Concerning the Apparent magnitude

Claudio Marchesan
Education: Chemical Engineering graduate - Retired
e-mail: clmarchesan@gmail.com
License: Creative Commons Attribution-ShareAlike 4.0 International Public License

Abstract

The observations reported in this brief analysis have the purpose of defending the reasons of an alternative model to the standard cosmological one. Named " 4 -Sphere", it is introduced in [viXra:2006.0202] (it works in the Special Relativity context).

The Apparent magnitude m, as measure of the brightness of a star, is decisive, together with the Absolute magnitude M, for the correct calculation of the Distance Modulus μ.

The quantity $\mu=m-M$, indeed it is related to the Luminosity distance d by $\mu=5 \log (d)-5$ (d in Parsec) from which some verifications of a Cosmological model are then derived.

Contrary to what one might think, the determination of the Apparent magnitude depends on the hypothesized model used. If no Galactic Recession is foreseen, its value coincides with that observed m_{o}. If, on the other hand, the existence of a recession is assumed, other conversions must be applied.

In this paper we consider the Special Relativity $(S R)$ as the context in which these calculations are to take place. If we do not assume the star is at rest with respect to us, in which case the following is irrelevant, I also think that the Apparent magnitude resulting from $S R$ has a different logical weight from that obtained on the basis of the assumptions of a model.

In fact, this calculation can verify a model, (the validity of $S R$ in nature is not in question) while, in order not to incur a tautology, calculations based on hypotheses can only falsify the same model that produced them (or serve to calculate its parameters).

In order to be able to use in practice the new K correction, we also wanted to propose a simple corrective to be applied to transform the Distance modulus. This would have allowed us to exploit the large number of observations of the Supernovae, already performed, transforming the Distance Modulus used by $F L R W$ into its correspondent in $S R$. The last paragraph explains why this, in my opinion, is not possible.

THE K CORRECTION

The calculation of a correction can take place in different ways, but it is in any case necessary to deduce, starting from the observed value m_{o}, the quantity m [1] to be used in the subsequent procedures.

Now, we will refer to the $K_{\text {corr }}$ described in [2], which, here, we will express in a different but equivalent form:

$$
m \simeq m_{o}-K_{\text {corr }}
$$

(m is given in reverse scale: the brighter is the star the lower is m. With $K_{\text {corr }}>0$ the receding star appears further away than it is)

The principal purpose of the $K_{\text {corr }}$ is to apply the transformations to be performed between the observed and rest-frame measurements.

In addition to changing the single frequency, the redshift can affect the functioning of the photometric equipment for the detection of frequencies within a wavelength band. The correction considers all these aspects. Given the complexity and extreme specificity of the topics involved, it is advisable to rely to articles in literature.

THE K CORRECTION IN SPECIAL RELATIVITY

We will refer here, for simplicity, to a star that behaves like a monochromatic source of light and to a photometric apparatus capable of measuring the intensity of the radiation.

Let us then view the effects of the Galactic Recession on the apparent magnitude m, in the Special Relativity context:

An energy δE of radiation, emitted from a source C moving away, is projected through a solid angle $\delta \Omega$ on a surface δS in the time δt towards an observer 0 at a distance r.

With $\beta=v / c$, for motion in the radial direction then the Lorentz factor is:

$$
\gamma=\left(1-\beta^{2}\right)^{-1 / 2} \text { with } \beta=\left((1+z)^{2}-1\right) /\left((1+z)^{2}+1\right)
$$

What the observer will detect will be: (symbol δ stays for infinitesimal quantity)
$\delta E_{o}=(1+z)^{-1} \delta E_{e} \quad$ for the redshift of frequency
$\delta \Omega_{o}=\gamma^{2} \delta \Omega_{e} \quad$ for the Lorentz length contraction only in the direction of motion
$r_{o}=\gamma^{-1} r_{e} \quad$ for the Lorentz length contraction only in the direction of motion
$\delta t_{o}=\gamma \delta t_{e} \quad$ for the time dilation occurred

HOW THE SOLID ANGLE IS TRANSFORMED

The increase of the solid angle $\delta \Omega$ can be seen more easily starting from 2-dimension: In a circle of radius r and center C (the star) an observer O is placed at the center of an infinitesimal arc $\delta \mathrm{b}$. An isosceles triangle has vertex in C and base δ b tangent to the circle in 0 .

If now we translate $\delta \mathrm{b}$ moving 0 along the height $h=r$ of the triangle, squeezing it in the direction of C, the observer 0 will see the vertex angle increase and the height h shorten

Expressing h as the Lorentz contraction of the radius toward the observer: $h=r / \gamma$ and returning in 3-dimension we can write:

The solid angle $\delta \Omega_{o}$ is given by $\delta \Omega_{o}=\delta S_{o} / h^{2}=\gamma^{2} \delta S_{o} / r^{2}=\gamma^{2} \delta \Omega_{e}$ because $\delta S_{o}=\delta S_{e}$.

RADIANT INTENSITY AND INTENSITY

Radiant intensity [3] is the power radiated in a given direction per unit solid angle, it is independent by distance of the source.

From this definition: $I_{\Omega}=\delta E \delta \Omega^{-1} \delta t^{-1}$ we can conclude that:

$$
I_{\Omega o}=(1+z)^{-1} \gamma^{-3} I_{\Omega \mathrm{e}}
$$

As regards the Intensity, the light of a star is not uniformly distributed in the solid angle subtended by the entire quasi-spherical surface. Being $I_{o} / I_{e} \propto \delta \Omega_{e} r^{2} / \delta \Omega_{o} h^{2}$ we can conclude that the decrease in the distance from the star is compensated by the increase in the solid angle, so for the Intensity it holds:

$$
I_{o}=(1+z)^{-1} \gamma^{-1} I_{e}
$$

as it had to be from its definition as the power $\delta E \delta t^{-1}$ transferred per unit area A, where the area is measured on the plane perpendicular to the direction of propagation of the energy. (From our 2d paradigm $\delta S, A \propto \delta b^{2}$ and $\perp h$)

Note, at last, that term $\delta E / \delta t$ changes due to both the redshift of the single photon and the number of photons emitted in the time unit.

Then, for the apparent magnitude relation:

$$
I_{e} / I_{o}=2.512^{\Delta m} \quad \text { where } \Delta m=m_{o}-m
$$

we have:

$$
K_{S R \text { corr }}=2.5 \log (1+z)+2.5 \log (\gamma) \text { and } m<m_{o} .
$$

The receding star appears further away than it is.

About the choice of the coordinate system, in case of contraction of an axis, we notice that, even if we express angles as arctangents of catheti of a right triangle, trigonometry would be of no help. Therefore, the trigonometric functions encountered will be left as they are, even if it is implied that the contraction of an axis can affect the angle.

Hence for the solid angle, the analytical treatment of the Lorenz transformation it is important as a verification of previous reasoning:

A star lies at the origin of the $O x y z$ coordinates in the center of a sphere of radius r. In any point x_{o} of the x axis an observer moves away from 0 , with a relative speed $d x / d t=v$ and in a solid reference system $O^{\prime} x^{\prime} y^{\prime} z^{\prime}$, the axes of which are parallel to those of O. The observer measures, under the Lorentz length contraction, the same radius on the x^{\prime} axis, obtaining $r^{\prime}=r / \gamma$. Being this measure independent of the position, x_{o} can also lie on the surface of the sphere in $x=r$ thus coinciding with the distance from the star.

With θ as the Meridian, φ as the Parallel and a point $P(\theta, \varphi)$ on the surface, we express the infinitesimal surface $\delta S=\delta S(r, \theta, \varphi)$ as a square of sides δb and δh centered in $P: \delta S \simeq$ $\delta b \delta h$. Note that considering two orthogonal great circle ξ, 弓 passing for $P: \quad \delta b \simeq \delta \xi$ and $\delta h \simeq$ $\delta \zeta$.

A straightforward way to proceed is now to define:
$x_{r}=r \cos \varphi \cos \theta \quad \delta y_{b}=\delta b \cos \varphi \cos \theta \quad \delta z_{h}=\delta h \cos \varphi \cos \theta$
giving for the Solid Angle:
$\delta S=\delta b \delta h=\delta y_{b} \delta z_{h}(\cos \varphi \cos \theta)^{-2} \quad \delta \Omega=\delta S / r^{2}=x_{r}^{-2} \delta y_{b} \delta z_{h}$
Then, from the Length contraction: $\delta \Omega^{\prime 2}=\gamma^{2} \delta \Omega$
because $x_{r}^{\prime}=\gamma^{-1} x_{r}$ while $\delta y_{b}, \delta z_{h}$ are orthogonal to the direction of motion: The observed Radiant Intensity I_{Ω}^{\prime} is not uniformly distributed.

The Light Intensity is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. The way it is distributed is also straightforward:

$$
\delta I^{\prime}=\frac{\delta E \delta t^{-1}}{\delta y_{b} \delta z_{h}}(\cos \varphi \cos \theta)^{2}=\frac{\delta E \delta t^{-1}}{\delta b \delta h}=\frac{\delta E \delta t^{-1}}{\delta \xi \delta \zeta}
$$

and the observed Light Intensity I^{\prime} of the star is uniformly distributed independently of the Lorentz Length contraction.

Thus, precedent results for $I_{\Omega o}$ and I_{o} are confirmed.

Now that we have defined the alternative $K_{S R}$ corr , it would be important to be able to use it to verify the cosmological model that chose it, as the correction to apply. Then, the best thing to do, given the large number of observations already performed, would be to obtain the new $K_{S R}$ corr starting from the known one, $K_{\text {corr }}$.

The great difficulty encountered, when trying to compare a model based on $S R$ with the standard FLRW one, is the concept of that correction itself: namely, what to be made to transform the apparent magnitude of a star, with redshift z, into the corresponding magnitude it would have if it were at rest.

In $F L R W$ the redshift is produced not by movement but by the expansion of space and affects all stars whether they are moving or stationary. Galactic recession and $S R$ are instead conceptually independent, and with $S R$, I can assume that a star is at rest at a distance r. But how could I, with FLRW? So, how could I convert the K correction?

The standard model, effectively, resorts to an expedient: K correction does not directly connect the Apparent magnitude with the observed one $m \simeq m_{o}-K_{\text {corr }}$, but appears in the relation of the Distance modulus: between m_{o}, μ and M - the magnitude that the star would have if it were, stationary, at the predetermined distance of 10 Parsec (Pc)

$$
m_{o}=M+\mu+K_{\text {corr }}
$$

(in literature [*] the expression is complicated by a further transformation between the observed frequency band R and the initial emitting band Q, in which we want M to be expressed)
But, given M:

- in SR, once $K_{S R \text { corr }}$ is applied to m_{o}, the star is at rest and we can deduce the Luminosity distance from μ.
- In FLRW, can we apply the same formula if we cannot separate the movement of the star, still stationary, but at a great distance from us?

More specifically, the goal is the study of the Supernovae ($S N$) as Standard Candles: Here the procedure in [**] uses a sample of Supernovae near us, whose magnitude M is given. From the redshift z and the Supernova variations of m_{o} in time, it selects a value of M from the sample and associates it with the $S N$ to be studied, getting at the same time the Luminosity distance and the cosmological parameters of FLRW. (All that it is necessary in the analysis of the Hubble Tension).

These sophisticated methods (and their ancestors) compare the observed variations in the light curve shape with the sample, using a regression analysis as a function of various variables including μ. The sample $S N$, the Distance modulus μ and others chosen are the ones, that as a group, minimizes χ^{2}.

For us, the direct transformation of $K_{\text {corr }}$ in $K_{S R}$ corr is not clear, and in any case too complex: The difficulty we are referring to can be understood by reading [***]. The objective of analyzing the cosmological parameters of $F L R W$ has influenced the procedure so as to make it a regression problem in which, in my opinion, the meaning of the single variables has been lost and they are no longer usable in alternative cosmological models.

Furthermore, many variables, such as extinction (the dimming of the SN) by dust encountered by the light during its travel, are evaluated in the FLRW context [****].

Wanting not only to propose but also to verify an alternative cosmological model, what lies ahead, that is, to start again from the basic photometric data, is a big and difficult job; with many skills to acquire and a lot of program code to rewrite.
[*] - [arXiv:astro-ph/0210394]-The K correction
[**] - [arXiv:astro-ph/9904347] -Determination of the Hubble Constant Using a Two-Parameter Luminosity Correction for Type Ia Supernovae
[***] - [arXiv:astro-ph/9608192] -Measurements of the Cosmological Parameters Omega and Lambda from the First 7 Supernovae at $\mathrm{z}>=0.35$
[****] - [The Astrophysical Journal: Saurabh Jha et al 2007 ApJ 659 122] - Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2

References from Wikipedia:
[1] - Apparent magnitude
[2] $-\underline{K}$ correction
[3] - Radiant intensity
[4] - Intensity

