transfer is of no help in the case apoading to operatdf;,,; considered above. In order to resolve
this issue, we will use non conservative extensiothe model theoretical nonstandard analysis[E&je[14].



§2. NON CONSERVATIVE EXTENSION OF THE MODEL THEORETICAL

NONSTANDARD ANALYSIS

Remind that Robinson nonstandard analysis (RNA)ynd@veloped using set theoretical objects callgeisu
structures [2]-[7]. A superstructuv&S) over a sef is defined in the following way,(S) = S, V41 (S) = V,,(S) U
P(Vn(S)), V(S) = Unen Vns1(S). Making S = R will suffice for virtually any construction necesy in analysis.
Bounded formulas are formulas where all quantifeasur in the formvx (x ey - - ), Ix(x €y = -+ ). A
nonstandard embedding is a mappind/(X) — V(Y) from a superstructur&(X) called the standard universe,
into another superstructuv€Y) called nonstandard universe, satisfying the folfmapostulates:

1LY="X

2. Transfer Principle For every bounded formufa(x;,, ..., x,,) and elements,, ...,a,, € V(X) the property

®(ay, ...,a,) istrue foray, ..., a, inthe standard universe if and only if it isdffor *a, , ..., *a,, in the
nonstandard univerd&(X) k ®(xy, ..., x,) © V(¥) F¢('ay, ..., "a,).

3. Non-triviality For every infinite setd in the standard universe, the §&t|a € A} is a proper subset 4.
Definition 2.1 A setx is internal if and only ifc is an element of A for somed € V(R). Let X be a set and

A = {A;},c; a family of subsets ok .Then the collectiod has the infinite intersection property, if anyimite sub
collection] c I has non-empty intersection. Nonstandard universe-saturated if whenevéd, };¢; is a
collection of internal sets with the infinite inseiction property and the cardinality bis less than or equal to
Remark 2.1 For each standard univerée= V(X) there exists canonical langualgeand for each nonstandard
universeW =V (Y) there exists corresponding canonical nonstandaglage*L = Ly, [5],[7]

4 Therestricted rules of conclusion If Let A andB well formed, closed formulas so thgtB € *L.If W E A, then
—A Hrup B. Thus, if a statememt holds in nonstandard universee cannot obtain from formula:A any formula
B whatsoever.

Definition 2.2 [10]-[14] A setS c *N is a hyper inductive if the following statementdwinV (Y):

Ngen(@ €S - at €5).
Hereat = a + 1.0bviously a setN is a hyper inductive.
5. Axiom of hyper infinite induction
VS(S € "N){VB(B c "N)[Arcqcp(a €S » at € S)| » S ="N}.

Example 2.1 Remind the proof of the following statement: stme (N, <, =) is a well-ordered set.

Proof. Let X be a nonempty subset &f. Suppose X does not have deast element. Then consider the SgX.
CaselN\X = @. ThenX = N and sd is a< -least element but this is a contradiction.

Case2N\X # 0. Thenl € N\X otherwisel is a< -least element but this is a contradiction. Assuow that
there exists some € N\ X such that # 1, but since we have supposed tkiatoes not have &« -least element,
thusn + 1 ¢ X. Thus we see that for allthe statement € N\X implies thath + 1 € N\ X. We can conclude by
axiom of induction that € N\ X for alln € N. ThusN\X = N impliesX = @. This is a contradiction t& being a
non-empty subset &f. Remind that structur€N, <, =) is not a well-ordered set [5]-[7]. We set ndyw= *N\N
and thusN\X; = N. In contrast with a séf mentioned above the assumptiog *N\X; implies tham + 1 €
*N\X; if and only ifn is finite, since for any infinite € *N\N the assumption € *N\X; contradicts with a true
statemen? (Y) £ n ¢ "N\X;=N and therefore in accordance with postulate 4 weagobtain frorm € *"N\X; any
closed formula whatsoever.

Theorem 2.1[14] (Generalized Recursion Theorehgt S be a set¢ € S andg: S X *N — § is any function with
dom(g) = S x *N andrange(g) < S, then there exists a functidft *N — S such that: 1jlom(F) = *N and
range(F) € S; 2)F(1) =c; 3) forallx € 'N,F(n + 1) = g(F(n), n).



Definition 2.3 [12]-[14] (1) Suppose thdtis a standard set on which a binary operat{ors-) and(-x-) is defined
and under whicl§ is closed. Lefx, },c+y be any hyper infinite sequence of termsSofFor every hyper natural

n € *N we denote b¥xt- Y }_; x, the element ofS uniquely determined by the following canonical ditions:
(@Q)Ext-Yi_ix, = x1; (0)Ext-YrE1x, = Ext-Yr_; X + Xp4q fOr alln € *N.

(2) For every hyper natural € *N,, we denote b¥xt-[]i-; x; the element ofS uniquely determined by the
following canonical conditions: (&xt- [15_, x, = xq; (b) Ext- [[F11 x, = (Ext- 151 %) X x4, for alln € *N.
Theorem 2.2. [14] (1) suppose thatis a standard set on which a binary operation-) is defined and under
which S is closed and thdt + -) is associative on S. L&t },c+y be any hyper infinite sequence of termsSf
Then for anyr, m € *N we haveExt- YT x, = Ext- Yoy X + Ext-Ype xi 5

(2) suppose that is a standard set on which a binary operatien) is defined and under whichis closed and that
(-x-) is associative on S. L&t }rc+y be any hyper infinite sequence of terms$fThen for any, m € *N we
have:Ext- [[}T x, = (Ext- 121 x) X (Ext- 17, x1); (3) for anyz € *S and for anyh € *N,, we have:

z X (Ext-YR-1 %) = Ext-Y3-1 2 X Xp.

§2.1. External non-Archimedean Field *R¥ by Cauchy Completion of the I nternal

Non -Archimedean Field *R.

Definition 2.4 A hyper infinite sequence of hyperreal numbersff® is a functiomz: *N — "R from the hyper-
natural number®N into the hyperreal numbetR.We usually denote such a function by~ a,, , so the terms in
the sequence are writtes {a,, a, ..., a,, ... }.To refer to the whole hyper infinite sequence, vilbwrite {an};‘il
or {an}ne*N-

Abbreviation 2.1 For a standard sé&twe often writeE, let °E,, = {"x|x € E,}.We identifyz with °z i.e.,z = 7z
forallz € C. HenceEy, = Ey if E € C, €.9.,°C = C, °R = R, etc.Let'RE, "R ., *RE ., ,"RE 5, "R¥,,*N,, de-
note the sets of Cauchy hyper-real numbers, Caindimtesimal hyper-real numbers, Cauchy positingnitesimal
hyperreal numbers, Cauchy finite hyper-real numb@asichy infinite hyper-real numbers and infiniygérnatural
numbers, respectively. Note tH&? ;| = "RI\"R? .

Definition 2.5 Let {an};‘:l be a hyper infinitéR- valued sequence mentioned abd¥e shall say tha(an};":1
#-tends td) if, given anye € "R, , there is a hyper natural numbére *N such that for alln > N, |a,| < . We
denote this symbolically by, —4 0.

Definition 2.6 Let {an};‘zl be a hyper infinitéR-valued sequence mentioned above. We shall sa){m;;)f[’il
#-tends tag € "R if, given anys € "R, , there is a hyper natural numlkére *N such that for ath > N,

la, — q| < € and we denote this symbolically by -4 g or by #-lim,,_+, a, = q.

Definition 2.7 Let {an};‘ﬁl be a hyper infinitéR-valued sequence mentioned above. We shall sagé¢laence
{an};":1 is bounded if there is a hyperrddle *R suchthat for anyn € *N, |a,| < M.

Definition 2.8 Let {an};‘il be a hyper infinitéR-valued sequence mentioned above. We shall say{ﬁ;lgffil is
a Cauchy hyper infinitéR-valued sequence if , given an¥ "R, , there is a hyper natural numbeégs) € *N
such that for anyn,n > N, |a, — a,,| < &.

Theorem 2.3 If {an};‘:l is a#-convergent hyper infinitéR-valued sequence, i.e., thatag, »4 q for some hyper-
real numberg, q € *R then {an};‘:l is a Cauchy hyper infinitéR-valued sequence.

Theorem 2.4 If {an};‘i1 is a Cauchy hyper infiniteR-valued sequence, then it is finitely bounded gremfinitely
bounded; that is, there is some finite or hypetditd € “R, such thaia,| < M for alln € *N.

Definition 2.8 Let S be a set, with an equivalence relatibn~ -) on pairs of elements. Fore S, denote byl [s]
the set of all elements hthat are related to Then for any, t € S, eithercl[s] = cl[t] orcl[s] andcl[t] are dis-
joint.



Remark 2.2 The hyperreal number®¥ will be constructed as equivalence classes of Babigper infinite'R-

valued sequences. LE{*R} denote the set of all Cauchy hyper infiriiRevalued sequences of hyperreal numbers.
We define the equivalence relation on aBER}.

Definition 2.9 Let {an}:ﬁl and{bn};"i1 be inF{*R}. Say they arét-equivalent ifa,, — b,, -, 0 i.e., if and only if

the hyper infinite¢' R-valued sequendt,, — bn};‘ﬁl #-tends ta0.

Theorem 2.5 [14] Definition above yields an equivalence relationeosetF{*R}.

Definition 2.10 The external hyperreal numbemR? are the equivalence classf{a,,}] of Cauchy hyper infinite
*R-valued sequences of hyperreal numbers, as penititefiabove. That is, each such equivalence itaas

external hyperreal number.

Definition 2.11 Given any hyperreal numbere *R, define a hyperreal numbefto be the equivalence class of the
hyper infinite*R-valued sequende,, = q};‘:lconsisting entirely of € *R. So we view'R as being insidéR¥ by
thinking of each hyperreal numbgrE *R as its associated equivalence cldtdlt is standard to abuse this notation,
and simply refer to the equivalence class as gedls w

Definition 2.12 Lets, t € *R#, so there are Cauchy hyper infintig-valued sequence{an};‘:l, {bn};"i1 of hyper-

real numbers with = cl[{a, }] andt = cl[{b,}].

(a) Defines + t to be the equivalence class of the hyper infisdguencé¢a,, + bn};‘ﬁl.

(b) Defines x t to be the equivalence class of the hyper infistguencéa,, + bn};":l.
Theorem 2.6 [14] The operations-,x in definition above by the requirements (a) andafle well-defined.
Theorem 2.7 Given any hyperreal numbeiE *R#, s = 0 there is a hyperreal numbee *R¥ such thas x t = 1.

Theorem 2.8 If {an};‘:l is a Cauchy hyper infinite sequence which doesgtrend td), then there is someé € *N
such that, for ath > N,a, # 0.

Definition 2.13 Lets € *R¥. Say that is positive ifs # 0, and ifs = cl[{a,}] for some Cauchy hyper infinite
sequence of hyperreal numbers such that for 96meN, a,, > 0 for all n > N. Thenfor a given two hyperreal
numberss, t, say that > t if s —t is positive.

Theorem 2.9 Let s, t € *R¥ be hyperreal numbers such thats > ¢, and let € *R¥, thens +r > t + 7.
Theorem 2.10 Lets, t € *R# be hyperreal numbers such that > 0. Then there isn € *N such thaim x s > t.
Theorem 2.11 Given any hyperreal numbere *R#, and any hyperreal number> 0, ¢ = 0, there is a hyperreal
numberg € *R¥ such thatr — q| < e.

Definition 2.14 LetS ¢ *R¥ be a nonempty set of hyperreal numbers. A hypem@aberx € *R¥ is called an
upper bound fof if x = s for all s € S. A hyperreal numbet is the least upper bound (or supremunpS) for S if
x is an upper bound fa&r andx < y for every upper bound of S.

Remark 2.3 The order< given by definition above obviously {&-incomplete.

Definition 2.15 Let S & *R¥ be a nonempty set of hyperreal numbers. We wylttsat:

(1) S is < -admissible above if the following conditions agdisfied:

(a) S is finitely bounded or hyper finitely bounded abov

(b) letA(S) be a set such thitx[x € A(S) © x = S§] then for any > 0,¢ = 0 there arex € S andf € A(S) such
thatp — a < e = 0.(2) S is < -admissible belov if the following conditions argisted:

(a) S is finitely bounded or hyper finitely bounded bslo

(b) letL(S) be a set such thtc[x € L(S) & x < S] then for any > 0,¢ = 0 there arex € S andf € L(S) such
thata — B < e = 0.

Theorem 2.12 [14] (a) Any<-admissible above subset= *R? has the least upper bound property.

(b) Any <-admissible above subsgt= *R¥ has the greatest lower bound property.

Theorem 2.13 [14] (Generalized Nested Intervals Theora\;nﬂt’{In}:f:1 = {la,, bn]};‘il, [a,, b,] C *]R{f be a hyper
infinite sequence o#-closed intervals satisfying each of the followganditions: (a); 2 L, 2,221, 2 -
(b) b,, — a,, =4 0 asn - *oo, Then n;fl I,consists of exactly one hyperreal numpez "R¥.



Theorem 2.14 [14] (Generalized Squeeze Theordrm) {an};‘zl, {cn}:[’:1 be two hyper infinite sequenc#scon-

verging toL, and {bn};‘il a hyper infinite sequence.Wh > K, K € "N we havea,, < b, < c,, thenb,, also#-con-
verges td..

Theorem 2.15 [14] If #-lim,, s, | ay| = 0, then#-lim,,_,+ , a, = 0.

Theorem 2.16 [14] (Generalized BolzandNeierstrass Theorem)ny finitely or hyper finitely bounded hyper
infinite *R¥ -valued sequence h#&sconvergent hyper infinite subsequence.

Definition 2.16 Let {an};":l be*R¥-valued sequenc&ay that a sequen({an};‘:l #-tends td if, given any

£ >0, £ = 0, there is a hyper natural numhbére *N,,, N = N(¢) such that, for ath > N, |a,| < «.

Definition 2.17 Let {an};";’1 be*R#-valued hyper infinite sequendéle call {an};‘il a Cauchy hyper infinite

sequence if given any hyperreal number *R% ., , there is a hypernatural numbiér= N (&) such that for any
m,n >N, |a, —ap| <&.

Theorem 2.17 If {an};‘ﬁlis a#-convergent hyper infinite sequence i®,,—4 b for some hyperreal numbkre

"R¥, then{an};"i1 is a Cauchy hyper infinite sequence.

Theorem 2.18 If {an};‘zl is a Cauchy hyper infinite sequence, then it isroted;that is, there is som¥ € *R¥
such thata, | < M for alln € *N.

Theorem 2.19 [14] Any Cauchy hyper infinite sequen{mﬂ}:{’z1 has a#-limit in *R¥; that isthere existd € *R#
such thatr,, —4 b.

Remark 2.4 Note that there exists canonical natural embeddRg> *R¥.

Remark 2.5 A nonempty set S of Cauchy hyperreal numbRiis unbounded above if it has no hyperfinite upper
bound, or unbounded below if it has no hyperfitgiger bound. It is convenient to adjoin to Cauclpérreal
number systemiR? two points +o0o# = (*+0)#  (which we also write more simply ag' ) and—*, and to
define the order relationships between them andCauchy hyperreal numbere *R¥ by —oo# < x < 0¥,
Definition 2.18 We will call —o* andeo* are points at hyper infinity. § ¢ *R¥ is a nonempty set of Cauchy
hyperreals, we writsup(S) = oo” to indicate thas is unbounded above, antf(S) = —oo* to indicate thas is un-
bounded below.

Definition 2.19 That is(e, §) definition of the#-limit of a functionf: D — *R¥ is as follows: leff (x) is a

*R#- valued function defined on a sub®et= *R¥ of the Cauchy hyperreal numbers. kdie a#-limit point of D
and letL € *R# be Cauchy hyperreal number. We say thalim,_, . f(x) =L ifforeverye ~ 0,& > 0 there
existsad =~ 0,8 > 0 such that, forallx € D,if 0 < |x — c| < §, then |f(x) — L| < &.

Definition 2.20 [13] The functionf: *R¥ - *R¥ is a#-continuous (or micro continuous) at some poiof its
domain if the#-limit of f(x), asx #-approaches through the domain df, exists and is equal to

f(©): #-lim,, ¢ £(x) = £ (c).

Theorem 2.20 [14] Let{an};"z1 and {bn};‘ﬁl be*R#- valued hyper infinite sequences. Then the follonéqgalities
hold for anyn, k,l,j,m € *N:

b x (Ext-Y[-;a;) = Ext-Y1-1 b X a; (2.1)
Ext-Y1,a; + Ext-Y1-; b; = Ext-Y-,(a; + b;) (2.2)
Ext- Zf;ko(Ext- Z?:zo ai]-) = Ext- Z;Llo(Ext-Zf;ko al-j) (2.3)
(Ext-¥i, a;) X (Ext- ¥}y b;) = Ext- Y1y (Ext- ¥y a; X by) (2.4)
(Ext-TIeq ai) X (Ext-[li=, b)) = Ext-TIi-,a; X b; (2.5)

(Ext-TIeia)™ = Ext-TI-, a™ (2.6)



Theorem 2.21 [14] Let{a,}’, and {b,}-, be*R¥- valued monotonically non-decreasing hyperfiniteusates.
Suppose that; < b;, 1 <i < n, then the following equalities hold for anye *N :

Ext-[[i-, a; < Ext-TI-, b;. 2.7
i=1 i=1

Theorem 2.22 [14] Let{a,}", and {b,}, be R¥- valued hyperfinite sequences. Then the followireginlities
hold for anyn € *N :

(Ext-TTizy @i x b)? < (Ext-T1iLy af) X (Ext-[TiL, bY). (2.8)

Definition 2.21 [13] Assume tha{an};"i1 is a*R#- valued hyper infinite sequence, the symBet- Z;‘Zl a,isa
hyper infinite series, andl, is the n-th term of the hyper infinite series.

Definition 2.22 [13] We shall say that a seriEst- Z;‘Zl a,, #-converges to the sume *R¥, and write

Ext-Z;‘Zl a, = A if the hyper infinite sequenc{aéln};"i1 defined by4,,, = Ext- Y-, a, #-converges to the sum
The hyperfinite sund,, is then-th partial sum ofxt- Z;ﬁl a,. If #-limA4,, = o* or—oo®, we shall say that

m-*oo,
Ext-¥,%, a, #-diverges too* or to—co¥,
Theorem 2.23 [13] The hyper infinite sur@’xt- Z;‘il a, of a#-convergent hyper infinite series is unique.

§2.2.Hyper infinite sequences and series of *R#- valued functions

Definition 2.23 [13] If f1, o) «-» fior fies1s -or fr -1t € *N are*R¥- valued functions on a subsgtc *R¥ we say
that{fn};":1 is a hyper infinite sequence 6R?#- valued functions ob.

Definition 2.24 [13] Suppose tha{tfn};":1 is a hyper infinite sequence t¥- valued functions o c *R¥ and the
hyper infinite sequence of valu@%(x)};‘ﬁ1 #-converges for eachin some subset of D. Then we say that
{fn(x)};":1 #-converges pointwise ahto the#-limit function f, defined byf (x) = lim,,_,« f,, ().

Definition 2.25 [13] If {fn(x)}:[’:"1 is a hyper infinite sequence @¥- valued functions o c *R#, then

Ext-3,2, f(x) (2.9)

is a hyper infinite series of functions fn The partial sums of (1), are definedKyx) = Ext- Yr-; fn(x). If hyper
infinite sequencéFn(x)};fl#-converges pointwise to thelimit function F (x) on a subsef c D, we say that
{Fn(x)};fl#-converges pointwise to the suiix) onsS, and writeF (x) = Ext- Z:f;lfn(x).

Definition 2.26 [13] A hyper infinite series of the forifixt- Z;‘ﬁl(x —x)", n € "N is called a hyper infinite
power series i — x,.

§2.3.The #-Derivatives and Riemann #-Integral of *R¥-Valued Functions f: D - *R¥#"

Definition 2.27 [13] A functionf: D — *R¥ #-differentiableat an#-interior pointx € D of its domainD c *R¥ if
the difference quotient(x) — f(xo)/x — xo has a#-limit: #-lim,._, . (f (x) — f(xo)/x — x,). In this case the
#-limit is called the#-derivative off at interior pointx,, and is denoted b (x,) or byd*f (x,)/d*x.
Definition 2.28 If f is defined on a#-open sef c *R¥, we say that f igt-differentiable orf if f is
#-differentiable at every point f If f is #-differentiable ors, thenf# (x) is a function or§.We say thaf is
#-continuously#-differentiable ors if £#(x) is #-continuous or§.



Definition 2.29 If f is #-differentiable on a-neighbourhood ofx,, it is reasonable to askff’(x) is
#-differentiable at,. If so, we denote thi-derivative off *'(x) atx, by f#'(x,) or by f#®(x,) and this is the
second#-derivative off atx,. Continuing inductively by hyper infinite inductipii £#*~V(x) is defined on a
#-neighbourhood ofx,, then then-th #-derivative off atx, denoted by *™ (x,) or byd*™f (x,)/d*x", where
n € *N.

Theorem 2.24 [13] If f is #-differentiable ai, thenf is #-continuous ak,.

Theorem 2.25[13] If f andg are#-differentiable at,, then so ar¢ + g andf x g with:

@ (f £9)"(xo) = f*(x0) £ g% (x0), (b) (f X g)*' (x0) = f* (x0) g (x0) + g* (x6) f (x0).

#1 I
(c) The quotienf /g is #-differentiable at, if g(x,) # 0 with (f/g)*" =~ ("°)~"(";()x~‘;2 (x0)fCxo)
0

(d) If n € "N andf;, 1 < i < n are#-differentiable atx,, then so ar&xt- Y., f; with:

(Ext-3; fO% (xo) = Ext- 3% £ (x).

(e) Ifn € *N and f*™(x,), g*™(x,) exist, then so do&§ x g )*™ (x,) and

(f X 9" (xg) = Ext- X o ()" ()9 "D (x0)

Theorem 2.26 [13] (The Chain Rule) Suppose thats #-differentiable atc, andf is #-differentiable ajg(x,).
Then the composite functidn= f o g defined byh(x) = f(g(x)) is #-differentiable atx, with h* (x,) =
f#’(g (xo))g#'(xo)-

Theorem 2.27 [13] (Generalized Taylor's Theorem) Suppose & (x ), n € *N exists on ar#-open interval
I aboutx,, and letx € I. Let B, (x, x,) be then-th Taylor hyper polynomial of aboutx,, B, (x, x,) =

£ () (=)™
r!

Ext-Y7_, Then the remainddt(x, x,) = f(x) — B,(x, x,) can be written as

A @—x)"

R(x, %) = (n+1)!

(2.10)
Herec depends upom and is between andx,.

Definition 2.30 [13] Let[a, b] © *R¥. A hyperfinite partition of[a, b] is a hyperfinite set of subintervals

[%0, %11, [Xn—1, x5 ], Withn € *N,, wherea = x; < x4 ... < x,, = b. A set of these pointg), x;, ..., x,, defines a
hyperfinite partitionP of [a, b], which we denote b® = {x;}I-,. The pointsx, x4, ..., x, are the partition points of
P.The largest of the lengths of the subinteryals,, x;], 0 < i < n is the norm oP = {x;}-, denoted by|P||;
thus,||P|| = max;<;<n (3 — X;-1)-

Definition 2.31 Let P andP’ are hyperfinite partitions dfi, b], thenP’ is a refinement oP if every partition point
of P is also a partition point df’; that is, ifP’ is obtained by inserting additional points betwtwse ofP.
Definition 2.32 Let f be*R¥- valued functiorf: [a, b] - *R¥, then we say thaixternal hyperfinite sumf*t
defined by

o™ = Ext- 37y f(e) (= xi-1), X121 < ¢ < x, @1

is a Riemann external hyperfinite sumfabver the hyperfinite partitio® = {x;}7,.

Definition 2.33 [13] Let f be*R#- valued functiorf: [a, b] — *R#, thenwe say thaf is Riemann#-integrable on
[a, b] if there is a numbel € *R¥ with the following property: for every =~ 0, > 0, thereis & ~ 0,6 > 0 such
that|L — oF*t| < § if o*t is any Riemann external hyperfinite sunyfadver a partitiorP of [a, b] such that

[IP]| < 6. In this case, we say thaiis the Rieman#-integral off over[a, b], and we shall write

L = Ext- [} f(x)d*x. (2.12)



Thus the Rieman#-integral of*R#- valued functionf: [a, b] — *R¥ over[a, b] is defined ag-limit of the
external hyperfinite sums (55) with respect toifiarts of the intervala, b]:

Ext- [} f(0)d*x = #-lim,, -, (Ext- X1, £(c) (x; = xi—1)). (2.13)

Definition 2.34 A coordinate rectangl® in *R#*, n € *N is the external finite or hyperfinite Cartesian gwiot ofn
#-closed intervals; that i® = Ext- XI-, [a;, b;]. The content oR isV(R) = Ext-[],(b; — a;). The hyperreal
numbers; — a;, 1 < i < n are the edge lengths Bf If they are equal, theR is finite or hyperfinite coordinate
cube.lf a; = b, for somer, thenV(R) = 0 and we say tha is degenerate; otherwis®,is nondegenerate.
Definition 2.35 If R = Ext-x[_, [a;, b;] andP. = a, < a,q << a,.,,, is an external hyperfinite partition of
[a,,by],1 <7 <n, then the set of all rectanglesRf™ that can be written avt- X[, [a;;,_,a;;,], 1 < j, <m,,
1 <r < nis a partition oR. We denote this partition By = Ext- X}, B. and define its norm to be the maximum
of the norms oP;, 1 < i < n; thus,||P|| = max;{P;|1 < i <n}.

Definition 2.36 If P = Ext- x]-, P, andP’ = Ext- x]—, P; are partitions of the same rectangle, théis a
refinement of? if P/ is a refinement oP,, 1 < i < n as defined above.

Definition 2.37 Suppose thaf is a*R¥- valued function defined on a rectanglén *R#™, n € *N, P = {P,}}_jis a
partition ofR, andx; is an arbitrary point iR;, 1 < j < k. Then a Riemann external hyperfinite saft® of f over
the partition P is defined by

o™t = Ext- Tl f(x) V(R) (2.14)

Definition 2.38 Let f be a*R¥- valued function defined on a rectanglén *R#", n € *N. We say thaf is Riemann
#-integrable orR if there is a number L with the following properfgr everye = 0,& > 0, thereis & = 0,5 > 0
such thalL — of*f| < § if aE** is any Riemann external hyperfinite sunyajver a partitiorP of R such that

[|P|| < 6. In this case, we say thatis the Rieman##-integral off overR, and write

L = Ext- [, f(x)d""x. (2.15)

Thus the Rieman#-integral of*R#- valued functionf defined on a rectangl in *R#" is defined ag-limit of the
external hyperfinite sums (58) with respect toifiarts of the rectang|&:

Ext- [, f()d*"x = #-lim (Ext-Tiy fG) VR)). @1

§2.4.The *R#-Valued #-Exponential Function Ext-exp(x) and
*R#-Valued Trigonometric Functions Ext-sin(x), Ext-cos(x)
We define thet-exponential functiortxt-exp(x) as the solution of th#-differential equation
) =fx),f(0) =1 (2.17)
We solve it by settingf (x) = Ext- Z;‘ZO x™, f#(x) = Ext- Z;‘ﬁo nx™. Therefore
Ext-exp(x) = Ext- Z;‘:O J;—T: (2.18)

From (1) we gefExt-exp(x))(Ext-exp(y)) = Ext-exp(x + y) for anyx,y € *R¥.



We define thet- trigonometric functiongxt- sin x andExt- cos x by

x?

-g] = - n x? — n
Ext-sinx = Ext Z o=1) e Ext-cosx = Ext- Z o(=1) (2n)" (2.19)
It can be shown that the series #1yonverges for alt € *R# #-differentiating yields
(Ext-sinx )* = Ext- cos x, (Ext- cos x )* = —(Ext-sinx ). (2.20)

§2.5. *R¥ -Valued Schwartz Distributions

Definition 2.39 [13] LetU be an#- open subset diR#" andf: U — *R¥. The partial derivative of at the point
x = (xq, %3, .., X;, .-, X, ) With respect to théth variablex; is defined as

ot X1,X2, X iR X X1,X 20Xy
#f #. llmf(l 2 n)—f (x1,%2, X n)
a h—-40 h

Definition 2.38 A multi-index of sizen € *N is an element ifiN", the length of a multi-index = (a4, ...,a,) €
*N™ is defined agxt-Y,[- ; a; and denoted bjx|. We introduce the foIIowing notations for a givaulti-index

gta

. #
a=(ay,..,a,) € °N" x*=Ext-[[L,x;*; 8% = Ext-[[l-, i ul or symbolicallyd*® = Ext-m--
PxC

Definition 2.40 The Schwartapace of rapidly decreasiing’- valued test functions oiR#™ ,n € *N is the function
space defined by

SYCREY, *CH) = {f € C(REY, *CH|V(a, B)(a, B € *N™)Vx(x € "REM)[|x* D*F f(x)| < oo¥]}.
Remark 2.6 Note that iff € S*(*R¥™, *C¥) the integral ofk®| D* f(x)| exists
Ext- [, pun| x*D*F f(x)|d*" < oo®,

Definition 2.41 The Schwartspace of essentially rapidly decreasififj- valued test functions 6iR¥" ,n € *N is
the function space defined by

S*CREY, *CH) = {f € C°CRIY, *CH|Va(a € NY)VE(B € *NM)Vx(x € *REM[|x* D*F f(x)| < 0 |}.
Remark 2.7 Note that iff € S¥("R¥", *C¥) the integral ofc®| D*# f(x)|,a € N™, B € *N" exists and
Ext- f*]R#"| x*D*B f(x)|d#" < o0,

Definition 2.42 The Schwartspace of rapidly decreasiig - valued test functions o"rRC fin 1 € "N is the
function space defined by

S#( Rc fin’ *(C#) {f eC oo( IRcﬁn' *(C#)|V(0( .8)(0‘ B € *N”)Vx(x € *Rcﬁn)[lxa D#ﬁf(x)l < oo#]},

Remark 2.8 Note that iff € S*(*R¥%,, *C#) the integral ofk®| D*# f(x)|, @ € *N™, € "N™ exists and

¢ fin’



Ext- f*ﬂk#rf‘- |an#B f(x)|d#n < oot |
¢ In

Definition 28.43 The Schwartspace of essentially rapidly decreasififf- valued test functions oiR*% ,n € *N

is the function space defined by

¢ fin ’

§gn ( Rc fin’ *(Cg) =
{f € C°("R¥E,, "CHIV(a, B)(a € N*, B € N™)Acyp(cap € "REg )Va(x € "REE) Hx“ (D”ﬁ f(x))| <
Caﬁ]}-
Remark 2.9 Note that iff € Sf, ("R#", *C¥) the integral of *“D*# f(x)| exists and finitely bounded above

Ext- f*]Rﬁrflin| an#‘B f(x)|d#" < daﬁ! daﬁ € *]R?,fin'

Abbreviation 2.2 1) The Schwartzpace of rapidly decreasing test functionsR§* we will be denoting by
S*("R#") and letSE, ("R#" ) denote the set 6ft#-valued essentially rapidly decreasing test funstion"R#" .

2) The Schwartgpace of rapidly decreasingf- valued test functions dﬂRC %n We will be denoting by
S*(*RE%, ) and letSE, ("RE%, ) denote the set oft#-valued essentially rapidly decreasing test function
*Rc fin -

Definition 2.44 A linear functionak: S*(*R&™) — *C¥ is a#-continuous if there exigt, k € *N and constants,

such thatu(e)| < C(Ext-X 4 <k, IBl<k Cap)- Here Vx(x € "RE™) [|x“(D#5 <p(x))| < caﬁ].

Definition 2.45 A linear functionak: S*(*R¥7%,,) — “Cf is a strongly#-continuous if there exigt, k € *N and

constants,g such thatu(p)| < C(Ext- ¥\ q<k 1<k Cap) € Rifin-

Definition 2.46 A generalized function € S* (*R#™) is defined as #-continuous linear functional on vector space

S*C'R#M), symbolically it written asi: ¢ — (u, ). Thus spacé® (*R#™) of generalized functions is the space dual

to S#(*R#n)

Definition 2.47 A generalized function € S#’( RE fm) is defined as a strongHcontinuous linear functional on

vector spacs*(*R¥%, ), symbolically it written asi: ¢ — (u, ¢). Thus spac§* (R, ) of generalized functions

is the space dual & ("R¥7%,).

Definition 2.48 Convergence of a hyper infinite seque(nﬁ};":l of generalized functions "' (*R#") is defined

as weak#-convergence of the hyper infinite sequence of fonets inS* (*R#*) that is u,, —4 0, asn - *oo, in
S#(*R#") means thafu,,, ¢) =4 0, asn — *oo, for all ¢ € S*(*R#™).

Definition 2.49 Convergence of a hyper infinite sequefn,e}n , of generalized functions lﬁ#'( R fm) is

defined as weak-convergence of functionals §'(*R}%,,) that is u, —»4 0, asn - e, in S*(*R¥%,) means

that (u,, @) -4 0, asn - *oo, for all @ € S*(*R¥%,).

Definition 2.50 1) Letu € S* (*R¥") and letx = Ay + b be a linear transformation oR*" onto*R#". The

generalized function(4y + b) € S* ("R¥™) is defined by

(w(Ay +b),9) = (u,%). (2.21)

Formula (1) enables one to define generalized fonstthat are translation invariant, sphericallsngyetric,
centrally symmetric, homogeneous, periodic, Loréméariant, etc.

2) Let the functiom(x) € C*1(*R¥) have only simple zeros, € *R¥ k € "N, the functions(a(x)) is defined by



8(a(x)) = Ext-3,°, 2e-xw) (2.22)

k=1 a# (x|
3) Letu € S* (*R#™), the generalized (weak)-derivatived**u of u of ordera is defined as
(0% u, @) = (=D1(u, 0% ¢). (2.23)
4) Letu € S* ("R¥) andg (x) € C*"*(*R#™), The producgu = ug is defined by
(gu, ) = (u, gp). (2.24)
5) Lety, € S¥ ("R*™) andu, € S* (*R¥™) then their direct product is defined by the foranul
(U1 X Uz, @) = (W, (D W), 9)), @(x,y) € S* CRE x "RE™). (2.25)
6) The Fourier transforfi[u] of a generalized functiom € S#'(*Rﬁ”) is defined by the formula
(Flul, @) = (u, FloD, (2.26)

Flo] = Ext- f*Rgﬂp(x)(Ext-exp[i(f, x)d*x. (2.27)

Since the operatiop(x) — F[@](§) is an isomorphism o (*R#™) ontoS* (*R#™), the operatiom — F[u] is an
isomorphism ofS* (*R#") ontoS* (*R¥") and the inverse of [u] is given by:F ~1[u] = (2r) "F[u(-&)]. The
following formulas hold for € S* ("R#™): (a)8*® F[u] = F[(ix)%u], (0) F[ 8**u] = (i&)*F[ul,(c) if the
generalized function, € S#'(*IR{’C*”) has#-com-pact support, thefi[u, * u,] = Flu, |F[u,].

7) If the generalized functiom is periodic withn-periodT = (T, ..., T,), thenu € S#'(*IR{’C*”), and it can be
expanded in a hyper infinite trigonometric series

u(x) = Ext-Zr;T:O ¢ (W) (Ext-expli(kw, )], [c,(w)| < A1+ kD™ . (2.28)

The series (1}-converges tau(x) in S* ("R¥™), herew = (ZT—" j—") andkw = (27:(1, ...,27;'(”).
1 n 1 n

83. A NON-ARCHIMEDEAN METRIC SPACESENDOWED WITH

*R¥ -VALUED METRIC

Definition 3.1 A non-Archimedean metric space is an ordered @4jl*) whereM a set andl” is a#-metric onM
i.e.,*R¥, - valued functioni®: M x M - *R¥, such that for any triplet, y, z € M, the following holds:

1.d*(x,y) =0 = x =y.2.d%(x,y) = d*(y,x). 3.d%(x,z) < d*(x,y) + d*(y,2).

Definition 3.2 A hyper infinite sequenc{ecn}:fi1 of points inM is called#-Cauchy in(M, d*) if for every hyperreal
£ € "R¥, there exists som& € *N such thati*(x,, x,,) < e if n,m > N.

Definition 3.3 A pointx of the non-Archimedean metric spa@é, d*) is the#-limit of the hyper infinite sequence
{xn};"il if for all € € *R¥,, there exists somé € *N such thatl®(x,,x) < e if n > N.

Definition 3.4 A non-Archimedean metric spacefisccomplete if any of the following equivalent condiis are

satisfied: 1.Every hyper infinité-Cauchy sequenc{excn};"i1 of points inM has a#-limit that is also inM.
2.Every hyper infinitgt-Cauchy sequence M, #-converges irM that is, to some point af.

For any non-Archimedean metric sp&ég d*) one can construct#complete norArchimedean metric space
(M’',d") which is also denoted &#-M, d*) and which containsf a#-dense subspace.



It has the following universal property:Af is any#-complete non-Archimedean metric space And — K is any
uniformly #-continuous function fronM to K, then there exists a unique uniforniycontinuous functiorf’: M’ —
K that extendg.The spacé-M is determined up t#-isometry by this property (among #icomplete metric
spacest- isometrically containing non-Archimedean metricap@#-M,d"), and is called thé-completion

of (M,d").

The #-completion ofM can be constructed as a set of equivalence cla§§ichy hyper infinite sequendesV.
For any two hyper infinite Cauchy sequenbe,s};‘:l and{yn};";’1 in M, we may define their distance @& = #-
lim,,_, .+ d* (x,, y,). This #-limit exists because the hyperreal numb@&$ are#-complete. This is only a pseudo
metric, not yet a metric, since two different hypdmite Cauchy sequences may have the distanBait having
distance 0 is an equivalence relation on the sall tifyper infinite Cauchy sequences, and the setjoivalence
classes is a metric space, theompletion of M. The original space is embeddethia space via the identification
of an element of M’ with the equivalence class of hyper infinite seuges il #-converging to i.e., the
equivalence class containing a hyper infinite saqaeavith constant value This defines #-isometry onto a
#-dense subspace, as required.

Example 3.1 Both *R and*C are internal metric spaces when endowed with itarte functionl(x, y) = [x — y|.
Definition 3.5 About any point € M we define thet-open ball of radius € *R?, aboutx as the seB, (x) =

{y € M|d*(x,y) < r}. Theset#-open balls form the base for a topologyln

Definition 3.6 A non-Archimedean metric spat#¥, d¥) is called hyper finitely bounded if there exisbsrse

r € "R fins SUch thati* (x,y) < r for allx,y € M.

Definition 3.7 A non-Archimedean metric spat¥, d*) is called finitely bounded if there exists some *R. .
such thati* (x,y) < r for allx,y € M.

Definition 3.8 A non-Archimedean metric spat#, d¥) is called hyper finitely bounded if there existsrse

7 € *R¢ 04 SUCh thatl® (x,y) < r for allx,y € M.

Definition 3.9 Let (M,d*) be a non-Archimedean metric space. Aset X is called finitely bounded if there
exists some € "R g+ such thatd c B.(a), a€ X.

Definition 3.10 A non-Archimedean metric spat¥, d") is called#-compact if every hyper infinite sequence

{xn};":1 in M has a hyper infinite subsequence thatonverges to a point iM. This sort of compactness is
known as hyper sequential compactness and, in-&rdrimedean metric spaces is equivalent to theltaycal
notions of hyper countablke-compactness.

Definition 3.11 A topological spacg is called hyper countably-compact if it satisfies any of the following
equivalent conditions: (a) every hyper countableropoverJ of X (i.e.,card(U) = card(*N)) has a finite or
hyperfinite sub-cover.

For a functionf: M; — M, with a non-Archimedean metric spa¢a,, d¥) and(M,, d¥) the following definitions
of uniform #-continuity and (ordinaryj-continuity hold.

Definition 3.12 A function f is called uniformly#-continuous if for every € *R¥_, there exist$ € *R.., such
that for every,y € My with d¥ (x,y) < & we getds(f(x),f()) < .

Definition 3.13 A function f is called#-continuous atx € M, if for everye € *R¥_, there exist$ € *R¥_, such
that for everyy € My with d¥ (x,y) < & we getd}(f(x),f()) < e.

84. LEBESGUE #-INTEGRATION OF *R# -VALUED FUNCTIONS

Let C¥ (*R#™) be the space of alR?-valued#-compactly supporte#i-continuous functions dfR#". Define a
#-norm onC¥ by the Rieman#-integral [13]:

Iflls = Ext- [1f()]d*"x, (4.1)



Note that the Rieman#-integral exists for any-continuous functiorf: *R#* — *R¥ | see [13]. Thed# (*R#") is a
#-normed vector space and thus in particular, itns@-Archimedean metric space. All non-Archimedswetric
space, have a non-Archimedédamompletion(#-M, d*). Let L be this#-completion. This spade is isomorphic

to the space of Lebesg#eintegrable functions modulo the subspace of funstiwith#-integral zero. Furthermore,
the Riemann integral (1) is a uniform#ycontinuous linear functional with respect to thaorm onCg (*R¥™)

which is#-dense irlf. Hence the Rieman# integralExt- [ f(x)d*"x has a unique extension to alliéf This
integral is precisely the Lebesgtiantegral.

Definition 4.1 Suppose that < p < *oo, and[a, b] is an interval ifR¥. We denote byL*{,([a, b]) the set of the all

functions f:[a, b] » *R¥ such thaExt- f:lf(x)lpd#x < *oo. We define theL’, -#-norm off by

Ifllep = (Ext- IF G Patx) " 4.2)

More generally, iff is a subset dfR%", which could be equal tiR}" itself, thenL’ (E) is the set of Lebesgue
#-measurable function: E - *R¥ whosep-th power is Lebesgu-integrable, with thét-norm

1fllsp = (Ext- [,If GIPd*nx)"'”. (4.3)

Definition 4.2 A setX c *R#" is #-measurable if there exiskxt- [ 1y d*"x, wherely is the indicator function.
Definition 4.3 A *R# -valued functiorf on*R¥" is a#-measurable if a sk|f (x) > t} is a#-measurable set for
all t € *R#",

Remark 4.1 To assign a value to the Lebesgtimtegral of the indicator functiohy of a#-measurable sét
consistent with the give#--measure:”, the only reasonable choice is to git- [ 1,d u* = p*(X).

Definition 4.4 A hyperfinite linear combination of indicator furmts f = Ext- ¥, a, 1x, where the coefficients
a, € *R¥ andx, are disjoint#-measurable sets, is called-aneasurable simple function.

Definition 4.5 When the coefficients,, are positive, we sétxt- [ fd u* = Ext- Y, a; u* (X, ). For a non-
negativet#t-measurable functiofi, let {fn(x)};‘flbe a hyper infinite sequence of the simple fundifyix) whose

values i%‘—n wheneverzin <fx)< % for k a non-negative hyperinteger less td&nThen we set
Ext- [ fd u* = #-1im,_ - (Ext- [ fd u*). (4.4)

Definition 4.6 If f is a#-measurable function of the $&to the reals including-co¥, then we can writ¢ = £+ —
f~,where: 1)f*(x) = f(x) if f(x) >0andf*(x) =01if f(x) <0;2)f~(x) = f(x) if f(x) <0andf (x) =0
if £(x) = 0. Note that bottf * andf ~ are non-negativé-measurable functions aff| = f* + f~.

Definition 4.7 We say that the Lebesg#eintegral of thett-measurable functiofi exists, or is defined if at least
one ofExt- [ f*d u* andExt- [ f~d u* is finite or hyperfinite. In this case we define

Ext- [ fdu® = (Ext- [ f*d u*) + (Ext- [ f~d u*). (4.5)

Theorem 4.1 Assuming thaf is #-measurable and non-negative, the funcfion) = {x € E|f(x) > t} is
monotonically non-increasing. The Lebesguimtegral may then be defined as the improper Rienéaimtegral of
f(x): Ext- J fdu* = Ext- foxoof(x)d#x.

Definition 4.8 Let X be any set. We denote BY the set of all subsets &tA family F c 2% is called a#-o-algebra
onX (oro*-algebra orX) if: 1) @ € F. 2) A family F is closed under complements, idec F impliesX\A € F.

3) A family F is closed under hyper infinite unions, i.e{4f, },,c+y is a hyper infinite sequence fhthen

Unpen4n € F.

Theorem 4.2 If F is a#-g-algebra onX then: (1)F is closed under hyper infinite intersections, ifef4,, },c*y iS @



hyper infinite sequence A thenN, ey 4, € F. (2) X € F.3) F is closed under hyperfinite unions and hyperfinite
intersections.(4F is closed under set differences. $5)s closed under symmetric differences.

Theorem 4.3 If {4,}.¢; is a collection ot*-algebras on a s&t, then N,¢; 4, , iS also anc*-algebras on a s&t
Theorem 4.4 If K c L thena®(K) c o*(L).

Definition 4.9 (Borel o #-algebra) Given a topological spakgthe Borelo#-algebra is the#-algebra generated by
the #-open sets. It is denoted B (X). We call sets irB¥(X) a Borel set. Specifically in the cake= *R#" we

have thaB*(*R#") = {U|U is #-open set}. Note that the Boret*-algebra also contains aflclosed sets and is the
smallesio#-algebra with this property.

Definition 4.10 (#- Measures) A paifX, F) whereF is anc*-algebra or¥X is call a#- measurable space. Elements
of F are called a#-measurable sets. Givertaneasurable spa¢¥, F), a functioru®: F — [0, *o] is called a
#-mea-sure ofX, F) if: 1) u*(®) = 0. 2) For all hyper infinite sequencés, },-y Of pairwise disjoint sets iff

w (Un214n) = Bxt- 2,70 1 (An). (4.6)

85. A NON-ARCHIMEDEAN BANACH SPACESENDOWED WITH

‘R¥ -VALUED NORM

A non-Archimedean normed space Wilk{’ -valued norm#-norm) is a paicX, ||-||) consisting of a vector space
X over a non-Archimedean scalar fiel®k# or complexfield *C¥ = *R¥ + i"R¥ together with a norm|:||,: X —
*R¥. Like any norms, this norm induces a translatinmariant distance function, called the norm inaioen-
ArchimedeariR? -valued metrial®(x, y) for all vectorsy, y € X, defined byd*(x,y) = |lx — ylls = lly — x|ls-
Thusd®(x,y) makesX into a non-Archimedean metric spagg d*).

Definition 5.1 A hyper infinite sequencéxn};‘ﬁ1 in X is calledd” - Cauchy or Cauchy i¢X, d*) or |||+ -Cauchy
if for every hyperreale € *R¥, there exists som@& € *N such thati”(x,,, y,,) = |x, — Yulls < €if n,m > N.
Definition 5.2 The metriad® is called a#-complete metric if the paitX, d*) is a#-complete metric space, which

by definition means for every’- Cauchy sequen({acn};"i1 in (X,d"), there exists some€ X such that
#-lim, o || x, — x|l = 0.

85.1. Semigroups on non-Archimedean Banach spaces and their generators

Definition 5.3 A family of bounded operatof§'(t)|0 < t < *oo} on external hyper infinite dimensional non-
Archimedean Banach spakeendowed withR¥ -valued#-norm||-||, is called a strongl¥-continuous semigroup
if: @) T(0) =1, (0)T(s)T(t) =T(s +¢) for alls, t € *RE ,, (c) For eachp € X,t — T(t) is #-continuous map-
ping.

Definition 5.4 A family {T(t)|0 < t < *oo} of bounded or hyper bounded operators on extéyger infinite
dimensional Banach spa&eis called a contraction semigroup if it is a sglyré-continuous semigroup and
moreover|T(t)||x < 1 for allt € [0, *0).

Theorem 5.1 Let T(t) is a strongly#-continuous semigroup on a hon-Archimedean Banaabesfy letAp =
#-1im, o A, ¢ whered, = r~1(I — T(r)) and letD(4) = {p|3(#-lim,_, A, ¢)}, then the operatot is #-closed
and#-densely defined. Operatdris called the infinitesimal generator of the semigpT (¢t).

Definition 5.5 We will also say thatl generates the semigrofift) and writeT (t) = Ext-exp(—tA).

Theorem 5.2 (Generalized Hille -Yosida theorem) A necessany suifficient condition tha#-closed linear operator
A on a non-Archimedean Banach sp&cgenerate a contraction semigroup is that({&)o, 0) c p(A4),

) A +A)7 1y <aforald>o0.



Definition 5.6 Let X be a non-Archimedean Banach spac€ X.An element € X* that satisfied!||s = ||l¢|l4 ,
andl(¢) = ||¢|l3 is called a normalized tangent functionaptdBy the generalized Hahn-Banach theorem, each
@ € X has at least one normalized tangent functional.

Definition 5.7 A #-densely defined operatdron a non-Archimedean Banach sp&de called accretive if for
eachp € D(4), Re(l(Ap)) = 0 for some normalized tangent functionattoOperatod is called maximal
accretive if4 is accretive and has no proper accretive extension.

Remark 5.1 We remark that any accretive operato#islosable. Thet-closure of an accretive operator is again
accretive, so every accretive operator has a ssh#Helosed accretive extension.

Theorem 5.3 A #-closed operatad on a non-Archimedean Banach sp&ds the generator of a contraction
semigroup if and only ifl is accretive an®an(4, + A) = X for somei, > 0.

Theorem 5.4 Let A be a#-closed operator on a non-Archimedean Banach spatken, if bothd and it adjoint4*
are accretived generates a contraction semigroup.

Theorem 5.5 Let A be the generator of a contraction semigrona non-Archimedean Banach spacéet D be a
#-dense seth) c D(A), so thatExt-exp(—tA): D — D. ThenD is a#-core for4, i.e.#-A 1 D = A.

85.2. Hyper contractive semigroups

In the previous section we discusd&dcontractive semigroups. In this section we givela# adjointness theorem
for the operators of the fordh+ V, wherel is a multiplication operator amtlgenerates Hz-contractive semigroup
that satisfies a strong additional property.

Definition 5.8 Let (M. u*) be a#-measure space wifl (M) = 1 and suppose thdts a positive self-adjoint
operator o2 (M, d*u*). We say thaExt-exp(—tA) is a hyper contractive semigroup if: @t-exp(—tA) is
L,-contractive; (b) for somk > 2 and some consta6, there is & > 0 so thatl|[Ext-exp(—tA)]@llsp < @42
forallp € LZ(M,d*u®).

Remark 5.2 Note that the condition (a) implies thatt-exp(—tA) is a strongly#-continuous contraction semi-
group for allp < *co. Holder's inequality shows thil|, < ||"ll4, if p = q. Thus thel};-spaces are a nested family
of spaces which get smalleragets larger; this suggests that (b) is a veryngtimndition. The following
proposition shows that constanplays no special role.

Theorem 5.6 Let Ext-exp(—tA) be a hypercontractive semigroupid(M, d*u*). Then for allp, q € (1, *) there
is a constant, , and at, , > 0 so that ift> t,, , , then||Ext-exp(—tA)@|ly, < Cp 4ll@ll4q. for allp € L.

Theorem 5.7 Let (M, u*) be ac*-measure space wittf (M) = 1and letH, be the generator of a hypercontractive
semi-group orl, (M, d*u*). LetV be a'R -valued measurable function ¢M, u*) such thav’ € L (M, d*u*) for

all p € [1, *) andExt-exp(—tV) € L¥(M,d*u*) for all t > 0. ThenH, + V is essentially self-adjoint on

€™ (Hy) N D(V) and is bounded below. Het® ® (Hy ) = N,e-y D(HY).

§ 5.3. Strong #-conver gencein the generalized sense
Let X be a non-Archimedean Banach space over figfd

LetT € B(X). A complex numbei € *C¥ is called an eigenvalue (proper value, charatiesalue) ofT if there is
a non-zero vectar € X such that

Tu = Au. (5.3.1)

Such vectow is called areigenvector (proper vector, characteristic vector) Bfbelonging to (associated with, etc.)
the eigenvalud. The setV, of allu € X such thaf'u = Au is a linear sub manifold &; it is called the (geometric)
eigenspace df for the eigenvalu@, anddim(N,) is called the (geometric) multiplicity df N; is defined even
whenA is not an eigenvalue; then we have= @. In this case it is often convenient to say tliats the eigenspace
for the eigenvalug with multiplicity zero, though this is not in sttiaccordance with the definition of an



eigenvalue.

Remark 5.3.1 It can easily be proved that eigenvectorsTdfelonging to different eigenvalues are linearly
independent.

Definition 5.3.1 The set of all eigenvalues df is called the spectrum &f we denote it b (7).

LetT € B(X) and consider the inhomogeneous linear equation

(T-u=v, (5.3.2)

wheref € *C¥ is a given complex number,€ X is given and: € X is to be found. In order that this equation have
a solutionu for everyw, it is necessary and sufficient tHat- ¢ be non-singular, that i§,be different from any
eigenvaluel, of T. Then' the invers€T — &)1 exists and the solutianis given by

u=(T-8"tuv (5.3.3)
Definition 5.3.2 The operator-valued function
RO =RET=T-O7" (5.3.4)

is called the resolvent df.

Definition 5.3.3 The complementary set of the spectiziffi) (that is, the set of all complex numbers
different from any of the eigenvaluesTfis called the resolvent set &f,and will be denoted bR(T).
The resolvenr (¢, T) is thus defined fo§ € P(T).

LetT,, n € "N be a hyper infinite sequenceibiclosed operators in a non-Archimedean Banach spalcethe
present section we are concerned with general dergions on stronfj-convergence of the resolveg(¢) =
(T,, — §)~1.The fundamental result on tieconvergence if-norm of the resolvents is given by theorg@i1.

Definition 5.3. (i) Let us define theegion of boundedness, denoted by, for the hyper infinite sequence

R, (&),n € "N as the set of all complex numbérs *C# such that € P(T,) for sufficiently largen € *N and the
hyper infinite sequendgR,,(é)|lx, n € *N is bounded fon € *N so large that thg, (¢) are defined.

(i) let A be the set of af € *C# such thak-lim,,_+, R, (§) =R’ () exists. A sef\; will be called the region of
strong#-convergence foR,,(¢),n € *N.

(i) Similarly we define the region,, of #-convergence i#-norm forR, (¢),n € *N.

Remark 5.3. Note thatobviously we havé,c A;c A,.

Theorem 5.3. If R,(§),n € *N #-converges if-norm to the resolve (§) = (T — §)~! of a#-closed operatdF
for some¢’ € P(T), then the same is true for evérg P(T).



§6. A NON-ARCHIMEDEAN HILBERT SPACESENDOWED WITH
*C¥ -VALUED INNER PRODUCT

Definition 6.1 Let H be external hyper infinite dimensional vector spager complex fieldC# = *Rf + i*Rf. An
inner product orH is a&C#-valued function{-,"}: H x H - *C¥#, such that (1jax + by, z) = (ax, z) + (by, z),

(2) (x,y) = (v, x). (3) llx]|> = (x, x) = 0 with equality(x, x) = 0 if and only ifx = 0.

Theorem 6.1 (Generalized Schwarz Inequality) g1, (-,-)}be an inner product space, then for@ll € H:
I(x,y)| < llxllllyll and equality holds if and only # andy are linearly dependent.

Theorem 6.2 Let {H, (-,-)}be an inner product space, afid||s = /{x,x) . Then||-||» is a*R¥ -valued#-norm on a
spaceH. Moreover(x, x) is #-continuous on Cartesian prodétix H, whereH is viewed as thé-normed space

{H, Ill4}-
Definition 6.2 A non-Archimedean Hilbert spaékis a#-complete inner product space.
Two elements andy of non-Archimedean Hilbert spaékeare called orthogonal ifx, y) = 0.

Example 6.1 The standard inner product 8&™,n € *N,, is given by external hyperfinite sum
(x,y) =BEXt-Xi_1 %, y;- (6.1)

Here x = {x;}",, v = {y;}, , withx;,y; € *C¥,1 <i <n, see [14].
Example 6.2 The sequence spabconsists of all hyper infinite sequences {zi}:fl of complex numbers itC#
such that the hyper infinite series EX¥-, |z;|* #-converges. The inner product Bhis defined by

(z,w) =EXt-3, %, Z W (6.2)

*

Herez = {z;},>, w = {Wi};:)l and the latter hyper infinite seri#sconverging as a consequence of the generalized
Schwarz inequality and theconvergence of the previous hyper infinite series.

Example 6.3 Let C*[a, b] be the space of tH€? - valued#-continuous functions defined on the interialb] c

*R¥, see [14]. We define an inner product on the sig4¢e, b] by the formula

(f.g) = Ext- [ F()g(x) d*x. 6.3)

This space is nat-complete, so it is not a non-Archimedean Hilbegcsp Thet-complettion ofc #[a, b] with
respect to thét-norm

Il = (Exe- [IFGR a%x) (6.4)
is denoted by [a, b].

Example 6.4 Let C*®[q, b]be the space of tH€?- valued functions wittk € *N #-continuous#-derivatives on
[a,b] € *R¥, see [14].We define an inner product on the sd€e [a, b] by the formula

(.9 = Ext- Sl (Ext- [] FFOG)g" () d'x). (6.5)

Heref*® and g*® denotes théth #-derivatives off andg respectively.The correspondi#ignorm is



If1ls = (Ext- P (Ext- ff|f#(z)(x)|2 d#x))l/z_ 6.6)

This space is ndt-complete, so it is not a non-Archimedean Hilbeecs The non-Archimedean Hilbert space
obtained by#-complettion ofc#**[a, b] with respect to thé&-norm (1) is non-Archimedean Sobolev space, denoted
by H#*[a, b].

Definition 6.3 The graph of the linear transformatiBnH — H is the set of pair§(¢, To)|(¢ € D(T))}. The graph
of the operatof, denoted by’ (T), is thus a subset &f x H which is a non-Archimedean Hilbert space with the
following inner product(¢4, Y1), (¢, ¥,)). OperatorT is called a #-closed operatoffT) is a #-closed subset of
H X H.

Definition 6.4 Let T, andT be operators on H. If(T,) o TI'(T), thenT; is said to be an extension &fand we
write T; o T. Equivalently,T; o T if and only ifD(T,) > D(T) andT,¢p = T¢ for all¢ € D(T).

Definition 6.5 An operatofT is #-closable if it has #-closed extension. Eve#jclosable operator has a smallest
#-closed extension, called itisclosure, which we denote By T.

Theorem 6.3 If T is #-closable, thed (#-T) = #-I'(T).

Definition 6.6 Let D(T*) be the set op € H for which there is aé € H with (Ty, ¢) = (1, &) forally €
D(T).For eachp € D(T*), we defineT*¢ = £.The operatof* is called thet-adjoint of T. Note thatp € D(T™) if
and only if|(Ty, )| < C||Y|l4 for allyp € D(T). Note thatS < T impliesT* c S.

Remark 6.1 Note that fof to be uniquely determined by the conditi@y, ¢) = (i, £) one need the fact that
D(T) is #-dense irH. If the domainD (T*) is #-dense irH, then we can defind™* = (T*)".

Theorem 6.4 Let T be a#-densely defined operator on a non-Archimedean Hikgace{. Then: ()T~ is
#-closed. (b) The operat@ris #-closabie if and only iD(T*) is -dense in which cage=T". (c) If T is
#-closable, thef#-T)* = T*.

Definition 6.7 Let T be a#-closed operator on a non-Archimedean Hilbert spad® complex numbet € *C# is

in the resolvent sgt(T), if AI — T is a bijection ofD(T) ontoH with a finitely or hyper finitely bounded inverse.
If complex numbed € p(T), R, = (Al — T)™! is called the resolvent Gfat .

Definition 6.8 A #-densely defined operat@ron a non-Archimedean Hilbert space is called sytrimer
Hermitian ifT < T*, that is,D(T) c D(T*) andT¢ = T*¢ for all ¢ € D(T) andequivalently,T is symmetric if and
only if (Te,y) = (¢, TY) for allp,p € D(T).

Definition 6.9 A #-densely defined operatdrt is called self#-adjoint if T = T*, that is, if and only if" is
symmetric and (T) = D(T").

Remark 6.2 A symmetric operatdF is always#-closable, sinc® (T) #-dense ird. If T is symmetricT* is a
#-closed extension of’ so the smallest-closed extensiofi** of T must be contained iR*. Thus for symmetric
operators, we have c T** c T~, for #-closed symmetric operators we hdve- T** c T* and, for self#-adjoint
operators we have = T** = T". Thus a#-closed symmetric operat@ris self#-adjoint if and only ifT* is sym-
metric.

Definition 6.10 A symmetric operatdF is called essentially se#f-adjoint if its#-closure#-T is self#-adjoint. If T
is #-closed, a subsé c D(T) is called a core foF if #-T D =T.

Remark 6.3 If T is essentially self+adjoint, then it has one and only one sefidjoint extension.

Definition 6.11 Let A be an operator on a non-Archimedean Hilbert spic&he seC (4) = ﬂ:f:lD(A”) is
called theC "®-vectors ford. A vectorg € € *(4) is called artt-analytic vector fod if

Yoo |lA™MIat™
Ext-anon—f < Yoo (6.7)
for somet > 0. I A is self#-adjoint, thenC " (4) will be #-dense inD (4).

Theorem 6.5 (Generalized Nelson's analytic vector theorem)A_be a symmetric operator on a non-Archimedean
Hilbert space H. ID(A) contains a#-total set offf-analytic vectors, theA is essentially selfadjoint.

Definition 6.12 [15] OperatotA is relatively bounded with respect to operataof D(T) < D(A) and



lAulls < allully + blITully, u € D(T). (6.8)

Theorem 6.6 [15] Let T be self#-adjoint. If A is symmetric an@-bounded witH'-bound smaller tham, then

T + Ais also selft-adjoint. In particulaf + A is self#-adjoint if 4 is bounded and symmetric wilh(T) c
D(A).

Theorem 6.7 [15] (Generalized Kato perturbation theorem) Tete self#-adjoint. If A is symmetric and'-
bounded witH'-bound smaller tham, thenT + A is also self#-adjoint and its#-closure#-(T + 4) is equal

to #-T + #-A.In particular this is true il is symmetric and bounded wil(T) c D(A).

Theorem 6.8 [15] Let A be essentially self#-adjoint on the domaiD (A4) and letB be a symmetric operator on
D(A). If there exists a constaate *R# such that for alip € D(4) and for allg € *R¥ such thad < g < 1 and the
inequality holdg|By || < a||(A + BB)Y||4, thenA + B is essentially self# adjoint onD(A4) and its#-closure
has domairD (#-4).

Proof Let0 <y <1 anda; > a. Thenya,B is a Kato perturbation of, for any vectory € D(A), B = 0 we
get the inequality

llyar'Bylly < 68,6 < 1.

By Theorem 6.84 + ya; B is essentially self#-adjoint onD(4) and the domain of it-closure isD (#-4). Thus
by the inequality| By |4 < a||(4 + BB)Y|s ) with 8 = a7?, we conclude thaya; B is a Kato perturbation of the
operator4d + a;'B. Hence the operatdr+ a;1(1 + y)B is essentially self#adjoint onD(4) and its#-closure has
domainD (#-4). Continuing inductively in this manner, for anydgerj € *N satisfya;! < 1, we obtain that
ya; B is a Kato perturbation of the essentially séHadjoint operatod + ja;'B, so thatd + a;*(j + y)B is
essentially self#-adjoint onD(4) and the domain of ité-closure isD (#-A4). By choosing the largest sughwe
obtain for somey such thad <y < 1,ja;! =1, and so we have proved the essential ge#fdjointness of the
operatord + B.

Theorem 6.9 [15] LetA andB be the same as in Theorem 6.7. THeandA + B have the sami#-cores. If4 is
bounded from below, theti+ B is bounded from below.

Proof If B is a Kato perturbation of, the theorem hold3.he proof of Theorem 6.9 exhibifs + B as a finite or
hyperfinite number of successive Kato perturbatiamsl yields the theorem.

Theorem 6.10 [15] Leta > 0 and letgy = [ho]?, g1 = [h4]?, ho, hy € SE,(R¥3), by = 0, h, > 0, then operator
(see Definition 11.14)

M = aH,, + To(go) + T;(g1)

is self #-adjoint onD(H,,.) N D(T;(g,)) and is essentially self-adjoint onC *(H,,).

8§7. GENERALIZED TROTTER PRODUCT FORMULA

Theorem 7.1 Let A andB be self-adjoint operators on non-Archimedean Hiflbpacei®. Suppose that the opera-
tor A + B is self#-adjoint onD = D(A) n D(B), then the following equality holds

s-#-limy,_,+o [(Ext-exp (%)) <Ext-exp (%))]n = Ext-exp[it(4 + B)]. (7.2)



Theorem 7.2 Let A andB be self-adjoint operators on non-Archimedean Hilspacei®. Suppose that the opera-
tor A + B is essentially self-adjoint onD = D(A) n D(B), then the following equality holds

s-#-lim,,_ o, [(Ext-exp (%)) <Ext-exp (%))]n = Ext-explit(A + B)]. (7.2)

Theorem 7.3 Let A andB be the generators of contraction semigroups orAtohimedean Banach
spaceB”.Suppose that the-closure of(4 + B) I D(A) n D(B) generates a contraction semigroup®h Then the
following equality holds

s-#-1im,_,+c, [(Ext-exp (— %)) <Ext-exp (— %))]n = Ext-exp[—t(#-A4 + B)]. (7.3)

88. FOCK SPACE OVER NONARCHIMEDEAN HILBERT SPACE

Definition 8.1 Let H* be a complex hyper infinite-dimensional non-Archilean Hilbert space over field* and
denote by *™ then-fold tensor productt*™ = Ext-®7_,H*, n € *N. SetH*©® = *C# and defineF (H*) =
Ext-@pnen(H*™). F(H*) is called the Fock space over non-Archimedean Hikgaceti#. SetH* = L§(*R§3),
then an elemenp € F(H#) is a hyper infinite sequence #-valued functiong) = {1, P, (x1), ¥, (x1, x5),

W, (%1, X5, %3), oo, W (x4, ..., x,)}, m € "N and such that

1¥lls = Ihol? + Ext- Enen(Ext- [1h (xy, ..., ) |2d*"x) < o0,

Actually, it is notF (H*) itself, but two of its subspaces which are useguiantum field theory. These two hyper
infinite-dimensional subspaces are constructedlésAfs: Let B, be the permutation group @ane "N elements and
let {<pk};°:1be a basis for a spa#. For eaclv € P, we define an operator (which we also denote)gn basis
elements ot "™ by o (Ext-®L1¢y,) = Ext-®L1¢y, - The operator extends by linearity to a boundetatpr

(of #-norm one) orH* and we can defing! = (%) (Ext- Yoep, o). It is easily to show by definitions that

$#2 = 8% and S$#* = §# so0S/ is an orthogonal projectiofihe range o$! is called then-fold symmetric tensor
product ofH*. We now defineF (H* ) = Ext-@®,,c-yS¥H*™. Non-Archimedean Hilbert spacg? (H* ) is called

the symmetric Fock spaoger non-Archimedean Hilbert spadé” or the Boson Fock space over non-Archimedean
Hilbert spaced®.

89. SEGAL QUANTIZATION OVER NONARCHIMEDEAN HILBERT SPACE

Let H* be a complex non-Archimedean Hilbert space owsd fic! and letF (H*) = Ext-@,c-y(H*™), where
H*™ = Ext-®7_, H* be the Fock space ovBf'and letF,(H") be the Boson subspacef®fH*). Let f € H* be
fixed. For vectors it/ *™ of the formn = Ext-Q™ ,1;,n € "N we define a map~(f): H#¥™ — H#(-D py
b=(fIn = (f, Y1) (Ext-®F,y;) andb™ (f) extends by linearity to finite and hyperfinitedar combinations of such
7, the extension is well defined, afb~ ()nlls < lIf |llInlls- Thusb™(f) extends to a bounded map fhorm
lfll4) of H*™ into H*®~1 Since this holds for eash€ *N (except fom = 0 in which case we define

b=(f): H*© - {0}), b~ (f) is a bounded operator #fnorm||f||. from F(H*) to F(H*). It is easy to check that
operatob* () = (b~ (f)) takes each subspatié™into H***Dwith the actionb* (f)n = f®Ext-®!-,1; on
product vectors. Note that the mAap> b*(f) is linear and the maj — b~ (f) is antilinearLet S,, be the
symmetrization operators introduced in previousiseand then the operatsf = Ext-@,cS¥ is the projection
onto the symmetric Fock spag(H") = Ext-@,e-y5:H*™, we will write §#H#™ = H*™and callH™then-
particle subspace & (H*). Note that operatdr= (f) takes spacg,(H*) into itself, but the operatdr™ (f) does



not. A vectonp = {1,0(")}::1 with ™ = 0 for all except finite or hyperfinite set of nunmbeis called a finite or
hyperfinite particle vector correspondingly. Welwdliénote the set of hyperfinite particle vectorspyThe vector
Qo = (1,0,0, ...} is called the vacuum vector. Létbe any self-adjoint operator & with domain of essential self-
#-adjointnesd = D(A). LetD, = (i € Fy|p™ € Ext-®}-,D,n € *N} and define operatatT*(4) onD, n HI™
bydlr*(A)=AQ1 - QI+IQARQRI++QI--QI® A. Note thatdI'* (A)is essentially self-adjoint on
D, . OperatodI'*(A) is called the second quantization of the opetatéior example, let = I, then its second
quantizationV# = dT*(I) is essentially self-djoint onF, and fory € H*™, N* = mp. N* is called the number
operator. IfU is a unitary operator on spaké, we definedI'# (U) to be the unitary operator gha(H*) which
equalsExt-®7, U when restricted tﬂf(")for n > 0, and which equals the identity ﬂij'(o). If Ext-exp(itA) is a
#-continuous unitary group di*, thenl“#(Ext-exp(itA)) is the group generated BY#(4), i.e., that expressed by
the formulal'#(Ext-exp(itA)) = Ext-exp(itd['*(A)).

Definition 9.1 We define the annihilation operator () onF,(H*) with domainF, by the formula

a=(f) = VN + 1b=(f). 9.1)

Operatora™ (f) is called an annihilation operator because itsaachn + 1)-particle subspace into tmeparticle

subspace. For eaghandn in Fy, (VN + 1~ (), 1) = (¥, S*b*(f)VN + 1), then we get
(a(f)) M Fo=S*p*(f)VN + 1. (9.2)

The operatofa™(f))  is called a creation operator. Bath(f) and(a~(f))" #-closable; we denote their
#-closures bya™(f) and(a‘(f))* also. The equation (1) implies that the Segatifageratodf () onF, defined
by ®%(f) = % [a=(f) + (a=(f))"] is symmetric and essentially seka#tjoint. The mapping frori* to the self-

#-adjoint operators off,(H*) given byf — ®#(f) is called the Segal quantization o¥&f. Note that the Segal
guantization is a real linear map.

Theorem 9.1 Let H* be hyper infinite dimensional Hilbert space ovemplex field*C* = *R# + i*R¥ and®# (f)
the corresponding Segal quantization. Then:

(a) (self#-adjointness) for each € H* the operatodf(f) is essentially self+adjoint onF ,, the hyperfinite
particle vectors;

(b) (cyclicity of the vacuum) the vect®l, is in the domain of all hyperfinite produdist- [T%, ®#(f;),n € *N and
the sef{Ext- [, ®4(f,) |f; € H*,n € "N} is #-total inF,(H*);

(c) (commutation relations) for eaghe F, andf, g € H*: [®Z(f)®E(g) — E(g)PE(N 1Y = ilm(f, 9) y#¥;

(c") (generalized commutation relations) assuming @fia) ,+ = 0 andiy € F is a near standard vector we get
[@Z(fHDE(g) — ()PP ~ 0 and thereforet([®f (f)PE(g) — PF(GIPE(N]P) = 0;

(d) letW (f) denotes the external unitary operdiat-exp (id)ﬁ (f)) then

W(f + g) = [Ext-exp (= L1m(f, )0 )| W (HW (9);

(e) @#-continuity) if{fn};‘i1 is hyper infinite sequence such#agim,,_ . f, = f in H* then:

1) #-1im,_, -, W(f,) exists for allp € F,(H*) and#-lim,,_,+c, W (£,)9 = W ()Y

2) #-lim,_ o ®E(f,)y exists for alkp € Fy and#-lim,,_, PX(f)yP = OE(HY

(e) For every unitary operatoron H*, T*(U): D (#-®¥(f)) - D(#-0f(Uf)) and for alp € D(#-®Z(Uf)),
T*(U) (#- 0% ()M LUy = #-0E(Uf)y for all € F, andf € H*.

Remark 9.1 Henceforth we useb# (f) to denote the-closure #-®#(f) of d(f).

Definition 9.2 For eachm > 0,m € R let H, = {p € *R¥*|p - § = m?,p, > 0}, wherep = (p°, —p*, —p?, —p3),
the setdd},, are called mass hyperboloids, are invariant undeonical Lorentz grod),. Letj,, be the




#-homeomorphism o}, onto*R#3 given byj,,: (po, p1, P2, P3) = (1, P2, P3) = p. Define a#-measuredf, on
H} for any#-measurable sé& c Hj by
“ B ) a#3p
Of(E) = Ext- [, s (9.3)
Theorem 9.2 Let u* be a polynomially bounde#-measure with support iV, . If u* is °L, = L' - invariant, there
exists a polynomially boundetimeasure® on[0,.0*) and a constantso that for any’ € S*(*R#*)

(9.4)

oo ZimZp,, #3
Ext- f*R#A}fd### = ¢f(0) + Ext- fo d#p#(m) <Ext- f*R#3 f(\/ [pl?2+m2,py pz,Ps)d 17)'

JiplZ+m?

Definition 9.3 Let F(f) be a linea#-continuous functionaf: S &, R**) - “R¥. FunctionalF isL',- ~ - invariant
if for any A € L, the following property hold® (f(Ax)) =~ F(f) for all f € S §, ("R#*).

Theorem 9.3 Let u* be a polynomially boundeld, - invariant#-measure with support iV, . Let F(f) be a linear
#-continuous functionaf: S §, CR#*) - *R¥ .. defined byExt- f*lR‘é‘*f d*u® and there exists a polynomially

¢ fin
bounded#-measure® on[0,0%) such thau_;f(;oo d*p*(m) € *R¥;, and a constante “R¥;, so that (1) holds.
Then for anyf € S £, ("R#*) and for any € R ., the following property holds

5 N ) £(VIPZ+mZp1.p2 p3)d**p
F(f) = cf(0) + Ext- [~ d*p*(m) (Ext flplsx T . (9.5)
Definition 9.4 Let y(», p) be a function such thayy (s, p) = 1 if |p| < x», y(»,p) = 0if |p| > ». Define a
#-measurelf;, . onH; by
# g x(p)a*ip
Qb (B) = Ext-[, ) e (9.6)

We use the Segal quantization to define the freenitian scalar field of mass. We taketl* = Li( HE, d*Q# ).
For eaclf € Sfi, CR#*) we defineEf € H* by Ef = 2r(Ext-f) I Hj, where the Fourier transform is defined in
terms of the Lorentz invariant inner prodpet : Ext-f = #(Ext- f*lR‘é‘* Ext-exp [i(p - f)]d#“x). If ®%,()is

the Segal quantization ovEf( Hj,, d*Q% ), we define for eachR¥- valuedf € S*("R¥#*): ®f . (f) =

o, (Ef) and for eachiC- valuedf € S*(*R%*) we defined} ,.(f) = @}, . (Ref) + i®}, . (Imf).

Definition 9.5 The mapping” - ®% ,.(f) is called the free non-Archimedean Hermitian scédéd of massn.
Definition 9.6 On L%( H, d*Qf, ;) we define the following unitary representatiortieé restricted Poincare

groupLl: (U,,(a, ) (p) = (Ext-exp[i(p - @)])y(A~'p) where we are using to denote both an element of the
abstract restricted Lorentz group and the corredipgrelement in the standard representatiofiRh
Remark 9.2 Note that by Theorem 9.1(e) for all € F, andf € L§( Hf,, d*Q% ) we get

T*(Up (@, V) (#-0F,. (DI)T* 1 (Un (@, ) = T#(Upp(a, A) ) (#-PEENT* (U (a, 1)) =
#-0F (U (a, NEf ).
A change of variables for gfl € S, ("R*) gives that
Um(a, NEf = EUp(a, A)f.

Therefore for ally € Dgs < Fy such thafli|l, € “Rf s, and for *R¥; -valued functiorf such that f €
in ! !

s, C'R#*) we obtain that



[ (U (@, 1)) (#-@h e (F)) TH (U (@, M) ) = -0k (U (0, M) ). 9.7)

Definition 9.7 The#-conjugation on a non-Archimedean Hilbert spHées an antilinea#-isometryC* so that the
following equality hold<#? = 1.

Definition 9.8 Let H* be a non-Archimedean Hilbert space over fi@lfl ®#(-) the associated Segal quantization.
Let H, = {f|C*f = f}. For eaclf € H ﬁ# we definep®(f) = ®E(f) andn®(f) = ®Z(if), the mapf = ¢*(f)

is called the canonical free field over the doulit, C*) and the mayf — =#(f) is called the canonical conjugate
momentum.

Theorem 9.4 Let H* be a non-Archimedean Hilbert space over fi@fi with #-conjugationC*. Letp#(-) andm#(+)
be the corresponding canonical fields. Then: (a)deahf € H ﬁ#, o*(f) is essentially sel-adjoint onF,.

(b) {(p#(f)|f €EH ﬁ#} is a commuting family of sel#-adjoint operators. (d), is a#-cyclic vector for the family
{o*(DIf € HEG}. () 1f {f.3,2, is hyper infinite sequence such#asim, - f, = f in H 74 then

#-1im,,_+, @ (£, )Y exists for alkp € F, and#-lim,_,+,, ¢* (£ )¢ = o (.

(€) #-1im,,_,+o, (Ext-exp[ig® (f)1¥) = Ext-exp[ip® ()] for ally € F,(H?). (f) Properties (a)-(e) hold with
@*(f) replaced byr*(f). (9) If f,g € H [+ , then[p*(No*(9) — o*(9)o* (NP = i(f, g) for ally € F,(H*)
and(Ext-exp[ip* (f)]) (Ext-exp[in* (f)]) = (Ext-exp[i(f, 9)]) (Ext-exp[in* (f)]) (Ext-exp[ip* (F)]).

Definition 9.9 We write nowf € Li( HE, d*Q¥ ) asf (po, p) and define theét-conjugationC* by C*(f)(p,, p) =
f(po, —p) . Note thatC* is well-defined orf € L{( Hf,d*Qf ) since(py, —p) € Hf if and only if(p,, p) € Hf.
Definition 9.10 We denote the canonical fields corresponding®by ¢* (-) andr® (-) and definep/ ,, () =

" (Ef) and nify ,, (f) = n* (u(P)ES), u(p) = \/p? + m? for "R¥- valuedf € LE(*R%*), extending to all of
LE('R#%) by linearity. We let nows = {Yly € Fo,p™ € SE, CRE™)} and for eachy € "R¥® we define the
operatota(p) onF, (L’;(*R§3)) with domainDgs by (a(@)P)® =+vn + 1y (p,ky, ... k,) and therefore the

formal #-adjoint of the operatar(p) reads(a’ (p)y)™ = \/iﬁ n 8P = k)Y O (e, o kg, Ky s k).

Note that the formulas
a(g) = Ext- [.pyaa(p)g(—p)d*p, (9.8)

a*(g) = Ext- [.gus a’(p) g (p)d*p (9.9)

hold for allg € S, ("R¥#3) if the equalities (9.8)-(9.9) are understoodhie $ense of quadratic form&hat is, (9.8)
means that fop,, Y, € D : (P1,a(g)2) = Ext- [.pus (1, a(@)h2) g(—p)d**p and similarly (9.9) means that

for 1,9, € Dgs = (Y1, a(g)h2) = Ext- f,‘]R,gt3 (Y1, at(P)2) g(p)d*p. The particles number operator reads

Ny, = Ext- flplsn at(p)a(p) d*p. (9.10)
The generator of time translations in the freead@ld theory of mass: is given by

Hoxe = Ext- f,_, u(®)a’ (pla(p) d*p. (9.1)
We express the free scalar field and the time fielas in terms ot (p) anda(p) as quadratic forms Omsf’in X
Dstn BY

(Dg,m,x (x,t) =



(2m)~3/2Ext- fIPIS”{(Ext-exp(,u(p)t - ipx))af(p) + (Ext-exp(,u(p)t + ipx))a (p)}\/% , (9.12)
(Dg,m,x(x) =
(2m)~3/2Ext- flplsu{(Ext-exp(—ipx))a* (p) + (Ext-exp(ipx))a (p)}% , (9.13)
T[g,m,x(x) =
(2m)3/2Ext- flplsu{(Ext-exp(—ipx))a*(p) + (Ext-exp(ipx))a (p)}\/% . (9.14)

Abbreviation 9.1 We shall write for the sake of brevity through thaperdf ,, (x, t), ®§, (x) andmf , (x) instead
of . (x,0), Pf . (x) andnf . . (x) correspondingly.

Theorem 95 Letn,, n, € N and suppose tha (ky, ...k, Py, ..., Pn,) € L (*Rf“"“””) where
W (ky, oK,y D1y o) Dy, ) iS @°CHg, -valued function ofiR%*™+*"2). Then there is a unique operafyr on
F, (L§(*R§3)) o) thatDS# c D(Ty,) is a#- core forTy, .

mn

(1) As*C#-valued quadratic forms abs X D
fin fin

TW =
Ext- [.pamysng W (K1, o Knys D1y ooes Py ) (Ext-TT2, af (k) (Ext-TT12, a(p;))d* ™1 kd*3™2p.  (9.15)
(2) As*C¥-valued quadratic forms dmsén X Dsgn

Ty, =

Ext- [.psnying W(Kas oo Knys Das ooes Py ) (Ext-T172, af (k) (Ext-TT}2, a(p;))d*™ 1 kd*3m2p. (9.16)
(3) If m; andm, are nonnegative integers so thgt+ m, = n; + n,, then
11+ N#)™72T, (1 4+ N#YT222 < CCmy, mp) W . (9.17)
(4) On vectors inF, the operatordy, and Ty, are given by the explicit formulas
(TW lp)l—nz+n1 —

K(l, nl,n2)§[Ext- flplls;f .. Ext- fpn2|SKW(k1, wikn D1y s Pry) WO (D1 oo Dy s o, )d#372 p], (9.18)

(TWl/))nIOIle<Tl1—n2,

(T )+ =

K(l,nz,n1)§[Ext-flk1ISH Ext_fkn1|st(k1’ wikn D1y s Pry) WO (Prs oo Dy Ky o Ky )d*3™ k] (9.19)

(T, ()" = 0if and only if n < n, — n,. Here$ is the symmetrization operator.



n

Proof For vectorgp in Ds;f , we definel, () by the formula (9.18). By the Schwarz inequalityl dhe fact tha$

is a projection we obtain

(5) IFW, -4 WinL} (*Rf3("1+”2)) thenTy,, —4 Ty, strongly on domai o+

2
(T ) 2™ 1F < Ky, no) || @[ IW I (9.20)

If we now define an operat@y;, i, on domairDS;g by using the formula (9.19) then for al) ¢ € Ds;f we obtain
that(ep, Ty, W) = (T, @, ). Thus,Ty, is #-closable andy;, is the restriction of the adjoint df,, on domainDSg .
From now on we will us&,, to denote#- T, andT;;, to denote theé#-adjoint of the operatdf,,. By the definition of

the operatofy,, DS# is a#-core and further, sincg,, is bounded on thkparticle vectors inDS# , we have
n n

Fy, € D( Ty,). Since the right-hand side of (9.18) is also baghdn thd-particle vectors, (9.18) represeffis on
all I-particle vectors. The proofs of the statement®jraboutly, are the samd&.o prove (3), let) € DS# .Then by

the canonical computation we obtain

l-ny+nq

2
I emeren e L LA A L4

(1+l-ny+nq) 2 (1+1) 2

[ (@ + N#ymar2my (14 N#ym/2)

And therefore finally we get

- 2
1+ N#ymar2Ty, (14 N2 T < CCma m) Wl
HereC(m,,m,) = sup;e+y < K(l'"lﬁf) m2> < *oo sincem, + m, = ny + n,. In all the sup's only so that
(1+l-nz+nq) 2 (1+1) 2

l — n, +ny > 0 occur since the other terms are annihilated byathien ofT,,. Thus,(1 + N*)~™/2T,, (1 +
N#)~m2/2 extends to a bounded operatorftH*) with #-norm less than or equal & m,,m,). If m; = n, and
m, = ny, thenC(m,,m,) = 1.
In order to prove (5) one needs only note that # (0, ...,0,9®,0,...) € Dgs and W, =, W in
mn
Lt ("R?g(nﬁm)), then”TWn - TW”# = ”Twn—wll# < KWy, mp) W = Wlgll$plly = 6, where #-limy,, o0 6, =
0. SinceDS# consists of finite and hyperfinite linear combioas of such vectors, we have shown tiigt
mn
#-converges strongly on domalD}# to operatofly, if W, —»4 W in L% (*IR{?“””"Z)).
n
In order to prove (1) lap,, ¢, € Dgs wherey; = (0, ...,0,% 2+ 0, ... ) andy, = (0,...,0,?,0,...). Then,
mn
if W= (Ext-TI;2, f(k)(Ext-T1;2, 9(p:)) by the canonical definition of the foriExt- [T:2, at (k) x
(Ext-T1:2, a(p,)) one obtains

(W1, Twz) = Ext- [.panyiny W (ke o Kny D1y oo Dy ) X 29)

W1, (Ext-T12, a’ (k) (Ext- T2, a(p) )ib2)d " 1 kd*"2p.

Since both sides of (9.21) are linea#lin the relationship continues to hold for the altlsi/ that are finite or
hyperfinite linear combinations of such produciscg

Wy, (Ext-TTE, @ (k) (Bxe- 12, a(p) ) € L ("RE™+2)



and since statement (5) holds, both the right-lsashels and left-hand sides of (9.21) #ireontinuous linear
functionals orLf (*Rf3(”1+”2)). Since they agree ontadense set, they agree everywhere. Finally, (9 2&nes
by linearity to all Ost;*. X DS# . This proves (1); the proof of (2) is similar.

Now we go to estimate monomials in creation andhalation operators in terms of the operatdi& defined by
Nf. = Ext- [, at(K)a () u(k)"d®k . (9.22)

For first estimate we consider the following bilimdorm, where the kernel(k, p) is #-measurable anjv(k, p)|
is symmetric.

Ext- flplsx Ext- flklsx at(B)wk,p)a (p)d*3k d*3p (9.23)
Note that forr > 1
Nf, < Hg, and NfZ < HEY,. (9.24)

We introduce now th&-normsM, , (7) andM,, () on the kernelv(k, p), which may be finite or hyperfinite
My, () = (supjyeen () ™) (Ext- [ (Iw(k,p)I}d*p*?), (925

My (¥) = (5upigaet(0)727) (Ext- | (Iw (e, p)Iu(p)™} d3p"3). (9.26)

Proposition 9.1 Assume thafor somer, M, ,,(t) < *oo, thenW is a bilinear form on the domain
D(N?) x D(N]Y?), andny; *wN/];*/% is a bounded operator on Fock spaéewith

NG PWN2, < My (o). 9.27)

Note that: (a) the operat ::1/2 is defined on the orthogonal complement of theauicle vector. Sincl/ equals

#-1/2

zero on the no particle vector, we deflfiéV;,, '~ to be zero on the no particle vector; (b) & 1, then from (9.22)

follows that N, ”*W N, "/ is a bounded operator withnorm less tha, ,, (7).
Proof Since the bilinear forri/ commutes with the projection onto vectors withatlan particles, it is sufficient

to prove that fon particle vectors, it is sufficient to prove that f particle vectorg) € D(Nf;/z), the following
inequality of forms holds

W, W) < My, (D) [0, NE ). (9.28)
By definition one obtains
(Y, Wy)y=n (Ext- flplsx Ext- flkls”lp(p, ko, oo kn ) WD, O¥(q, k. ky )d*3k d¥p d#3q).
By using the generalized Schwarz inequality iandg, we obtain
[, W)l < n(Ext- [ Ext-[, _ Ext- [ 192 k)w(p, )| d"k d*3p d¥q)

and by (9.25) finally we get



[, Wl < My, (0) (Ext- [, Ext- [ [W?(p, k)| p(p)*d*p a*k).

The existence of a bounded operator satisfyingrjatien follows by the generalized Riesz repredemtaheorem.
Theorem 9.7 (Generalized Riesz Representation Theoref)i¢fa bounded linear functional on a non-
Archimedean Hilbert spadé then there exists songee H such that for every vectgre H we have thal' (f) =

frgyandi Tlly=1g lly.

Proposition 9.2 Assume thafor somer, M, ,,(t) andM,, (7) are finite or hyperfinite, theW determines an
operator orD(N/,) such that the operaté/ Nj;* is bounded with

I WNE 14< [My () + My, (D] < M3, (0). (9.29)

Note that sincéw(p, q)| is symmetricN/ ;W is also bounded with #norm less thaM;, (7). If T > 1, WNF™
is bounded with &-norm less tha, ,, (7).

Proof As in Proposition 9.1, it is sufficient to proveattforn particle vectorg) € D(N{.‘f;,)

I W lly < My, (2) | NEA . (9.30)
We define now the quantity

Cf = Ext- f|k1|5x d*3k, ... Ext- fucnm d*3k, x .39)
{Ext'fp,-|s”d#3pj"_"( D)Wk, ka0 kjrs ok ) X

Ext- [, d®pw ey, p)(Ky, iy D1 Kin, )

Note thatll Wy Il 2= Ext- 37, ¢/, and forj = | = 1, andk = (q,k;, ...k, )d*, we get

2
Cfy = Ext- f|k|< d*3k Ext- flql<u q(|flp|5%d#3pw(q,p)lp(p, k)|) <
2
Ext- [, d®kExt-[_ d*q ([ _ d®plw(app i) (9.32)
By the generalized Schwarz inequality we get
Cf; < Ext- flkl d*3k [Ext fl #3q (Ext- flplﬂlw(q, p)|d*3p (Ext- flrls”h,bz(r, Dw(r, q)|d#3r))]. (9.33)

From (9.33) by (9.25) we get

Cfy < My, (0 [Ext- [ d®k [Ext- [ d®q (Ext- [ d®ru@) 7y ¢ lowa, )] (9.34)
From (9.34) by (9.26) we get
Gl < My (DM (D) [Ext- f,,  dPk[Ext- [ d™pu@)? | (o k)]
We estimate novﬂ for j # L. Suppressing all but the essential variakleg; , k;, andp, we get

|Cli| < Ext- [\, d" k; % (9.3

kleJ{



{Ext-f a*3k, lExt-J’ d*p; (Ext-f d#3p,> |w(k;, p;)¢ (pj, ki)w ke, pOY (p,,kj)|”
[yl |pj|<x [p1l=s

By the generalized Schwarz inequalitypinand (9.25 we get

(G| < My {Ext f, |, d* by [ Bxe- [, dP ki) 2]} (9.36)

kylsx

1/2 1/2
(Ext- fpj|5H|W(kj' p))¥?* (pj, ki) |d* Pj) (EXt' f|pl|5,{|W(kz;Pz)¢2 (o, k;)|d* Pz) :

By the generalized Schwarz inequalitykifirom (9.36) we get
|Ch| < My () {Exct- [ [Ext- [ o @K (s Pk )z lw(k, p )2 (o k)|)|} (937
From (9.37) by (9.25) we get
|Gl < M2, (@) [Ext- f, _, d* by (Ext [, 1, d" i) u(p;) T2 (o k)]
Finally by (9.35)-(9.37) we obtain
I WY G < My [My, + M, b, NEZD),
And therefore (9.30) is proved.

We now let

W = Ext- [

Ip1ls3

A" p,...Ext- [

polex @7 Ps X .39)
[Ext- flkllsx d*k, ...Ext- flkrls;r d®piat(ky) - at(k)w(ky, ...k p1, . ps)a (pr) - a(ps) ]
Herew(ky, ..., k,; py, --., Ds) IS a#-measurable kernel. Let< r, and define; (k4, ..., k) by
Ec(ky, o ko) = pky) = p(ky). (9.39)
Let B < s and defingZ,(p,, ..., pp) by
Es(py, - pp) = u(p1) = u(pp)- (9.40)

LetM,, () be

w(kl,...,ka;pl,...,pﬁ)

My, () = = 9.41
4 (0 Ec(k,ka)T/2E o(p1,0p) /2 #op ( )
| W(kl’---'ka; pl""'pB)
/2
|Ec(k1, ey ka)T/ZEA(pl, ee ,pB)

#2

where |[v(ky, ..., ka; D1, ...,pB)||#0p denotes the operatérnorm of the kerneb(ky, ..., ky; py, ..., pg) as an integral

operator fromL ("R%) to L5 ("RE"). The#-norm||-|l4,, Op is dominated by the generalized Hubert Schmidt



#-norm||-| 45-
Proposition 9.3 Assume thad, , (7) is finite or hyperfinite for some, § as above and for somgthenW is a

bilinear form orD (N2 N1%/%) x D(NSE/?N /%), wherea + 6 = 1,8+ & = 5. Also
W, = NSNS P wNg PN (9.42)
is a bounded operator and
I W lly< My (7). (9.43)

Proof LetQ,1 be vectors with a finite or hyperfinite numberpafiticles and wave functions in Schwartz spgige
ThenifAc(k) = a(ky) = a(k,) andA,(p) = a(py) - a(ps),

QW) = Ext- [, d¥p|Ext- [, _ d®K(A()Qw(kp)A@)P)].

Iplsx
By the generalized Schwarz inequality we get
Wl < (Ext- | d*p [Ext- [, d"kl4c(00l, - wlp)l - 14 p)pl]) < (0.49)
MZ, (O {Ext- [, d¥p [Ext- [, d™KEZ (OIA00I S - EX(0) - 14, (o)YIIE]} <
Mz, (@) - NG N2l - INEE N

The last inequality (9.44) is proved as follows

Ext- [, d*KEE (O A (OQIl, =

Ext-Y, 2, Ext- f|k 1< A"3ky o Ext- flkllﬂ AP kner M+ 1) = (0 + P)plhy)T - p(k)T| Q™ (kg oo, k)| <
2
Ext-Z o Ext- flk | d*3k, ... Ext- flk1|5x d*3kppr (Ext- X727 u(k; ) ) (n+1)8|Q0 D (ky, ..., kpyr)|
|NEe/%N #‘S/ZQ” , SINCE|Q™* ) (ky, ..., kyiy)|” is symmetric and the product

(Bxt- 3727 u(k)")" x (Ext YT u(k)) ) when expanded, hat- [[}_,(n + j) terms with all variables distinct.

The existence of the bounded operator W now follbwthe generalized Riesz representation theoreen, s
Theorem 9.7.
Proposition 9.4 Assume thatr < r, f < s and for some, ¢

w(k,p)

M, (1,0) = ”—Ec(a,r)EAma) vop < *oo. (9.45)
ThenW isabilinear form orD(N//*N%%/) x D(NE/*N /%), for anys,e suchthatt + B + 6 + & = r +
s. Furthermore
= (L + NDTOPN S PWN PR+ N (9.46)

is a bounded operator with#anorm such that



| W, 14< cMs,, (D). (9.47)

Where c € "R is constant.
Proof Similarly as proof tgroposition 9.3 above.

The energy-momentum density tenggy, (x, t) for theA(¢,), theory with hyperfinite momentum cutoffis a
bilinear form on non-Archimedean Fock spa&€d*) . The energy momentum vectr,, u = 1,2,3 is formally
related tdly,, . (x, t) by the following formula

Puse = Ext- f.gus Toun (6, 8) A%, 1 = 0,1,2,3. (9.48)

The generatoraf$* of pure Lorentz transformations is formally rethte Ty, (x, t) by the following formula
MR* = Ext- [._#s Too (x, 0) x*d*x, k = 1,2,3. (9.49)

The expression for the operafy, ,,(x, 0) is a Wick ordered polynomial in the time zero aainal fieldse,

andm,. In this case the Hamiltonidh = P,,, defined by (9.48) is a bilinear form on Fock sp&g@l*). In this
section we show that for ti€ ;) , theory the integration in (9.48) can be restridted bounded domain to yield a
local energy or momentum operator on Fock sfatE*). The local version of (9.49) can be handled sirlyildt

is customary to write the operafy, ,.(x, 0) as the sum of a free field part and an interagtian. Explicitly, we
write the energy density as

To0,4¢(%,0) = T, () + T, (). (9.50)
Here
Ton) = Hose () = 21 (M) + (V9 ()" + mipi()):, (95)
Tre() = AC @(x):)4 (9.52)

For the momentum density vect®r,, u = 1,2,3 we set

1

Buge(6) = T (x,0) = 3 (nu(x)%mx) + %wk(x)nu(x))n (9.53)

In order to avoid problems caused by sharp spatiahdaries, we consider
T,.(g) = Ext- f*IR*f T,(x)g(x) d*3x = To(9) + T1(9), (9.54)

Puse(9) = Ext- [ gus Bupe()g(x) d"x,p = 1,2,3. (9.55)
Remark 9.3 Hereg(x) is a*R¥- valued function irs# (*R#%) i.e.,g(x) is rapidly#-decreasing.
For the local free field energy we 9&t,(9) = Ty, (9) + T§,.(g), where

2
Tow(9) = ciBxt- [ |, d* kyExt- [, d* ko g(ed — kb, kE = K3, — k3) {"("1)“("2)+"‘l"‘2>+m } X (9.56)

ko< Vulk)p(kz)

aT(k1)a(k2);

T3, (9) = c2Ext- [, |, d™ kExt- |

kylsx

31 Al _ bl L2 2 3 _ 53§ uln) Hkg ka)+m?
4 kg — K}, K = K, I} — ) {0l (9 57)



X {aT(k1)aT(_k2) + a(—ky)a(k,)}.

Herekl = (k%! k%! k%)v k2 = (k%! k%! k23)' (klﬁ kZ) = i3=1 ki ké! g(p) = Ext- fo#3 (EXt'[i(p, X)])g(X) d#3x'
Similarly, for the components of the local momentwmsetp, ,, (g) = Pﬁ) (9)+ P#('f{) (9),1 =1,2,3 where
Pk (@) = ciBxt- [\ "k Ext- [ d¥ ko — kb, kE — I3,k — k3) x (9.58)

M} +
X{ VukDukz) a’(ky)a(ky),

PZ(g) = c,Ext- Bieijo @ RaExt- [y A% koGt — k3, k2 — 3, kF = k) x (9.59)

(k) Yulhez)— (k5 JuCier)
x fUad) BRI} gt (kyat (—ks) + al—F)a(k).

Theorem 9.8 The bilinear formd,,,(g) andp,,,(g) define symmetric operators m(H(’fﬂ). The following
operators are all bounded

Ton(@) (Hi + 1) Bun(g) (B, +1)" 1 =123, (9.60)
(HE o+ 1) 2Ty (@) (HE + 1), (9.61)
(e + 1) Pu(@) (e + 1) =123, (9.62)
TE () (NE, + 1), andPD () (g, +1) ' = 1,2,3. (9.63)

(2)

ux(9), 1 = 1,2,3 areL} functions even without

Proposition 9.5 The kernel ofof,){(g) and the kernels &t

hyperfinite momentum cutoffk,| < », |k;| < ».
Proof First notice that

pkdnks) = (ky k) = 2 (ks = kp)? = [10k;) = (k)12 +m? < = (ky — ky)? +m?, s0 the
following inequality holds

pullke)plky) — (ky, ky) < clpu(k, — kz)]z- (9.64)

Using now the inequality (9.64) we can estimatekiérmel of the operatdt;,, (g) in (9.57) by

2
tg(k! — kL, k2 — k2, k3 — k3 {#(k1)ﬂ(k2)+<k11k2)+m }
const |§(ky 2 11 2, K1 2) MCAICD)

< (9.65)

const|g(ki — k3, kf — k3, ki — kD) [n(hy — k) 1? [k k)]~

Note that (9.65) is squakeintegrable sincg € Sf, ("R#3) i.e., g is rapidly#-decreasing. Similarly, we bound the
kernel ofP?,(g),u = 1,2,3 by using the following inequalities:

| (k) k) — (K)nCky)| < 2kl < 2[pahy — k)1 , wherekbkl < 0, (9.66)

|(ki ) k) — (K5 u(ky)| < plkyp(ky) — ki'kh , wherek!'ky > 0. (9.67)



The inequality (9.66) is clear, while froftk )p(k,)| < u(k)u(k,) and| (k4 )p(k,)| = |kikS | one obtains (9.67)
when|(ki )u(ky)| > | (k4 )r(ky)|, and by symmetry it is valid in general case. Thy$9.64) and (9.66)-(9.66), we
get

|(kf)ll(k2) - (kg)ll(k1)| < const[pu(k;, — k;)]?. (9.68)

Therefore the kernels af?, (g) in (9.59) are bounded above by the functions

u u
A kl _ kl,kz _ kz,k3 _ k3 {(k1)ﬂ(k2)_(k2 )Il(kl)} S
g (ki 2,11 2, K1 3) T ioonty

const

const|g(ki — k3, kf — k3, k3 — k)| [p(ky — k) [k k)12,

These functions are squatdntegrable.

Proposition 9.6 The kernel'},,(g) and the kernels dﬁ,{(g),u = 1,2,3 have finiteM, ,,(7) and finiteM,,, (1)
T > 1 defined above in (9.25)-(9.26).

Proof Both the kernel of,,(g) and the kernels di}_,f(g),y = 1,2,3 are dominated by the function

const|g(ki — k3, kf — k3, ki — k)| (k) p(ke)]V/2.
Therefore
My, (1) < constsupe-gss [00O] (Ext- [yl gk = p' k2 = p2, k* = p?)I[u(k)p(p)12d* p).
Since [u(p)]% < [u(k)ulk — p)]% and sincgj € Sf, ("R¥#3) i.e., g is rapidly#-decreasing, one obtains
M, (1) < constsupcgss (Ext- f*Rg3|§(k1 —pL k%2 —p? k3 —p®)|[ulk — p)]%d#3 p) < const. (9.69)
Similarly, M, (7) is finite fort > 1. This completes the proof of the proposition 9.6 tedproof of Theorem 9.8.

Definition 9.11 We define now a specified gyperfinite momentunoffutperator, ,, and we establish properties
of Ty, that will be useful later. We assume that

g(x) = h?(x),h(x) = 0,h € SE ("R¥#%) (9.70)
And we use the specified cutoff function
Gulky kp) = ¢ (Ext- [\ h(p — ky)R(p — k;)d*p) (9.71)
¢ € "Rf 4. Forx < *o, G, (ky, ky) € S§, ("RE€), and
Groo(ky ky) = G(ky — k). (9.72)
Definition 9.12 We define now the operators

Ton(9) = 155 (9) + To 2 (9) 9.73)



using replacingg (k, — k,) in the kernels 01’1“0(2 (g), i =1,2 defined above in (9.56)-( (9.57) By(k,, k;). If

# < *oo, then the operatoff%(lg(g),i = 1,2 haveL} kernels and s®,,,(g) is essentially sel#-adjoint onD(H{,,)
since vectors with finite or hyperfinite numberpafrticles argt-analytic vectors. We set now

To(9) = To,x(g) + 5710,;{(9) (9.74)

Defining 6T, ,.(g) and similarly we definéTo(_Q(g), i=1,2.
Theorem 9.9. 1) The bounded operators

ST () (1 + HE,) ™ and (1 + HE,) 5T (@) (1 + HE,) ™ (9.75)
#-converge strongly to zero as— *.
2) The kernel oﬁT(Z) (g) hasL% #-norm that is0 () for all e < 1/2. Thus
6762 (1 + NO,,{)‘1||# <0(x9),e<1/2. (9.76)
3) Asx — "o
| (7 + 1) 8T (9) (1 + Hgﬁ,f)'1||# <00 ). 19)

Proof 1) Note that the kernel (ATT‘O(;) (g) has boundeé#-norms (9.25)-(9.26) for = 1, and these bounds are
uniform forx < *co. Thus the operators (9.75) are uniformly bounéedi, it is sufficient to prové-convergence on
a total set of vectors, namely vector@'(‘H(’{H) with exactlyn particles. It is sufficient to prove the strong

#-convergence o§T.% (g) on this domain. Fap € D(H},,) asn € *N particle vector iD(H{,,) we obtain

M 2
[T W) (ke )| =

Kk ki, 2
Ext-S), Ext- | W@+ k3004

d* pExt- [ d*qh(p—k)h(p — q) (9.78)
[pl>x lql=x ( J) ’u(k,-)u(q)

X (ks o iy, @ o b)) | <

<const{Ext Yhoy Ext- [ AP pExt- [ _ d*q|h(p — k)h(p — @) [u(k)u(@ | (ky, ..., kj- 1,q,...,kn)|}.

The right side of (9.78) is monotonically decregsiis»x — *oo, since

consty/1(q) < /up — )\/ul — @ ulk)

and sinceh is #-rapidly decreasing, i.eh, € Sf ("R¥?)

w(k, ) = Ext- [.psa d" p|h(p — Oh(p — )|V )V u(a)



is a kernel with finite#-norms (9.25)-(9.26) for = 1. But the right side of (9.78) has the fo(i#f |y|)?, where
operatoiV is given by

W = Ext- [

|p1l>x

d* p,...Ext- |,

[ps|>2

d*3 ps x 79

[Ext' f|k1|SH d#Skl .. Ext- f|kr|5% d#s plaT(kl) a.l-(kr)w(kp ey kr; P1s ey ps)a (pl) a(ps) ];

herew(ky, ..., ky; Py, ..., ps) is a#-measurable kernel argh| € D(H§,,) sincey € D(H§,,). Hence by Proposition
9.2, the functio || € L} so that (9.78) is uniformly bounded by Ehfunction. By the generalized dominated
convergence theorem, the integral in RHS of (9t@8{ls to zero as — *oo, which completes the proof of strong
#-convergence.

2) Note that the kernel @T¢,,(g) is bounded above by

w(k,p) = consty? (k — p)[(du@)/*Ext- [, |h(q = K)h(q — p)|d* q. (9.80)

ql>x

By (9.67) we obtain

[u(k)]™® < const[u(p)]~*[u(k — p)]®,

[u(k = p)]**¢ < const[u(g — k)1***[u(q — p)1***, 9.41)

[,u(k)]_%_'—s < COIlSt[M(q)]_%""g[M(q _ k)]—%+£.

From (9.80) and (9.81) we obtain
Iw(k, p)| < constlu(k — p)]~ [u(p)] > x (9.82)
x {Ext- [ |h(q = K)R(q — p)|luCq — k)] Zlu(q P [u(g)] 7 e a* q} <
< const[u(k)] = [l — )] ()] 7 x

x {Ext- [ k(q — k(g p)|[u(q — )3 ulq - p)I*d*q),

From (9.82) by using the generalizef Schwarz inétyia g and the rapid decrease/ofo bound the integral over
q by a constant we get

[k, )1 < const (Il =) [l = )] @] 5~ (9.83)

1
Note that RHS of (9.83) for arey> 0 obviously inL% and has ai¥ #-norm that is0 (Ikl'?g) for anye > 0. This
proves statement (2) of the theorem.
3) The proof of this estimate is carried out byreates on the kernels 6?&1{) (9) andST‘O(i) (g)- The estimate on

L

the kernel oféfo(ff (g) is similar to the above. Now we estimate te#-norm ofw (k, p)[u(k)] z[u(p)]'% for the

3
functionw(k, p) of (9.80). We then get ai§ #-norm that isD (|k|‘5+£), and by Proposition 9.3 in the case= 2,
B = 0,7 =1 for the creation part ar = 0, = 2,7 = 1 for the annihilation part we obtain

|6+ 1) T2 @)+ )|, < 0 (), (9.84)



The estimate on the kernel&f(f_i) (g) will be made with theét-norm (9.25). We find tha¥, ,,(t = 2)~0(|k|™") ,
so that by Proposition 9.3 following it

1185875 (@ HE ), < 0CUxI ™). (9.85)
We now prove this estimate on the kerne&ﬁ(ﬂt) (g)- The kernel oﬁTo(,}) (g) is dominated by the function
sy (k,p) = [u(OR(@]?Ext- [, [h(p = )R — q)|d"*p.
Note that

Ext- [ ws,,(k,p)d*q <
constu?(Ext- [ [R(p ~ A — )| [u(p — I [u@)] " d**p d*q <

const[u(k)] ™ u? () Ext- fi,,. |~(p = IDh(p — )| lu(p — T lu(p — )] 'd*p d*q.
By the generalized Schwarz inequality we get
Ext- [ ws,(k,p)d*q < const[u(k)] " u? (k).
Thus finally we obtain the inequality
sup,[u* (K)Ext- [ ws, (k,p)d**q] < 0(1%|™)

which completes the proof of (9.85) and the prdahe theorem.
Definition 9.13 It is convenient to writd ,,(g) andsT,,.(g) in another form. We define the following operators
with L% kernels on the domaib(H{,,)

Bi() = o {Ext- [, L, B — D [u(0)]ia()d "k}, (986
Bop) = o {Bxt- [, Ao — OIKI k(O] Za(i)d ™k}, (9.87)
Ba(p) = o {Ext- A(p — m[u()] Za () d* k). (9.88)

Then forg = h? , andx < o0, on the domaiD(H{,,) we get

T(l)(g) = Ext f|p|<;t

1 B; (0)Bi(p)d**p, (9.89)
8Ty (9) = S Ext- [\ T3, B (p)Bi(p)d*p. (9.90)
Definition 9.14 We also define now following operatods(p), i = 1,2,3 on the domaiﬁ)(N&f) by

Ai(p) = 2 {B;(p) + B; (—p)}. (9.92)



Remark 9.4 Note that
[4; (), 4; ()]D(No,) = 0. (9.92)
The operatord; (p), i = 1,2,3 are related to the operaty,.(g) without Wick ordering.
Definition 9.15 For» < oo we define
Tou(9) = Tha [Ext- [, o, A @) 4:(p)d*p] = 0. 99)
Direct calculation shows that

TO,}{(g) = TO,M(Q) - (QO! To,x(g)ﬂo)- (994)

Here(, is the no-particle vector. Since
(Q0, o (9)0) = Ext- [z Goe(p, pIu(p)d*p. (9.95)
HereG, (ky, k,) is defined in (9.71), we have far< *oo thatT, ,,(g) is bounded from below and

To.(9) + Ext- [ G, (p,p) u()d®p 2 0. (9.96)

Theorem 9.10 Lete¢ > 0 andg, g, be positive as mentioned above in (9.70). Therettsea finite constarit such
that onD(H§,.) x D(HE,,)

8T (g) 2 0, forall 0<x< ‘oo (9.97)
eNoy +To(g) +b =0, (9.98)

eNo, + T, (@) + b =0, (9.99)
eNoy + To(g) + Tp,(g) +b = 0. 9.100)

The inequalities (9.97)-(9.100) are also valid vsH@h{ in place of Ny,,.
Proof The positivity oféT})(;) (g) is a consequence of the representation (9.89xder to prove (9.98) we let

eNo . + To(g) = eNo,. + 8T 2 (9) + 6T (9) + Ty (9).

Since TO(}) (g) is positive by (9.97) anﬁo',{(g) is bounded from below by (9.96), we need onlyprthate N ,, +

ST‘(f_i)(g) is bounded from below. By Theorem 9.9 () #-norm of the kernel Oiﬁ'fo(? (9) is0(»~'/?) and
therefore

|+ No,) 2872 () (1 + No,) ™ |, <o (1l72). (9.101)

For sufficiently larger, (9.101) is less than HencesN,,, + 67’"0(:‘;2 (g) + € =0 and (9.98) is proved.



§10. SECOND ORDER ESTIMATES

In this section we consider a second order estioaigperators of the form

HE o + Toe(90) + Ti (1) (10.2)

Hereg, andg, are spatial cutoffs satisfying (9.70). Fgkp*) , model such an estimate was proved in [18].
Theorem 10.1 Letc > 1. Then there is a constat< *co such that foralg, 0 < g <1,

(Hg,x + 1)2 + ﬁz[To,x(Qo)]z + [TI,H(gl)]Z < C[Hg,u + BTo(g0) + T1,(g1) + b]z' (10.2)
as a bilinear form o® (H{2) x D(HEZ).
Proposition 10.1 Letc > 1 ande > 0. Then there is a constaimt< *co such that
To,u(go)Hg,u + ngTo,x(go) = _3H§,;24 —b (10.3)
And forallg, 0 < <1,
(Hise +1)° + B2[Toe(90)]” < c[Hix + BTon(g0) +b]° (@

as bilinear forms o®(H{,,) x D(HE,,).
Proof First notice that

2 2
[Hg,x + ﬁTo,u(go) + b] = (Hg,x + 1) +BZT02,;: (g0) + (10.5)
+2(b—-1) (ng + 1+ B1To,(g0) + % (b - 1)) + ﬁ(Hg,xTo,x(go) + To,x(go)Hg,x) +%(b - 1)

where B, = Bb(b — 1)7*. For b sufficiently large, HE, + B1To,(go) + %, for the proof of Theorem 9.10 gives an
estimate that is uniform fdr < B, < 2. Hence it is sufficient to prove (10.3) to establ{10.4), for if

Hg,uTo,x(go) + To,x(go)Hg,x = _48H0#,§f =Y (@p.
we have chooseandb such thatte < 1and %bz >y — 1.We write now
Ty = Ty, + T2 + 6T, (10.7)
We prove (10.6) separately for each term in (10J8)ng (9.91)(9.96) we obtain
HE, To, + To, HE, = —2HE, [Ext- [ G, (k, k) u(k)d*3k| + HE, Ty, + Ty, HE,c = (10.8)
> —eH{2 — const + HY, Toc + To,cHe =

= —eH{% —const+ 2Y7_; [Ext- f|k|>}rA? (p)Hé‘,KAi(p)d“p] +

+ 38 [Bxt- o [HE 0 4:(0)] Ai@)dp| + Zi [Ext- [, o Ai@)[HE,0 4:()] d%3p].



Note that the kernels occurring4q(p), A4; (), [HE... A; ()], [HE.., A; (p)] all belong taSE, ("R¥3) for fixed p. The

L% #-norms of these kernels are uniformly bounded on#angmpact set ip € *R¥3. Thus each of these operators

is defined on domai®(N,?) and mapD(H{,) into D(H,,/*). As a consequence, each term in (10.8) is well

defined. Since

Ext- [

|k |>n

A7 (DHg,Ai(p)dPp =0 (10.9)

one needs only bound the commutator terms. Bylbgearemarks oh¥ #-norms of the kernels, the operators

(H + D) {Ext f, [0 A5 0)] A)A"p + Ext- [ AL D) [Hio AP)] 4% (HE, +1)
are bounded for any < *oo, so that
-1 [Exf'ﬁkp;,[HﬁwAZ(p)] Ai(p)d#3p] + X [Ext-flk s AL D[HE 00 4: ()] d#3p] > (10.10)
> —const(H§, + 1) = —eH{,, — const.
Thus by (10.8(10.10) we obtain
HE, To, + Ty, HY,. = —€HY,, — const , (10.11)

which is the contribution offy,, to (10.6). By Theorem 9.@), the kernel oST(f? has L% #-norm that iSO(}f_l/Z)
Hence

| (HE e+ 1) (8,073 + STEHE,) (i +1) || < 0(e72)
and for sufficiently larger € *R# we get
HE, 0T + ST HE, > —e(HE2 + 1),

which is the contribution oﬁTo(_ff) to (10.6). Finally, fozSTO(_L) we write

0, 0,2 0%

YOS + STO HE,, = 2HySTS H ! + [Ho?, [H 2, oTiY] | (10.12)

By Theorem 9.10, the first term on the right of .(0) is positive, and we now study the double cotatou. Since
neithersT,,) norHy./?

0,%

n € *N particles. Lett(k,, k,) be the kernel OrﬁTo(;)(g), then

changes the particle number, we restrict attertborectorsy € D(H(’jf;‘;) with exactly

W, [Hﬁ/ 2, [Hg2 815 (g)]] P) = (10.13)

n(Ext- [ Y(ky, oo, k) Y@, ko, oo, k) St ke, DIAD, kg, oov, k) AP pd®3ky .. d®3 k),
where

A, kq, o k) = (10.14)

[(Ext-S1y n(k))Y? = (u(p) + Ext- Sl u(k))?]" =



2

1/2
= (Ext-3} 1u(k))l< ““”—““‘H) —1]-

(Ext >t 1 H(kl))

If u(p) — u(k,) = 0, we use the inequalitfl + x)*/? — 1 < %x, for x = 0 to prove the inequality

A, ky, o k) <3 (1) — u(ky)) (10.15)

SinceA(p, kq, ..., k) = A(ky,p, ..., ky,), the bound (10.15) is valid for &l k4, ..., k,,. Sincelu(p) — u(k,)| <
constu(p — k;) we get the inequality

A(p, ky, ..., ky) < const X u?(p — ky). (10.16)

Suppressing the variablés, ..., k,, in (10.13) we have by (19.16), the Schwarz inétyand the symmetry of
lw(k,p)l,

W, [Ho!?, [He /2, 0T ()] ] ) < const x n(Ext- [ 12 (ky)6ter, p) |2 (ky — p)dPpd™key),

where the kernedt(k,, p) is dominated byonst x |§(k; — p)|[u(k,)u(p)]*/? and therefore we have the estimate
Ext- [ |8t(ky, p)|u?(ky — p)d*p < const x u(k,),

and so, by Proposition 9.1 we obtain

W, [Hos! 2, [HY!?, 6T33) ()] ) < const x n(Ext- [ 192 (k) luky) d*ky) = const X (i, Hip,) <

< (¥, (eH¥Z + const)y, ).
Thus for (10.12) we obtain
Hé‘,KST(l) + 5T(1)H0K > 2H#1/2 T(l)( )H#l/2 — eH§2 — const = —eH{% — const.

This establishes (10.6) as inequality on don{f§2) x D(HE2),it extends by#-closure taD(H§,.) X D(HE,,),
and this completes the proof of the proposition.

Remark 10.1 Notethat these methods can be used to provelthét, n) = (adHé‘,; (6T(1) (g)) T<1,n€e'Nis
an operator o (H,,), and thaW (z,n) HE,;* is bounded.
Proposition 10.2 Lete > 0 andx < *oo. Then there exists a constank oo such that o (H{2) x D(HE

TyoTose + TyocTose = —& (HEZ + T2, ) = b, (10.17)
Proof Using (9.91)(9.95), we obtain the identity
TyoTope + TixTo, = —constTy, + T, Do, + TpTo e = (10.18)

= —constT},, + Xi_; [Ext-f| A} ()T, A;(p)d*p + Ext- |

|p |sx

4 PIT, A ()] +

plsx
+353, [Bxt- f (4@ [4; ), T | dp) + 288 [Ext- | [410), [4i0), Tie] | d#2p)]

Notethat (10.18) follows from the identity



B(A"A+ AA") + (A"A + AA")B = 2ABA" + 2A’BA + [A,[A*, B]| + [4",[4, B]].
We obtain a lower bound on each term on the riiglet of (10.18). Clearly for any, > 0, we have
—constT;,, = —¢& T2, — const.
Furthermore, by (9.99), fay, > 0,
AT Ai(P) + AT Ai(p) 2
= —constd | (p)A4:(p) — e2{ AT (PINo,cAi () + AiPINo, A((P) } (10.19)

By the remarks following (10.10) on thi§ nature of the kernels occurringdn(p), we have folp| < % < "o, and
anye; > 0,

—const(A :f(p)Ai(p)) > —const(NOIK + I) > — g3H{Z — const, (10.20)
. . 2 M 2
- sz{Ai(p)No_HAi(p) + A;(p)Ny,. A (D) } > — gyconst(No, +1)° = — eyconst(HE, +1)". (10.21)

Thus we can choose,, ¢,, €5 sufficiently small so that after summing (10.19P21) overi and integrating over
|p] < » we obtain for (10.18),

TyoTose + TioTose = — & (H{ + T2, ) — const +

+3 30 [ Ext- o [4i @), [4i @), T | @] 4358 [Bxt- [, L, [4i ), [40), Tl | @9 (10:22)

Note that| 4;(p), | A; (p), T; ,.|| and its#-adjoint are sums of second order monomials in imeand annihilation
12 ,

operators withL? kernels that have uniformly boundéd #-norms for|p| < x, in this 3-dimensional region gf
we get

[4:), [4; ), Ty]] + [4: @), [4:(0), Ty ]| = —const(Noe + 1) = —&;NZ, — const.
Thus by choosing@i sufficiently small, we obtain from (10.22) thdlwing inequality
1 #2 2
TisTose + TracTose = =3 & (HZ + T3, ). (10.23)

The inequality (10.23) is the desired inequalit9.(I7) and completes the proof.
Proposition 10.3 Givene > 0 there exists a hyperfinite constagtsuch that foe > 1,

TyoOTg + 8T8, Ty = — (HE% + T2, +1), (10.24)

as bilinear forms o®(H§,,) x D(HE,,).
Proof For anye > 0 we have

2
[, 71872 ()] < | Tosetbll 672 (@Il < ElITbl; + = 1672 (o)l (10.25)

By TheorenB.2.4 b, STo(i) has anL¥ kernel with#-norm0(»~1/2) and therefore for givean> 0,



211672y, < 0| (Nose + DYII; = oI|(HE, + w2 < = (1w + 1o3)
for s > x,(e). Thus forx > x, we get the inequality
TyoBTeD + 6T, = —e (HEZ + TR, ) —

which completes the proof.
Proposition 10.4 Givene > 0 there exists a hyperfinite constaqtsuch that for >

Ty 8Ty + 8T Ty, = —e(HEZ +1), (10.26)

as bilinear forms o®(H2) x D(HE2).
Proof We consideﬁTo(j{) as 8.2.39) and write

Tia8Ty, + 8Tg,) Ty = Ext- [\ B ()T ,Bi(p) d*p + (10127

1 * 1 *
+o¥ Ext- [ T B 0)| Bip) dPp + 183 Ext- [ Bi()[Bip), Ty |dPp.

The integrals ovep in (10.27) are absolutel§-convergent as weak integrals of bilinear formg)(mlé‘_i) X
D(H¥2). Note that for any; > 0 by using 8.2.48) the inequality holds

P=1 Ext- ||

oo B1@T1Bi(0) d¥p = &y T3, Ext- [\ B {(p)NosBi(p) d**p — bSTy). (10.28)

pl>n

By Theorem 3.2.4c we get
—bSTD = —0G ) (HE, +1)° = —e,(HE, + 1), (29)

for x sufficiently infinite large. Since the right sidé (4.28) commutes with the projection onto vectwith n
particles, it is sufficient to bound it below oncbuwectors. By Theore®2.1, or Lemma 3.2.3 we get

SEiExt- [, B[ (0)No,Bi(p)Y) d¥p = 2(n — 1) (4, STSL) < const(n — D, H, ) < (10.30)
< const(y, H{Z).
Inserting the bounds (10.29)-(10.30) into (10.283,get for sufficiently smal, ande, ,
i Ext- [ Bi®)T,Bi(p) d¥*p 2> — - (HES +1). (10.31)

We now use Lemma.1.4 in order to obtain bound for the commutator term&l0.27). We write out now

Tipe = Zteo() T (10.32)
TI,K,T = Ext'f b(kl, ey k4,) a* (kl) A a*(kr)a(_kr+1) A a(_k4)d#3k1 A d#3k4, (10.33)
b(ky, ., ky) = ¢ —Trtat tke) (10.34)

[u(hy)..u(les)] /2

for a constant. Let us writeB;(p) of (3.2.35)-(3.2.37) as



B;(p) = Ext- [ h(p — k) b;(K)a(k)d*k, (10.35)
1
|b; (k)| < [p(K)]=. (10.36)
Let W;,.(») be the expression
WirGo) = 3 (DExt- [ Bi@)[Bi(p), Tyer|dPp = &)
Ext' f Wi,T(kl’ ey k4, }f) a* (kl) A a*(kr)a(_kr+1) A a(_k4)d#3k1 b d#3k4.
Herew; , (kq, ..., ky; %) is the symmetrization iRy, ..., k, of
~(E)reb (k) [uky) .. u(ky)] 2 X (10.38)

Ext-f d*3p Ext- f d®qb;(q) [#(Q)]_l/zﬁ(l’ - kl)E(P —q)g1(q + ky + k3 + ka).

Ip|>n

Thus using (10.31) we write for (10.27)
P

T18To5 + 8Tg3) Trpe = —2e(H{Z + 1) + Ty Bhoo(Wir GO + (Wi 00))'). (10.39)

We will use nowLemma 3.1.4 in the case of creators(4 — r) annihilators@g = min(2,r),8 = min(2,4 — r),
T =1 ando = 1 to prove that

N2 H W GOy PN < 00,6 <5 (10.40)
Assuming (10.40), we have for alandr that, ” (HE + 1) Wy Go) (HE,, + I)_1||# <0(x7?),6< %

Exchangingx andp gives a similar bound fC(ﬂ/Vir(}{))*. Thus for sufficiently infinite large, we conclude from
(10.39) that,

Ty, TS + 8TEIT,, = —e(HEZ +1), (10.41)
which is the desired bound (10.26). We now estirtfatekernely; ,. of (10.38). Note that by (10.36)
|Ext- f.,, %P Ext- [ d*qby(@) (@] ™R ~ kh(p = )di(a + ko + ks + k)| < (10.42)

< Ext- |,

[p|>n

d*3p Ext- [ d**q|h(p — k))h(p — Q) §:1(q + kz + ks + k,)| <

< Ext- |

Ip>

d#3p |E(P —k)hi(p+ky + ks + k4)|-

Here hy(p) = Ext- [|h(p — )§1(q)| d*3q is a rapidly decreasing functiondrf, ("R#3). Since for0 < & <1,
1 < const X [u(p — k)]¥[u(p)] ¢[u(k,)]¢ and therefore we have by (10.42)

|Ext-f ., a%*p Ext- [ d*3qb,(q) [u(@)] ™2 — k)h(p — 0)3:(q + ky + ks + k)| < (10.43)

const X [u(k,)]*Ext- f|p|>x dBplu@)] ™ lulp = k)I® [h(p — k1)1 (q + ky + ks + k)| <



< const X [ﬂ(h)]g[#(”)]_gExt'f d®3plu(p — k,)1* |h(P ki)gi(q+ky + ks + k4)|

IpI>x

< const X [p(k)]*[uGO] 592 (ks + ky + k3 + ky),
g2(k) = Ext- [ d®p[u®@)]* |h(®)|hi(p + k). 0(a4)

Note thatg, (k) is a rapidly decreasing functiondrf,, ("R#3) independent of. Therefore fow; .., the
symmetrization of (10.38), we have by (10.36) at@43) that

Wi (ks s beai 20| < comst x w1~ (T (k)] ) (k) - uky)) 2 gy Cky + Jey + ks + ky)  (10.45)

By applyingLemma 3.1.4 with « = min(2,r) andf = min(2,4 —r), we hav& < a + < 4.

SinceE -(a,1) E 4(B,1) is a homogeneous polynomial of degeee S in the u(k;) 's, the most favorable bounds
occur witha +B = 4 and the least favorable bounds occur with = 2. In any case we get

E = sup izj [p(k)u(k;)] < constx E c(a,1)E 4(B,1). (10.46)
15i,j<4
Note that
[u(k)]? < const X Eu(ky + ky + ks + k,) < const X E (&, DE 4B, Dulky + ky + k3 + ky). (10.47)

Thus by (10.45) we obtain

[wi (e, kai0)| 1/2

G oans 1.0 < const x [u()]E(Tho[1(k)] ) () = ulka))” (10.48)

X pulky +ky+ ks +ky)g,(ky +ky + ks + ky).

Sinceg, (k) is a rapidly decreasing functiondrf,, "R#3), the right side of (10.48) is squatentegrable for
€ < 1/2, and therefore

Wiy (kq,...kq;%)

<0x%),e< %
(E c(aDE a(B,1))

1
2

Tus by Lemma 3.1.4, (10.40) is valid. This cometes proof of the proposition.
Proof of the Theorem 10.1.We expand now

[Hg, + BTo,c(G0) + Tie(g0) + b]” = [Hi + BTo(90) + 2] + [TiCan)] + (10.49)

5p] | 1
b [Hg,x + BTo,(go) + 2Ty, (91) + Y + gbz + Tl,x(gl)[Hg,u + BTo,x(go)] + [Hg,u + .BTo,x(go)]Tl,x(gl)-

Givene > 0 andb sufficiently large, proposition 10.2 ensures that first term on the right of (10.49) is
greater than

(=) [HEE + 87 (Ton90)) | (10.50)

Furthermore, fob sufficiently large, the proof ofFheorem 3.2.5 ensures that fay < g < 1,



e + BTos(go) + 2T1,e(91) + 3= 0. (10.51)

Hence to prove the theorem it is sufficient to grdivat forb sufficiently large, the last three terms of (10.48tisfy
1 2
252+ Ty (g [Hl + BTon(G0)] + [ + BTon (90T () = = [ + 87 (Tou90)) | (2052)
We set nowl, = T, + 6T0(f2 + 6T0(_1f). Then by propositions 10.3-10.5, fasufficiently large we obtain

L5+ T, (90To(g0) + To(0)Tie(g0) = ¢ [HE% + 5 (Ton(90)) | (1053
Hence we need only prove that for laige
b2 + Ty, (g H e + Hiy Ty (91) = —eHES. (10.54)
We expand now
TyscHl e + Hu T = 2He ) Ty Hos!? + [Ho 2 [ T |

Using 3.2.48) we get

TypcHf s + HY Ty = —eHE2 — const + [Ho? [H3 2,1, ]| (10.55)
Note that
[H(’f_}/z, [H:_,l{/Z,T,,K]] > —eH}% — const. (10.56)

Obviously from (10.55) and (10.56) one obtains 34).
Alternatively, a proof of (10.54) could be obtairtadusing the equality

Ty, He . + HY Ty = 2Ext- [ a* (k)T ,ak)u(k) d*3k +
+Ext- [{[Ty,0 a* (k) ]alk) + a* (k)[T;,, atk)Julk) d*k
and using the methods of the proof of Propositior 1
811. FOURTH ORDER ESTIMATES
In this section we study the operady = aH,,, + Ty, ( go) + Ti(g1).
Theorem 11.1 [15] Leta > 0 and letg, = [ho]% g1 = [h1]?, ho, by € SE,CR¥3), hy = 0, h, > 0, then operator
M, = aHo, + To,(go) +Ti(g1) (11.1)

is self #-adjoint onD(H,,.) N D(T,(g1)) and is essentially self#-adjoint onC " (Hy,, )-

Proof We leta = 1,4 = H,,, + T;(g1) + b andB® = T,( g,). We choose sufficiently large so that > I. Note
thatA is self #-adjoint onD(H,,.) N D(T;(g1)) and that is essentially self-adjoint onC *(H,,,). LetD(4) =
€ *(H,,)- The inequalityl By |l4 < all(A + BB)Yll4 is proved as follows: By Theorem 9.8, namely the



boundedness of (9.60), we hai® ( go)yls < const||(Hg, + 1)i||,. By Theorem 10.1, i > 1 andb is
sufficiently large, we obtain

112+ 190, < el + BTonCae) + Tina) + Bl
forall 8,0 < B < 1. Thus fory € D(4) = € *(H,,) we obtain
1ToCgo)¥lly < c||[HE, + BTos(g0) + Tix(g1) + b]lp"#-

By Theorem 6.8M is essentially sel-adjoint on domair€ " (H,,,) andM is self#-adjoint on domairD(H,,.) N

D(T1(91)) = D(#-A).
Theorem 11.2 [15] The operatoM £ M,, defined by (11.1) has the sa#eores as the operattif;,, + T;,,(g1)
Proof Directly from Theorem 11.2 and Theorem 6.9

Theorem 11.3 [15] LetM denote the sel-adjoint operatoM = aH, ,, + Ty( go) + T;(g,) with & andg,, g,as
above. The®(M?) c D(H(’,*,KN,’;*), and there are constamts< *oo, ¢ < *oo such that as forms d(M?) x D(M?)

HEZNE? < c(M + b)*~. (11.2)
Proof We need to prove th@(Nj#M ) c D(N#HE, ) and that there are constahts such that, fop € D(NM )
INZHE W, < clld + NHM + b)plly. (11.3)

The inequality (10.2), see Theorem 16xtends t@(M ) x D(M ) since by Theorem 11.T, (HO'H) is a#-core
for M and the operators involved ateclosable. Henc®(M ) c D(H§,,), so

D(M?) c D(H¥, M) c DN M) c D(N}HE,)
and by (11.3) for new constantsc, , b, and ¥ € D(M?)
INZHE Wl < cilltd + NDM + bYplly < co(M + by)*. (1p.4

As a first step to prove (11.3), we prove tﬁéff(Ho_H) is a#-core for$ = (I + N;)(M + b), whereb is

sufficiently large so tha¥ + b is positive. It is sufficient to show that the ganof$ I ¢ (HO,K) is #-densefor

this operator has #-continuous inverse. Hence theclosure of its inverse is the inverse of#tglosure. LetD§
denote vectors in Fock spagé(H* ) with a finite or hyperfinite number of particles.

Remark 11.1 Note thatl) ¢ (HM) n D is a#-core foraHf, + T;,,(g,). Hence by Theorem 11.2, it istecore
for operatoM, so thatdf = (M + b)(C *(H,,) N DE) is #-dense. 2) Every vector if is an#-analytic vector
for the operatoN,#, and henc® is a#-core for the operatay.

Thus we conclude th&N,? + 1)Df is #-dense; s& *(H,,.) is a#-core for(I + Nj)(M + b).

Note that it is sufficient to prove (11.3) fgrbelonging to &-core for(I + N;)(M + b), so we show that as forms
on D(HY, ) x D(HE,.)

HE NI < c(M + b))+ NH2(M + b). (11.5)

Remark 11.2 Note that it is sufficient to prove (11.5) fer= 1, since the constamt may be absorbed ing, , g, b
andc.



Remark 11.3 Now we letT;} = T, ,, + T;,., and note that (11.5) is equivalent to showing the following operator
is positive

HE2(I+ N2 — ¢ THEZNS? + TEA + NJD)? TF + TEI + NH?HE, + (11.6)
+HE, I+ ND2TE+ b(HE, + THU + NH2+ b1+ NH2(HE,, + TF) + b2 + NjH? =

HE% (I + NJ? = ¢ THEENE? + TP+ N)* T) + 2b(I + N) (Hz;ﬁ}, + T + %) I+NH+

+2b[NE NG, TH + TP + NDHE, + HE, (L + ND?*TF + 1’2—2(1 + N2
For sufficiently largeb we get

THU + ND? T + 26U + N (HE e + T +2) (1 + Nf) 2 0
as a sum of positive terms and it %we get
%H(’f,i(l + N2 — cTUHEZNS? > 0.
Thus (11.6) is positive for largeif the following inequalities hold:
éb(l +NH2 + [N NS, T = o, (11.7)
SHEZU + N2 + TEU + NDHE, + HE, (1 + ND2 T + 22 (1 + Ni)? = 0. (11.8)

In order to prove (11.7), we note tat?, T¢,.| = 0, thereforel N, [N#, T,#]] is a sum of Wick ordered monomials
of degree two or four with% kernels. Thus the operat@r+ N;) =[N, [N, T,/1](1 + Nj)~ is bounded and
(11.7) is positive for large. To prove (11.8), we note that

T (I + Ni)?Hg o + H o (1 + N T =
= (1 + ND(TEHG, + HE, T + N + [[ T NEL U+ ND?HE,| =

= I+ NO(THHE, + HE, THU + N + 231+ NOHSY? T HEY? (1 + N + (11.9)

0, 0,
U+ N [H? [HE T O+ NS + ([T N NETHE  + (1 + N [T N HE, ]
By Proposition 10.1, we have for the first tern{14.9)
(I +NH(TiHE, + HE, THU + N = —%Héﬁi(l +NHZ = by (I + N§H? (11.10)
for anye > 0 and for somé; < *co. The second term in (11.9) is bounded below siryoasing(3.2.48) we get
201 + NOHY 2 T HG AU+ NS = —e HEZU + NJD? — by HE, (L + NJD? > (11.11)

0,

> —2e HYZ(U + ND? = b HE, (1 + N)?



for anye > 0 and for somé b(e).
Remark 11.4 Note that for any > 0 there is @& such that

Hoxl? [Hoy? Tl )| = =3 e HEZ — b,
And therefore we obtain the inequality
I+ N [H;*}/Z, [HE12, T,f‘,{]] U+ Nj) = = 2e HEZU + N2 = b H, (1 + Nj)2, (11.12)
Since[ T,¥, N;#] contains second or fourth order Wick monomialdwi kernels,
F=U+NOTITENA N+ NDT
is a bounded operator. Thus for apye ¢ (H¥,.) we obtain the inequality

|, [[ T¥, NEL N Ho, )| = (T + N, SEUT + NHYHE, )| < (11.13)

< const|| (I + Nl | + NOHS, |, < ég |HE,.(1 + N,’f)1p||i+const||(1 + NHYIIZ.

Finally we consider the operatr+ N,#) [[ T, N;‘;‘],Héf,{]. We write T} = Ty, + T;,, and consider these two terms
separately. Let

[ Toho N ] = 91 + 9,

Here$, and$, are respectively terms of the foh1.14) with r = 2,s = 0 and withr = 0,s = 2 and each such
term had$ kernel. Applying.emma 3.1.3, we have thati§;;*[$,, H,.] and[$,, HE, |HE:! are bounded forms on
D(H¥, ) x D(HE, ) and therefore we obtain the inequality

|, U+ N [T NEL HE | )| < (HE U+ N, HEZ (91, HE Jw) | + (11.14)
(T + N, [92, HY, JHE HE )| <
< const (|| Hon (I + N[ Il + 1T + NIl Hot]l, ) <
< 2 ||Hon (1 + N[ +constli (1 + N2,

The remaining part of the expressidn+ N,¥) [ [T} NP, H(’f%] consists of the contribution fropf},, N#]. Let
Ti = T/, + 6 T/, where T}, is defined as iit4.32)~(4.34), but the kerne{4.34) is multiplied by the characteristic

function of{k;||k;| < »,i = 1,2,3,4}. Then[[ T, N,f],HO_,f] is consists of Wick monomials witt§ kernels. As in
(11.13), we have

|, [[ T, N3L NE Ho )| = (U + NDY, SEU + NDHE )| < (11.15)
< constl|(I + ND || + NOHE, ||, < %g |HE,.(1 + Nj)¢||i+const||(1 + NHyll3

UsingL emma 3.1.4, we analyze the high hyperfinite energy contriuits T/%,. It is a sum of Wick monomials of
degree four, and at least one variable kt is gréassm K in magnitude. By Lemntal.4, and(4.47),



o5 = (1 + B3, [[8 T8 N2 HE) (14 HE,) ™

is a bounded operator, and an estimate of the Iseuh[a[é T}, N;*,‘],H(’,’f,{] shows that|@#|ls < 0(x™ %), 1 < 1/2.
Thus for sufficiently infinite larger we obtain the inequality

(v, (1 + N2 [[8 T NEL HE )| <0G+ MO+ HE I + HEwll, < (11.16)

< e ||HE U+ N + 10+ NHIE.

The inequalities (11.13)-(11.19) dominate the vasiterms in (11.12). Added together, they show (hhtl2) is
bounded by

TH(I + HE) HE, + HE, (1+ HE)' T = —eHi2 (1 + HE,)” — const (I + HE,)
Thus (11.11) is valid fob sufficiently large and the proof of the theorencasnplete.

§12. Q*-SPACE REPRESENTATION OF THE FOCK SPACE STRUCTURES

In this section the construction of a non-Archimeu@®-space and’ (Q#, d¥u*) , another representation of the
Fock space structures are presented. In analogitiétone degree of freedom case W€ R? ) is isomorphic
to L4 (*R¥, d*x) in such a way thab¥ (1) becomesnultiplication byr, we will construct a*-measure
spaceQ¥, u*), with u#(Q*) = 1, and a unitary map*: F* (H* ) - LE(Q#,d*u") so that for eacli € H¥, S*¢# (f)
S#=1 acts onlk (Q#, d*u*) by multiplication by au*-measurable function. We can then show that ircéise of the
free scalar field of mass in 4-dimensional space-tindé}, V = S*H}, (g)S*~* is just multiplication by a function
V(q) which is inL4(Q#, d*u*) for eactp € *N. Let {gn};‘ﬁl be an orthonormal basis fH* so that eacly € Hf

and let{g,,}_,, N € *N be a finite or hyperfinite subcollection of the Sﬁ}::l .Let Py be a set of the all external
finite and hyperfinite polynomialBxt-P[u,, ..., uy] andF} be the #closure of the set
{Ext-Plof(g.),...,0f(gn)]IP € Py} in F#(H?) and define a sé)’ = F{ n F,. From Theorem 55 it follows that
0} (g,) andrf(g,), for all1 < k,1 < N are essentially self-&djoint onFy¥ and that

(Ext-explite;; (g,)]) (Ext-explitm}(g)]) =
(Ext-exp|—ist8y,; |)(Ext-explitn}i(g)]) (Ext-explitpf(gi)]) -

Therefore we have a representation of the genethlieyl relations in which the vectdl, satisfies the equality
(lef(g)? + [ (g)]? — 1)Q, = 0 and is cyclic for the operatof (g,)}4-,. Therefore there is a unitary map

- - #
SHM Ff - [£('R¥V) such that: 1)5* Mg (g,) (S*M) ™ = xy, 2) S¥Mr# (g, ) (S*M) ™" = =214 and

id¥xp

2
3) sty = g~N/4 [Ext-exp (—Ext-Z‘,ﬁ:l%)]. It is convenient to use the non-Archimedean Hitlspace
2 2
Lg (*]R?N’ 7'[_N/4 <Ext-exp (—Ext- Z¥=1 %))) d*Vx instead Oﬁlg(*]R?N) so we |eﬁ#uz: Ext-exp (— xz—k) d#xk

2
and define the operat6ff)(x) = =V/* <Ext-exp (Ext- Zﬁ'ﬂi—k)), ThenT is a unitary map off (*R#") onto

LCREV, Ext-TT)-, d"uf ) and if we let S = TS*® we get: 157 ™: 7% > Ly ("R, Ext-TIY-, duf),



-1 -1 #
2) ST Mt (g (sFM) T = x, 3) ST Mk (g (SFV) T = - 4 %d‘;—x}c and 4)57™q, = 1, wheret is the

L

function identically one. Note that eathmeasure:j has mass one, which implies that
(Qo, (EXt' [TR=1 Px (‘Pﬁ(gk)))ﬂo) = f*RgN(EXt' ITR=1 P (i) (EXt' | d##ﬁ,) = (12.1)
= Ext-[I{= gty Pre () d* i = Ext-TIi- L,Rgzv(ﬂo' P (95 (91)00)).

HereP,, ..., Py are external finite and hyperfinite polynomialsaiNwe can to construct directly to€-measure
space(Q¥, u*). We define a spadg” =x;°:1 *R#. Take thes#-algebra generated by hyper infinite products of
#-measurable sets iiR# and set* =®,i°:1 u. We denote the points @@* symbolically byg = (g, q,, ... ), then
(Q*, u*) is ac*- measure space and the set of functions of tme #gyy;, g5, ... ), whereP is a polynomial and

n € *N is arbitrary, is¢-dense inl% (Q#, d¥u*). Let P be a polynomial inN € *N variablesP(xy, x5, ..., xy) =

Ext-Y, 1y cll_____le,lcl1 x,ljl"v and defines*: p (gofﬁ(gkl), ...,<pf§(gkN)) Qo = P(qk,, Qiyr > Gk )- Then we get

li+mq IN+tmy

(0£(9ic), - 24(Gty)) Q0 = Ext- By 16 (00 05(01) ™ s 0 (G1n) ™ 00 =

— 2
Ext- Zl,m C16m fof}N q}l(11+m1 X X qllVN+mN (Ext- H?:l d#.uﬁi) = Ext- fQ#lp(xk1’xk2’ ""ka)l d#ﬂ#.

By the equation (99) and the fact that each meas‘jljlhﬂas mass one. Sin€y is cyclic for polynomials in the
fields, S*extends to a unitary map 8§ (H* ) onto LE(Q*, d*u*).

Theorem 12.1[15] Let ¢ ,,(x), » € *RE ,.be the free scalar field of mass(in 4-dimensional space-time) at time
zero. Letg € L{('R®) n LE('RE®) and defin) 100 (9) = AG¢) (Ext- Lo 9C0): @t (0 d#x),

whered(x) € *RE .. Let $* denote the unitary mag*: 7 (H* ) — L5(Q*,d*u*) constructed above. Théh=
S*H,,,1(g)S"* is multiplication by a functio, ;(¢) which satisfies: (alf, ,(q) € L} (Q*, a*u*) for allp € *N.

(b) Ext-exp (—tV,,1(q)) € LE(Q¥,d*u*) for all ¢ € [0, "co).

Proof (a) Note thatgp;:, , (x) is a well-defined operator-valued functiormo& *R#3. We define now ¢/*, (x): by
moving all theat’s to the left in the formal expression o, (x). By Theorem 59: /%%, (x): is also a well-
defined operator for eache *R%3. Notice that for each € *R#3 operator ¢, (x): takesF, into itself. Thus for
eachr € *R%3 operator gt (x): reads @it (x) = @it (x) + dy () @i2,(x) + dy (3) where the coefficients
d,(x) andd, (x) are hyperfinite constant independenkofor eachx € *R%3, S*¢}, . (x)(g)S* tis the operator on
#-measurable spadd (Q*, d*u*) which acts by multiplying by the functidfwt- Z;‘:l ¢ (x, %) q, Wherecy, (x, #) =
(2m)~3/2( gy, (Ext-exp(ipx) ) x (¢, p)u(p) V%) andy (»,p) = 1if |p| < 3, x(¢,p) = 0if |p| > ». Note that

Ext-3,2,1cc(x, 2012 = (2m) =3/ x Ge, p)u(@) 135, (12.2)

so the function§* gt (x)(g)S*~* andS* 2, (x)(g)S*~* are inL{(Q*, d*u*) and thelf (Q*, d*u*) norms are
uniformly bounded inx. Therefore, sincg € L{(*R¥®), S*H, ,, 1., (9)S**operates o (Q*, d*1*) by
multiplication by some4 (Q*, d*u*)-function which we denote bi; ,, 1,1 (q). Consider now the expression
for Hy 5,106 (9) Q. This is a vecto(0,0,0,0,1%%,0, ...) with

2009 ()x Gep) (Bxt-exp(~ix T2 pe))a®x _ 200 Tlizy xGepp)(Exe-9(S21p))
@m)3 2T [2u () /2 T @oORIE,ee)t?

" (P, P2 D3 Pa) = Ext- [.pus (12.3)



Here|p;| < x,1 < i < 4. We choose now the paramelex A(») ~ 0 such thaf|)**||2, € R and therefore we
obtain|| Hy 160 (9)|l.,, € R, SINCe|| H 1100 (9)[;,, = 112, But, sinces*, = 1, we get the equalities

” HI.x,A(u)(g)QOH#Z = ”s#HI,}{,A(}{) (9)5#_1||L§(Q#’d#”#) = ”Vl,x,/l(u)(GI)|IL¢2¢(Q#’d###)- (12.4)

From (12.3)-( 12.4) we get thi¥, ,, 160 (@)]| € R. Itis easily verify that each polynomial

Li(e* a*u¥)
P(41,qz, -, qn),n € "N is in the domain of the operatidr,, ;) (q) andS*H; ,, 10 (9)S* ™ = Vi 200 (q) on that
domain. Sincdl, is in the domain off?,, ;.,,(g),p € "N, 1 is in the domain of the operatiéf, ,, ;,,(q) for all
p € *N. Thus, for allp € *N V;,, 100 (@) € L5,(Q*, d*u*), sinceu®(Q*) is finite, we conclude thaf ,, 1, (q) €

LE(Q*,d*u*) for allp € *N. (b) RemindWick's theorem asserts that
o) 1= S D L el 0 ) with o, = [[9f (D, Forj = 4 we get-0(c3) <
: @it (x): and therefore — (Ext f]R#g g(x) d*3x ) 0(c?) < Hy, 200 (g)-Finally we obtain

Ext- [ 4 Ext-exp( t(: it (x): )) d*u* < Ext-exp(0(c2)) and this inequality finalized the proof.

813. GENERALIZED HAAG KASTLER AXIOMS

Definition 13.1[15] A non- Archimedean Banach algebtais a complext-algebra over fieldC# (or"(CCfm =
*Rcfm +i ]RC fin ) Which is a non-Archimedean Banach space undf avalued -norm which is sub
multiplicative, i.e. [|lxy|ls < |lx|l4|ly|l4+for all x,y € A4. An involution on a non- Archimedean Banach algebra
is a conjugate-linear isometric antiautomorphisrorafer two denoted by~ x*, i.e.(x + y)* = x* + y*, and for
allx,y € Au: (xy)* = y*x*, (Ax)* = Ax,(x*)* = x, ||x*||« = x, A € *C*. A Banach#- algebra is a non-
Archimedean Banach algebra with an involution.

Definition 13.2 An C;-algebra is a Banach-algebrad, satisfying theCj-axiom: for allx € A, ||x* x4 = ||x]|3.
Definition 13.3 1) A linear operatom: H; — Hy on a non-Archimedean Hilbert spaigis said to be bounded if
there is a numbert € *R¥ with ||aé|ls < K||€]|s for all § € H,. 2) A linear operaton: H, - H, a non-
Archimedean Hilbert spadé; is said to be finitely bounded if there is a numi§es *RC in With ||aé|lx < K|[€]] 4
for all ¢ € Hy. The infimum of all suclk if exists, is called th&-norm ofa, written||a||.

Abbreviation 13.1 The set of all finitely bounded operatarsd, — H, we will be denoting bB# (H.).
Abbreviation 13.2 The set of all finitely bounded operatardf, — Hy we will be denoting bB, (Hy).

Remark 13.1 Note thatB, (H;) is aCj-algebra over 1‘|eld(CCfln

Definition 13.4If S < B*(H,) (or Bs (H,) ) then the commutasst of S isS’ = {x € B#*(H,)|Va € S(xa = ax )}.
Remark 13.2 The algebr&*(H,) of bounded linear operators on a non-Archimededinelti spacei, is a
C;-algebra with involutio - T*, T € B#(H,). Clearly, any#-closed#-selfadjoint subalgebra @&*(H,) is also a
Cy-algebra.

Remark 13.3 We will be especially concerned withiseparable Hilbert Spaces where there is an orthoaidrasis,
i.e. a hyper infinite sequenc&i}::"1 of unit vectors with(§;, §; ) = 0 for i # j and such thal is the only element
of H, orthogonal to all thé;.

Definition 13.5 1) The topology orB*(H,) (or B, (H) of pointwise#-convergence oH, is called the strong
operator topology. A basis of neighbourhooda & B*(H,) (ora € By (H,) is formed by the following way

N(a,{§i}iz1, &) = bl — a)ills <& Vi(l <i<n)}
2) The weak operator topology is formed by the dasighbourhoods

N(a, {§i}ir, (nidicr, €) = (b — @) M) < &, Vi(l i< n)}.



Theorem 13.11f M = M* is subalgebra o8%(H,) (orBy (Hy) with1 € M, then the following statements are
equivalent: )M = M" ; 2) M is strongly#-closed; 3)M is weakly#-closed.

Definition 13.6 A subalgebra oB*(H,) (or B, (H,) satisfying the conditions of Theorem 61is calletha
Neumann#-algebra.

Theorem 13.2 [15] (Generalized Gelfand-Naimark theorebeX A be aC;-algebra with unit. Then there exist a non-
Archimedean Hilbert spadé; and an#-isometric homomorphisrid of A into B(Hy) such thalx* = Ux™, x€A.

Abbreviation 13.3 We denote by = {*Rﬁ‘*, (-,-)}, the vector spac®#* with the Minkowski product(x, y) =
XoYo — Xi¥i, I = 1,2,3.
Statement of the Axioms [15]. Let M# be Minkowski space over fiel®R? of four space-time dimensions.

1. Algebras of Local Observables. To each finitely bounded-épen se0 c M¥ we assign a unitdl; -algebra
0 - By(0)
2.1sotony. If 04 € O, , thenB(0,) is the unitalC; -subalgebra of the unit@l,-algebreB(05) :
By(01) € By(0,).
This axiom allow us to form the algebra of all Ibcbservables

Byioc = Uoch B4(0).
The algebraB,,,. is a well-defined’}, -algebra because given afy, 0, ¢ M, bothB,(0,) andB,(0,) are
subalgebras of thg; -algebr84(0, U 0,). From there one can take theorm completion to obtain
By = #-Byioc »
called the algebra of quasi-local observables. Giviss aC;; -algebra in which all the local observalile-algebras
are embedded.

3. Poincare ~ -Covariance. For each Poincare transformatigre °P] , there is &}- isomorphismz, : By — By
such that

ag(B4(0)) = By(9(0)),
for all bounded¢-open0 c M¥. For fixedg € By , the maygy — a,4(A4) is required to bé-continuous.

3'. For each Poincare transformatip& °P/ , there is &j- isomorphismz, : By — By such that

st (ag(B#(O))) = st (B#(Q(O)))'

for all bounded¢-open0 c M¥. For fixedg € By , the mayy — a,4(A4) is required to bé-continuous.

4. =-Causality. If 0, and0, are spacelike separated, then all elemenB;,6¥,) ~ -commute with all elements of a
C; -algebraBy (0,)

[B4(01),B4(0,)] = 0.

4'. If 0, andO, are space-like separated, then the standard foidue: all elements of}, -algebraB,(0;) commute
with the standard part of the all elementsCaf-algebraBy (0,)



st(By(0,),B4(0,)) = 0.

Definition 13.7 If 0 ¢ M§, we sayx belongs to the future causal shadov@df every past directed time-like or
light-like trajectory beginning at x intersects . Essentially0 separates the past light conexdfikewise, we
sayx belongs to the past causal shadow dff every future-directed timelike or lightlike fectory beginning at
inter-sects witl0. The causal completion or causal envelBpef O is the union of its future and past directed
causal shadows. This definition of the causal cetigiO0 can be reformulated in terms of “causal complesi&n
which are computationally easier to deal with0 Ifc M#, we define the causal compleméXitof O to be the set of
all points with are spacelike to all pointsdn Then0” = 0 is the causal completion 6f One expects the
observables localized @ to be completely determined by the observablealied to0, carrying the same
information.

5. Time Evolution.
B,(0) = B4(0).

6. Vacuum state and positive spectrum. There exists a faithful irreducible representatign B, — B(Hy) with a
unique (up to a factor) vectér € Hy such thaf2 is cyclic and Poincan@avariant, and such that unitary
representation of translations, given by

U@)mo (A)Q = m(ax(4)9,

whered € B, anda, (") is theC;-isomorphism from Axiom 3 associated with translatbyx € M}, has

Hermitian generatorB*, u = 1,2,3 whose joint spectrum lies in the forward light eoiihe last phrase is the most
physically important here; it simply states thatlewe energy-momentum operators whose spectrusfisati

E? — P2 > 0,i.e, or in other words, that the enef§y 0 and nothing can move faster than the speedluf [The
vector(Q is the vacuum state This axiom does not appelae fmurely algebraic; we have had to introduce ar no
Archimedean Hilbert spad#, . In fact, we can rewrite the axiom in a comphetdbebraic but less transparent way
as follows. We postulate that there exists an vacsiatew, on theC; -algebra (i.e., a normalized, positive,
bounded linear functional) such that the followhads w,(Q*Q) = 0 for all Q € B, of the form

Q(f,A) = Ext-[ f()a,(A) d™*x

whered € B, andf(x) is a#-smooth function whose Fourier transform has boursdggbort disjoint from the
forward light-cone centered at the originVj.

Remind that in a quantum system with a Hamiltortiathe Heisenberg picture dynamics is given by #reoaical
formula

A(t) = {Ext-exp[itH]}A(0){Ext-exp[—itH]}.

ThenA(t) is the observable at tintecorresponding to the time zero observatie). In our model we have hyper
finitely locally correct Hamiltonian& (g) but no hyper infinitely global Hamiltonian, and wenstruct the
Heisenberg picture dynamics nonetheless. We ddshisstricting the observables to lie in the Icalgebras
B4(0) and by using the finite propagation speed impiiciixiom 3.

Definition 13.8 Let ¥ be the space of symmetdig(*R#3") functions defined ofR#3", F¥ = *C# and letF# =
Ext-ea;ioﬂ-}f, Q, =1 € *C# c F*. LetS, be the projection oL} (*R#3") ontoF and letD, be the#-dense
domain inF# spanned algebraically I8y, and vectors of the fori$y, (Ext- [1%_, fi (k,)) where

fi € Sty CR¥3,*R¥#3),n € *N.

Definition 13.9 We set now



H,, = Ext- f :(m2(x) + VHp(x) + m2pi(x)): d*x. (1B
Theorem 13.3 As the bilinear form on the domail, x Dy
Hy, = Ext- flleKu(k) at(k)a(k)d* k. (13.2)

Theorem 13.4 (1) The operatoH, = H,,, leaves each subdomdqNF, invariant. (2) The operatdf, = H,,, is
essentially sel#-adjoint as an operator on the domajn
Definition 13.10 We set now

@ o(x, t) = Ext-exp(itH,) ¢ (x)Ext-exp(—itH,) 3@)

il o(x,t) = Ext-exp(itH,)m} (x)Ext-exp(—itH,) (13.4)
Plo(f1 1) = Ext- [.pua 00 (6, 0) f(0)d"x (13.5)
Mo (f£) = Ext- [opus o (x, £) f (x)d™x. (13.6)

Hereg# (x) andr (x) is given by formulas (97) and (98) respectively.
Remark 13.4 Note thatp ,(x, t) andrf ,(x, t) are bilinear forms defined dd x D.
Theorem 13.5 As bilinear forms oD, X D,.

@i o(x,t) = Ext- fR#gA#(x y, ) i (x)d*y + Ext- f]R#g tA#(x y,t) @i (x)d*y (13.7)

#
T8 0(x, 1) = Ext- [y o5 A (x = 7, ) TPy + Ext- [y 553 My = 3, 0) mh ()d*y (13.8)

o*t2

Remark 13.5 HereA,(x — y, t) is the solution of the generalized Klein-Gordon atn

A#(x t) — A#(x t) — a# ZA#(x t) + m2Au(x,t) =0 (13.9)

2 , a# 3#,2 a# 3#,2
with Cauchy data,(x, 0) = O A#(x 0) = 6(x).

Remark 13.6 Note the dlStI’IbUtIOlA#(x t) has support in the double light-cojng < |t].

Theorem 13.6 Let f3, f, € S*(*RE3, *R{?). The operatop ,(f, t) + 1} o(f, t) is essentially self-adjoint on the
domainDy.

Definition 13.11 We introduce now the cla§s(5#(*R§3)) of bilinear forms onDy x D, expressible as a linear
combination of the forms

V=270 (}) Exte Lopgon v00) @t (k) = at(ky)a(kyan) = alo)d "k (13.10)

with symmetric kernels(k) € S*(*R¥3) having real Fourier transforms.

Theorem 13.7 LetV € 3(S*(*R#%)). ThenVis essentially self-adjoint onD.

Theorem 13.8 Let 0 be a bounded#d-open region of vector spad® and letM,(0) be the von Neumann algebra
generated by the field operatdist-exp[ip} (f)] with £ € S*(*R#3, *R#3) andsuppf < 0. Letg(x) = 0 on

*R#3\0. ThenExt-exp[itH,(g)] € M. (0) for all t € *R¥.

Definition 13.12 Let O be a boundeé-open region of space and ®t(0) be the von Neumann algebra generated
by the operatorBxt-exp[i(pf(f,) + mi(f))] with £, £, € S*("RE, *R¥%) andsuppf;, suppf, < 0. Let 0, be the
set of points with distance less thahto O for any instant of the time



Theorem 13.9 Ext-exp(itHy)By(0)Ext-exp(—itH,) € By(0,).

Theorem 13.10 If 0, and 0, are disjoint bounded open regions of vector siRtethen the standard part of the
operators iB;(0,) commute with the standard part of the operatooperators irB,(0,).

Theorem 13.11 Letg € L4(("R#®)), and letg = 0 on open regio®, thenExt-exp[itH,;(g)] € B;(0)' for all

t € *R¥.

Theorem 13.12 [15] (Free field~-Causality) Letf,, f, € S £, CR**, *R#*) with suppf; < 0;,suppf, € 0,. We set
now ¢#,(f,) = Ext- f*“@"‘ o o(x,t) fi (x,)d*x andef o (f,) = Ext- f*lR?" @i o(x, t) fo (x,)d*x. If region0,
and regiorD, are space-like separated, thhmﬁ'o (f), <pﬁ_0(f2)]¢ ~ 0 for all near standard vectgre H,.

Proof. The commutatofp# (f,), ¢%o(f,)] reads

[0} (f), 0fo(f)] = Ext- f*RgA: d*x,d* t, Ext- f*lRﬁ“ dBx,d"t, A (X1 — %, ty — t) f1 (61, t) (0, t1),
Aﬁ(xl — X, tl - tz) = El(xl — X, tl - tz, }f) - Ez(xl — X, tl - tz, }‘f), Where
- . . d#3p
E1(x1 — xp, 8y — ty; %) = Ext- f|p|su{eXp{[lp(x1 —xz)] —iw(p)(t; — tz)}}ﬁy

2(xg — X, t; — ty; ) = Ext- f|p|5,{{_eXp[[ip(x1 - xz)] +iw(p)(t; — tz)]}% .

[1]

Herex € *R¥ ., , w(p) = \/p? + m2. DefineZE, (x; — x,, t; — to;%) andZ,(x; — x,, ty — ty;%) by

Ei(xy — 23t — ty; %) = Ext- flp|>}{{exp{[ip(x1 = x;)] = iw(P)(t; — t,)}} \/%’

= . , a#s

Ba(xy — x5, ty — ty; ) = Ext- f|p|>,{{_eXp[[lp(x1 - xz)] +iw(p)(t; — tz)]}\/ﬁ-

Note that. (aEl(xl - Xy, tl - tz, }‘f) =0 andEZ (.xl — X, tl - tz, 7{) =~ O, (b) El(xl - Xy, tl - tz,}f) and
E,(x; — x5, t; — ty; %) are Lorentze-invariant tempered distribution (see definition gijce the distributions
El(xl - xz, tl - tz) andsz(xl - xz, tl - tz) def'ned by

- = . . a#3
B (g — xg,ty — tg;30) + 21(x1 — Xz, t1 — ty; ) = Ext- f {exp[[lp(xl —x3)] —iw(p)(t; — tz)]}\/pz_'_%

= . ) 3
Ep(xy —Xpty —ty; ) + Ep(Xy — Xp, b — ;%) = Ext-f{exp[[—lp(xl —x)] +iw(p)(t; — tz)]}\/%

are Lorentz invariant by Theorem 56. From expaessif the distributior®, (x; — x5, t; — t,; %) by replacement
p — —p we obtain

Ba(xg — xp,ty — ty; 1) = —Ext- flp|>x{exp[[ip(x1 —x)] + iw(p)(t; — tz)]}\/%-

And therefore finally we get

: . a#®
A, (xy = x5, — ;) = Ext- f|p|5,{ sin[w(p)(t; — t2)]exp[ip(x; — x;)] \/;;24-%'

Thus for any point§x,, t;) and(x,,t,) separated by space-like interval we obtain Mdtc, — x,,t; — t,) = 0,
sinceA? (x; — x,,t; — t,) is a Lorentzs-invariant tempered distribution.
Theorem 13.13 (Time zero free field- -locality) Letf, f, € S fin CR#3, *R¥#3) with suppf,  0;, andsuppf,



0, are disjoint bounded open regions of vector sfRe then[e# (1, 0), ¢ o (f,, 0)] = 0.

Proof. It follows immediately from Theorem 11.12.

Theorem 13.14 Let O be a bounde#-open region of vector spad3, lett € *R? , letg be a nonnegative
function inL¥ ("R#3) n L% ("R#3) and letg be identically equal to one @h.ForA € B, (0), then

0¢(A) = {Ext-explitH (9)}A{Ext-exp[—itH(g)]}

is independent of ando, (A4) € B4(0,).

Proof. Let 62 (A) = {Ext-exp[itH,|}A{Ext-exp[—itH,]} anda/ (A) = {Ext-exp[itH,|}A{Ext-exp[—itH,]}.
Notice that generalized Trotter's product formslaalid for the unitary grougxt-exp[it(H, + H;(g))]. Thus we
get the following product formula for the assoadibéeitomorphism group:

0 (4) = #lim, o[ (09m0L )" (A)]. (13.11)

Each automorphism/ maps eactB,(0;) into itself and is independent gfonB,(0;) for |s| « |t|. To see this, let
x(0,) be the characteristic function of a GgtWe assert that

atl/n ) = {Ext-exp[i(t/n)H,(X(OS))]}C{Ext-exp[—i(t/n)H,()((OS))]} (13.12)

for anyC € B,(0,) and thaw/ (C) € B, (0;). In other words the interaction automorphism hapagation speed
zero and is independent gfon B, (0;) for |s| « |t|. The theorem follows from (13.11), (13.14) and Jiteen 13.9.
To prove (13.11), we rewritd;(g) = H,(X(OS)) + H,(g[1 — x(0,)]) as a sum of commuting setfadjoint
operators. By Theorem 13.1Ext-exp[itH,;(x(0s))] € B4(0,) and so the right side of (13.3) belongBig0;).

By Theorem 70,

Ext-explitH,(g[1 — x(0,)])] € B4(0;)’

and (13.11) follows.
Definition 13.13 Let B be a bounde#-open region of spacetindf and for any time, letB(t) = {x|x,t € B}
be the time time slice ofB. We defineB,(B) to be the von Neumann algebra generated by

Usas (B4(B(®)). (13.13)

Theorem 13.15 The generalized Haag-Kastler axioms (1)-(5) atiel ¥ar all these local algebr&, (B).

Proof (Except Lorentz rotations) The axioms (1) andai@) obvious, while (4) follows easily from the fimi
propagation speed, Theorem 11.10, together withirtte zero~-locality, Theorem 11.12. Because the time zero
fields coincide with the time zero free fields, dretause the time zero fields gene®jdy Theorem 11.12 and the
definition of the local algebras, the free fielduk carries over to our scalar model with inteiatt; + 0. In the
Poincaré covariance axiom (3), the time translasagiven byo,. Let B + t be the time translate of the space time
regionB c M}. Then(B + t)(s) = B(s — t) and so

0t [Us 05 (B4 (B(5))] = Usose (B(B())) = Us 0 (By(BCs ~ 1)) = Usore (By(BGs +0))  (13.14)

Thusat(B#(B)) = B4(B + t) and axiom (3) is verified for time translationin& the local algebras at#enorm
dense iB, and since automorphisms @f-algebras preserve tlienorm,o, extends to an automorphism of
algebraBy,.

Definition 13.14 To define the space translation automorphigiwe set now

P* = Ext- f”p”«% p*at (p)a(p) d*p,u = 1,2,3; 6,(A) = {Ext-exp[—ixP]}A{Ext-exp[ixP]}. (13.15)



Then we get {Ext-exp[—ixP]}@, (x){Ext-exp[ixP]} = @,,(x +y), {Ext-exp[—ixP]}m, (x){Ext-exp[ixP]} =

P(x +y).

The following theorem completes the proof of Theorem 11.16 except for Lorentz rotations.

Theorem 13.16 The automorphism o, (B# (B)) = Bu(B + x), st(g,) extends up to Cj-automorphism of By, and
(x, t) - st(o,)st(o;) = = st(o;)st(o,) defines a 4-parameter abelian automorphism group of B.

Theorem 13.17 Let O be a boundeé-open region of space and ®:(0) be the von Neumann algebra generated
by the operatorBxt-exp|i(¢,.(f,) + m,.(f2))] wherefy, f, € £f ("R¥) andsuppf; < B,suppf, € B. Then

Ext-exp(itHy)B;(0)Ext-exp(—itH,) < B4(0,).

Remark 13.7 We reformulate the theorem by saying tHathas propagation speed at most one.

In order to obtain automorphisms for the full Laregroup and to complethe proof of Theorem 11.16, there are
four separate steps.

1. The first step is to construct a séHadjoint locally correct generator for Lorentz radas. This generator then
defines a locally correct unitaproup and automorphism group.

2. The second step is to prove this staterfwrthe fields, by showing that the fiejg, (x, t), considered as a non-
standard operator valued function on a suitableallonand is transformed locally correctly by ouitary group.

3. The third step is to show that the local algelBa&3) are also transformed correctly.

4. The fourth final step is to reconstruct the lodregroup automorphisms from the locally correetces given by
the first three steps. This final step is not difft as in in the case of the two dimensional spiaeai = 2, see [16],
[17],[18].

Let Hy,,(x) denote the integrand in (13.1), where
Hy, = Ext-{ Hy, (x)d*3x = Ext- f% (m2(x) + V¥p2(x) + m2pZ(x)): d*3x . (13.16)
The formal generator of classical Lorentz rotatins
MR¥ = MQ% + MPK = Ext- [ x*Hy,, (x)d™x + Ext- [ x*: P (¢,,(x)):d"x, k = 1,2,3. (13.17)
The local Lorentzian rotations are
M3 (g, g8°) = eHos + Hon(91) + Hine (. 95°), Hoe(91)) = Ext- [ Ho () g (x)d*x. (13.18)

We require thab < ¢ and that:gik)(xl,xz,x3),g§k)(x1,x2,x3), k=123 be nonnegativé(:00 functions. In the
second step we require more, for exampleaha[gik) (1, %5, %3) = x, andgék) (x1,%5,%3) = x5, k = 1,2,3in
some local spaaegion. This region is contained in the Cartesiardpct[e,*c0) X [g,"0) X [g,*c0). By using
decomposing H,,(g¥) into a sum of a diagonal and an off-diagonal terenobtainH,,, (g*)) =

Ext- [ ugf;(k, D a*(k)a(l)d**kd™ 1 + Ext- [ vg’;’-))_%(k, D[a*(K)a* (D) + a(=k)a(=D]d*3kd*31 =
= HZ,(9t) + HE(g{).
where

v® (e, 1) = ¢ x (e, L) (O u() + (k, 1) + m?) [u(Ou(DI ™2 G (=ky + 1, —k;y + L, —ks + 1),



v® (k1) = cx(k, L) (—p(pD) — (k, 1) +m?) [u()uD] 250 (—hey — 1y, —ky = L, —ks — 1),
and wherdc = (kq, ky, k3), L= (11,15, 15),(k, 1)y = Y3 ki 1;, x(k,1,3) =1 if |k| < » and|l| < », otherwise
x(k,1,x) =0.

Theorem 13.18 (a)v ), € L§(*Rf3). (b) Functionv (), is the kernel of a nonnegative operator am¢k)5(k —
D+ ﬁvg‘}{ is the kernel of a positive se#f-adjoint operator, fof = 0, these operators are real in configuration
space.

Proof. The statement (a) is obvious. The statement (bjaged by using a finite sequence of Kato pertuobat
Letvék) = ep(k)(k — 1) + Bv ) and let/z andV), denote the operators with kerneg) andv %)
correspondingly. The operatdy is a sum of three terms of the fodh,, A in configuration space, whebté, is
multiplication byg, = 0. Thus0 < V,,. Moreover fory sufficiently small, but chosen independentiysofve
obtainyV, < %VO < %(V0 +BVp) = %VB and thereford,,, = V; + yVp is a Kato perturbation, in the sense of

bilinear forms. Consequently if the operakigris self+-adjoint, so i/, andD (Vﬁlﬁ,) = D(v/?). Thus

canonical finite induction starting froly = V5 shows that is self-adjoint, for alp = 0.

Theorem 13.19 The operatoH? (¢*) is nonnegative ane, + BHP (g) is selt#-adjoint,for all g > 0.
The main purpose of the third step is to give aacawt definition of the local algebr@s (B). Le f € £ (B) be
the *R#3-valued function with support iB. Let {a;}I-,,n € *N be finite hyperreal numbers and consider the
expressions

©i(f) = Ext-[ ofi(x,t) f(x,t)d*xd*t (13.19)
@i (f,t) = Ext-[ o (x, ) f (x,£)d"x (13.20)

R(f) = Ext-LI_; a;9}(f, t:) (13.21)
i (f, ) = Ext-[ mj(x, t) f (x, t)d"x. (13.22)

Forg =1 on a sufficiently large set (the domain of deparag of the regioR), the time integration in (1)
#-converges strongly, and all four operators aboeesgmmetric and defined (D(H(g)).

Theorem 13.20 The operators (13.19)-(13.22) are essentially#elfijoint on any#-core forH (g)*/?.

Theorem 13.21 The algebra B4 (B) is the von Neumann algebra generated by finitelynded functions of
operators of the form (13.19).

Proof. Note that if a hyper infinite sequendd,, } of self+#-adjoins operators-converges strongly to a self
#-adjoint#-limit A on a core foA then the unitary operatoEst-exp(itA,) #-converge strongly t&xt-exp(itA).
Using this fact, one can easily show that the dpesg1) and (4) generate the same von Neumanbral@®,, (B)
and thatBy, (B) o Bx(B). To show thaB,(B) c B(B), recall that a self#-adjoint operatod commutes with a
finitely bounded operatar providedCD ¢ D(A) andCA = AC onD, for some cor® of A. Equivalently is the
condition that the operat@r commutes with all finitely bounded functionsAfAlso equivalent is the relation

CA = AC onD(A). We choosd = D(H(g)). If the operatolC commutes with all operators of the form (13.20),
it also commutes oD (H(g)) with all operators of the form (13.21). Hence ve¢By (B)' < By,(B)' and so

By1(B) = By (B)" € By(B)" = By(B)".

Remark 13.8 The Poincare groufP, is the semidirect product of the space-time tiatimhs grougR>? with the
Lorentz group0(1,3) such thafa, + A, }a, + A,} = {a; + Aja,, A;A,}. Herea € R andA(B): (x;, t) -

(xl- x cosh(B) + t x sinh(B), x; X sinh(B) + t X cosh(ﬁ)),i = 1,2,3. We prove that there exists a representation
o(a, A) of the Poincare grougP by - automorphisms dB,, such that (a, A)(B#(O)) = By ({a, A}0) for all
bounded open setand all{a, A} € °P]. The Lorentz group composition law give€a, A) = a(a,)a(0, A).



Obviouslythe existence of the automorphism representat{enA) follows directly from the construction of the
pure Lorentz transformatian(0, A) = o(A). One obtaing (A) by constructing locally correct infinitesimal
generators. Formally, the operators,

2
MR¥ = MO + MDY = Ext- f*R§3%{: 1, ()% +: (Vo () "1 +m?: (p”(x)z:}xkd#:‘x +H,,,(x*g) (13.23)

k = 1,2,3 are infinitesimal generators of Lorentz transfatiores in a regior® if the cutoff functiong equals one on

a sufficiently large interval. We consider now tiegions0,; contained in the sefs € *R¥3| x;, x,, x5 > |t] + 1}.

Thus for such region8, we may replace (1) by = Ext- [, 4 H(x) x* g (x)d**x, with a nonnegative functions
C

x*g(x), k = 1,2,3. HereH(x) is the formally positive energy density:

H() = 2 {1, (0% +: (T, (0)): +m: 0, (0% 4 Hye () = Hop () + Hy e ().

ThereforeM* is formally positive. In fact it is technically ngenient to use different spatial cutoffs in thesfiand
the interaction part d#°%, k = 1,2,3. Final formulas foM2* reads

MY = Mgk, g*) = aHou + Hon(x*gl) + Hy, (x*g). (13.24)
Here

0 <a and0 < x*gk(x),0 < x¥g (x),k =1,2,3
and in order that (13.24) be formally correct, wsuane that:

a+xkgk = x* =xkg (13.2)
on[1,R]® =[1,R] x [1,R] x [1, R] with R sufficiently large.
For technical reasons we assume that:
a + xkgk(x) = x*, k = 1,2,3 onsupp(g).

By above restrictions ogk andg we have thatupp(g¥), supp(g) c {x|a < x*,k = 1,2,3} and we show that the
operatorM ¥ is essentially self#-adjoint and it generates Lorentz rotations in gelata B, (0,)

Ext-exp(iBM2*)B,(0,)Ext-exp(—ifM¥*) c B, ({a, A(£)}0,) (13.25)
provided thaD; and{a, A(8)}0, are contained in the region
{x e "R¥,t e "R¥ [t|+1<x, <R—|t],k =123}, 13(26)

whereM %% is formally correct. These results permit us tbraethe Lorentz rotation automorphisnid) on an
arbitrary local algebr&,(0). Using a space time translatiota), a € *R** we can translaté into a region

0+ a= 0, c{x € R te R¥ x; > |t| + 1} andfor R € "R¥ large enough), and{a, A(8)}0, are contained
in the region (1) we define(0, A(8)) = a(A(B)) by

a(AB®)) T By(0) = o({=A(B)a, 1N ({0, A Do({a, 1D T B4(0).

Theorem 13.22 Let M°*(g,, 9), k = 1,2,3 be given by (126), withr, g, (x), g(x) restricted as mentioned above.
ThenM®(g,, g) is essentially sel#-adjoint onC " (H n H,).



Theorem 13.23 Let 0, and{0, A(8)}0, be contained in the set (1). Then the followingnitty holds between self-
#-adjoint operators:

Ext-exp(iBM°) @} (f)Ext-exp(iBM®) =~ ¢} (f({0,A(B)}x)) =
Lo @% (F0, A} (x, D) ) dxd . (13.27)

Here providedsupp(f) < 0;.

The proof of the Theorem 13.23 is reduced to thidieation of the following equations

# #
{ram+ taixk} @ (x,t) = [iM%, ¥ (x, )], k = 1,2,3. 3(28)

a*t

Here (13.28) that is equation for bilinear formsamnappropriate domain. Sind#* is self#-adjoint, we can
integrate (13.28), thus we compute formally #oe= H, ,, + H;,.(g),

[iM%, o (x,t)] = [iM°%, Ext-exp(itH) @} (x, t) Ext-exp(—itH)] =
Ext-exp(itH)[iM°¢ (—t), o (x, 0)]Ext-exp(—itH). (19)2
HereM% (—t) = Ext-exp(—itH)M°*Ext-exp(itH). Formally one obtains that

ENCOk

ad™(iH)(M°%), k = 1,2,3.
n=o0 Mn!

MO%(=t) = Ext-z
Note that ifM°* andH were the correct global Lorentzian generatorskaahiltonian they would satisfy
[iH,M°] = ad (iH)(M°%) = Pk, [iH, [iH, M°]] = 0, MO (—t) = M — P¥¢. (13.30)
HerePk, k = 1,2,3 are the generators of space translations. Thus t81) we get
[iMO%, ¢ (x,0)] = [iMg"¥] = xm}(x, 0), [iP¥, 0} (x, 0)] = =V* () (x, 0).

Formally we have (130).However the difficulty withis formal argument is th&t and M°¢ do not obey (132)
exactly, since they are correct onlydp. We have instead (13.30) the equations

[iH,M°] = PE., [iH,[iH, M°]] = R,k = 1,2,3. (13.31)
HerePk . acts like the momentum operators only in the negig i.e.
[Plée @i (x, )] = [P, 9} (x, D], (x,) € 0;.

Hence[iH, Pl’f,c] = RY¢ k = 1,2,3 is not identically zero, but commutes wgh(0,). Formally, further
commutators oR[°, k = 1,2,3 with H are localized outside regia@n, and (13.28) follows formally even for our
approximate, but locally corregt andM°%. In order to convert this formal argument into arigus mathematical
result, we apply now generalized Taylor series agjmn [13] for the quantities

Ep(—t) = (Q, [ iM% (1), o (x,0)]Q), k = 1,2,3. (13.32)

HereQ € € *(H) and thus we obtain



d*E(0) | t2 d*2EL(8)
Ep(—t) = E(0) —t—§ =+~ d#ff , Wheref € [—t,t].

From (13.31) we obtain

#2p, (_
dEECD (Ext-exp(iéH)Q, [iR,’{"C,goﬁ(x, f)]Ext-exp(ifH)Q).

da#t?

Note that(x, t) € 04, so that withé € [—¢, t], (x, &) € 0, and therefore

[RiS, pi(x,6)] = 0. (13.33)

After integration over € *R#3 with a functionf € Sf, (*R¥3) we obtain the operator identity:
Ext- f*R? [REC, @it (x, O] f(x)d*x = 0,k = 1,2,3. (13.34)

Therefore % =0if |&] < |t] and
E(—0) = Ee(0) — t 729 = ( ([ iM%, g (x,0)] — ¢[PE,. 0} Cx, 0)]}2) =
=(Q, {xmf(x, 0) + tV*(p})(x, 0)} Q).
Thus we get

(13.35)

[iMO(=t), pfi(x, 0)] = xmf(x, 0) + tV* 0} (x, 0)
Inserting the relation (13.35) in (131) finally wetain (13.28).This completes the proof of Lorectzariance.

Definition 13.14 For the local free field energy we 5(g) = T (g) + T(g), where

" ey paCleg)+(ky ey )+
T8(9) = ciBxt- [\, A" kiExt- [\ A% kU — kb, kS — 13,k — k3) {“ L ‘J‘u(zk:)u(lkz; b } x  (13.36)

at (ky)a(ky) =

. . (k) u(ky)+kikk+m?
S aExt- [, A" kExt- 4" o g(kd =k, kY — k3 kS — kg){“ L J"H TR, }a*(kl)a(kz) =

|kq |2

= Zi3=1 T01,l (g)!

A~ —u(k) pu(kz)+(kq kz)+m?
T80) = CoBxt- L, A% Mo Bxt- A% ko Uik — e, K = I I — I { btk (43.97)

X {aT(k1)aT(_k2) +a(=kya(ky)} =

i=3 _ #3 _ #3p sl _ 1 1,2 _ 1,3 1,3 _ 1,3 —uk) ) +k kb +m?
(28 ot [ 7 Bt 0 Reo Uk — 3, KE — I I — I { il

x {at(ky)a®(—ky) + a(—ky)a(k,)} = 21'3=1T01,i(g)-

Here ky = (ki, ki, ki), ky = (k3, k3, k3), (ky, ko) = Xy ki k3, g(P) = Ext- [Lpue(Ext-[ip, x)]) g (x) d"x.

Similarly, for thecomponents of the local momentum we 8&1(g) = P'V(g) + PI®(g),i = 1,2,3 where



PIW(g) = ¢, Ext- By 47 RaExt- [ d* koG Uk — k3, — K3, K — ke3) x (13.38)
X{ Jule)uli) }a (kp)alkez),
PI@(g) = c,Ext- Do 47 RiExt- [ d* oG Ut — K, 1 — K3, K — ke3) x (13.39)

Kiuka)—ksptkn)) o 4 e B
xS et et () + al-katk))

Definition 13.15 Let B,(f) be the local operator, defined i€ S (*R#%) by
B.(f) = Hoy,(f) —m® f*,Rags: @2 (0): f()d™x (13.40)

Theorem 13.24 Suppose that the operatdf$®, k = 1,2,3 andH are given byM% = aH, + T, (xkgék)) +
T, (xxg1), H 2 Hy,, + H;,, , whereH, £ H,,, andT, 2 H,,,. Then the following statements hold.
(1) Fork = 1,2,3, D((M°*)?) c D(H ),D(H?) < D(M°%).
1 1
(2) Fork = 1,2,3, D(M°*) c D ((H + b)E), D(H)cD ((MO" + b)E), whereb is a constant sufficiently large so
thatH + b andM + b are positive.

Proof By Theorem 11.3, D((M°%)?) ¢ D(H,N,)) andD(H?) c D(H,N,,). Elementary estimates show that
D(N?)  D(Ty(x91)) n D(T;(g1))

and by Theorer8.2.1, we getD(H,) c D (T0 (xkgék))) and therefor® (H,N,,) ¢ D(M°) n D(H). This proves
inclusions (1). Note that

D(H) < D ((H + b)%) (13.8)

1
By Theorem 3.2.1, the proof of (13.@") extends to show th&(H,) c D ((M + b)E), sinceD(M*) U D(H) c
(H,) the inclusions (2) hold.
Theorem 13.25 Let the operator/ %%, k = 1,2,3 are given by % = aH, + T, (xkgék)) + T, (x,9,), Where

Hy £ Hy,, and T; £ H;,,. Then the following statements hold.
(1) Forl =2,3,4,k=1,23

M%:D(HY - D(H"?). (13.41)

(2) As operator equalities dd(H?3) for k = 1,2,3,

[iH, MO%] = 3= Pl (L"”)> (1312)

d#xl—

(3) As operator equalities dw(H*), for k = 1,2,3,

#2 (k)
[iH, [iH,M%]] = $IZ3 P, <M> — YT, (d#gl). (13.43)

#y2 #y
arx; a#x;

(4) The roles oH andM°* can be interchanged in the following sense:lfer 2,3, 4 and fork = 1,2,3,

H:D((M°)Y) —» D((M°)!=2), (13.4")



The equalities (13.42) hold on the domAif(M°*)3), and orthe domainD ((M°%)*), for k = 1,2,3,

[iMOk, [iM°%, H]| =

2
. a# . a# NP a#? ,
ST ((d— (xkgé">)> ) +XET ((d— (xkg1)> ) -3 P, ((a +%e95”) gz (xkgé"))> (13.8")

Remark 13.9 If condition (13.2") also holds, then the double commutators (13g8)rimally localized outside a
neighbourhood of the regimﬁa'b]. It is this localization, made precise in thedoling sense: that these results in
M° generating Lorentz transformationstte regiorﬂ%f‘a'b], see Definition 11.16.

Proof The case of (13.41) fdr= 2 is covered by Theorem 13.24, which also defiMé§, k = 1,2,3 as a bilinear
forms onD (H?) x D(H?). From this and the fact that B,, andT, are operators defined @(H,N,,) > D(H?) it
follows that the terms involved in (¥2) and (13%3) are defined as bilinear forms B§H?) x D(H?). In Lemma
6.6 we will prove that (1212)-(1343) hold as bilinear forms an(H?) x D(H?). Assuming this, we now prove
parts (1)-(3) of the theorem. Lgty € D(H3). We have fok = 1,2,3,

ok 0k ; i3 pi [ (es6”)
(Hyx, M )y = (x, MP*Hp)y — i (x, Xi=1 P (d#—xl> [ars (13.44)
Since, by Theorem 10dnd Theorem 11.1
[(Hy + DAl < const ||(H + b)Q|| 4 (13.45)
forallQ € D(H), it follows from Theorem 11.3hat
IM°Q|ly < [(Hy + DQ|l4 + const ||[N2Q||4 < const ||[(H + b)2Q|l4, (13.46)

for all @ € D(H?). LetQ = Hi, then by (13.46) we obtain the inequality
Gt MO Hip)y| < [constl|(H + b)* Il Il - (13.47)

Since by Theorem 9.8nd (13.45) we have the inequality
o at(x g
|(X.Z§;3P‘ <(d—) )y

we get by (13.44) and (13.47) that

< [const||(Hy + D) P lls]llxlls < [constl[(H + b) pllx]llxlls,

[(Hx, M*4)y| < [constli(H + b)*lla]llxll- (a8)

HenceM®y € D((H I D(H?®))") sinceH is essentially sel-adjoint onD (H?). This proves part (1) fdr= 3. As
a consequencéH, M°¢], k = 1,2,3, is an operators oR(H?) and by (13.44), we obtain

d#(xkggk))

(X' [H' MOk]II))# = (X,Z:j Pi <—> d})#

d#xi
for all y,y € D(H?). This proves (132), since thg's are#-dense.

The proof of (13.41) for the case= 4 and the proof of (13.43) are similar. Lgtp € D(H*). From (13.41) with

[ = 2,3, and the assumption that (13.43) is valid asiadal form, we have fot = 1,2,3



(H?x, M%)y = —(x, MOKH?Y)y + 2(H x, MO H)y — (x, [iH, [iH, M*¥][p)y = (13.49)

o #2(y (()k) - # (k)
= —(x, M°*H?*)y + 2(x, HM°*H ), — (x.{ 5P, <M> -2 (“ = )} PV)a

#y2 o
avx; d¥x;

By (13.48), (13.46) and the inequality
o [a"?(xg® . atg®
|<x,{z;;';‘af (% -2 ()t

which follows directly from Theorem 11.3, we haverh (13.49) the inequality

< const[l|(Hy + D lls + IN? + D) pllg]llxll

(H?x, M%)y < [constl|(H + b)*lls]llxll-

HenceM < € D((H? I D(H*))") = D(H?), proving (13.41) for the cage= 4. Thus[iH, [iH, M°*]] is an
operators defined oB(H*), and we find from (13.49) that (13.43) holds.

The proof of parts (1)-(3) of the theorem is thampleted when we establish the equalities (13.42)43) in the
sense of bilinear forms an(H?) x D(H?) andD(H*) x D(H*) respectively. The proof of part (4) of the theorism
similar. For example, we replace the inequality.453 by the inequalities

l(Hy + DQIlx < const [[(M%* + b)Ql|,. (13. 50)

for all @ € D(M°%). This also follows from Theorem 10.1 and Theorend 1By Theorem 11.3, we replace (13.46)
with

IHQ |4 < const [[(M%* + b)2Q||s, (13.51)

To complete the proof of part (4) of the theorera,need to establigii3.42) as a bilinear form on
D((M°%)3) x D((M°%)3) and (13.8') as a form o ((M°%)*) x D((M°¥)%).
Theorem 13.26 As bilinear forms oD (H,) x D(H,) for f, g € S, ("R¥#3)

(T (. To(@)] = S8 P (£ 52 - g 525), (1352)
(To(F). P = P (£ 52) =T, (9 55L). (1353)

The equalities (13.52)-(13.53) also hol¢f i 1 or g = 1. In particular from (13.53) we get

[iHy, Pi(g)] = P (%) (13.54)
SinceD(H,) > D(H) u D(M°F), these equalities hold as formsB(H ) x D(H ) and onD (M%) x D(M®F).

Proof The operator,, P, P are #closable (symmetric), defined @&{H,) and bounded as operators relative to
H, + I. Therefore (1352)-(13.53) are defined as bilinear forms BiH,) x D(H,) and it suffices to establish
equality on a core fa,, e.g. onD* = {1 € F#|yp™ € SE ("R¥™), ™ = 0 for all sufficiently large m}. By

direct calculations o®* x D* one obtains the equalities (13.44)-(13.46). Fangxle

. ~ k k, 2
[iHo, Tg ()] = c1 Ext- flkllsk d* k Ext- f|k2|51{ A" pg(ky — p1, ky — 2,k — p3) {%} X
[Ho, a®(k)a(p)] =



N k k,
ic,Ext flk (s d*3 k Ext- flk e B pglky — p1ka — 2,ks — p3)(u(k) — u(p)) {%} at(k)a(p)
A kipn(p)+p;p(k)
-3 i{clExt e @ KERE [y " DIk = POGky = Py, Ky = 2,k = py)] {4220 }} =
3 pi(D)
= yiz3 pi (d#x) (13.55)

since the following equality holds
[u(k) — u]pE)uP) + (k,p) + m?] = {LiZ3(k; — py) kin(P) + pu(k)]}.
By a similar calculation o®* x D* one obtains

i=3 d* d*
(DT @) + [P TP @] = ), PO (f T %>

The remaining calculations are similar.

Theorem 13.27 As bilinear forms o (H,,, N, ) x D(Hq,N,)

[T, (1), To(F)] = —42Ext- [.pps £ () GO 9 (GOmh (x): ¥, (13.56)
[T, (), PP = =T, (522). (13.57)

Proof. The operator$,, T;, P are#-closable, defined oh (HO,,{N,{), and are bounded as operators relative to
(Ho N, + I). Note that the right hand side of (13.56) is anleitir form orD (H, ,,N,,) x D(Ho,N,), and that

(Ho N, + I)_1 [Ext- Joga £ () h(x): 3 () (x): d#3x] (Ho N, + I)_1 is a bounded operator. Hence each term

in (150)-(151) is a bilinear form ad(H,,N,.) X D(H,,N,). It suffices to establish equality & x D*¥, as in the
proof of theTheorem 84, sinceD* is a#-core forH, , N,,. Note that on the domai* x D*, the equalities (150)-
(151) are seen to hold by direct computation in motum space similarly to proof of the Theorem 11.27
Remark 13.10 We assume now the relations:

2
0<a, xkgi(k)(xl,xz,x3) = [hgk) (xl,xz,x3)] ,k=1,23;i=0,1; hgk) € Sﬁn(*R?). (13.58)
On a neighbourhood of a polyhedienb]® c *R¥, we assume fat = 1,2,3
a+ xkggk)(xl,xz,x3) =X, = X391 (X1, Xo, X3). (13.59)
For allx, € *R¥3,k = 1,2,3, we assume
X gr (%1, X2, X3) = (0-’ + xkgék’)(xl,xz,x;;)) 91 (%1, %2, X3). (18)6

The conditions (13.60) are satisfiedrif- xkg((]k) (x4, x5, x3) = x,, is valid on the support gf, for k = 1,2,3. The
condition (13.60) makes the required commutatorsely defined operators, rather than bilinear forms
Definition 13.16 Let R{, ,; be a set

Rizp) = (X1, %5, %3, 1) € "RE*a + |t| <x < b —|t|forall k = 1,2,3}. (13.61)



Remark 13.10 Note that the operatotd*, k = 1,2,3 are formally a Lorentz generators for the spacetiegion
ina_b], also note that (13.58) implies that interVat [a, b] lies in the positive half line. Of course, we edso

consider the operatof® = —aHy + Ty (x. G + T; (x5 with §& (x) = g® (=x) and therefore the
operators¥°*, k = 1,2,3 are locally correct generators ﬁfa'b] =R o)
Definition 13.17 We also writeR} insteadR{, ,; for I = [a,b] and we write/ ® for I* = [a —s,b + 5]*. The

conditions (13.58)-( 13.60) are satisfied sincecar choosgi(k) so that for some, 0 < ¢ < a/3,
3. (k) 3 —
suppgy € I, ;suppg, <1, k=123 (13.62)

anda + x,9%° (%1, %5, %3) = xp, X € I3 . Hence the conditions (154) hold. We can alsglet 1, x, € I2; sothe
conditions(13.59) hold orli. The Hamiltonian

H = Hg, + T;(91) (13.63)

is correct in the regioft}. We shall work as above with this particular clecdt the Hamiltonian.

Theorem 13.28 For the operator& °* in Theorem 11.25 and in (13.63) the following hold:

(1) D((M°*)?) c D(H), D(H*) € D(M®¥), k = 1,2,3

(2) D(M®) € D ((H + b)2),D(H) < D (M +b)7), k = 12,3

whereb is an constant sufficiently large so that the apms H + b andM® + b are positive.

Theorem 13.29 Ander the conditions (13.59) and (13.60) the eitjgal(13.42)-(13.43) and (134 hold as bilinear
forms onD (H?) x D(H?) and onD((M%)?) x D((M°®%)?).

Proof As bilinear forms oD (H?) x D(H?) or D((M°¢)?) x D((M°F)?) for k = 1,2,3 the following equalities hold
[iH, MO] = [iHo, To(xg$”)] + {[iHo, T; Ceg)] + [T, (g), aHo] + [iT; (g2, To(x gg"))]}. In order to compute
these commutators we apply Theorem 1B2d Theorem 11.28.

) . Mat(x g(k)
[lH, MOk] = Zi;i P! <(d:—x:)) + 4AExt- f*Rg3{xkg1(x) - agl(x) - xkgl(x)gék)(x)} : (p;’f3(x)7tﬁ(x): d#3x =
. fat (k)
Siz3pi (%) (13.64)

By condition (13.60),

a*
d#xi

(xk, —a-— xkgék’)(xl,xz,x3)) 91(x1'x2’x3)] =0.
Andx, —a — xkgék) (x4, x5, x5) = 0 for x;, € supp(g,)- Therefore foii = k we get
91(x1, %2, x3) = gl(xl,xz,xs)%(xkgék)(xpxz,xﬁ)- (13.65)
And fori # k, x;, x;, € supp(g,) we get
di—;(xkgék)(xl,xz,xg) =0. (13.66)

From (13.64)-(13.66) we get far= k, k = 1,2,3



[iH, M°*] = p* <M> (13.67)

d#xk

And fori # k,

pl <M> _o. (13.68)

d*x;
These equalities (13.67)-(13.68) hold by the comdit (13.60). Hence the equality (13.42) holdDgH?) X
D(H?) and on the domaib ((M°%)?) x D((M°*)?). This proves (13.42).

Similarly, using Theorem 11.23hd Theorem 11.28, we compute in the sense ofhitiforms orD (H2) x D(H?)
or onD ((M°%)%) x D((M)?)

o (Z088)) i (080 [ (0] - ssen
#2(x, (k) #y (k)
- () -n ()

From (13.65)-(13.66) and (13.68) we getifet k, k = 1,2,3

(

(k) #2 (k) (k)
o pie (Fa0)\| _ 5 (4 (was”)) _ <xkgo)
[lH,P( i )]—P,{< piie T, pi (13.70)
And fori # k,
_ (a%(x,9$) xeglP
P;,<T —-T, <d+xi°)=o. (13.71)

These equalities (13.70)-(13.71) prove (13.43).
Similarly fork = 1,2,3

- [iMOk, pi (—(;‘jfgk))ﬂ = —a [iHO, pi (—(;‘jfgk))ﬂ - (12)7

[t () i ()]

(0% _ 02, g®) RO xeg®
= —aP, (g#—kz) - B, xkggk)% + T, (d:—o) +T, d# xkgl(d:—x) :

From (13.65)-(13.66) and (13.72) we getfet k, k = 1,2,3

- [iMO",P" (%)} =—a [iHO, pk (%@)} - (13)7

sV [ e
[lTo(x gok)) Pk( (d#fk )>] - [lTI(xkgl)' Pk( (d#fk )>] =



2
= d#z(xkg(()k)) o (k) d#z(xkggk)) d#(xkggk)) a# d#(xkg(()k))
= —aP, <—d#x,2c — P\ xx9, W + Ty W + T, T Xk91 d#—xk )

which simplifies to (13.3") by condition(13.60).

Again let the operato®%, k = 1,2,3 andH are given byM% = aHy + To(x, 9% + Ty (xrg1), H 2 Hop + Hie
whereH, £ H,,, andT; £ H,,, and assume that (13.58) and (13.60) ) hold:

Theorem 13.30 If n > 2, D(H™) is a#-core forM°* andD ((M°®)™) is a#-core forH.

Proof D(H?) € D(M®%), k = 1,2,3 by Theorem 13.24Ne prove first thab (H?) is a#-core forM*. Since
D((M°%)?) is a#-core forM, it suffices to show that

D(M% 1 D(H?)) > D(H?) (13.74)

We use the smoothing operator, foe= 1,2,3,...,

1 -1
E =1 +o(H + | (13.75)
which has the following properties
E;: D(HY) - D(H"™), (13.76)
IEll, <1, (13.77)
st. #-1im;_,+, E; (13.78)

and onD(H), [E;, H| = 0. Lety € D((M°¥)?). SinceD ((M°¥)?) c D(H ), Ejy € D(H?), by (13.76). Since
Ejp — 1 the desired inclusion (13.74) would follow from

M*Ejp — MO, (13.79)

We now prove (13.79) for aj € D((M°%)?). First we show that fo® € D(H?),k = 1,2,3,

. # (k)
MO*EQ = E;Mo%Q — L £k (M‘“)> E;Q. (1380
J

d#xi
Each term in (13.80) is defined sinRéH?) c D(M°%), k = 1,2,3, andP* is defined orD(H ) < D(H ,). We now
compute[E;, M®*| onD(H?). If Q € D(H?)

. # (k)
(£, M) = BE [E, MO] BT EjQ = B [M®, B B0 = S E;[M®, HIEQ = - E;P* (M) E;Q.

d#xi

Here we have used Theorem 13.25, part (1) and)(@dEhce we have established (13.80) on the dom@it).
Letyp € D((M®%)?),Q € D(H?). SinceM, k = 1,2,3 is self#-adjoint onD (M%),

(E;MOkQ, )y = (MO%Q, Ejip)y = (Q, MOKEjh),.
And

(MOkEj'Q! lzb)# = (Q! EjMOR‘Lp)#'



Thus one obtains

. #(x (()k) i #(x (()k)
(0, [MOE )y = ((EMQ9), = G EP (%) EjQ, )y = (Q,— EP* (%) Ejp)s.

SinceD (H?) is #-dense,

ok ok ik (@4 (ed?)
MO Epp = E;MO4p — = BjP* | — = | E. (13.81)

And therefore (13.80) holds dh((M%)?).The strong#-convergence (13.78) now follows. By (13.77),
E;M°*Eqp — E;M%qp.
And

<!

#

1
J

d#(xkg(k)) d#(xkg(k))
k 0 k 0
EJP ( d#xi Ele P d#xi E]l'b

< const%”(Ho +b) Ejll}”# = const%”Ej(Ho + b)l[;"# < const%ll(HO + D) Yllg =4 0if j - *oo.

< const% |(Ho + D Ejl:b”# =
#

We have used the fact thate D((M°*)?) ¢ D(H) < D(H ,). Hence by (13.81),
MOkEjl,b — MOklp

which proves (13.79) and establishes iéh?) is a#-core forM°¢. The inequality (13.46) and the fact that
D(H™) forn > 2, is a#-core forH? shows that

D(M° I D(H?)) > D(H?)..

SinceD (H?) is a#-core, it follows thaD (H™) is also a#-core forM%. The proof thaD ((M°*)™) is a#-core forH
is similar, and follows the above proof by intensgang H with M°*. In the following, we assume th#t®* andH
are given by by

M% = aHy + Ty (x.9$) + Ty (xiegy), H 2 Hop + Hyy

whereH, £ H,,, andT; £ H,, and assume that (13.58-(13.60) ) hold.
Theorem 13.31 Let f € Sf, ("RE®) andsuppf c R, ,, then the operatap®(f) is defined oD ((M°¥)?),
o*():D((M)?) - D(M®*),k = 1,2,3 and, as the operator equalitiesd %), k = 1,2,3

. o* a*
(iM%, 0% ()] = ¢} (t 552+ i 50 (13.82)

att
Remark 13.11 Note that forf real, the operatap? (f) is essentially sel#-adjoint onD(H") for anyn > 1/2 and
9% (1):D(H +bY") > D ((H +b)"72). (13.83)

Proof The terms in (13.82) are operatorsinii?) sincep (f)D(H?) € D(H?) € D(M°%),k = 1,2,3 and
M°D(H®) c D(H) < D(¢f (f)) by (13.83) and Theorem 13.25. Note thafltweorem 11.40 (13.82) holds on



the domairD (H®). Assuming this, we now can to prove the theoreetiyle D((M°%)?), k = 1,2,3. By Theorem
11.29, D((M°%)?) ¢ D(H ) and by (13.83) we gety € D(¢f (f)). Let us prove now that

o () € D(MO),k =1,2,3. (13.84)
1
NotethatM%) € D(M°%) c D ((H + b)E) c D(¢} (f)) by Theorem 11.29 and (159), also ko= 1,2,3
o* a*
YED ((pff (ta#;; +xka—#{)>.

Therefore by the assumption mentioned above t#&8) (olds on domaif (H°), we get for allk = 1,2,3 and for
all y € D(H®) that

(MO, 0 (M) = (0l (OMO) + i, 0 (655 + 3. ZF) ). (13.85)

a#xk

Sowf (f)y € D((M I D(H®))") for k = 1,2,3. By Theorem1.31, D(H®) is a#-core for theM®, k = 1,2,3
and therefore we get inclusion (13.84). By using&4) we can rewrite (13.85) in the following ecalent form

a*r
a#xk

(0 IMO, 0 (O1Y) = (x iy (t + x ?7’;) V). (13.86)

afr
a*t

SinceD (H®) is #-dense, we gBM®, pf (NI = ig} (¢t 3L+,

a#xk
D(M°%), k =1,2,3.
Remark 13.12 Let us consider the seifadjoint operators

)1/;, proving (13.82) on the stated domains

MO (t) = Ext-exp(—itH)M* Ext-exp(itH), k = 1,2,3.

Since the operatdixt-exp(itH) leavesD (H™) invariant, we have by Theoret.29 and Theoreni1.26 that
D(H?) c D(M°(t)), k = 1,2,3 and forl = 2,3,4 we have that

M%(t):D(HY) -» D(H"?),k = 1,2,3. (13.87)

Letf € SE ("R¥*) with suppf < R} forI = [a, b]. By (13.83) and (13.87) we can to conclude that
o*(f)D(H®) € D(H?) < D(M°* (1)), k = 1,2,3 and M°k(t)D(H®) < D(H) < D(¢f(f)) or more generally, we
can replace the operatpf (f) by Ext-exp(itH) @ (f)Ext-exp(—itH). Thus fory € D(H®) andf € S& ("R#*)
with suppf < R}, we can to define the functions

F(6) = (§, iM% (8), @ ()1Y) = (), [iM°%, Ext-exp(itH) @} (f)Ext-exp(—itH)]i(¢)). (13.88)
Where
Y(t) = Ext-exp(itH). (13.89)
Let! = [a,b],Is = [a — §,b + &] and letR,, be the causal shadowdf= I5 x I5 x I5. LetR? be a set
RE =R, N {(x, Ot < %f} = {(x, Dllel <Ze,a+ sl + el < b—Is| - |t|}. (13.90)

Note that the points oft¥ have small times, arfd? translated by times less thpuf lies inR3.
Theorem 13.32 Lety € D(H®), thenF,(t),k = 1,2,3 in (13.88) is twice#-continuously#-differentiable. If



O
#tZ - O

Proof First we prove thé-differentiability of F, (t), k = 1,2,3. LetA,, be the difference quotient for the
n-derivative ofExt-exp(itH) att = 0. For instance,

function f has#-compact support iR, then for|t| < |s],

A (e) = e Y(Ext-exp(ieH) — I ).
Note that for a given vectop € D(H™), andm + j < n, ase —4 0, we get
178 () = G, = {8y () = GHY ™|, >4 0

Hence, fony € D(H™), the operator valued functiond ¢ (Ext-exp(itH) ) isn — 2 times#-differentiable, since
for j < n — 2 we get| M (Ext-exp(itH) ){A;(e) — (iH)j}lp”# < |{a;(e) — GH) }(H + b)21p||# -, 0. All these
functionsF, (t) has the following form

F(t) = i{M° (Ext-exp(itH) )y, Ext-exp(itH) @} () — i(Ext-exp(itH)@f (), MO* (Ext-exp(itH) )p).

For a given vectory € D(H®), ¢ (f)y € D(H*) andF,(t) is three timest-continuously#-differentiable. Note
that

d*F ()

5 = (MY HY(0), Ext-exp(itH) oy (f)P) — (MY (t), H(Ext-exp(itH) ) — (13.91)

—(Ext-exp(itH) @} (f )i, HM* (1)) + (Ext-exp(itH) @5 (), MO Hip(t)).
By rearranging the terms in (13.91) and using thmain relations of Theoref.26.1 we obtain by(143) that

d*F(®)

S = W, [H, M ®)]ei (DY) — (o (NP, [H,M*@©)]p) = (13.92)

—i (, (Ext-exp(—itH) )P (M> (Ext-exp(itH) Yok (HY) +

o)

(@} ()P, (Ext-exp(—itH) )P ((—)> (Ext-exp(itH) ).

k
gy’

By #-differentiating (13.92) and writing, for the operatoP (g> we obtain

d*2Fi(t)
da#t?

= —(, (Ext-exp(—itH) )[H, P, |(Ext-exp(itH) )y) + (13.93)

(@ (M, (Ext-exp(—itH) )[H, P ](Ext-exp(itH) )ip) =
i (o), [ ("’d—g())) — 1, (S322) , Bxt-exp(ith) Yo} (F) (Ext-exp(—itH) Y ).
Note that the all terms in (13.93) are well definEdr instancef P, (Ext-exp(itH) )i (f) is well defined since,

for a given vectoy € D(H®), (Ext-exp(itH) )¢ (f)y € D(H*), and byTheorem 11.26 for all k = 1,2,3 we
obtain

Py (Ext-exp(itH) )y () = [iH, M°¥](Ext-exp(itH) ) ok ().



Note thatd M (D(H*)) € D(H) andM°*H(D(H*)) c D(H ), SoHP, (Ext-exp(itH) )o} (f)¥ is well defined.
#2
Now, assuming thatuppf < R%, |t| < |s| we can to show thaﬁ%"zm = 0,k = 1,2,3, this proof is based on the

locality of the operatorS,, k = 1,2,3

5 (@ (xe0l) a*g
Sk = I (d#—xio - TI (d#_x;) (1394)
The operators,, are symmetric o (H,N) and by (153) fok = 1,2,3 andi = 1,2,3
a*?(xg$°) —o=%a
d#x} d*xy

in a neighbourhood df= [a, b]3. We prove thaf,, k = 1,2,3 commutes with the von Neumann algetvdl) =
(Ext-exp(ip} (hy) + inf (hy))|h; = h, € SE,('R#3), supph; c R,) 'generated by the spectral projections of the
time zero fieldsExt- f*Rﬁg @} (x) hy(x)d*3x andExt- f*nx§3 i (x) hy(x)d*3x, h; = h, € SE ("R¥3), supph; c R,.
Theorem 13.33 On the domaiD (H?) for k = 1,2,3 the equalities hold

[Sk, W(D]D(H?) = 0. (13.95)
Proof Let D¥ be the domain of well-behaved vectors.
D* = {yp € F¥lYy™ € Sk ("R¥™M), 3™ = 0 for all sufficiently large m}. (13.96)
For x,, x, € D¥, direct momentum space computation gives fon al*N

(Sexs, (@ (hy) +7f ()" x2) = (@ () + 7 (h2))" x1, Sexta) (13.97)

1
By easy computation we get the inequalify; (r,) + 7t (h2))" x || < c1c3 (n!)z for constants; andc,
depending on vector € D¥. Thereforey € D¥ are entire vectors for the operafgrt (h,) + m (h,)), and the
sum

(igh (h)+int (n))"

n!

Uy = Ext- Z;‘io x = Ext-exp|i(of (hy) + 7k (hy))|x (13.98)

#-converges strongly. Now, we multiply (13.97) #n!)~* and by summation over using the#-convergence of
the hyper infinite series (13.98) we get forfak- 1,2,3 that

(Skx1, Ux2)e = (U™ x1, Six2)s = (X USkx2)w

for y; € D¥, i = 1,2. Note that this equality extendsp€ D(H,,N),i = 1,2 sinceD* is a core for operatois,, N
ands, and

ISkxlls < wll(HoxeN + Dxlls,
wherey is finite constant. Therefore fgre D(H,,N), we have proved thaty € D(S;) and
SiUy = US,x, k = 1,2,3.

For the next step we now prove tha€ D(H,,,N) = Uy € D(Hgy,N), so that



SkUX = USkX'k = 1'2;31 (1399)
since the operatot$, are symmetric od (H,, N). We define orD (H,,,N) a#-norm by

lxlly = 1CHos N + Dxllg1-

Note that the corresponding scalar product mékgg, N) a non-Archimedean Hubert space, sgy. For the next
step we now prove that the opereBor= ¢} (h,) + mj (h,) generates a one parameter group

U(a) = Ext-exp(iaB) = Ext-exp[ia(B =@} (h) + (hz))]
on Hy, and therefore we need to prove that the operator
B = (Hy, N + DB(H,y, N + 1)1 (13.100)

is a generator to one parameter group on a comesmp Fock space. Sin@is essentially self-adjoint onD*,
and on this domain we have that

B =B+ [Hy, N, B](Hy,N + 1)1 = B + [N, BHy,(Ho,N + )71 + N[Ho,., Bl (Ho,N + 1)1 = B + A.

HearA is bounded operator. Note th@t D* is a bounded perturbation of an essentially#eitijoint operator.

Hence it#- closure#- (@ r D#) generates a one parameter group on Fock sphcand operataB ' (Hy, N +

1)D* has a#- closure inf,, that generates a one parameter grouf,gnSince the topology df,, is stronger than
that of F#, the#-closure ofB ' (Hy, N + I)D* in H,, is a restriction o#- B in F# and the one parameter group in
H,, is a restriction of the one parameter group geadray#- B in F#. This proves that

U: D(Hy,N) = D(Hy,N) (13.101)

And (13.99).Therefore we have proved tisaUy = US,x, k = 1,2,3. Now by passing to strong limits of linear
combinations of such operatdiswe obtain (13.95) on restricting to the domai{iH?) c D(H,, N). This makes
precise the statement that operaysk = 1,2,3 are localized outsidé= [a, b]3.

Remark 13.13 Note that for eachy, |t;| < |s,|, the spectral projections dfxt- f*]R,C,g ©F () f(x,t,)d*3x belong to

w (#-int(A_lsl)), where#-int(A_jg) is the#-interior of A_g= {x|(x, t;) € R} = {(x1, x5, x3)|a + |s| < x; <
b — |s|}. Note thasuppf c R%, hence the spectral projections of

Ext-exp[iH(t + t,)] (Ext- f*Rga PR f (x, tl)d#3x) Ext-exp[—iH(t + t;)] (13.102)

belong toW (#-int(A|t|_|s|)). For|t| < |s|, #-int(Aj;-1s)) < A; so the spectral projections of (13.102) belang t
W (A). Now we use the locality property (13.95) of tpeiatorsS,, k = 1,2,3. Note that for vectoy € D(H?),p €
D(H?) we have that

PYED (Ext- f*R,F of(x, 0)f (x, tl)d#3x),
and forg}; () = Ext- [.pus 0% (x, ) f (x, t )d"x d*t, by (159) it follows

Ext-exp[itH]p# (f)Ext-exp[itH]y € D(H?). (183)

Therefore by (13.95) and the localization of (12)for allk = 1,2,3 we get



(Sex, Ext-exp[iH(t + t;)] (Ext- f*Rﬁg F)f(x, tl)d#3x) Ext-exp[—iH(t + t)|y) = (13.104)

(Ext-expliH (¢ + )] (Ext- [y 9 (0)f (x, t1)d"x) Extexp[~iH (¢ + t)]x, Sih).
Note that forit| < |s| andf € S&,("R#*) with suppf < R? we can integrate the equality (13.104) oyeto obtain
(Six, Ext-exp[iH ()@ (f ) Ext-exp[—iH ()]} = (Ext-exp[iH (t)]¢f (f) Ext-exp[—iH ()]x, Scp) =

x, Sy Ext-exp[iH (£) ] (f)Ext-exp[—iH (£)]W). 13(105)

Here the last equality in (13.105) follows by (1B} and the fact tha, is a symmetric operator @(H,, N) 2
D(H?). From (13.105) we obtain thsgy € D(((Ext-exp[iH (t)]@f (f)Ext-exp[—iH(t)]) I D(H?))") and
therefore that

Sy € D(Ext-exp[iH (t)]p) (f)Ext-exp[—iH (t)]),

sinceD (H?) is a#-core foref(f). Finally from (13.105) we get fdt| < |s| andf € Sf, ("R¥#*) with suppf < R
for all k = 1,2,3 that

S Ext-exp[iH (£)] @ (f)Ext-exp[—iH (t)]y = Ext-exp[iH ()] (f)Ext-exp[—iH (t)]S,. (13.106)
We apply the relations (13.106) to (13.93). In thegey(t) € D(H>) c D(H?), so

d#z
%ﬁ”z 0, for |¢| < |s|.

Theorem 13.34[15] Let f € S{, (*R#*) andsuppf < R¥, then on domai® (H>) the operator equalities hold for

allk =123

d*xp

[iMO(s), i (f) ] = [iM°, i ()] —s [P" <M> 05 (f)]- (13.107)

Proof Each of the six terms in (13.107) is an operatdingd onD (H%), sincep(f): D(HY) —» D(H'™Y),
M%(s): D(HY) » D(H"Y) forl = 2,3,4,k = 1,2,3, and (by Theorers.3)

pk <d#(xwék))_> :D(H®) > D(H).

d*xp
Let ¥ € D(H5) . Thenwe get

<l,b, [iMOk (S)' @Jﬁ(f) ]Eb)# = Fk(s)

for F,, k = 1,2,3 defined in (6.45). By Theorem 13.32, diyyhas twot-derivatives. Hence by generalized Taylor's
theorem with remaind€d.3],

2
Fi ()= F(0) + sF{'(0) + - F{"' (1)
for somet, |t| < |s|. Furthermore, by Theorem 13.32 foe 1,2,3,

Fi(s) = F(0) + sF{'(0)



By definition, fork = 1,2,3,

Fi(0) = (), [iM°, i (f) 19}y
and by (13.92),

d#(xkggk)

F{'(0) = —iy, [Pk <Tk)>'<ﬂff(f) ] g
This proves the equality

d#(xkg(()k))

W, [MO(s), s () T}y = b, [iM%, () T}y — s (¥, [il’k (d#—Xk> @ (f) ] ar

which proving (13.107) by polarization and thalensity ofD (H>).
The next step in the proof of Theorem 13i81o pass to the sharp tintdimit of Theorem11.35, thus we need to

choose a hyper infinite sequence of functifipe Sf, ("R¥#*),n € *N which pick out a time zero contribution in the
#-limit. Let us define now

Ay (f,1) = Ext- [igus 0 (0)f (x, )", (13.108)
B,(f,t) = Ext- f*nxﬁ i) f(x, t)d*3x. (13.109)

Whereg} (x) andr(x) the canonical time-zero fields. For r¢a& S (*R¥#*), with #-compact suppor,. (f, t)
andB, (f,t) are essentially se#-adjoint onD ((H + b)%). Letf eC ;°°( RH) and letf, (x, t) € St ("R¥*),n € *N
be a hyper infinite sequence of functions of tHewang form £, (x, t) = f,,(x, s)6,,(t) with support irR? and

#-converging in the weak sensefl@x, s)é (t) asn — *oo. For the vectony € D(H5), the vectordf % (s)y, k =
1,2,3, and the vectors

MOk (S)l,b, MOkl,b, P <d#(xkg(()k))> l,b

d*xy

the same as in the proof of Theor&i35. Note that the bilinear fornp/(x, t) for (x,t) € R} determines a
bounded operator

Glx,t) = (H + b)z o (x, ) (H + b) 2. (13.110)

Note that the operator valued functi6fi, t) is #-continuous in variabléx, t).
Theorem 13.35 Let f € S# ("R¥#*) andsuppf < R3. Then, in the sense of bilinear forms BH®) x D(H®), for
allk =1,2,3

[iM€(s), Ay, (f, )] = [iM°*, A, (f, )] = s[iPy, Ay (£, 5)] 3(111)

HereP, = P* <—d#(xk‘q‘(’k))>.

d#xk

Proof Choose av*-#-convergent sequence #fmeasureg, (x, t) € S ("R#*),n € *N as above. Consider, for
example, the first term in (13.107) as a bilineanf onD (H%) x D(H5). Lety, y € D(H®)

(W, [iM% (), @i (f) 12005 = Ext- [Lgasl=iM**()x, 3 (6, OP)uf (x, )8, () Px d¥t +



+Ext- f*Rg‘,(goﬁ (x, ) x, iM% ()Y f (x, 5) 8, (£)d*3x dFt, (13.112)

where on the right hand sigg (x, t) is considered as a bilinear form Dr((H + b)%) X D ((H + b)%)

#-continuous in(x, t) by (13.110). Thus, by thi-convergence of thg, the terms on the right hand side of (13.112)
#-converge ag — " to

Ext- f,R§4(— MO ()1, 9k COP)af (x, $)d* x + Ext- f*RgMﬁ(x)x, MO ()Y)uf (x, s)d*x.

This is the left side of (13.111), evaluatedyorx 1. The other terms of (13.111) are similarly obtdibg passing
to the same¥-limit in (13.107).

Theorem 13.36 [15] Letf € C ;°°( RD). As an equality of bilinear forms dn(H ) x D(H )

#
[i P A (f,9)] = Ay (550 5), (13.113)
d#(xkg(k))
— pk 0
P, =P ( o)) (13.114)

Proof Let D* is the domaiD* = {y € F¥|yp™ € Sf ("R#™), ™ = 0 for all sufficiently large m} of #-smooth
vectors. We prove (13.113) in the sense of bilifieans onD* x D* by direct computation in momentum space
for k = 1,2,3 (e.g. as in the proof of Theorem 13.26):

[ P A (f )] = A (7 (42887 )

d#xk d#xk

which agrees with (13.113) becausk@ék) = x;,, — a on a#-neighbourhood oA= I3, while f (x, t) vanishes for
x ¢ A. Note thatD* is a#-core forH,,, and

[{ P, A (f, ))g| < const|(Hoy + D4,

for ally € D(H,,). Hence the equality (13.113) extends frbfhx D¥ to D(H,,,) x D(H,,), since the operators
involved are closable. SindyH,,) c D(H,,), the theorem is proved.

Theorem 11.37 Letf € C ;°°( R1). As the equalities of bilinear forms @(H?) x D(H?) for allk = 1,2,3

[iMOk'AJ{(f: S)] = [iH'AJ{(xkf' S)] = Bu(xkfl S)' (lBED
Proof The proof is similar to the proof of Theorem 13.36.

Theorem 11.38 [15] Let |fl4, be the#t-norm|fly, = ¢ (Ext- [.ops {Ilf G Olluz + Zillof fC O], }de).

3
Let |f|4, Is finite. Then on the domaiD ((H + b)E), ), the fielde}: (f) satisfies the following equation

@) (f) = —pu 0 ) = i (f) = [iH, o (F)]. (136)

Proof Note that the first equality in (13.116) is theidifon of a distributior#-derivative. The out the difference
quotientA, f (x, t) to #-derivative 8 f readsA,f(x,t) = w note tha#-lim,_,o A f(x,t) =

0f f(x, t). Note that for any vectap such thatp € D ((H + b)%) by canonical consideration we get
#1im|[ ok OF N — ol (8:f (e D), = 0.

We have forp € D ((H + b)g) that



i (Def (x, )Y = e7(I — Ext-exp[ieH]) {Ext-fR#3 @it —e)f (x, t)d#3x¢d#t}+
-1 {Ext- f*IRC#S A, (f, t)(Ext-explieH] — I)l,bd#t}.

Here the last termi-converges as —, 0 and it#-limit is: i(Ext- f*Rcﬂ A, (f, ) Hypd*t ) Sincegii(Af (x, )Y

#-converges as —4 0, the remaining term in expression fpﬁ(Agf(x, t))l[) #-converges also to#limit y,. For
x € D(H) we obtain that

(1) = #:lim (. €71 (1 — Ext-exp[ieH]) {Ext- [ 02 t = ©)f (x, ) d"xpd*t}) = (iHy, 94 ().

SinceH = H*, it follows thate (f)y € D(H) andy, = iHe# ()Y and therefore=o# (0f )y = [iH, o (Y.
From the above equation we obtain

(W, L F ) = Ext- [y (H(E), Ext- [ 0 (6, 0)f (x, AP xp(8) ) ¥t —
Ext- f.y (EXt- [y 0 (6, 0)f (x, AP xp(6), Hp(D)) d*t.

Herew(t) = Ext-exp[itH]. Note that)(t) € D(Ho,) N D(H, ), and|[Hy,. (¥ (&) = ¥())||, < al|(H +
D)W@) = ()|, =+ 0, aslt — s| —4 0. Therefore we may substitut,, + H,,, for H and consider each term
separately. Note that the operatHys, andExt- f*R#g, @ii(x,0)f (x,£)d**x commute and thereforfé, ,, contribute

zero to equality above. The following identity lgnonical computation holds for any € D(H,,,), in particular for
Y(t) = Ext-explitH]|y € D(H,,)

(o, Ext- s 9406, 0)f (, )d*53xtp ) — (Ext- [ s 0} G, 0)f (o, A 3., Hoyh) =
(W, —{Ext- [ s T (3, 0)f (x, AP ).
Therefore finally we get
i€, @O W) = Ext [y (), —iExt- [y mh(, 0)f (x, AP ) d¥t = (p, —imf(FI).

This equality finalized the proof.
Theorem 13.39 As the operator equalities &(H>) for allk = 1,2,3

. o* a*
(iM%, 0% ()] = =0} (t 352+ x5 (13.117)

a*x,

Proof We first prove (13.117) as equalities of bilineamfis onD (H®) x D(H®). Let is a near standard vector
andy € D(H®). By Theorems 13.37-13.39, for &ll= 1,2,3 we get

(W, IMOC), A, (F D)o = W, B Cif 0, Do — (A (S5, 5) Wb
SubstitutingExt-exp(iHs) for i, we obtain for alk = 1,2,3 that

(, [iM°, Ext-exp(iHs) A, (f, s)Ext-exp(—iHs) )y = (138)1

(i, Ext-exp(iHs) {Bk(xkf, s)—A, (s%, s)}Ext-exp(—iHs)lp)#.



From (13.116) we get

#
Ext- [, sa Ext-exp(iHt) m}; (x) Ext-exp(iHt) f (x, )d"3xd"t = —¢}} (a—f) (13.119)

%t

Using (13.119) we integrate (13.118) over s toiobfar all k = 1,2,3 the equalities of bilinear forms

W, iM%, 0 (DY) = = (W, 0} (652 + 1 ZE) . (13.120)

#
SinceM @ (), o (F)M*, ande? ( o' f) are operators ol (H°®) for all k = 1,2,3, the operator

equalities (13.117) follows by polarizatlon and thdensity of D(H>). This final remark completes the proof of the
theorem and hence it completes the proof of Thedrgss9.
Theorem 13.40[15] LetR c *R{%, be an bounded region iiR}%, and let, (B, x,t),k = 1,2,3 be a functions

*FL(Bxt)
a*p

such thatt, (8, x,t), B € *RC fin @nd are#- continuous in(B, x, t), where the partiak-derivative exists for

each poin{x,t) € *IR{C fin- ASsume that for alf (x,t) € C ;f’?in(ﬂ%) the following equalities hold for ad = 1,2,3,

*F(Bxt) atf
Ext [ —si o f (0, 0)d"xd*t = —Ext- [0 Fe(B, %, 1) [xk o tﬁ] d*3xd*t. (13.121)
Then for all(8, x, t) such that\, z(x,t) ERfor0 < y < 1,k =123
Fe(B.%,t) = F (0,A,5(x,0)) + 6(B,x,8) = (13.122)

F; (0, %) cosh B + t sinh 8, x;, sinh 8 + t cosh 8) + 6 (B, x, t).

Hered (B, x, t) is a nonzero function such th#ls, x, t) # 0 andd (B, x, t) is #-differentiable with zero partial
#-derivativess}’ (8, x,t) = 0,87 (8,x,t) = 0,6{ (8, x,t) = 0.

Proof Obviously (13.122) is a solution to the equatial®.121).Thus we need prove uniqueness (13.122) for a
given functiond (B, x, t) and for allk = 1, 2 3 and it is sufficient to prove uniqueness for theer, (0, x,t) =

6(0,x,t). Let A, be the operatat, = a#t + i Note that by (177), prowdesnhppf( v (% t)) c R we get

ai—;, (Ext- f.ps Fu(B', %, 00 (Ay p(x,0) dPxd't) = (133)

Ext- [ s {TrAE20) F’;,ﬂ‘;,“) £ (Bypr G 0) + Fe(B, 2, 0AS (A (,0)) }d*xd ¥t = 0.

Let R = No<y<1Ayp Randf(x,t) €C 0°§m( R), then (13.123) holds for gi’ such thad < 8’ < S. Note that for
all functionsf (x,t) € C ;f’;’m(ﬂ%) the following equalities (13.124) hold for &ll= 1,2,3,

Ext- [ Fe(B %, Of (A, (x,8)) d¥xd*t = 0. 13(124)
Thus, in the sense of distributions we obtain fbka 1,2,3 that
F.(B,x,t) =0,(x,t) € R (13.125)

SinceF, (B, x, t) is #-continuous, (13.125) hold in usual sense everywingke This establishes required
uniqueness, and completes the proof of the theorem.



Definition 13.18 (1) Let(Hs, ||-]l«) be a linear normed space over fislf. An elementx € Hy is called finite or
norm finite if ||x||4 € *IR{fjfﬁn and we leFin(Hy) denote the set of the all finite elementsigf the element € Hy is
called infinitesimal ifi|x||4 = 0 and we writex = y for ||[x — y||4 = 0. (2)Let(Hy, (-,-)4) be a non-Archimedean
Hilbert space over fieltdC# endowed with a canonicat-norm||x||, = m then we apply the same definition
asin (1).

Definition 13.19 Let A be a linear operatet: H, — H, with domainD (A). Let D, (A) € D(A) be a subdomain
such that for alhp € D(A): Y € Dgu(A) < lIx|ly € "R 5, and lethf, (A) be a subdomaibf, (4) c Dy, (A4) such
that for all € Dg, (A): ¢ € Df (A) & ||Ax|ly € "R g,

Definition 13.20 Let q(+,-) be a bilinear form with domaib(g) x D(gq) onHy such thaD(q) X D(q) & Hs X Hy
andD(q) x D(q) — *C¥. Let Dg,(q) X Dn(q) < D(q) X D(q) be a subdomain such that fora,,,} €

Dein(q) X Dein(q) < (41, ¥2)4] € "REg,. LetDE,(q) X D, (q) € Dgin(q) X Drin(q) be a subdomain such that for
all (11,9} € Din(q) X Drin(q): (1,%,} € Df,(q) X Dfi(q) & q(1,9,) € *(Cg,fin'

Theorem 13.41[15] Assume that the operataV&’ = M3* = MJ% + MPX, k = 1,2,3 satisfy conditions152)-

(154) and where the operatar%, are defined byl@5). We set nows (B, x, t) = 0.

(1) If f € S§,CREY), suppf c #-int(R}), A= [a, b]* andsuppfyg) S #-int( R}) = 3, then for allk = 1,2,3 on
domainsDg, ((M%%)?)

Ext-exp(iM° B) i (f)Ext-exp(—iM°¢B) ~ go,’f(f,\(ﬁ)). (13.126)

Here thex - equalities (198) hold as -equalites for self-adjoint operators
(2) If (x, t) € R; andAg (x, t) € R}, then for allk = 1,2,3

Ext-exp(iM° B) o (x, t) Ext-exp(—iM*B) =~ ¢f ( Ap(x, t)) (13.127)

Here thex - equalities (13.127) hold in the senséRﬁlﬁn- valued bilinear forms on domaims, (M%) x

DE (M) and on domainBfi (M%) x D (M°K).

Remark 13.15 Note that: (1) for real-valuefi € S (*R#*) is a self#-adjoint operatop/?(f), essentially
self-#-adjoint operator on a variety of appropriate dorsalnis for this sel#-adjoint operator that (13.126) is
valid; (2) on the subdomairi!, (M°%)?) ~ -equalites (13.126) entail for all= 1,2,3 the equalities

st(Ext-exp(iM% B) o} (x, ) Ext-exp(—iM°*B)) = st ((pf{‘ (Aﬁ (x, t))) ;
(3) on the subdomair,, ((M°%)?) the~ -equalites (13.126) entail for &l= 1,2,3 the equalities

st(Ext-exp(iM° B) o} (f)Ext-exp(—iM®*B)) = st ((p;‘(fA(B))).
Proof Lety € D(M°*) and letF, (8, x,t),k = 1,2,3 be the functions is defined by
Fi(B,x,t) = (Ext-exp(—iM°*B), o} (x, t) (Ext-exp(—iM° B)y)) 4. (13.128)

Forall (B, x,t) € "R¥;,, x "R¥%, and forf € Sf, ("R¥*), let F, (B, ) be the function is defined by

¢ fin ¢ fin
Fe (B, f) = (Ext-exp(—iM°* B), @i (f) (Ext-exp(—iM**B)))y =
Ext- fgoj Fo(B,x,t)f(x, t)d"3xd*t. (13.129)

Note thatyp? (x, t) is a bilinear form defined ab ((H + b)g) X D ((H + b)g), #-continuous in(x, t) € *]Rfjf_?in. By



1
Theorem 13.2® (M%) c D ((H + b)E) and therefor&) (B, x, t) is well defined and-continuous in(x, t). Note
that a functiorFy. (B, x, t) is #-continuously#-differentiable ing € *R¥ ¢ and for allk = 1,2,3

O FE(Bat) _

iy —(Ext-exp(—iM**B)iM Y, o} (f) (Ext-exp(—iM°* B))y (13.130)

—(Ext-exp(—iM* B, o} (f) (Ext-exp(—iM°*B)iM ).

By the canonical argument, we have forka¥# 1,2,3 that

*FiB.)

—ip = (Ext-exp(=iMBYY, [iM®, o ()] (Ext-exp(=iM**B)pp))y = (13.131)

Ext- fpﬁ Fo (B, x, ) f (x, t)d*xd*t.
By Theorem 13.39 under the conditisuppf < #-int( R3) we have for alk = 1,2,3 that

#
CALIC:0 D R— (Ext-exp(—iM°* By, @i (xk —+ t—) Ext-exp(—iM% ), =

a*p att
—Ext- [.ps Fie(B, %, 1) (xk AT e ) Fx, t)d*xd*e. 13(132)
Therefore by Theorem 13.40 under the condition
Uosy=1 Ayp(x,t) € Ri (13.133)
we have for alk = 1,2,3 that
Fe(B,x,6) = F (0, Ayp(x,0)) + (8, x,6) (13.134)

That is, if (13.133) holds, then (13.134) also kdigr allk = 1,2,3 and finally we get

Ext-exp(iM B) @ (x, t) Ext-exp(—iM*B) = ¢} (Aﬁ (x, t)) + 8(B, x, t). (13.135)
Here the equations (13.135) hold in the senselioilir forms orD ((M°%)?) x D((M*)?), i.e.
(1, Ext-exp(iM°* B) p}; (x, t) Ext-exp(—iM* )z )y = (1, 5 ( Ap(x, t)) Y2)s + 6(B,x, )1, 12)y.  (13.136)

From (13.136) on the domalf, ((M°)?) x Df, ((M®)?) € Dy (M®)?) X Dgp (M°%)?) € D((M¥)?) x
D((M°%)?) we get thex -equality

(1, Ext-exp(iMOB) @ (x, ) Ext-exp(—iM B)po)y ~ (W, 0 (Ag (6, 0)) ), (13.137)
since(i,,y,) is finite and thereforeS (B, x, t) (P, P,)s = 0.
Note that in thet-limit 4 -4 0 by (125) we get
#-limy_,,o MO = MQk. (13.138)

Therefore in thet-limit 1 -, 0 from (13.136) and (13.138) we obtain that



limy.., 0 (11, Ext-exp(iM® B)pf (x, t) Ext-exp(— MO B, )y = (211)
(, Ext-exp(iM$B)f, (x, 6 Ext-exp(—iMYB)p,)y =
Limy,o (W, @ (45060 ) hads + 8(B, %, O, by = s, 0 (A5 (6, 0)) Py + 8B, %, (W1, o)

From (211) on the domaiDf, ((M°)?) x Df, (M%)?) c Dg, (M°%)?) X D (M°%)2) € D((M*¥)?) x
D((M°F)?) we get the~ -equality for free quantum field , (x, t)

(s, Ext-exp(iM2*B) ol (x, ©) Ext-exp(—iMZ BY,)s = Py, @l ( Mg (0, 6)) W3y (212)
Remark 11.16 Note that thex -equality required by (212) is necessary, see Refark
The~ -equality (209) extends b-closure taDff, (M) x D, (M), sinceDf, (M) c Df, ((H + b)/?) by Theorem
11.29, and the estimate

|, Ext-exp(iM® B} (x, ) Ext-exp(—iMO B) )y ~ @1
|, 0 (4506, 0) )] < el + )29

Herec is finite constant. Furthermof((M°%)?) for anyk = 1,2,3 is a#-core forH, by Theorem 11.31, and

therefore a#-core for(H + b)%. Thus (208) extends ®@((M°%)2) x D((M°*)?) and on this domain we also have
#-continuity of the form ir(x, t) € *Rﬁ"gn. Note that it is necessary to assume that,<; A,z(x,t) € Rj}.

However for the regior®} this statement follows from the conditién t) € R; = Az(x,t) € RE. This final
remark completes the proof of this theorem partN@w we go to prove the operater-equality (198) for the case

f € SE (R, suppf U suppfa,. By Theorem 11.29, the operatgré(f) andg; (fAB) are defined on domain
D((M%)?). Integrating (207) againgt(x, t), we get the equalities

Ext-exp(iM°B)p} (f)Ext-exp(—iM%*B) = ¢} (fAB) + Ext- meS(B, x, t)f(x, t)d*3xd*t. (214)

Obviously the equalities (213) hold on the doma@hgéM °%)?) with k = 1,2,3 correspondingly. For any vectgr
such thatp € D((M°%)?) from (207) we obtain the equalities

0H(f)Ext-exp(—iM°* B)yp = Ext-exp(—iM°*B) ¢} (fAﬁ,) P+ (Ext- fmg §(B,x, )f (x, t)d’“xd*‘t) Y. (215)

1
Since ”goji (fAB)l,b" <qg ||(H + b))z | andD((M°)?) for anyk = 1,2,3 is a#-core forH, by Theorem 11.31,
the equalities (215) extends Hyclosure taD(H) and (215) holds foy € D(H). Since the domaiD (H) is a

#-core for the operatap (fAﬁ), we conclude that (214) extends#glosure taD ((pfﬁ (fAB)) and therefore the

equalities (215) hold for ald = 1,2,3 and for anyp such thatyy € D (qoff (fAB))' Thus we have proved that

Ext-exp(—iM*)D (0} (£a,)) = D2

By similar consideration one obtains that

Ext-exp(iM**B)D(pf(f)) € D (‘Pff (r Aﬁ))'



This proves (214) as an equality between sekidjoint operators, completing the proof of the tieen.

Theorem 13.42 If M,k = 1,2,3 satisfies only the conditions (6.2) and (6.3), thaclusions of Theorem 13.41
still hold.

Proof By (6.3) there is am > 0 so that for alk = 1,2,3

a+ xkgék) (1, %2, x3) = X = %391 (%1, X2, X3)
for (xy, X5, x3) € I3, = [a — 2¢,b + 2¢]3. Let§, be aC™* function so that
X g = E%
forhy = 0,h, € S CRE), g1 (x4, %2, %3) = 0 for (x1, X5, %3) € I3, andg, (xy, x2,x3) = 1 for (xy, x5, x3) € I,
Then conditions (6.2)-(6.4) hold for the paiﬁgék),gl} and
891 =91~ 01

is non-zero only in the complementigf Let for allk = 1,2,3

M = Hy, + T, (xkgék)) + Ty (x g1,

MOk = MO — [ = T, (x.6g).

By Theoremb.3, bothM ¢ andM°* are essentially se#-adjoint onD (HZ,,). The operatorsf®* are satisfies the
conditions of Theorem 13.41. Note thét* is also essentially sel-adjoint on this domain. Byl| Theorem 3.2],
the spectral projections 6M° commute withp}:(f) for supp(f) € Rf ¢ M¥. Hence ifE,, is a spectral
projection ofp#(f)

iMOkﬁ

") prce (22)) 1, »

{Ext-exp(—iM°¢B)}E, {Ext-exp(—iM°*B)} = lim,,_+c, {(Ext-exp(

X {(Ext-exp(—i1\710k,8/n)Ext-exp(—ic?M‘”‘,B/n))n},

where we use the fact that

Uosy<1 SUpp (f/lﬁ) c Rt

supp(f) U supp (fa, ) © Ri-

ThusM° andM°* generate the same transformations on the spectijaictions ofp (f), if supp(f) U
supp (fAﬁ,) c R}. By Lemma6.2, Theorenb.3, and Theorem 2.4,chapt.2 and Theorem 4.3,chapt.2,

D(H?) € D(M°%) n D(M°F)
D(M) U D(M1°%) € D(H,,) < D ((H +b)z) < D(pf(f).

So Ext-exp(—iM®B): D(H?) - D(¢#(f)) andExt-exp(—iM°B): D(H?) - D (g} (f))



Since we can expresg (f) as a strongf-limit of an integral over its spectral projections its domairD(<pf§(f)),
we obtain, orD (H?)

{Ext-exp(—iM°* )}t (f){Ext-exp(—iM* )} =
= {Ext-exp(—iM°B)}pf (f){Ext-exp(—iM**B)} = o} (ng)'

by Theoren®6.1. Since D(H?) is a#-core fore (fAB)' this equality extends bi-closure to the domain

D ((pfﬁ (fAﬁ,)). Thus, part a) of Theorefl holds forM % satisfying (6.2)-(6.3). Part b) of Theorem 6.ldwls

from this since the formp} (x,t) is #-continuous inx, t) € M¥. on
8§ 14. ESTIMATESON THE INTERACTION HAMILTONIAN

Let F# be the Pock space for a massive, neutral scaldriGevo-dimensional space-time. The element® bfare
sequences of functions on momentum space. Letnthigitation and creation operators be normalizedhey
relation

[a(k),a*(K")] = 6*(k — K'). (14.1)
Thus the free-field Hamiltonian is
Hy, = Ext- flklsu a*(k)a(k)w(k)d*k. (14.2)
Thet = 0 field with hyperfinite ultraviolet cut-oft is
©#(x) = Ext- flklsu Ext-exp(—i(k,x))[a* (k) + a(k)] d*3k (14.3)
The spatially cut-off interaction Hamiltonian reads

Hi5(9) = Ext- [.ges: 03*(2): g (x) d"x = (14.4)
Sio () {Ext- [, o ke = Bxt- [, dPkya Ueq) = a” (kj)a(—kjar)
x a(—kq)g (Tt k) Thok®, Thik® ) Malo k)] 2d" k.. d®k ),

where we lef; = (K, k@, kP),i = 1,2,3.
The total Hamiltonian reads

H,(9) = Ho, + H;,(9) (14.5)
We let

N, = Ext- [, _ a*(k)a(k)d*k, (14.6)

|k|sx

and

D{, = N0 D(HE,). (14.7)



Theorem 14.1 For anys € *Rf,, and for fixedg(x) € S&,("R#3) there is a constantsuch that as bilinear forms
onD{, x D§,,

< eHZ, +b, (14.8)

1 1
HOZ';{’ I:Hg’}{’ HI,}{ (g)

- [Nw [V, Hz,x(g)]] < eNg +b. (14.9)
Theorem 14.2 Let W: F# — F# be an operator of the form

W = Ext- |

|kqlsx

¥k Ext- | A"l wiky, o k) @ (ke 1) = a(=k), (14.10)

wherew(k;, ..., k,;) € L§((*Rﬁ3’")). Then

| (N, + D2 (N, + D)= D/2|| < constllw (k, k)l g0 (14.11)
1 1 (m-4)
-1|,.> > -1 -
(Hox +1) " |HZ,, [Hgﬂ, W] (Hope +1) (N, +D™ 2 <
#
1
< const [|wz (ZE, b, T, kP, Th, kP )w(kl,...,km)”L#, (14.12)
2
1 1
Hg ., [Hg'”, W] (N, + D™™2|| < const X x*||X", w(k)w(ky, ..., k)l 4 (14.13)
#
Theorem 14.3 Let the operatoW be as above. Then
LR
HZ,, [H;_H, W] (N, +D™™?| < const|w (ky, ..., kp)ll 4. (14.14)
#

Proof of Theorem 14.1.Introduce thie= 0 field <pff(x) with an hyperfinite ultraviolet cut-oft < x:

Ppx) = Ext-f Ext-exp(—i{k,x))[a* (k) + a(k)] d*3k
[kl=p

The spatially cut-off interaction HamiltoniaH, , (g) corresponding to the= 0 field goff(x) reads
H,,(9) = Ext- [.gus: 0*(x): g (x) d"x. (14.15)
Note that
Hp,(g) = st.#-lim,_, H;,(9g). (14.16)

If we write H;, (g) as a sum of five operators of the fowhin (14.10), then by Theorem 14&ken for the case
m = 4 we get

1

1
(How+1)""|HZ,, [HéK,W] (Ho, +1)|| <

#



< const||w%( Lk, S kP, S k® ) wle, k)| - (14.17)
Ly

Since the kernab(ky, ..., k,) has an over-all factgﬁ( kD, v k@, v k@ ) whereg (k) is the
Fourier transform of the spatial cut-gffx), the fast decrease §{k)) ensures that
1
w0z (B b, Tk, Bk Ywiky, . k) €
Thus the kernel for the corresponding cut-off iat¢ion termw,, approximatesy,, in the sense that

||w%( iy kl-(l), 1 kz(z)' 1 kz(s) )(W}f(kl' v ky) —wy(ky, ""k4))||L# ~#0 (14.18)
2

asu — ». This is holds for eacW making upH,,(g), so we infer that there existsig such that for any: such
thatipuy <u <x

(Ho, +1) (Ho+ 1) <3e. (14.19)

#

1 1
Hg,%' I:HOZ,}{’ ( Hl,x(g) - Hl,p_(g))]

§15. SELF ADJOINTNESSOF THE INTERACTION HAMILTONIAN

For a real spatial cut-off(x) in the Schwartz spadg, ("R#3), the interaction part of the Hamiltoniay ,.(g) is
self #-adjoint.
Theorem 15.1If g € SE (*R#3) is real, then

Hi,(9) = Ext- [.gss: 05 (2): g (x) d"*x (15.1)

is essentially sel-adjoint onD¢,, = N, 2, D(HE,).

Let us introduce a domalmf,{ obtained by applying any polynomial of the= 0 fields ¢ (f;), for realf; €
S#,CR¥) the no particle stat®,. ClearlyD{, c D§,, and any vecto® in Df,, is an entire vector fapj(f),
which means that the hyperinfinite power series

‘w lef™nel, ,
n=0 n! z

Ext-Y, (15.2)
defines an entire function of s. Sinbé_,{ is #-dense in Fock space, Theorem 6.5 (Generalized Nslaaalytic
vector theorem) shows that for rgfalp}:(f) is essentially sel-adjoint onD{,,. A similar argument can be made
for the canonically conjugate= 0 fieldsz#(f). Let M,# denote the von Neumann algebra of operators geera
by the spectral projections of all the= 0 field ¢f(f), f € S&,("'R#3). The algebra? is maximal Abelian. In
other words, a bounded operator which commutes alitbperators i is itself inMF.

Let us considep(f) for supp(f) c 0 c *R¥3, where0 is an#-open region of space. (The support of a function
is the smallest-closed set outside of which the function vaniskiesiically.) Define€#(0) as the von Neumann
algebra of operators generated by the spectraégtiops of all the fieldsp (f) andr}i(f) with supp(f) c 0.

Since



@ (x,t) = Ext-exp(itH,,) @i (x)Ext-exp(—itH,, ) = @p

= Ext- e d™y {0,(x — 3,0 () — [2 842~ 3,8)] 020D},

whereA, (x, t) is the solution of the generalized Klein-Gordonaipn (13.9) and(x, t) vanishes outside the
light cone, we infer that

Ext-exp(itH,, )€%(0)Ext-exp(—itH,, ) c €%(0,), @p.
where0; is the regior0 expanded by.

Theorem 15.2 If g(x) € S£, (*R¥#3) is real and has its support in #open rectangular parallelepip@d= *R#3,
then for theH,; ,,(g) of (15.1)

Ext-exp (itH,M(g)) € Cin Mk,

Theorem 15.3 Let T be any operator with domaib{,, such that

T D, € D(f™(N), (15.5)
T D, c D((T ' D)), (15.6)
[T, pi"(H] DI, = 0. (15.7)
Then
mipf, cD(T T DE,), (15.8)
[#-T, Mm% Df, = 0. (15.9)

Proof ForQ € Df,, from (15.5) and (15.7) we get

T o™ (HHQ = ei"(fITQ.

But by (15.6), for reaf

IT @™ (Al = (TQ, @i (TR = (T°TQ, @i (N4 < IT*TQlI 02" (H Q.

Thus the#-convergent power series (3.2) shows thatfe Df,{,

#-T (Ext-exp( i} (f))) Q = Ext-exp( ipf(f))TQ. (15.10)

It is clear that (15.10) is still valid Witﬂxt-exp( i<pfj(f)) replaced by strong-limits of sums of such exponentials,
and hence (15.8) and (15.9).

Theorem 15.4 Let M is a maximal Abelian algebra of bounded operatara non-Archimedean Hilbert spade
with a cyclic vectof),. LetT be a symmetric operator with domaifiQ),, and letl’ commute withM.ThenT is
essentially self-adjoint.

Proof Without loss of generalityM = L% (X) andH = L%(X) for some#-measure spadg, %, 1), andf), is the

functionl. Letf € L%(X). Thent € L%(X) andT is multiplication byt, with domainL?_ (X). Let f € L%(X) and



supposéef € L(X) also and lef, (x) = f(x) if |f(x)| < n,n € *N andf,(x) = 0 otherwise. Theif, € Lf_ =
D(T) andf, =4 f, tf, =« tf in L% norm by the bounde#-convergence theorem. Th{)§ tf} is in the graph of the
#-closure ofT. Thus the#-closure ofT is self#-adjoint, andr’ is essentially sel¢-adjoint.

Remark 15.1 LetT,,,n € *N be a hyperinfinite sequence of operators withpiteperty ofT in the Theorem 15.4.
Then T,, -4 T strongly on the domaii £, if and only ifT,,Qy =4 T,.

Proof of the Theorems 15.1 and 15\®e apply now the Theorems 15.3 and 15.4 with #s&E = H, ,,(g), M in
Theorem 15.4 as in Theorem 15.3, the non-Archimediibert space Fock spad, andQ, the Fock no-particle
state. The hypotheses (15.5) and (15.6) can biegkly a direct computation. Thig,,(g) is essentially self
#-adjoint onD{,, c D§ ., and hencél,,.(g) is essentially self-adjoint onD{,,.

If we assume thatup(g) c 0, then a9 is an#-open regionsup(g) < 0, where0; is O contracted by some
small amount > 0,¢ = 0. SinceH, ,,(g) commutes wittM', andM is maximal Abelian;exp (itH,,;,(g)) EM.

Furthermore the argument in the proof of Theoren3,1&an be repeated to show tHaj, (g) commutes with
€%(0), where0 | is the complement of thi-closure of0;. Since€}("R¥?) is irreducible andf; ,.(g) commutes

with €%(0 ), Ext-exp (itH,_H(g)) € €#(0,) where0, is 0, expanded by any amousit> 0. Takinge’ < &, we
haveExt-exp (itH,_H(g)) € €#(0), which completes the proof.

§16. SELF ADJOINTNESSOF THE TOTAL HAMILTONIAN

Theorem 16.1 (a) For realg(x) € SE, ("R¥#3), the total Hamiltoniat,,(g) = Hy,(g) + H,,(g) is self#-adjoint

with the domairD(H,,(9)) = D (Ho,.(9)) 0 D (H;(9)).
(b) The total Hamiltonia,,(g) is essentially sel-adjoint on the domain

Dg,x = n;ozo D(H&,{).

Remark 16.1 In order to prove the se#f-adjointness off,,, we combine the estimates of Sec. 14, the self
#-adjointness off;,.(g) proved in Sec. 15, and a singular perturbationrthdeveloped in [19]. We need the
following result which is a special caseTdieorem 8 of Ref. [19].

Theorem 16.2 Under the hypothesesiji) below, the operatoH,, = Hy,, + H;,z is self#-adjoint.

(i) Both H,,, andH,, are self#-adjoint. The domai{,, is contained in the domain Hf ., andH; ,, is essentially
self#-adjoint onD{,.

(i) Let N,, be a positive selt-adjoint operator, commuting witt, ,,, and such thay,, < const H,,,. Suppose that
the operator§N,, + I)"*H,, (N, + 1)~* and(N,, + I)"*H,,,(N,, + I)~* are bounded.

(iii) Suppose that for any > 0, there exists a numbére *Rf such that as bilinear forms &, x D§,, ,

—H,, < &N, +bl, (16.1)

1
_ 2
HO,}{

< eH§, + bl, (16.2)

1
Hg,,{H:,n]



- [N%, [N, H,_M]] < eN3 + bl (16.3)

Proof of Theorem 16.1 In order to prove that, (g) is self#-adjoint, we apply Theorem 16.2 in the case Hhat
is the free Hamiltoniary,, is the number operator, afgl,, is the interaction Hamiltonia; ,,(g). Thus we need
to verify (i)-(iii). Condition (i) was dealt withn Theorem 15.1, while condition (ii) is a consequeenf (14.11).In
Refs. 2, and3, it is shown that for any > 0, there is a numbeér € *R? such that

_HI,H(g) S SHO,}{ + bI.

By following that proof, but using the smoothingeogtorExt-exp(—tN,,), in place oﬂExt-exp(—tHM), one
arrives at the estimate (16.1) required in (iilpeTremaining estimates (16.2) and (16.3) were ksiteol in
Theorem 14.1.Thus we conclude from Theorem 16 PHp&g) is self#-adjoint on the domaip (HM) n

D (H,,,{(g)) . We now show thdt,, (g) is essentially sel#-adjoint onD(HO_H). We first show thatl,,(g) is
essentially self-adjoint onD, = D(HO,K) N D(N2). By (14.11) it is clear that the domainkf(g) containsD,.
Fory € D(H,.(9)) = D(H,,) N D (H,,H(g)), consider hyperinfinite sequenge € D,,n € *N defined by

Y, =n(nl + N,) 1. (16.4)
Thus|n — Wlly + [[Hostfn — Hox|l, —4 0 asn — *oo.
We need to study the following differences
Hy,ibn — Hyap = =N, (nl + N,) ™Y Hp,p + n[Hp,,, (nl + N,) ", n € *N. (16.5)

SinceN,(nl + N,,)"1,n € *N is a uniformly bounded hyperinfinite sequericeonverging to zero on thedense
setD(N,), it #-converges to zero arfiV, (nl + N,)™* H, ||, asn - *eo. But for the second term in (16.5) we
get

n[H,,, (Wl + N,)7 |y = [H,,,, (] + N,)7| (] + N,)n(nl + N,) " = (16.6)
= (nl + N,) [N, Hy, [n(nl + N,) "1 =

=l + N,)2(I + N)UT + N,) L[N, Hy o] X

X (I + N,) 'n(nl + N,) " (I + N).

Note that as — *oo, hyperinfinite sequenc®, = n(nl + N,)~*(I + N,,)i,n € *N #-converges strongly to
(I + N,)y, that by (14.11)(I + N,)"*[N,,, H,,J( + N,)~* is bounded, and hyperinfinite sequepge=

= (nl + N,)7'(I + N,)y,n € "N #-converges strongly to zero. Thus we [, .., (nl + N,)"'9]||, =4 0 as
n — *oo, and sA|Hy,¥n — Hy, ||, =4 0 asn — “eo. Thus we can to conclude thf(g) is the#-closure of

H, (g) restricted td,, soH, (g) is essentially self-adjoint onD,. LetD, be a Hilbert space endowed with the
#-norm ||-||% such that

, 2
Ul? = I9lE + [[Hou[l,, + 1Nl (16.7)
From (14.11) we infer that

1Hyc(g) ¥lls < constllplly,



so that H,,(g) is essentially self #-adjoint on any subset of D, which is #-dense in the Hilbert space D,.For
any Y € Dy, 1, = Ext-exp(—AHy, )Y € D¢, = N. 2, D(HZ,), and ||y — Wallpg, =4 0as A -4 0. Thus H,(g) is

essentially self #-adjoint on D,.

§17. REMOVING THE SPATIAL CUTOFF AND LOCALITY

For the reader's convenience, we sketch a progéiéralized Segal's theorem that the #edfljointness off,,(g)
allows the removal of the spatial cut-off. In fa€td is a bounded function of the free fields localize@ bounded
region of space at= 0, then

0. (A) = Ext-exp(itH% (g))AExt-exp(—itH% (g))

is independent of (x) provided thay(x) = 4, the desired coupling constant, on a sufficielaige region,
depending om. Furthermore, if4 is localized in the region of spafetheng;(4) is localized in the regio€,,
where0; is the regior0 expanded by. (We have taken the velocity of light to be ona.pther words, the time
translations, gives rise to a local theory. If one chooses lierdperatod a spectral projection of thte= 0 field

e} (f), one can piece together the time translationaipefor the fields themselves. In section @8,showed that
H, = H,, + H,,, which is sum of two sel-adjoint operators, is itself sgi-adjoint. As a consequence of this
fact, the generalized Trotter product formula ({sBe section 7) says that forgle F#

Ext-exp(itH,(g)) = #-lim,_+o ([Ext-exp ( tHox(g))] [Ext exp (itH,:(g))D ..
And therefore we obtain

o (A)yY =

-t (([Ext-exp (2059 [Ext-exp (@] )" ([ Bxt-oxp (2209 [xt-exp (2222},

n—*oo

l.et O be the region of space defined|ay < M,t = 0, and letd € €%(0 ), where€#(0) is defined in Sec. 15.
Given an arbitrary, positive split g(x) into two infinitely #-differentiable partg;, (x), g,(x) such that

gx) = g1(x) + g, (x),

wheresupp (g, (x)) € 0, andsupp(g,(x)) N 0= = @ is empty. Write now
2

Hl,u(g) = Hl,x(gl) + Hl,x(gz)’

so that as a consequence of theorems 15.1 and Hp,2g,) andH,,,(g,) commute, and
Ext-exp (@) = [Ext-exp (M)] [Ext exp (lfHI.;:(gz))]_
Furthermore,
itHy,(g91)
Ext-exp (%) ect0,),

andExt-exp (@) commutes witt€%(0,,, ). Therefore,

A (t) = [Ext-exp (—itHO':(gl))] [Ext-exp (—itH":(QZ))] A [Ext-exp( —ltH’”(gl))] [Ext ex p( —ltHO‘”(gZ))]

n



depends o (x) only in the regior0,, and by the free propagation property (15.4),

Al € Gﬁ(o(t/n)ﬂz)

We continue step by step, and aftsg *N\N steps by using hyperinfinite induction principsee ref. [10], we
conclude that

0 = ([Evtenp (2222 [xt-onp (2202) )

n n

x ([Ep (_ H_w>>] [Ep (_ itﬂoz(ggﬂ)

depends o (x) only in the regior0,,,,. and
A () € €4(0pine)

Sincee can be chosen arbitrarilg,, (t) depends og(x) only in the region#- 0., the#- closure 0i0,, and
An(8) € Neso €4 (0¢se).

ThusA,,(t) commutes with any local observatiidocalized in#-open region of spad®’ such thaD’ and 0, are
disjoint. As this is true for eaghe *N\N, it is true for

0:(A) = strong #-lim,,_,+o, Ay, (t).

Henceo, (4) is local and it depends @r(x) only in the regior#- 0,, where we choosg(x) = A. Thus we
conclude that the spatial cut-off has been remavetithe resulting theory is local.

8 18. Semiboundedness of the total Hamiltonian

§ 18.1. Reduction to a Problem with Discrete M omentum We use the non-Archimedean Fock space
representation for our fielg# (x), x € *R#3. The Fock non-Archimedean Hubert sp&eis a direct sum

F# = Ext-@®, F,

whereF? is the space of non-interacting particles, i.&¥ is the space of symmetric squairéntegrable functions,
i.eL¥ (*R¥#3) functions ofn variables. Lek = (k, k,, k,) € *Rf‘

u(k) = (K + pg)'/? = (kf + k3 + k3 + m§)*/?,
@5 (x) = Ext- f*Rga Ext-exp(i(k, x)) a(k)0 (|kl, ) [u(k)]"/2d*¥k, (18.1.1)
@it (x) = Ext- f*u&‘f Ext-exp(i{k, x)) a*(—k)8(|k|, ) [u(k)]~?d*k, (18.1.2)
O0(|k|,») = 1if |k| <x and(|k|,») = 0 if |k| > x,
and ¢ (x) = ¢~ (x) + ¢#*(x), wherea(k) anda*(k) are the annihilation and creation operators,
[a(k), @’ (K")] = 6*(k — k). (18.1.3)

By definition,



L oiP (0 =5, (%) ot @) g (P, (18.1.4)

Remark 18.1.1 Remind thawWick product differs from the ordinary product et all the annihilators are placed to

the right and the creators are placed to the:leii” (x): is not an operator, but it is a densely defindiddar form.
We take Fourier transforms to compute

Ext- [.gns + 03" (0):d%x = 3 (’;) Ext- [ @’ (—hy) = @ (=ky)a(k;) = a(ky) x (18.1.5)

x Ext-h(ky +- +k,) T, 0kl 0 [u(k: )] d*3k,

whereExt-h is the Fourier transform d@f. We assume h is ilf, and saExt-h is inL% also. Since: (k) ~ | k| for
large| k|, one can show that

Ext-R(ky +- +k,) TT, 0kl 20)[u(k; )] % € LA (18.1.6)

It is well known that (18.1.6) implies that eacteigral on the right side of (18.1.5) is an operatfined on the
domain D(N?/?) of N?/2. This domain is the set ap = 1,5, ...,1; € Ff  with

Ext- 2 nP/? || Ext-TTE 1 0 (1Kl 20) Yl < “oo. 1g)

Thus (18.1.5) is an operator defined{V?/2). Similarly Hy,, + Ext- [, P(: @} (x)): d*x is an operator

defined on thet-dense domaim) (H,,,) N D(Nd/z), whered is the degree of the polynomil We approximate

now (18.1.5) by a hyperfinite sum. Choose numbets0 andx € *Rﬁ\*]}&’j’ﬁn. We define now an hyperfinite

approximation in configuration space. Under thipragimation, the momentum space variable (k, k,, k3) €
‘R#3 is replaced by a discrete varialiles T3

I3 = {k = (ky, ky, k3)|k; = 6ny,n; € *Z;i = 1,2,3} 8(1.8)
Thus we defing, the Fock space for hyperfinite volurié = 573 as
7 = c(Ba) = ‘COUGHSU TR (T} (18.1.9)

We choose now one to one correspondette> *Z§ x *Z5 X *Z§ = T3 given by vector-functioge (m)

p(m) = {ky(m), k,(m), ks(m)} = k(m) (18.1.10)
and such that
o (—m) = —p(m). (18.1.11)
And we define now
I35 = {k € T3||k| < x)}. (18.1.12)

We set now

as(k(m)) = (8§)73/2 [Ext- [y d*ly Ext- [0 d*l, Ext- [ d*ls a(k(m) + l)], (18.1.13)



a;(k(m)) = (5)7%? [Ext- [Y d*ly Ext- [ d*l, Ext- [} d*ly a” (k(m) + l)]. (18.1.14)

Then one obtains

@ 5(0m), a5 (k0m)] = Smm, = {0 1 2 (18.1.15)
Let
Hoxs = Ext-Syers (k) @ 5(0)as (k). (188)1
One can check that eaghin D(H,,,) is inD(Hy,.s) also and that
#-limgo,, Ho s = Ho 1. (18.1.17)
Next we approximate (18.1.5) by
L9y (0= 602, (7) Ext- Byers @ 5(—ko) = @ 3(=ky)as (k) + a5 (ky) X (18.1.18)

x Ext-h([ky] +- +[kp]) [Ti[u (k)17

where

~ P P P .
hs(k) = Ext- ff;:/a _n’f:/a f:f:/&(Ext-exp(l(k, x)))h(x) d*3x

and[k] = ([k4], [k], [ks]), where
k] = sup{l|(I3, 15, 13) € T3, 1 < Ky}, [ko] = sup{ly| (U4, 1, 13) € T3, 1, < ky},
(k3] = sup{l5|(ly, I, 13) € T3, 15 < k3}

is the integral part ok relative to the lattic€;. Sinceh € Lf, hs is #-continuous and

Bxt-h(lle] ++ [k, ) TLIR e Y17 > Exteh(ie +++y) T, 01k 0l )]

uniformly. LetD¥ be the set of stategs = {1, Yy, ...} withy,(ky, ..., k,,) = 0 forn < *oo or Ext-Y;|k;| < *o
large. Ifp, € DF then

#-limg_,0(®,: 95 (X):)y = (b, EXt- [.ys 017 (0): A" ). (18.1.18)
Thus the bilinear form of
Hys = Hops + Xp * 95 (h): (18.1.19)

#-converges tdél,, onDf x Df whereb,, ..., b, are the coefficients of), y, , ..., y, in the polynomiaP(y). Hence
if the H,, 5 are semibounded with a lower bound independeéittbénH,, is semibounded also. L& be the
subspace of# consisting of functions which are piece wise cansbetween lattice points. In other words,

W = (o, Yur P, .. } € FL i



Yn(ky, - ky) = P ([ky], o, [KRD.
Let F}; s be the subspace 8§ defined by the restriction
Yu(ky, .., k) = 0if [k] € Tr s

for somei,1 <i < n.
The operatora ;(k) anda 5(k), k € I}, leaveF}: ; invariant and act irreducibly dff 5. We set nows = 277,
» = 2¥ and observe thét;v'z—v increases monotonically withand that

Dg’ = Dg n U-UTZ#VIZ—V
is #-dense irF* andH,, c #-(H,, I D¥"). Thus it is sufficient to prove the semiboundedrafss
daj2 #
HJ{,(S r (D(HO,J{) n D(Nx ) n Tn,é‘ )
with a lower bound independent &f

§ 18.2. Diagonalizing the potential. In this subsection we give a hew representatidﬁ,fgf in which the
interaction term: <pf:”(h): is a multiplication operator. Let

q (k(Im)) = (2~2u(k(m)))""? [a5 (k(m)) + a’ (k(m) + a 5 (—k(m)) +a’ (—k(m))],

1/2

g (k(=ImD) = i(22u(k(m)))""* |~as (k(ImD) + a; (k(imD) + a ; (~k(mD) - a (~k(ImD)],

p (k(ImD) = (2 2uCe(m) )" |

as (k(m)) —a (k(m)) + a ; (—k(m)) —a (—k(m))],
p (k(=ImD) = (272u(k(m)))"* [a5 (k(ImD) + a; (k(ImD) = a 5 (~k(ImD)) — a ; (~k(ImD)],

Pm = p (k(m)), qm = q (k(m))

for 0 # k € T and let

G0 = (o/2)/? [a5 (0) + a; (0)],

Po = i(o/2)"? [a5 (0) — a; (0)]
Using the equations mentioned above one can contipaite
Hops = Ext- Bmeajicmy=nl 2~ [f + 12 (k(m) )qk, — u(k(m))]. (18.2.1)
We replace now,, andg,, by unitarily equivalent operators. Let
Hys = Ext-@perz Hi,

where #} is Lj (*R¥) with respect to the Gaussi#rmeasure

pi(@d*q = (uk)/m)"?(Ext-exp(—u(k)q?))d*q. (18.2.2)



There is a unitary equivalence betwéé,ﬁ,; and?—"j_g which sends,,, into multiplication byg in the factoﬂ-[,f(m)
andp,, into the operator

- L a*
¢ (@i (377) be@)
again acting in the factd;’. The proof of this statement is essentially gelimrd von Neumann's uniqueness

theorem for irreducible representations of the cartation relations. We identif§t; s andF} s and we identifyy,,,
etc. with its image, multiplication hy, etc. Let

Hao = 2785 [ () +n00a?] gula) = (sp
=2 (2t o ()

acting orH’. Now —H ) is the infinitesimal generator of a known Markpfbcess and furthermore the operator
Ext-exp(—Hﬂ(k)) is an integral operator and the kernel can be cbaapexplicitly. In particular

(Ext-exp(—Hyqo))¥ )(@) = Ext- [0 p* (0,40 (a)F(q)d*q’ (18.2.4)
for ¢y € #}f, where
t N —T1_ _ _u(q’—(Ext-eXp(—ut))q)2 2
p*(q,q") = [1 — Ext-exp( ut)]{Ext-exp[ PT—— ]+uq } (18.2.5)

Let g now denote a variable in a Euclidean spcand letg have coordinateg,, = q (k(m)). Then
bx(@)d*q = Ext-[lierz  #2(q(R))d* q(k) 2%)

is the product of th&-measures (18.2.2) and

§18.3. We will give an alternate derivation of the reswafsNelson avoiding the use of functional integvati
central in subsection 18.2. We consider a Hamitorf the form

H, = Hy, +V,, (18.3.1)

whereH,,, is the free Hamiltonian of a particle of magsexpressed in terms of the neutral scalar figidx) and
its momentum conjugate’ (x):

H,,, = Ext- fol dx, (Ext- fol d*x, (Ext- fol d¥x; : [Vl (x) + udef?(x) + ni?(2)]: )) (18.3.2)

As is evident from (18.3.2) we are working in aipeic boxB = [0,1]3. V, is a polynomial function of the} (x).
We denote by H,,, andV,,, N € *N\N the parts of{,,, andl}, depending only on the creation and annihilation
operators of th&/ lowest-energy modes of the free Hamiltonian ardhghat|k| < » . We always imagine we are
working withVH, ,, and™V,,, but derive inequalities independenthaf



Theorem 18.3.1 Assume for each finite > 0 that there is ai, such that
(0|Ext-exp(—a(M;,))|0) < M,
where|0) denotes the vacuum of the free field. Then theesBisuch that

NHy,. + NV, = B, for allN.

Actually as will be seen it is not necessary tisfathe condition above for all, but only for some sufficiently
largea that one can calculate. We refer to section 1&.3he result that the conditions of the theoreensatisfied
for a large class of self-interactions.

We apply the notation

0 (0) = Bxt- Syers | Ext-exp(ilh, x)) (a5 (0) + a3 (—k) (18.3.3)
and define foik € T3 5
G0 = (/22 [a5 (0) + a; (0)], po = i(o/2)"/? [a5 (0) — @ (0)], (18.3.4)
q (k(Iml)) = (272u(k(m)))"* [as (k(m)) + a; (k(m)) + a 5 (~k(m)) + a s (~k(m))],
q (k(~ImD) = i(272u((m)))""* [~a5 (k(mD) + aj (k(imD) + a s (~k(mD) — a; (~k(mD)]
p (k(Im)) = i(22uCk(m)))"”* [as (k(m)) — a; (k(m)) + a ; (—k(m)) — a5 (—k(m))],
p (k(~ImD)) = (272u(k(m)))""* [as (k(imD) +a; (k(ImD) — a ; (~k(mD)) - a; (~k(ImD)],

Pm =P (k(M)), gm = q (k(m)).
In terms of these variables,
Hoss = Ext- Ymeneimysn) 27 [P + 12 (k(m) )qh, — u(k(m) )] = Ext- Ymez kmyss| Hn-  (18.3.5)
We represent these operators onlthepace of R¥N with #-measure: the product of thé-measureg,,
d*tty, = (@ /my)"* (Ext-exp(—wpnqi))d* gm (3%)
with g,, a multiplicative operator and
Pm = 1(0%/0%q) — ©pGmm. (18.3.7)
Where
W = (K (m) + p§)"? = (kf(m) + k3 (m) + k3 (m) + ug)'/2.
A complete set of eigenfunctions fay, is given by

Pmn(Gm) = ") 2A4, (gm(wn)*?),n € N, 18(3.8)



n!* = Ext- H0<psnpv 2" = Ext- H0<psn 2,

a#n

Ap(2) = (—1)*(Ext-exp(z?)) (Ext-exp(—z?)).

a#zn
The chief inequality we will exploit is the followgy numerical inequality for,y € *R¥,y > 0:
xy < Ext-exp(x) + Ext-In(y). (18.3.9)
The expectation value of the interactignin a state witiC#-functionF is given by
(F|V,,|F) = Ext- [(|F|*V,)d*w. (18.3.11)
We apply (18.3.10) withk = 7V, andy = r~1F? to derive the inequality
—(FIV|F) < Ext- [(Ext-exp(—rW,))d*u + = [Ext- [|FI?(Ext-In(IF|))d*u] — = (Ext-In(r)). (18.3.12)
Herer is a numerical factor to be fixed later. Note that
Ext- [(Ext-exp(—1V,))d*u = (0|Ext-exp(—rV,,)|0). (18.3.13)

We intend now to bound the second term on the sigle of (18.3.12) by the expectation valuéigf, in the
stateF. We consider the following equation:

[Ext- [IFI?(Ext-In(|F|®))d*u] = (18.3.14)

1d*

o (Ext-f[(Ext-exp(—tHo,K))*(Ext-exp(—tHO,K)) ]1+Md#u)| ,

= %(Ext- [F*Hy, Fd*u) + e

which easily follows for functiong nice enough so that all the integrals exist aeddifferentiation may be moved
inside the integral, a dense subspadginVe do not discuss domain questions. We rewre3(12) using
(18.3.14):

—(F|V,|F) < Ext- [(Ext-exp(—1V,))d"u + ;—r(F|HO_H |F) —%(Ext-ln(r)) + (18.3.15)
# . 1A
+%§Tt(Ext-f[(Ext-exp(—tHO_,{)) (Ext-exp(—tH,,)) | * d#,u)L:O.

The theorem we are after is established provider 2 and we can bound the last term in (18.3.15). Eneainder
of the paper is devoted to a study of

. A
Ext- [[(Ext-exp(—tH,,,)) (Ext-exp(—tHO_H))]H td#u = Ext- [|Ext-exp(—tH,,,)|?*?*d* . (18.3.16)

We consider, corresponding to agyn L% (u ), its expression as a sum of products of the fanstin (18.3.8):
9(a) = Ext-Si, iy Ciy iy {Ext-TLe(250,1") 7 (Ext-exp(is) Ay, (a5 (05)/2) )} (18.3.17)

Theg, are merely thg, in some order. The coefficieni§,_;, are now considered as functions on the discrete
space whose points are the indices oftifse To the pointi(. .. iy) is associated the point mass

Ext- HS(Ext-exp(ZiS)) . With this measure, the transformatibithat carries a set @f's into the corresponding
function g as in (18.3.17) is norm preserving asa@ froml# to L%, We will later show thaf is norm decreasing as



a map from# toL%. Assuming this for a moment, we complete the pobdhe theorem. We apply the generalized
Riesz-Thorin convexity theorem to the transfornmaffcobtaining

Ext- [|Ext-exp(—tH,,)|****d*u <
1+3At

2(1+AD)N 12(1+A)
< [Ext- (Zi1~,~~,iN Ext- HS(Ext-exp(ZiS)) X |(Ext-exp(—a)i1wiNt)) X Ciy..in 1aae )] (18.3.18)

with
Wi, iy = Ext-Xs lsws. (18.3.19)

In the right-hand side of (18.3.18) we apply theagalized Holder inequality to obtain an expressinmlving the
weighted sum of the squares of the absolute valfig®e C’'s which is equal to one:

Ext- [|Ext-exp(—tH,,)|*t#*d*u <

21t
< [Ext- <Zi1~,--,iN Ext- Hs(Ext-exp(Zis)) (Ext-exp (—wilwm X %)))] . (18.3.20)
It follows that

#
G (Ext- f|Ext-exp(=tHy )**d*u )| <
t=0

. 2(1+1
21 X {Ext-ln [Ext- (Zi1-,~,i1v Ext- HS(Ext-exp(ZlS)) (Ext-exp (—will‘"‘iN X (2; t))))]} (18.3.21)

If ug/A > 2, this gives an inequality with finite right handisiin the#-limit N - *co. It is clear that the theorem is
now reduced to establishing tHats #-norm decreasing frorf to L%.

Lemmal8.3.1. LetS be the space of sequené€§}, y=0,1,..., N with #-measure gt, Ext-exp(2y); andY the
space of functions otR¥ with #-measure

(1/my) Y/ (Ext-exp(—x?))d*x, (18.3.22)

andT the operator fron§ toY given by

Ext-exp(y) )4y (x)
T{c,} = Bxt- 3, ¢, B (18.3.23)

d#n

with A, (x) they-th Hermite polynomiali, (x) = (—1)"(Ext-exp(x?)) (Ext-exp(—x?2)) ; then,T is #-norm

d#xm
decreasing front{ to L%.
It is easy to see that this lemma would follow frestablishing the inequality

(ni#)% (Ext-exp(—a —-b—c— d)) x

x (Ext- J.qu20 e+ (@) (1) (ct#) (a1 )] /2 Aa () Ay (A () Ag () (Ext-exp(—x?))dx)| <1 (18.3.24)



for all integersa, b, c € *N andd > 0; actually, it is sufficienttolet = b = ¢ = d. We use the generating
function [21]

Ext-exp(—t? + 2tZ) = Ext- ZNE*N;—:\;AN(Z) (18.3.25)
to obtain
1
()7 (Ext- foga(Extexp(—x2)) 40 )4y (1) Ac () Aq (x)d"x) = (18.3.26)

%(a+b+c+d)
pick-a-power

# # # # 1
= M x 220F0FCHD o (g 4 1t + U + St + SU + tw)
E(a+b+c+d).

where pick-a-power means to find the coefficient of the monomial r%s?tu? in the expansion of the
expression. Note thata + b + ¢ + dis even or the integral vanishes. We make the crude estimate

La+b+c+d
(rs+rt+ru+st+su+ tu);iz;a:)i;\-/vjr < (18.3.27)
_1 1(a+b+c+d)
< 2z@tbrerd) o (rp st + W2, 4a-power
Now,
1
Slatb+ct+d) — (at+b+c+ad)?
(r+s+t+ u)f)ick_a_power = @M@ @ (18.3.28)
Denoting the left-hand side of (18.3.24) by J and using (18.3.27) we obtain
g y g
\# —1(a+b+c+d)
S < (Ext-exp(—a— b — ¢ — d)) x —Lerbeerdhe 2 : (18.3.29)
[(a)(01¥)(ct¥) (@) *[a+b+c+a)]#
It is easily verify that
I<1 (18.3.30)

The inequality (18.3.30) finalized the proof of them.

CHAPTER I

§1. INTRODUCTION

§1. 1 We can consider a somewhat different cut-off theoaynely thelgf theory in a periodic box. This gives a
cut-off interaction which is translation invariaatid therefore it is useful for the study of thewam state. In a
finite interval we prove that the total Hamiltonienself#-adjoint and has a complete set of normalizable
eigenstates.



§ 1. 2 Definitions and notation The Fock spa€g# is the Hilbert space completion of the symmetitsor algebra
over L ("R#3)

Fh = C(L4CRE)) = Ext-@,2,F, (1.2)
whereF? is the space of non-interacting particles,
# # (*pH#3 # (*p#3 #*#3
Fi=LE(R7)® LR ®; - @ LECRE). (1.2.2)
The variablek = (k,, k,, k3) € *R¥? denotes momentum vector. Rpr= {yy, 4, ...} € F# = Fi@FiD -

We define on Fock spad®’ the*R#- valued#-norm||-||, by |lp||3 = Ext- Z;‘:Olllpzlliz, where||:|| 4,is a#-norm in
LE(*R¥#3) The no particle spacg? = *C* is the complex numbers, and

Q= {1,00,..} € F* (1.2.3)

is the (bare) vacuum or (bare) no-particle statéoreWe define operatofé and H, ,, by

(NY)y = n(Ext-TTiz; Okl 20 ¥n), (1.2.4)
(HO'Hll))n(kl, k) = Ext- X7, 0(||K; ||, ) (k;) ¥n (K, .o, K, (1.2.5)
wherex € *R¥,\"Rf,, and
0(||k; ||, ) = 1if ||k;|| < 2 and(||K; |, ) = 0 if [|K;|| > 3¢, u(k;) = [k, Ke;) + m] (1.2.6)

HereN is the number of particles operator, aHgl,, is the free energy operator (the free Hamiltonidhp rest
mass of the non-interacting particlesrig, andu(k) is the energy of a free particle with momentumteek . We
use the standard annihilation and creation opeatd) anda*(k),

(a(k)l)b)n—l(kli R kn—l) = \/ﬁlpn(k' klﬂ R kn—l)'

As a convenient minimal domain fack), we use the s&" of vectorsp € F# with 1, = 0 for largen € *N and
Yy, € St (R¥3™) for alln € *N.

* -1/ R
(@ ()Y ne1(Ry, oo ey Knyr) = Vot 1Ext- X021 6% (k — k) Yo (Ko, oo Ky oK), (1.2.7)

Here the variabld; is omitted. While a*((k) is not an operator, itaiglensely defined bilinear form ot x €7,
Remark 1.2,1 Note for a*C¥- valued function otC#- valued distributiob we can define’C#- valued bilinear
form

B = Bxt- [y gy DKss o i K, K (R) @ () (k) = a(—Kp)d Ky ..dP k. (1.2.8)

The integration helps in (1.2.8) aBds not only a bilinear form, but often an operaifthis is the case if, for
examplep is the kernel of a bounded operaBgrfrom F¥ to F¥. In this case

(N, + D=*/2B(N,, + 1)—5/2||# < const - || By |4 (1.2.9)



provided thatn + n < a + . The constant depends only @3, m andn. Intuitively we think ofB as being
dominated byV™ *™/2: in particularB is an operator of ( N +”)/2) the domain oN™ *™/?_ The inequality

(1.2.9) is one of our basic estimates and in uging will often dominatd|B,||4 by the Hilbert Schmidk-norm
1Bollsrs < N1blluz, 1Bollgns = /Ext-Yie-wollAe;lls , and wherde;|i € oo} is an orthonormal basis R#.

By definition the field with hyperfinite momentunuteoff ¢} (x), x = (xy, x5, x3) € "R¥3,3c € *R¥, \"RE_, is
o (x) = Ext- fIkIS%(Ext-exp(—i(k, x)){a* (k) + a(k)Hu(k)] 2d*k = (1.2.10)
= Ext- fxmga 0(|lk |1, 20) (Ext-exp(—ik, x))){a* (k) + a(k)}[u(k)]"/2d*3k.
We also define the bilinear form

ni(x) = Ext- flkls”i(Ext-exp(—i(k, x)){a" (k) + a(k)}[u(k )]%d#3k = (1.2.11)

Ext- [ gwa 10 (lIK II, 2) (Ext-exp(—i(k, x)) ){a* (k) + a(k)}u(k YEd*k,

the conjugate momentum g (x). Since the kernels(k) = 8(||k ||, ) (Ext-exp(—i(k, x)))[u(k )]"*/? in L} the
bilinear forms (1.2.10)-(1.2.11) define operatolueal functionsef (x): *R#3 — L(F*) andrf(x): *R#3 - L(F#).
For realf (x), g(x) such tha® (||k ||, ) [u(k)]~/%f (x) € L% and@(||k ||, ) [u(k )]%g(x) € L%, , the bilinear forms

e (f) andr#(g) define operators whoskclosures orD( N,i/z) are self#-adjoint. They satisfy the canonical
commutation relations

Ext-exp(in}(g))Ext-exp(ig}i(g)) = Ext-exp(i(f, g)s){Ext-exp(igf(9))Ext-exp(infi(g))}.  (1.2.12)

It is furthermore possible to define polynomial étions of the fieldpf (x), the Wick polynomials ¢ (x): (see
chapter | for a definition of the Wick dots : :jicitly, as a bilinear form od( N,;/*) x D( N;/?),

L () = B (1) ba e, o k) @ () - @ (Ky)a(—heyy) = a(—ky), (1.2.)3
where
by(ler, o, k) = Ty 0| || 20) (k)] 7% Ext-exp(=i(Z™_y k;, %)),
Thus for realf (x) € S*(*R¥3), the bilinear form

L @E"(f) = Ext- [uges : " (0)d"x

has a kernel proportional fg}_, 9(||kj||,}{)[[l(kj)]_1/2 f(X71 k;). Thus from (1.2.9) we conclude that

1@ (f): defines a symmetric operator on the don‘l}a{nvf/z). It was shown in chapter | sect. 15 thaf™(f):
is essentially self-adjoint on this domain.

§2. THE PEREODIC HYPERFINITE APPROXIMATION IN



CONFIGURATION SPACE

§ 2.1 The cut-off Hamiltonian H,,(g).The cut-offHamiltonianH,,(g) acts orFf and can be written in terms of the
field operatorp? (x), x = (x4, x,, x3) as

H,(9) = Hy, + Ext- f*n&’ﬁ O (x)d®x = (2.12)
= HO,}{ + HI,J{,g'
where Hy,, = H,,(0) is the free hamiltonian, ard< g. Let
ce (HO.H) = nno=oo D(H&x)

be the set of "* vectors forH, .. It was shown in sect.15 chapt.1 thaf(g) and H;,, , are essentially
self-#-adjoint onC ™ (H,,. ), that

D(H,(9)) = D(Ho,) ND(Hyg) (2.1.2)

and that there are finite or hyperfiniteb = b(g) such that
| Hosell, + | Hisegll, < NCH(9) + BYP I (2.1.3)

for ally € D( H,(g)).

Note that it is convenient to introduce a peridgyperfinite approximation in configuration spacedér this
approximation, the momentum space varidbte (k,, k,, k;) € 'R¥3 is replaced by a discrete varialiles I}

2nn;
V )

I = {kc = (ky kp k)l = 22 m; € 251 = 12,3}

with V € *R§+\*R§n+. Thus we defing#, the Fock space for voluni€ as
7 = (@) = T OUGHBULF)®, 4 ()} -

We identifyF} with the subspace ¢t* consisting of piecewise constant functions whigh@nstant on each cube
of volume(2m/V)% cantered about a lattice point

{ky, .. Jl;} € TF X TF x = x T} = T,/

The periodic annihilation and creation operatofk) anda* (k) can be extended frof} to F# by the formulas

3/2

ay (k) = (Z) " [Ext- [ 7, A", Ext- [ 7, A%y Ext- [ 7 d*lak + D] (2.1.4)
3/2

ay(k) = (5)" [Ext- [ 7, d*L, Ext- [ 7, d*ly Ext- [ nd*la (e + D) (2.1.5)

Therefore the periodic fielg}; , (x) and the periodic hamiltoniafi,,, (g) can be extended to act &fi by the
formulas

Oy () = (V)32 Ext- Byera s Ext-exp(— ik, x))[a’ (k) + a(—0)](u(k)) 2, (2.1.6)



Hyy = Hopy + Hpsv, (2.1.7)

v/2 V)2 v/2

Hy,y = Ext- f—V/Z Ext- f—V/Z Ext- f—V/Z @it (x) d®3x, (BL
Hoyy = Ext- [, a" (k) a(k)u(ky)d**k (2.1.9)
with ky, a lattice point infinite close tk,
ky €T3, Ik — kyll < § ~ 0. (2.1.10)

Remark 2.1.1 Note the absence oflain thea(k) anda*(k) in (2.1.9). OrFF}}, this definition of H ., agrees with
the standard definition

Ext-Sera, @y (0ay (R)u(k).

V|k|sx

The operatordd,, , and H,,, are essentially self adjoint an® (HO,H,V), and
D(Hyy ) = D(Houy) N D(Hpyy): (2.1.11)
Forally € D(H,y ),
[Honw¥ll, + [|Hvll, < all(Hev + b)Wl,, (22)

whereb depend or¥. OnF}, the operatoH, ., has a#-compact resolvent. We want to approximétg (g) by
operators with#-compact resolvents oi?, so we define

Hy, (9, V) = Hosy + Ext- [ = @iy () g(x)d™x = (2.1.13)
= Houv + Hix(9,V).

As in chapter | sect. we can show tHa(g, V), andH, ,,(g,V) are essentially se#-adjoint onC’™® (HM,V), and
that

D(H,(9,V)) = D(Hoyy) 0 D (Hy(g, V). (2114
Furthermore, for ali) € D(H,,(g,V)),

[Hosex®l, + Hixe (g, VIV, < all(Hi (g, V) + DYl (2.1.15)

In this case botlg andV serve as volume cutoffs, and the constaatb(g, V) can be chosen independentlyof
for fixed g. On the spac&}, the operatoH,,(g, V) has a#-compact resolvent. Our hamiltonians are semi-bodinde
and for eacls > 0, there is a constahtsuch that

0 < eHy, + Hp,(g) + b, (2.1.16)
0 <éeHy,y + Hpy + b, (2.1.17)
0 < eHo,y + H; (g, V) + b, (2.1.18)

see chapter | sect. 1 (2.1.18), the b can be chosen to be indeperafént Takinge = 1/2, we have



%Ho,x < Hl,x(g) + b,
1
which implies that for alip € D ((H,{(g))E )

1Hosewl, < V2| (H (gD + DY /2] - 2.1.19)
Here we must choogeat leadtE, (2g)|, whereE, (2g) is the vacuum energy for the cut-af.
8§ 3. THE EXISTENCE OF A VACUUM VECTOR Qg FOR H,.(g)

In this section we prove the existence of a vacwuaatorQ,, , for H, (g), and we prove that the vacuum is unique.

§ 3.1 The existence of a vacuum vector In this subsection we prove the existence of awacuecton,, , for

H, (g). Since the Hamiltoniaf,(g) is bounded from below, we can define the vacuuergt, ; £ E(x, g) to
be the infimum of the spectrum Hf,(g) and we also refer 18, ;, as thdower bound of H,,(g). We show that,, ,
is an isolated point in the spectrum. In a relatigitheory, the gap between the ground statetantlrst excited
state is the mass of the interacting particle.tFisrreason we say thHs, (g) has a mass gap. A vacuum vedgr,
is defined as a normalized eigenvectoH{g) corresponding to the eigenvalllg,.

H,(9)Qg = Ey Qs g, ||Qx,g||# =1. (3.1.1)

Theorem 3.1.1There is exists a vacuum vecy, ;, for HamiltonianH, (g). For anye > 0,e ~ 0 the

operatoH, (g), restricted to the spectral interv[i,_g, E, 4, +my— £] is #-compact.

Theorem 3.1.2 The approximate Hamiltonid, ,(g), has a vacuum vect@, , ,. Any hyperinfinite sequence of
volumesV; tending to hyperinfinityco has a hyperinfinite subsequeritgl € *N such tha#-limit

Qpey = #1iMy o0 Dy gy, (3.1.2)

exists and satisfies (3.1.1).

Remark 3.1.1 LetE, , be the lower bound off,, , (g) onFy. SinceH,,,(g) has a#-compact resolvent dfy,
there is a vacuum vect6y, , , for H,,(g) I F;}. We now see thdi, , ; is the lower bound fot,,,(g) onFy, so
that Q,, , is a vacuum vector fdi,, , (g).

Remark 3.1.2 Let Fji* be the orthogonal complement®f. Since H,,,(g) leavesF invariant and is self-
#-adjoint, H,.,(g) also leavesF{* invariant.

Theorem 3.1.3 The lower bound of,,,(g) onF ISEy gv + mg, Wherem,, is the rest mass of the Fock space
bosons.

Remark 3.1.3 Theorem 3.1.3 shows thas, ; , is a vacuum forH,, , (g).

Proof We have an orthogonal decomposition in the sipghticle space

Ff = LA(RP) = Ff @ FiF. (3.1.3)

Here Ff, = Ff n F§ consists of functions piecewise constant on imisreantered at lattice points. Thus we may
write

F* = Ext-©,7 F*0, Bt = Ext-@,7, F*0), A3

where F#U) consists of vectors with exactlyparticles fromF}+ and



FHD) = (Ext- FiF @ - @, FIH®, Fh (3.1.5)

In this tensor product decomposition therejafi@torsF;i+. The Hamiltonian H,,,(g) leaves each subspadd'
invariant, and orF*Y) we haveH,,,(g) = IQA+ B ® I, whered = H,,,(g) I F§ andB is a sum of copies of
H,,.y each acting on a single fact@¥. Since

jmo < B, (3.1.6)

the Theorem follows from this decomposition.
Theorem 3.1.4 ForV < *oo, and forb sufficiently large we have

D(Hy,) € D (Hé,x> NnD(N,) c D(H,y(g) +b), (3.1.7)

D(Hou) € D ([N + D7 (Hi () +5)]). (3.1.8)

Here we denote by~ #-closure of the operatat.
Proof We takeb large enough so thatf,, ,(g) + b is positive, see (2.1.18). By (1.2.9) and (2.} get

D(Ho,) 0 DNZ) € D(Ho) 0D ( Hisey (@) = D (He (@) € D (o (9) + b)2)

Thus for alkp € D(H,,.) N D(N2),

=W, (Huy (@) + b))y < (W, (Hyy + b))y +

2
#

|Cw (o + B0
(N, + D7 Hyoy (N, + D7 N, + DI

1
Since( H,,(g)+ b)2 is a#-closed operator, we can extend this inequalitytbgontinuity. AsN,, and H, ,,
commute, the inequality extends #ycontinuity to alkp € D (H;’f ) nD(N,) D D(HO'H). The proof of (3.1.8) is

similar.
Theorem 3.1.5 Let z be non-real or real and sufficiently negative. sl tends to hyper infinityoo,

|CHw () = 21) ™ = () = 27| = 07, 19)

Proof Let us fixg andz and suppresg when possible. In chapter | sect 16 we have shbatnH,,(g) is
essentially sel#-adjoint onC " ( H,,,). Thus vectors of the forppn= (H,, — zI), € € °( H,,), are#-dense
in F#. On these vectors

{(Hyy =2 = (H, = 21y} x = (Hyoy = 21) {CHye = 2D = (Hyqy — 21)p} =
= (H}{,V - ZI)_l(Hx - Hn,V)(Hu - ZI)_l)( =

=(H,y — zI)_l(NK + DN, + D7Y(H,, — Hyy )N, + D7XN,, + D(H, —zD) 7t y.

Foro € F*,



0, {(Hoey = 1) = (Hye = 2D7H 204 < (3.1.10)
< ||+ Dy = 20) 7| 100 [N+ D7 (e = Hoy )N+ D7, %

X [[(Ny, + DCHye = 2D Hlgllxlls -

Using (2.1.15), we find tha#(N% +D(Hyy — z‘I)_1 ||# is bounded uniformly i, since
|+ D(Hyy = 21) || < const || (Hoey +1)(Hew = 21) 0|, <

< const - ” Hyy(Hyy — Z_I)_11[J||# + const - ”( H,y — Z‘I)_ll,b”#,

where the constants can be chosen independeritlyRy¥ a similar consideration, the orthogonal decosifon

(3.1.3) shows thatn,, + I)( H,y — zl)_1 is a bounded operator. Thus from (3.1.10), andabethat they are
#-dense, we infer

|t = 21) ™ = (H - z1)—1||# < const - || (N, + D7 (Hy — Hyey )Ny + D7, (3.1.11)

with a constant independent &f. The differenceH,, — H,.;, = (Ho, — Hony) + (H,,H(g) - H,,K,V(g))
and for infinite largée/,

[(N,e + D72 (Hope = Hopey )Ny + DY, = 0V ). (3.1.12)

This is a simple direct computation, usipgk,) — u(k)| = 0(V~1). For the interaction terms, we use (1.2.10) to
estimate

|+ D772 (Hy(9) = Hir (@) (N, + D7 = 00, (3.1.13)
The kerneb (k;, ..., k,) corresponding to a monomial it ,,(g) is
b ey, . ks) = () T 01kl 5[ ()] 8 (kP + 1P + kP + kP, kP + 1 + kP + kD),

0 <j < 4. The kerneby (k4 ..., k,) ) for the corresponding monomial #9,,,(g) is obtained by replacing the
factor T2, 0 ([k; |, ) [(k;)]'* by the facto T4, 8(|| k||, %) [(F;v )] 2. Inspection of the difference
b(ky, ..., k) — by(k4, ..., k,) shows thallb (k,, ..., k,) — by (k4, ...,k4)||L§ = 0(V~1).asV - *oo, from which we
conclude that (3.13) i8(V ~1). The#-convergence of the resolvents follows from (3.1-(BL).13). The#-limit

Eygv =4 Eyg

follows from the#-convergence of the resolvents, since for largetipedi,

-1 -1
(E}{,g,V +b) = ||(H%,V(g) +b) ||#.
Proof of thetheorems 3.1.1 and 3.1.2 ltef (x) be a#-smooth positive function with support in the intarv
[—&,my — €] Thenf( H,y(g9) — EM,V) I FF is#-compact, since the resolvent 8, ,(g) I Fyfis #-compact on



F§. By Theorem 3.1.3{( H,,y(9) — E»gv) | Fii* = 0 and therefore #-compact on the full Fock spag§. By

Theorem 3.5, the resolve(it,,, (g) — E, gv — z)_l #-converge in#-norm as/ - *oo, and therefore
”f( H%,V(g) - Ex,g,V) - f( Hx(g) - Ex,g)”# 4 0'

sincef ( H,(g) — E,.4) is a bounded function §fH,,(g) — E,, 4 — z)_1 which vanishes at hyperinfinity. Since the
uniform #-limit of #-compact operators #-compact,H,,(g) restricted to the spectral intenjale, m, — €] is
#-compact. This means furthermore that only a finitdyperfinite number of eigenvalues Hf, ,,(g) #-converge

to E, 4. Theorem 3.1.6 shows that the projection ontcctireesponding set of eigenvectorsigf ,(g) #-converge
asV - *oo. SinceQ,, 4 is an eigenvector qf( H,y,(g9) — E,{,g,‘,) a hyperinfinite subsequence of g,
#-converge to #-limit asV — *co. For this#-limit

Notation 3.1.1 Let X andY be a non-Archimedean Banach spaces. The set#fcidised operators frolki to Y
will be denoted bye#(X,Y). Also we write€# (X, X) = £#(X). The set of all linear operators fraXnto Y will be
denoted byB(X,Y). Also we writeB(X, X) = B(X).

Theorem 3.1.6

[18,p. 21 &B
€(B)

§ 3.2 Uniqueness of the vacuum. In this subsection we prove the uniqueness otawa vectof),, , for H, (g).

Theorem 3.2.1 The vacuum vectaw,, ,  for H, (g) is unique.
Remark 3.2.1 In other worddt,, 4, the lower bound of,, (g) is a simple eigenvalue.
Definition 3.2.1 Let H# = L4(Q, d*u) be a non-Archimedean Hilbert space. We say tihataded operator

A: H* - H* has a strictly positive kernel provided that

W, Ax)y >0 (3.2.1)

wheneveny andy are non-negativé$ functions with non-zer&-norms. Such an operator transforms a function
x = 0,|lxll4 # 0 into a functiondy which is strictly positivet-almost everywhere.

Definition 3.2.2 Let H# = L4(Q, d*u) be a non-Archimedean Hilbert space. We say thatuaded operator

A: H* — H* has a positive, ergodic kernel if for eaghy as abovéy. Ay) = 0 and

W, Al y)y >0 (3.2.2)

for somej, depending oY andy. Clearly everyd with a strictly positive kernel has a positivegedic kernel.
Theorem 3.2.2 Let A have a positive ergodic kernel, and suppose|lthhy is an eigenvalue of. Then||All4 is a
simple eigenvalue and the corresponding eigenveetobe chosen to be a strictly positive function.

Proof SinceA maps positive functions into positive functional&o maps real functions into real functions. If



Y € H* satisfiesAy = ||All4 - ¥, then so dReyy andImy. Therefore without loss of generality we may assume
thaty is real. Sincdl4’||, = l|All}, andA/y = ||A]l} - ¥, we infer that

47, - o3 = . ATy < (pl, AT 1)y < 1AL, - plI3,

(. AT)y = (|w], A |y
Writing nowsp = 1+ — 1=, wherey* and 3~ are the positive and negative partshof
W AT )y — W AT )y — (7, AT )y T, AT )=
= (W ATy + (W ATy QT AP (T, ATy
or
W* AT )y + (7, ATy = 0. (3.2.3)

Unlessy™ = 0 ory~ = 0, each term of (3.2.3) could be made strictly pesiby choosing an approprigteThus
eithery* or ¥~ must vanish, and we may choose the eigenvegctorbe non-negative. Jf = 0, ||x|l4 # 0, then
for some integey ,0 < (y, A7), = ||A||j; {x,¥)4. This proves thaty is not zero almost everywhere, and that
is strictly positive#t-almost everywhere. Finally, if andy were linearly independent eigenvectorsiafith the
eigenvalud|A||,, then we could repeat the above argument witlcoimeponent of¢ orthogonal tap. This would
yield two positive, orthogonal eigenvectors, whiehuld be impossible, and the proof is complete.

Remark 3.2.2 Let ¢ (h) = Ext- f*m§4 o#(x)h(x) d**x denote the smeared, time zero free field opesaldre

spectral projections of thgf (h), or the function€xt-exp (i} (h)) generate a maximal abelian algebfd of
bounded operators @f*. Let Q be the spectrum of the algelivé?. The no particle vectdd, € F* is a cyclic
vector for ‘DR, namelyF# = #-(.4"Q,). Therefore we may introducettameasurel*y onQ so thatF* is
unitarily equivalent td.%(Q, d*u) and so that the equivalence cari$ into L% and takes), into the functior.
Theorem 3.2.3 With F* represented ds(Q, d*u), Ext-exp(— H,,) has a positive, ergodic kernel.

Proof Lety andy be non-negative. Writgy = 1, + 1, wherey, is the component ofy alongQ,. Thus the.?
#-norm of Y is given by|yY|ls1 = (W, Qods = (Y1, Qo)x. Note||y||s; # 0 whenevenp is non-zero, and

|| Ext-exp(— tHo, )¢ ||, < (Ext-exp(=tmy))llibll41, wherem, is the boson mass. Thus

(W, Ext-exp(—tHo, ) ) = 1P 141 - 1 llex = 1W2lls1 - 21141 (Ext-exp(—tmy)). (3.2.4)
By choosing t sufficiently large, (3.2.4) is pos#j which proves (3.2.2). If the following ineqinaholds

1 1Y llg- llx llgq 1 I Naq 1x llaq
Ext-exp(—tm,) < = =- (3.2.5)
07 7 2lallyr xzlles 2 (pliz—1piz,) "> (ll3-1xiz,)

then

(1, Ext-exp(—tHo, )1 = S 1 llna - 1t Il (3.2.6)

We need to show thétp, Ext-exp(—tHo_H))()# > 0 for all finite t. In fact, it is sufficient to prove this for#&xdense
set of non-negativgy andy. Let us consider an approximate free energy operat

Hosy = Ext- [, a*(K)a (k)u(ky)d* k. 3.27)



For vectorsp € € ®( Hy,), asV - *oo. || Hy v — Ho_ulp”# -4 0. Since H,,, is essentially self-adjoint on
C*°°( HO,,{), the resolvents oH, ,,; converge stronglf8, p. 429]. Thus the generalized semigroup
#-convergence theoreft8, p. 502] ensures that for afp € F*#

||Ext-exp(—tHq,., ) — Ext-exp(—tHO'H)t,b”# -4 0

asV — oo, and thet-convergence is uniform gh-compact sets af Therefore we need only show that for a
#-dense set of non-negatiyeandy (i, Ext-exp(—tHol;,,V)X)# > 0. LetF(xy, ..., x,,) be a non- negative, hyper
infinitely #-differentiable function witht-compact support, and let

Y = F(@f(f1), -, 05 (£2))Q0, (3.2.8)

wheref;, ..., f,, are real. The set of all such vectors#mense inF#*, the non- negative vectorst.
Furthermore, we define

Yy = F(0hy (F)r s 0l () Q0o (3.2.9)
wheregf , (f,) is defined by restricting the sum in (2.1.6) togé
keT}, =17 n{k||k| < x}.

Theny, , € Fi c F#* whereF/} is the Fock space corresponding to the maded’: . For any vector
X € C*(Hoy)

loky (Dx = @£ (x|, 4 0, asv > “oo,

and asC*°°( HO,%) is a#-core for g} (f), the resolvents ap}. , (f) #-converge strongly to the resolvent of; (f).
[18, p. 429]. Thus the generalized semigroizonvergence theorefi8, p. 502] ensures that for eaghe F#, s
real

||Ext-exp (iS<pfi,V(f))¢ — Ext-exp(is <pff(f))¢||# -4 0, asV — “oo,

and the#-convergence is uniform fét-compact sets of. By (3.2.9)

Vo = Ext- [ F(sy, ..., 5p) [i Y1 Ext-exp (is<pﬁ,V (fJ ))] dts, - d*s,,
andF (s,, ..., s,,) vanishes rapidly at hyperinfinity, so we concliliat
||1/’u,v - 1,1}"# -4 0,asV - *oo,
Thus for such vectong, y,

W, Ext-exp(—tHo_H))()# = #-limy_ 0 (P, v, Ext'exp(_tHO,x,V)XH,V)#

and we need only show that

<¢H,V’ Ext'exp(_tHO,x,V)XH,V)# = 0. 3210)

However onF/#,



Hg v = Ext- Zkeri‘v ay(k)ay(k)u(k) = Ext- Zke’"f:’,v Ho v,

SoExt-exp(—tHy,.y) = Ext- Mierz, exp(—tH,,.v ). It easily verify by explicit computation that eagperator

exp(—tHO,,f,V) have a strictly positive kernel, so (3.2.10) hadsl the proof is complete.

Theorem 3.2.4 With F* represented ds (Q, d* ), the operatoExt-exp(—H,(g)) has a positive, ergodic kernel.
Remark 3.2.3 We expect thaExt-exp(—H,, ) andExt-exp(—H,(g)) have strictly positive kernels.

Proof As in Theorem 3.2.3, formula (3.2.7), we consilgy (g) = Hy, + H;, v (g). The approximate interaction
H;,.v(g) is constructed witkp} , in place ofpf. SinceC*°°( HO,;,) is a#-core forH,,(g), we can argue as in the
previous theorem that for ajll € F#

Ext-exp (—tH,{,V(g))t,b -4 Ext-exp(—tH,(g) )i, asV - oo,
Thus we need only prove that f¢r y as in Theorem 3.2.3
0 < & < Gy Ext-exp (=t () T )r a1)

and that for sufficiently large the constant = (i, x, #,V ) can be chosen independentlyo&ndV. OnF}, we

have an explicit representationBft-exp (—tHH_V(g)) given by generalized Feynman-Kac integral formula
(¥rey, Ext-exp (—tHn,v (g))x;,,v)# = (3.2.12)

Ext- [, Ext-exp (= [Ext- [ Hyg,0(a()) 4%t]) ¥ (a(0)) 2w (a(©)D*q (.
Hereq(s) denotes a points in the spectrum of the modes

qv(k) = ay (k) + ay (k) + aj, (k) +a}, (=k)
qv(k) = ay (k) —ay (=k) +a}, (k) —a, (=k)

for k € I3, = {k|k € I;? A |k| < »}, andC,, is the path space for these modes. Skxeexp (—tHO_H(g)) has a

strictly positive kernel, (3.2.12) exhibiBxt-exp (—tHH,V(g)) explicitly as an operator with a strictly positive
kernel. Thus (3.2.11) is valid, and taking #iimit asV — *co shows that

(W, Ext-exp(—tH,(g))x )4 = 0. (3.2.13)

We now establish a uniform lower bound&im (3.2.11) to prove that farsufficiently large (3.2.13) is strictly

positive. Given any positived we can split the integral (3.2.13) into two pakist CS‘), be those paths such that the

exponent in the Feynman-Kac formula satisﬁe[fxt- fot H g (a(s)) d#t] =-M, and Ietcff‘), be the
complementary set of paths. Thus

Wiy, Extexp (~tHyy (9)) Ty s = (Ext-exp(=M))Ext- f, ) ¥ (0(0)) oy (a(®)D () =

= (Ext-exp(—M)) {(ED;{,V' Ext'EXp(_tHo,x,V)Xn,V)# — Ext- fC;({Z& Yy (q(O)) Xx,V(Q(t))D#q(')}- (3.2.14)



First we choose by (3.2.5) so that (3.2.6) holds. Then for suéfitly infinitely largeV’ (depending on),

1 1
Wevs Ext'exp(_tHO,u,V)Xx,V)# = ;(lp’ Ext-exp(—tHo_,{))( e = " 1 [lag - 1 Nlas

Thus (3.2.14) becomes

Let Pr{-} denote thét-measure on path space, so that by the generaliakeidHnequality
wherel < r < 2. By the smoothing property @fxt-exp(—tH,,, ) for sufficiently larget

and forV sufficiently infinitely large, this is dominated/ ||y || 4, - llx |42 Thus with the choices so far made for
V,t,M,

provided in addition that

@) (bl llx Nl Trn
Pr{cw}— (16||1/)||#z'||)(||#2) ' (3.2.15)

We now show that for M sufficiently large, (3.2.18)satisfied and therefore theorem is proved.

84. THE HEISENBERG PICTURE FIELD OPERATORS
8 4.1 In the Heisenberg picture operators have the tiepeeddence
A(t) = Ext-exp(it HH(g))A(O)Ext-exp(—i tHH(g)) (4.11)

This definition of the dynamics contains the cufaffctiong(x) explicitly. For an important class of operators
A(0), however A(t) is independent of (x) provided thag(x) = 4, the coupling constant, on a suitably large set.
For example, we také&(0) to be an observable representing a measuremdotmped in some 3-dimensional



regionB c *R#3 of space (at time = 0). ThenA(t) represents the same measurement performed at.tdne
hamiltonian with a hyperfinite ultraviolet cut-offe *R#,\*R{;,., such asH,,(g), propagates information with at
most the speed of light. Thereforgjifx) = A on a region containing, andt is sufficiently small, the fact that
g(x) does not equal everywhere will never be recorded by a measurerm@nt For each localized observable
A(0) and eacht, we make an appropriate choice ). Therefore (4.1) provides the correct dynamicstier
(¢*), quantum field theory with the cgiantum field theory with the cut-off removed. histsection we discuss
the field operatorg (x, t) or *R¥*

@i(f) = Ext- [._s ¢} (x,t) d¥xd"t. 4.9.2

We see that integration helps in (4.2) becapfsg) is an operator while} (x,t) is a bilinear form. Actually the
time integration is not required and for r¢al

A(t) = Ext- [, o4 ) (x, 1) d*3x (4.18

is also a sel#-adjoint operator dependirfycontinuously ort. We expect that this is a special feature of the tw
dimensional model we are considering and that stirugfields will not be operators in four dimensso For this
reason, basic physical concepts have been fornoullaterms of the time averaged fields (4.2) rathan the sharp
time fields (4.3). For example, Wightman's axiomsd quantum field theory are expressed in termbebpera-
tors (4.2), and we will show that many of his axgarne satisfied for our model.

§ 4.2 An invariant domain for localized fields. In thisction we study the Heisenberg picture field |aeadiin a 4-
dimensional region of space tirBe We find thatp# (x, t) is a bilinear form and that for refl ¢ (f) is a#-densely
defined symmetric operator. We start with the redso a bounded open subset of space time. We ethat

H, (g) be a hamiltonian foB. This means that the spatial cut-gffx) equals the coupling constahbn a
sufficiently large interval to contain the domaindependence d. In other words, assuming that the velocity of
light is one, for every poirty, t) € B,

gx)=A11f |lx — y|l <t. (4.201
It is convenient to deal with the field
ok (x,t) = Ext-exp(it H,(g)) @} (x)Ext-exp(—i tH,(g))
and its time#-derivative
i 4 (x, ) = Ext-exp(it H,(g))m}(x)Ext-exp(—i tH, (g)) = 0% ¢} ,(x,t)/d"¢.

The time zero field®}?(x) and its conjugate momentunj (x) were defined in chapterWe shall see that for
(x,t) € B, <pf§_g (x,t) is independent qf, and equals the fielg? (x, t). Thus all the cut-offs have been removed in

the definition ofp (x,t). For eactC *-functionf (x, t) with support irB, we show that
©}(f) = Ext- LR? o, ) f(x,t) d3xd*t (4.2.2)
is an operator whose domain contains
Dy = C*(He(9)) = N2 D(HE(9)), 4.1.3)

In factD} ; is an invariant domain, i.e.



i (f)D} 4 c D}, (4.2.4)

SO thatDﬁ,g cCc® (<p}j(f)). We note that this invariant domain may dependherrégiorB in which the field
@i (f) is localized. Fopp € D} ; the expectation values

(1lh <P§(x1' tl) (pi(xn! tn)lp)# (425)

is *C¥*- valued Schwartz distribution ib*' (B x--x B). If f(x, t) is a function ins* ("R%*), theng} , (f) still is
defined onD} ;and leaves it invariant. The expectation value®.$3.of ¢ ;(x,t) are tempered distributions in
S*("RE*). However, the fieldg/ ,(f) may depend op.

Lemma 3.2.1 The fieldg}: ; (x, t) is a bilinear form o® (( H,(g) + b)'/?) x D(( H,(g) + b)*/?) #-continuous

1
in x andt. Namely fory) € D (( H,(g) + b)E) (W, o (x, t)y), is a#-continuous function. Furthermore

|Ext- o0, 01 9 G, W) F O] < const 1f e, (Hie(g) + DY) = 1,23 (4.2.6)

Proof The free fieldp(x,0) is the sum of two expressions of the form (1.8) Kernel® (k, »)b(k) are inLf.
Furthermore we hawe(k, »)b(k)[u(k)]~*/? € L. The estimate (1.2. 9) has been generalized tercnch kernels,
giving us

| Hone + D720 ,(x,0)( Hop + 1)'1/2||# < const - [|8.(k, )b (k) [u(I)] 2|, < oo . 4.2.7)

Thus fory € D ((H,(g) + b)2), Ext-exp(~it H,(9))p € D ((H,(g) +b)7) < D(HL/2), by (2.1.19) and
therefore(y, g} ; (x, t J)y = (Ext-exp(—it H,(9))¥, ¢} ;(x,0)Ext-exp(—it H,(9) )ih)y is defined and
[(W, @l g (e, £ )9)4| < const - [|6 (e, )b (k) (BT 2||,, - (b, (Hy(g) + DY)

Since [|6(k, )b (k) [u(k)] |k f ()|, < [|6 (K, )b (R [ (FO1 /21Kl |, _ - lIf Iz < const - [If Iy, the
inequality (4.2.6) holds. Let us writg,,i = 1,2,3 for b to denote the dependencebabnx;. Then ||(by, —
byl.)[y(k)]‘l/2||#2 is a function ofx; — y;) only and it#-tends to zero g — y| —4 0. Since



8§5. THE ALGEBRA OF LOCAL OBSERVABLES

CONCLUSION

A new non-Archimedean approach to interacted qumafitelds is presented. In proposed approach, d €iperator
@(x,t) no longer a standard tempered operator-valuedhdisbn, but a non-classical operator-valued fiorctWe
prove using this novel approach that the quantetd theory with Hamiltonia® (¢), exists and that the canonical
C*- algebra of bounded observables correspondingdartbdel satisfies all the Haag-Kastler axioms pkce
Lorentz covariance. We prove that thg*), quantum field theory model is Lorentz covariartir Each Poincare
transformatiore, 4 and each bounded regionof Minkowski space webtain a unitary operat@f which correctly
transforms the field bilinear forms(x, t) for (x,t) € 0. The von Neumann algebi&(0) of local observables is
obtained as standard part of external nonstandgethtaB,, (0).
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