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Abstract

In the combined theory of Special Relativity and Quantum Mechanics (c-SRQM),
the upper limit of local acceleration is constrained to c2/A, where c is the speed of light
andA is the diameter of the event horizon of the smallest black hole in nature - called the
Unit Black Hole (UBH). In this article, a new cosmological model is proposed wherein
the flatness of the universe is inevitable from the onset. The theory indicates that at
any given moment of the cosmic evolution, the age of the universe can be expressed
as some integer multiple of the cosmological time constant A/c. The integer multiple
1, signifies the end of the Big Bang at which the initial conditions undergo a sudden
change. The known universe is then shown to be the observable portion of a much
bigger structure - named the grand universe - which is originated from a Primordial
Black Hole (PBH) expanding with the limit rate c2/A at time A/c. It is shown that
the dipole in the Cosmic Microwave Background (CMB) could be explained by the
anisotropy in the gravitational redshift of the grand universe. Moreover, a best fit to
the observational Hubble diagram is obtained when the absolute luminosity of type Ia
supernovae is constrained to 3.02e9 times that of the sun. The age of the universe is
found to be 15.96e9(years). The new age is higher than that of the standard cosmology
by 2.14e9 (years), therefore, reducing the age discrepancy between the universe and the
old metal-deficient stars. The actual value of the Hubble constant Ho is found to be
40.83(km/sec/Mpc). The discrepancy with the current estimates of the constant is due
to neglecting the gravitational redshift of the grand universe in the current standard
cosmology.
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1 Background

In the c-SRQM theory, the local acceleration is shown to have a physical upper limit given by [1]:

au =
c2

A
(1)

where A = h/m̄c is the Compton wavelength of a reference particle with rest mass m̄. The reference
particle represents a particle whose rest mass m̄ is the smallest none-zero mass physically possible.
The numerical value of m̄, therefore, is considered to be the cut-off limit of the massless particles,
i.e. {m = 0 |m < m̄}. An attempt was made in [26] to constrain m̄; hence A. The local acceleration
limit au, moreover, was shown to be the gravitational field strength at the event horizon of all black
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holes. The latter was then used to constrain the mass of the smallest possible black hole in nature
(the least massive), called a Unit Black Hole (UBH), to:

M0 =
Ac2

4G
(2)

and further constrain the diameter of its event horizon to A. Not having a point-like mathemat-
ical singularity of zero volume (and hence, infinite mass density), the event horizon of the UBH
was shown to represent the boundary of the physical singularity; constraining the mass density of
singularity ρs to the limit:

ρs =
3

2π
(
lp
A

)2 ρp (3)

where lp =
√
G h/c3 is the Planck length and ρp = c5/G2h is the Planck density. Subsequently, the

mass Mb, event horizon diameter Db and temperature Tb of black holes were quantized as [1]:

Mb = M0 +
1

4
b mp (4)

Db = A+ b lp

Tb =
lp

2πDb
Tp

where mp =
√
c h/G is the Planck mass, Tp = mpc

2/κ is Planck temperature, κ is the Boltz-
mann constant and b = 0, 1, 2, ... is the quantum index of black holes. It was also noted that the
temperature equation above was the quantized form of Hawking radiation [11]:

T =
h̄c3

8πGMκ
(5)

As shown in Fig 1, the diameter of the event horizon of black holes increase by one Planck length
for every unit increase of the quantum index b. It is evident that the lowest quantum index b = 0
corresponds to the smallest black hole in nature. Since the mass density of the UBH singularity
is at the physical limit ρs, any additional mass added to the UBH towards generating a more
massive black hole (i.e. the term 1

4 b mp in Eqn 4) can only be accumulated outside of the UBH
singularity. This generates the core of more massive black holes. This article begins with the

Figure 1: The diameter of the event horizon increases by one lp for every 0.25mp mass added

assumption that the black hole quantum index b has an upper limit beyond which a super massive
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black would become unstable. The physics of such behaviour is of course not known today. Based
on this assumption, however, a matter-dominated (Einstein-de Sitter) model of a grand universe is
introduced which begins when the core of a super massive primordial black hole gets unstable. The
known universe is then shown to be a small observable portion of a much bigger grand universe. It
is further shown that by taking the gravitational redshifts of the grand universe into account (one
can say, gravitational redshift of a matter which is missing from the observations), the resulting
decelerating model of the universe fits the observed Cosmological Microwave Background (CMB)
dipole and type Ia Supernovae data rather well. Due to its simplicity and intuitive nature, the
Newtonian approach is used to solve the expansion of the PBH core using a set of initial conditions.
An accurate solution can only be obtained considering the relativistic aspects. The author hopes
this article inspires a General Relativistic solution to the proposed initial value problem in the
future.

2 Initial conditions at Big Bang

As illustrated in Fig 2, consider a spherical shell of thickness dR and mass dm on a sphere of radius
R and mass m, concentric with the PBH core. A more formal definition of the core of a Black Hole
will come in the following section. In principle, each shell of mass dm within the PBH core, at
any given instant in time has a coordinate exclusive to itself. We call this the principle of exclusive
coordinates. For the mass m of the sphere R we can now write:

m =
4

3
πR3ρm(0+, R) (6)

where ρm(0+, R) is the mass density distribution within the PBH core when the universe is only one
cosmological time-step old, i.e at time 0+ = A/c. The instant signifies the end of the Big Bang. As
will be revealed later, the density is constant and equal to ρs, but for now it is written as a function
R. The equation of motion of the shell R under the sole influence of gravity is then given by:

Figure 2: Galaxies originating from a PBH shell have common comoving coordinates

r̈ +
4

3
π
GR3

r2
ρm(0+, R) = 0 (7)
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where r(t, R) is the radial coordinate of shell R versus cosmic time t any time after the Big Bang.
A detailed review of solution to such matter dominated model can be found in [3]. Substituting
the dimensionless scale factor :

a = r/R (8)

and its second derivative ä = r̈/R in Eqn 7 we arrive at:

ä+
4

3
π
G

a2
ρm(0+, R) = 0 (9)

Evidently, the steady state condition of the PBH core prior to the Big Bang, at time 0 < A/c, is
given by:

a(0) =
R

R
= 1 (10)

ȧ(0) = 0

We now hypothesize that the initial conditions of the PBH at time 0+ = A/c is:

a(0+) =
R

R
= 1 (11)

ȧ(0+) =
2

A
c

The initial conditions for the radial coordinate r can then be easily obtained from Eqn 11 as follows:

r(0+, R) = R (12)

ṙ(0+, R) =
2R

A
c

Multiplying Eqn 9 by the integrator ȧ we get:

ȧ[ä+
4

3
π

G

a2(t)
ρm(0+, R)] =

dE

dt
= 0 (13)

where:

E =
1

2
ȧ2 − 4

3
πG

1

a
ρm(0+, R) (14)

For a matter dominated flat universe we have the constraint E = 0 [3]. From Eqn 14, we then
have:

ȧ2(t) =
8

3
πG

1

a(t)
ρm(0+, R) (15)

Substituting for the initial conditions a(0+) and ȧ(0+) from Eqn 11 in above we verify that the
mass density distribution in the PBH at the onset of Big Bang is uniform and equal to that of the
singularity, i.e. not a function of comoving coordinate R. Therefore, we now drop the variable R
from the equation of density to arrive at:

ρm(0+) =
3c2

2πGA2
= ρs (16)

This further confirms that to respect the limit density of Eqn 3, the shells within the core cannot
cross each other at the onset of Big Bang; nor can they can be compressed to each other - as satisfied
by the initial conditions of Eqn 12. Denoting the PBH mass Mgu as the mass of the grand universe,
then PBH core radius Rc can be determined from the integral:

Mgu −M0 =

∫ Rc

A/2
4πR2ρm(0+) dR (17)
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The distance between the boundaries of the singularity and the core, i.e span Rc − A/2, hence,
represents the entire range of comoving coordinates that have been expanding since the Big Bang.
Substituting for the density distribution from Eqn 16 and integrating Eqn 17 we finally arrive at
the following for the radius of the core of the PBH as:

Rc = (
Mgu

M0
)
1
3
A

2
(18)

Figure 3: Ratio of event horizon to core diameter versus black hole quantum index b

3 Core of black holes

We shall now generalize the definition of the core of a black hole as a limit radius inside a black
hole beyond which there is no matter concentration. From Schwarzchild equation [9] we have:

Mgu =
Rhc

2

2G
(19)

where Rh is the event horizon of the PBH. In Eqn 18, by substituting for Mgu from Eqn 19 we then
have the following relation between the diameters of the core Dc and event horizon Dh of the PBH
(and infact for all black holes in general):

Dc = (
Dh

A
)
1
3A (20)

Since the condition Dh
A > 1 is true for all black holes that are more massive than the UBH, then

from Eqn 20, the condition Dc < Dh is also true for all black holes. This is as expected, since by the
very definition of black holes, the core must always be engulfed by the event horizon. Furthermore,
note that for the UBH with the event horizon Dh = A, from Eqn 20 we then have Dc = Dh = A;
meaning that the singularity, the core, and the event horizon of the unit black hole all coincide at
diameter A, a feature uniquely valid for the UBH. Fig 3, shows the ratio of Dh/Dc versus quantum
index b of black holes.
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4 Scale factor of the expanding universe

Now, by substituting for the initial density distribution from Eqn 16 in Eqn 15 we arrive at:∫ a(t)

1

√
a da =

2c

A

∫ t

A/c
dt (21)

And by integrating above we finally have the equation of scale factor a versus cosmic time t:

a(t) = [
3

A
(ct−A) + 1]

2
3 (22)

Fig 4 shows evolution of the scale factor in terms of cosmological timestep A/c after the Big Bang.
The equation of scale factor a(t) not being a function of comoving coordinate R indicates the model

Figure 4: Evolution of scale factor starting from initial value 1 at Big Bang

represents an isotropic expansion of the universe. Also, note that at the Big Bang 0+ = A/c,
from the equation we have a(0+) = 1, as expected from the imposed initial conditions. Taking the
derivative of Eqn 22 we then have the following for the time evolution of scale factor:

ȧ(t) =
2c

A
[
3

A
(ct−A) + 1]−

1
3 (23)

Note again that at the Big Bang 0+ = A/c from Eqn 23 we have:

ȧ(0+) =
2

A
c (24)

as expected from the imposed velocity initial condition. Fig 5 shows evolution of the scale factor in
terms of cosmological timestep A/c after the Big Bang. Taking the second derivative of Eqn 22 we
will have:

ä(t) = −2c2

A2
[
3

A
(ct−A) + 1]−

4
3 (25)

Note again that at Big Bang 0+ = A/c from Eqn 25 we have:

ä(0+) = −2c2

A2
= − 2

A
au (26)
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Figure 5: Rate of change of scale factor starting from initial value 2c/A at Big Bang

Multiplying each one of the Eqns 22, 23 and 25 by R would give the equations for the radial
coordinate, velocity and deceleration of the expanding space (Hubble flow) versus time t:

r(t, R) = R [
3

A
(ct−A) + 1]

2
3 (27)

ṙ(t, R) =
2Rc

A
[
3

A
(ct−A) + 1]−

1
3

r̈(t, R) = −2Rc2

A2
[
3

A
(ct−A) + 1]−

4
3

Now, note that from the third Eqn in 27 at Big Bang 0+ = A/c we have:

r̈(0+, R) = −2R

A
au (28)

This condition is directly correspond to the gravitational field strength at each shell R inside the
PBH, because:

g(0+, R) = −Gm(0+, R)

R2
= −4

3
πGRρs (29)

But for the limit acceleration au we have:

au =
GM0

(A2 )2
=

2

3
πGAρs (30)

therefore, comparing Equations 29 and 30 it is evident that:

g(0+, R) = −2R

A
au (31)

which is found to be identical to Eqn 28. Since radius R of shells are measured from the geometric
center of the PBH, Eqn 31 represents the global expansion rate of the comoving coordinates due
to the Big Bang which is found to be equal to the gravitational field strength within the PBH at
the Big Bang. Moreover, as a direct consequence of the principle of exclusive coordinates, the mass
conservation within a sphere is given by:

m(0+, R) = m(t, r) (32)
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Eqn 32 indicates that the total mass within a sphere at the current epic radius r(t, R) is equal to
the mass that was originally existed in the primordial sphere R. From Eqn 32, the temporal density
of the universe is therefore given by:

ρm(t) =
ρm(0+)

a3(t)
=

3c2

2πGA2

1

a3(t)
(33)

5 Spatial expansion redshift

As a light beam travels the distance between the emission and observation points in space, the
inner-space between the points continuously increases due to the expansion of space. As a result,
the light beam suffers a redshift due to the expansion of the inner-space between the points. The
higher the spatial expansion, i.e. the farther the initial distance between the points, the higher the
cosmological redshift turns out to be. The spatial redshift zx is directly related to the ratio of scale
factors a(t) as follows:

zx =
a(to)

a(te)
− 1 (34)

where a(te) and a(to) are the scale factors at the time of emission te and observation to of the
photon. Fig 6 compares travel of a light beam from one distant galaxy to another (left to right) at
equal time intervals (top to bottom) in two distinct universes of static and expanding character. In

Figure 6: Redshift zx = 3 for galaxies recessing with the speed of light

Fig 6a, the universe is assumed to be static, therefore, unlike the case of an expanding universe in
Fig 6b, the distance between the galaxies remains constant as light travels from left to right (shown
by moving dashed arcs). In this condition, we then have a(to) = a(te); and with that, from Eqn
34, the spatial redshift corresponding to a static world will be zx = 0; as expected. In Fig 6b, the
universe is assumed to be expanding; and moreover, the initial proper distance dP between the
galaxies is assumed to be such that the expanding space results in moving the galaxies away from
each other with the speed of light c. In this case, immediately after the emission, as the light beam
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covers some distance to the right, the galaxies separate from each other by the same amount. But as
the distance between galaxies increases with the passage of time, their separation distance during a
given time interval dt gets higher than the distance cdt traveled by the light beam. As shown in Fig
6b (top to bottom), it turns out that by the time the light beam eventually arrives at the observing
galaxy, the universe expands by a scale factor of 4 in all directions. From Eqn 34, the redshift of
the light beam upon arriving at the observing galaxy would then be zx = 3 due to the expansion of
space alone. As will be discussed in the following section, the measurable redshift, however, would
be a superposition of the spatial zx and the gravitational zg redshifts. Now, consider a pair of
galaxies at distances even farther than dP of our illustration. In that case, their recession velocity
would then be even higher than the speed of light c and with that their spatial redshift zx > 3.
With increasing dP , we eventually arrive at a distance where the recession velocity of the galaxies
approaches to 2c. That distance marks the observable horizon of the universe. The light emitting
from galaxies at such distances would never be able to catch up with the expansion of space; and
as a result, they will remain outside of each other's observable horizon. The redshift corresponding
to that scenario is zx →∞.

6 Gravitational redshift

The gravitational redshift zg, is related to the gravitational potential difference between the points
of emission and observation, as shown in Fig 7. Using the formula of the gravitational potential

Figure 7: Primordial position of equidistant supernovae relative to the Milky Way

within a sphere [5] - where the contribution of a spherical mass below a given radius r is added
to that of the shell mass above it - the potentials at the emission and observation points can be
obtained from:

Φo(r, rc) = −GMgu

2r3
co

(3r2
co − r2

o) (35)

Φe(r, rc) = −GMgu

2r3
ce

(3r2
ce − r2

e)

where re = r(Re, te) and ro = r(Ro, to) are the radial coordinates of the emission and observation
points, respectively; and rce = r(Rc, te) and rco = r(Rc, to) are the radial coordinates of the PBH
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core boundary at the corresponding times. From the theory of general relativity, the gravitational
redshift is related to these gravitational potentials through the following equation [6]:

zg =

√
1 + 2Φe

1 + 2Φo
− 1 '

√
Φe

Φo
− 1 · · · for Φ� 1 (36)

The measurable redshift from any object, therefore, includes the total effect of both the spatial and
gravitational redshifts as:

zxg = zx + zg (37)

Now consider a case where multiple supernovae of identical absolute luminosities occur simulta-
neously at equal distances from the Milky Way, as shown in Fig 7. Note that the simultaneous
explosions in this context means the events occur at the same cosmological time te after the Big
Bang. Due to their equal distances and absolute luminosities, it is evident that in this case the su-
pernovae will have equal apparent luminosities. However, according to Eqn 37, due to their different
gravitational redshifts, their measured redshifts upon arrival to the Milky Way would be different
from each other depending on their directions. As will be discussed in the following section, the
magnitude of the anisotropy in the measured redshifts is a function of the distances and directions
in the sky. A direction along which the redshift anisotropy is maximum, herein, is called the primary
direction.

7 The primary direction - CMB dipole

As discussed above, since the scale factor a(t) is a function of time only, the redshift zx turns
out to be fully isotropic. However, since the gravitational potential Φ(r, rc) is a function of posi-
tion, the resulting gravitational redshift zg turns out to be anisotropic in our cosmological model.
The standard model of cosmology, in contrast, lacks such a mechanism for generating a universal
anisotropy. As a result, the basic means to explain the measured dipole moment of the CMB in the
standard model is through the Doppler effect of the local peculiar motion of the Milky Way relative
to the CMB frame [12] by ≈ 620km/sec. The validity of this interpretation is found debatable,
as discussed in [13, 14]. In our cosmological model, a light beam that is traveling in a direction
away from the PBH singularity would undergo a higher redshift compared to a light beam that is
traveling towards the singularity. The resulting anisotropy, therefore, provides universal mechanism
for the origin of the CMB dipole moment. Accordingly, for the total redshift of the CMB at the
poles, which correspond to the maximum redshift anisotropy, we write:

zx + zg+ =
Trec

To −∆T
− 1 (38)

zx + zg− =
Trec

To + ∆T
− 1

where Trec is the temperature of the universe at the time of recombination, i.e. photon decoupling
from the Last Scattering Surface (LSS), zg+ is the gravitational redshift of the light moving away
from the singularity (therefore, generating a pole ∆T colder than the mean CMB temperature To)
and zg− is the gravitational redshift of the light moving toward the singularity (therefore, generating
a pole ∆T hotter than the mean CMB temperature To). Subtracting the second equation from the
first one, we then arrive at a constraining equation on the gravitational redshift anisotropy required
for the CMB dipole of amplitude ∆T and mean To, under recombination temperature Trec:

gz+ − gz− =
2 Trec ∆T

T 2
o −∆T 2

(39)

According to Eqn 39, since the maximum gravitational anisotropy is achieved along the light path
connecting the CMB poles, therefore, the latter is considered as the primary direction in our cosmo-
logical model. In other words, the primary direction in the sky (i.e. the radial Hubble flow direction)
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Figure 8: Primordial position of the Milky Way and LSS in the PBH core

is along a direction that connects the constellation Aquarius (cold CMB Pole) to the constellation
Leo (hot CMB Pole) through the Milky Way.

8 Numerical simulation - CMB dipole

The primordial position of the LSS and the Milky Way, at the center of it, is illustrated in Fig
8. The LSS is taken to be at a distance from the Milky Way that is close to the ultimate horizon
of the observable universe. The latter is assumed to be fully inside the grand universe, therefore,
homogeneous in all directions. The overall steps required for the numerical simulation of the CMB
dipole is illustrated in Fig 9a-c. The comoving coordinate Ro of the Milky Way is shown in Fig 9a

Figure 9: Gravitational potential of grand universe leading to the CMB temperature dipole
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in relation to the LSS of comoving radius dC LSS . Fig 9b, shows the universe expansion to the scale
factor arec at the time trec when, upon photon decoupling, beams of light are free to scatter from
the LSS which now has the radius of arec × dC LSS . As the light travels away from the points of
emission, as shown in Fig 9c, the universe continues expanding to the scale factor ao at the current
epoch to when the light finally arrives at the Milky Way from different directions. A light beam that
has been ascending away from the PBH singularity (i.e. coming from the direction of Aquarius con-
stellation) undergoes more redshift compared to the light beam that has been descending towards
it (i.e. coming from the direction of Leo constellation). This leads to a redshift anisotropy that
peaks at the CMB dipole. Taking the CMB mean temperature of To = 2.7255(K), dipole amplitude
of ∆T = 0.00335 (K) and recombination epoch temperature of Trec = 3000 (K) the gravitational
redshift anisotropy that needs to be satisfied in the numerical simulation is obtained from Eqn 39
as gz+ − gz− = 2.70585(−). The main independent parameter in the simulation of the CMB dipole
is the mass ratio Mgu/Mou. The remaining model parameters, i.e. current epoch to, recombination
epoch trec, comoving distance dC LSS , comoving coordinates Re LSS of the emission points on the
LSS and the relative position of the Milky Way within the PBH, i.e the ratio Ro/Rc, are found
iteratively such that the final back-calculated Mgu/Mou ratio is in agreement with the initially as-
sumed value while the maximum gravitational redshift anisotropy of 2.70585 is also satisfied along
the primary direction.

Note that the CMB satellites (COBE, WMAP and Planck) all measure the background mi-
crowave radiation in relation to the galactic coordinate system (l, b), in which the galactic plane
- containing the Sagittarius A* and the sun - is located at the zero latitude b = 0 and the ray
connecting the sun to the center of galaxy is located at the zero longitude l = 0. It is now impor-
tant to note that the galactic plane can only have 3 distinct orientations in relation to the primary
direction; namely, be either perpendicular, parallel or at an angle relative to the primary direction
in the sky, as shown in Fig 10. If the galactic plane were to be perpendicular to the primary direc-

Figure 10: Galactic plane orientation in relation to the primary direction

tion, as shown in Fig 10a, then the hot and cold poles (which are always aligned with the primary
direction) would have been located exactly at the north and south poles (b = ±90◦) of the galactic
coordinate system, respectively. This is exactly what is shown in Fig 11 where the CMB dipole
are at galactic poles. On the other hand, if the galactic plane were to be parallel to the primary
direction, as shown in Fig 10b, then the hot and cold poles would have been located exactly at
the equator (b = 0◦) of the galactic coordinate system, as shown in Fig 12. In this plot, the ray
from the sun to the Sagittarius A* is set at zero longitude, therefore, the CMB dipoles are located
at ±90◦ longitude. Finally, if the north pole of the galactic coordinate system were to be rotated
by (l, b) = (264◦, 48.26◦), i.e. in line with the actual location of the measured CMB dipoles, then
the CMB dipole in the model universe would be seen as shown in Fig 13, closely resembling to the
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Figure 11: CMB dipole if galactic plane was perpendicular to the primary direction

Figure 12: CMB dipole if galactic plane was parallel to the primary direction

actual CMB measured by COBE satellite shown in Fig 14. Note that the CMB mean, amplitude
∆T of the dipole and the overall pattern of the model universe matches the actual data rather well.
In the numerical simulation of CMB dipole, first a sphere of radius dC LSS is generated such that
it is initially concentric with the PBH singularity and its north pole is along the primary direction.
The surface of the sphere is then digitized using a grid of 5◦ × 5◦ patch. In total, therefore, we
have 360/5 = 72 points on the longitudinal direction, 90/5 = 18 points on the positive latitude
side (towards North Pole) and 18 points on the negative latitude side (towards South Pole). The
original coordinates of each point on the grid is then calculated from:P ′′xP ′′y

P ′′z

 = dC LSS

cos(φ) cos(θ)
cos(φ) sin(θ)

sin(θ)

 (40)

where θ is the latitude and φ the longitude angle of a given point on the grid. Then to align the
coordinate system with the dipole coordinates (l, b) = (264◦, 48.26◦), we first rotate the original
coordinate system about its z-axis by l = 264◦ followed by a rotation about, now, the rotated y’-
axis by b = 48.26◦. The grid coordinates are therefore transformed from the original frame above
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to the rotated one as follows:P ′xP ′y
P ′z

 =

sin(b) cos(l) sin(b) sin(l) − cos(b)
− sin(l) cos(l) 0

cos(b) cos(l) cos(b) sin(l) sin(b)

P ′′xP ′′y
P ′′z

 (41)

The origin of the sphere is then finally transformed from the center of PBH to the radial position

Figure 13: CMB dipole if galactic plane was inclined relative to the primary direction

Figure 14: CMB dipole from COBE [15]

Ro of the Milky Way using the following transform:Px

Py

Pz

 =

P ′x +Ro

P ′y
P ′z

 (42)

From the last equation, the primordial comoving coordinate of the emission points (i.e. grid points)
on the LSS is therefore obtained from:

Re LSS =
√
P 2
x + P 2

y + P 2
z (43)

Before concluding this section, let’s remark here that neither the mass Mgu of the grand universe
nor the primordial position Ro of the Milky Way, can be constrained using the CMB dipole alone.
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Figure 15: Model parameters supporting measured CMB dipole

The reason is that all combinations of the Mgu and Ro parameters that result in a matching CMB
dipole also produce numerically identical CMB temperature distribution across the sky, leaving
no discriminating features to constrain the model parameters. Whether a much finer numerical
simulation, or a solution based on General Relativity can alter this conclusion is yet to be seen in
the future. The numerical simulations, nonetheless, constrain the grand universe mass ratio to the
range ∼ 35 < Mgu/Mou < ∼ 900. Since the proposed model is a matter-dominated, Einstein-de
Sitter type universe [25], in the estimation of Mou we have considered only the ordinary plus the
dark matter amounting to 4.9% + 26.8% = 31.7% of the total density 9.9e-27 (kg/m3) [23]. It
turns out that under Mou ∼ 1.11e54(kg), comprising the ordinary plus the dark matter, a consistent
solution could be obtained permitting the observed CMB dipole as discussed before. The constrain
on the remaining parameters Ro and dC LSS is shown in Fig 15. It is noted that the more massive
the grand universe Mgu is, the more outwardly must be the position of the observable universe
within it. Using the range of permissible Mgu, the steady state PBH core temperature prior to
the Big Bang is constrained by Eqn 5 to the range 31.5e-34 (K) > Tcore initial > 1.2e-34 (K). The
temperature, immediately after the Big Bang, TBB ∼ 2.13e16 (K) is calculated knowing both the
arec and Trec = 3000 (K) and the fact that a0+ = 1. The proper distance to LSS is found to be
∼ 14200 (Mpc), resulting the observable universe of diameter 92.8e9 (Ly) .

The age of the universe and the recombination time are found to be 15.96e9 and 456600 (years).
From Eqn 33, the current epoch mass density ρs/a

3
o = 3.137e-27 (kg/m3), which is exactly 31.7% of

the total density 9.9e-27(kg/m3) (due to the exclusion of the dark energy - as discussed above). Com-
pared to the current estimation of the recombination time from the standard model trec standard =
378000 (years), photon decoupling is delayed by 78600 (years) in our model. Also, compared to the
current estimate of the universe age from the standard cosmology, to standard = 13.82e9 (years), the
age of the universe in our model is increased by ∼ 2.14e9(years); therefore, reducing the discrepancy
between the age of the oldest stars and that of the universe. For instance, HD140283 is one of the
oldest known metal-deficient stars with estimated age of 14.46 ± 0.8e9 (years) which is believed to
have been formed soon after the Big Bang [19]. Finally, the CMB redshift due to the expansion
of space is found to be zx = 1068.29. The gravitational redshifts at the hot and cold sides, on the
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other hand, are found to be zg+ = 32.775 and zg− = 30.069, respectively. The total redshift in the
CMB dipole directions, therefore, is found to be zxg+ = 1101.07 and zxg− = 1098.36, meeting the
target gravitational redshift dipole zg+ − zg− = 2.70585 and average redshift of z̄xg = 1099.72 (−).

9 Numerical simulation - supernovae type Ia

The plot of the apparent magnitude of the type Ia supernovae versus measured redshifts is called
Hubble diagram. In this section, Hubble diagram obtained from the numerical simulation and its
comparison with that of the observational data is discussed. In the numerical simulation, denoting
the absolute luminosity of the sun L�, we assume supernovae of various relative luminosities L/L�
occur in our model universe at various distances and orientations from the Milky Way. Then
the resulting apparent magnitudes and the corresponding total redshifts zxg are computed for the
assumed distant supernovae. For a given absolute luminosity L, the higher the distance dC , the
higher the apparent magnitude m of the supernova (i.e. dimmer) and vice versa. To assess the
validity of the model, the numerical predictions of the magnitudes versus redshifts are then compared
against a large set of observational data presented in [17]. The observational data consists of the
high redshift type Ia supernovae from Supernova Legacy Survey (SNLS) combined with mainly
lower redshift data. This adds up to 472 data points (123 low z, 93 SDSS, 242 SNLS and 14 HST).
This large set of observational data can be downloaded from [18]. The overall numerical procedure
for supernovae simulation is similar to that of the CMB dipole calculation. However, unlike the
CMB radiation which is arriving from equal comoving distances all around, the supernovae occur at
varying comoving distances dC and orientations θ′. The latter is measured on the plane containing
the primary direction and the Supernova. Fig 16a, shows the primordial comoving coordinate Re

of a future supernova in relation to the primordial coordinate Ro of the Milky Way and distance dC
from it. For a given angle θ′, knowing Ro and dC the primordial coordinate Re of the supernova is
then obtained from:

Re =
√
R2

o + d2
C + 2RodC cos(θ′) (44)

Fig 16b, shows the universe expansion from the initial primordial condition of Fig 16a, to the scale
factor ae at the time te when the assumed supernova occurs and a beam of light leaves the emission
point. While the light from the supernova explosion travels away from the emission point, as shown
in Fig 16c, the universe continues expanding to the scale factor ao when the light finally arrives at
time to at the Milky Way with some total redshift zxg. The physical distance cdt that light travels
immediately after the supernova corresponds to the primordial comoving distance cdt/ae away from
the supernova, as shown in Fig’s 16a,b. Integrating from the time of emission te to the time of
observation to, we therefore have:

dC =

∫ to

te

cdt

a(t)
(45)

Substituting in Eqn 45 for the scale factor a(t) from Eqn 22 and integrating we then have:

dC = (
√
a(to)−

√
a(te) )A (46)

Alternatively, knowing the current epoch to and the comoving distance dC to the supernova, the
emission time te can be obtained from above as:

te = {[ (
3c

A
to − 2)

1
3 − dC

A
]3 + 2} A

3c
(47)

The look-back time corresponding to the distance supernova is then simply given by tlkbk = to− te.
The farther the distance dC , the smaller the time te and the deeper the look-back in time will be
(closer to the Big Bang). The radiation power from the supernova explosion, received per unit area
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Figure 16: Comoving coordinates at the : a) primordial b) emission time c) observation time

at the Milky Way, is called the apparent luminosity l. The latter in terms of absolute luminosity L
of the supernova, which in this article is expressed as multiples of solar power L�, is given as [6]:

l =
a2
e

4πa4
od

2
C

L (48)

Knowing the apparent luminosity from Eqn 48 the apparent magnitude m is calculated from [6]:

m = −2.5 log10(l)− 18.9965 (49)

Note that for equation above the absolute luminosity L must be given in J/sec. Knowing to, Ro,
dC and θ′, first the current scale factor ao, the primordial coordinate Re and the emission time te of
the supernova are obtained from Eqn’s 22, 44 and 47, respectively. Then the scale factor ae of the
universe and the coordinate re of the supernova at the time of explosion are found from Eqns 22
and 27. For the assumed absolute luminosity L, then the apparent luminosity l is obtained using
Eqn 48. Knowing the latter, the apparent magnitude m (needed for the Hubble diagram) is finally
obtained from Eqn 49.
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For calculation of the corresponding total redshift in the supernova’s light, knowing both ae
and ao, first the spatial expansion redshift zx is obtained from Eqn 34. Knowing the PBH core
size Rc from Eqn 18, the gravitational potentials Φo and Φe are then obtained from Eqn 35. The
gravitational redshift zg is then calculated from Eqn 36 and summed up with zx to arrive at the
total measurable redshift zxg = zx + zg of the light emitted from the supernova. The simulation
then continues with a higher value of comoving dC for all three directions in the simulation: θ′ = π
towards the singularity, θ′ = 0 away from it, or θ′ = π/2 normal to the primary direction. For

Figure 17: Hubble diagram - model versus observation

that reason, 3 curves are seen in the Hubble diagram. The upper curve corresponds to a case
that light travels towards; and the lower curve corresponds to a case that light travels away from
the singularity. The middle curve corresponds to a supernova whose line of sight is normal to the
primary direction. At low redshifts the effect of gravitational anisotropy is small, and as such,
three curves converge to each other. As the distance increases, the redshift anisotropy increases
accordingly. At the comoving distance corresponding to that of the LSS, the difference between
the upper and lower curves reaches to the maximum gz+ − gz− = 2.70585; needed to satisfy the
CMB dipole 3.35 (mK). In Fig 17, the resulting apparent magnitudes m versus their corresponding
total redshifts zxg are compared against the actual observations. The Hubble plot is obtained by
adjusting the L/L� such that the number of supernova that fall within the band of anisotropy is
maximized. For example, as shown in the zoomed-in portion of Fig 17, there are 3 (out of 14)
HST SN data points that fall within the band at such redshifts. The residual between the data
and predictions is shown in Fig 18. For the latter, the SN that are within the band are compared
with the middle curve, those that are above the upper curve are compared against the upper curve,
and those that are below the lower curve are compared against the lower curve. Fig 19, shows the
distribution of supernova count in each category as a function of the absolute luminosity of type Ia
SN used in the simulations. By taking the solar luminosity as L� = 3.846e26 (J/sec), the optimum
SN count is achieved under type Ia SN absolute luminosity of L? = 3.02e9× L�, wherein 4 out of
123 Low z, 8 out of 93 SDSS, 27 out of 242 SNLS and 3 out of 14 HST data points fall within the
band of anisotropy. This amounts to roughly 9% of the data points (i.e. 42 out of 472) for which
absolute luminosity of the supernovae are found very comparable to each other. Let’s call this set
of supernovae the Diamond set, as listed in Fig 20. The remaining 91% of the type Ia SN in [17]
have either higher (or lower) absolute luminosities; therefore, fall below (or above) the anisotropy
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Figure 18: Residual (difference) between the actual data and predictions

band. Is this conclusion any plausible given that the type Ia supernovae are expected to be standard
candles with a fixed luminosity? According to [16], there exists a significant intrinsic dispersion in
the absolute magnitudes of the SN type Ia class as a whole. This implies that the progenitors of
these events could be white dwarfs within the mass range 0.6−1.4M� [20, 21] and/or variations in
the explosion mechanisms. The uncertainty in the B-light magnitude of type Ia SN is determined
be ±∆M ∼ 0.8 [16]. Knowing that the absolute magnitudes and the absolute luminosities (in units
J/sec) are related through [6]:

M = −2.5 log10(L) + 71.2 (50)

then the absolute magnitude of the Diamond set would be M? = −18.96 and those of the entire
472 set could be within the range −18.96 ± 0.8, therefore, −18.16 < M < −19.76. Using Eqn
50, then the absolute luminosities of the entire set of 472 supernovae could be within the range of
0.48 L? < L < 2.09 L?, i.e. the range of x-axis used in generating Fig 19. Such range of absolute
luminosities would bracket the entire set, as shown in Fig 21 in log scale for clarity. This, in turn,
indicates that a best fit to such a large dispersion of the luminosity distribution (through mini-
mizing the residuals of the entire set) could not be a reliable approach for constraining the model
parameters, as it could improperly influence the selection of parameters. For that reason, the best
fit in this work was obtained by maximizing the number of SN count within the band of anisotropy.
In this exercise, the position of SN in relation to the primary direction was not taken into account.

An even more accurate way of using this model in determining L? of type Ia supernovae, however,
is first to use the SN that are generally aligned with the CMB dipole. For this, we propose having
dedicated telescopes to those opposite directions and limited patches of the sky. Once an adequate
number of data points are collected in those directions, then the best fit to the L? could be obtained
by minimizing the residuals of both the upper and lower curves. Once the L? is determined more
accurately (utilizing the information on both the magnitude and the direction of a SN), then a more
comprehensive Diamond set could be determined using all the existing SN data, i.e. independent
of their type, as long as they fall within the resulting well calibrated band of anisotropy. At that
stage, the final validation of the theory might come when a statistically significant number of SN
that happen to fall between the middle and upper curves are also found to be at the hot-CMB-pole
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Figure 19: Absolute luminosity of type Ia SN best fit to the observational data

Figure 20: List of 42 type Ia SN with absolute luminosities L? = 3.02e9× L�

side of the sky; and similarly, those that happen to fall between the middle and lower curves are
also statistically tend to be found at the opposite (cold-CMB-pole) side of the sky.

10 Hubble Constant

For the definitions of the Hubble constant and the critical energy density, in this section we have
a very short review of the standard cosmological model. Considering the spherically symmetric
nature of gravitational fields, the Friedman, Lemaitre, Robertson and Walker (FLRW) metric is
defined as:

ds2 = c2dt2 − a2(t)dΣ2 (51)

where the scale factor a is assumed to be a function of cosmic time t only; hence, inherently assuming
a spatially homogeneous and isotropic properties for the universe in the standard cosmological
model. The term dΣ is the comoving distance defined as:

dΣ2 =
dξ2

1− kξ2
ξ2(dθ2 + sin2 θdφ2) (52)
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Figure 21: Upper and lower limits of absolute luminosity of type Ia SN

where (dξ, dθ, dφ) are the spatial intervals surrounding the comoving frame of any object in the
universe and constant k is the Gaussian curvature of the space. The closed and open universes are
obtained by k = +1 and k = −1, respectively, while a flat universe is given by k = 0. Using the
FLRW metric and solving for the field equations of General Relativity, the equations of expansion,
acceleration and energy density rate of the universe are given by Friedmann equations as follows
[4]:

H2 = (
ȧ

a
)2 =

8πG

3c2
ρ− kc2

a2
(53)

ä

a
= −4πG

3c2
(ρ + 3p)

ρ̇ = −3H(ρ + p)

Dividing both sides of the first equation above by H2 we get:

1 =
ρ

ρc

− kc2

H2a2
(54)

where the critical energy density ρc of the universe is defined as:

ρc =
3c2H2

8πG
(55)

For a flat universe, where k = 0, from Eqn 54 we then must have ρ = ρc, i.e. the energy density
distribution in the universe must be equal to the critical value. Finally, note that from E = mc2,
the relation between the mass density ρm and energy density ρ is given by:

ρ(t) = ρm(t)c2 (56)

Substituting for a and ȧ from Eqns 22 and 23 in the first Eqn 53 we arrive at the following equation
for the Hubble constant H in our model:

H(t) =
ȧ

a
=

2c

3ct− 2A
' 2

3t
· · · for large t (57)
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Figure 22: Primordial distance dC of a SN in relation to the Milky Way and primary direction

The dimensionless energy density parameter Ω from the standard model is defined:

Ω =
ρ

ρc

(58)

In a close universe, Ω > 1, the internal energy density is adequately high to eventually halt and
then reverse the spatial expansion of the universe towards a big crunch. In an open universe,Ω < 1,
there is not adequate internal energy in the universe to prevent the run-away expansion originated
from the Big Bang. In a flat universe, Ω = 1, however, there is just about right amount of internal
energy in the universe to asymptotically halt the expansion, hence, avoiding the re-collapse or run-
away fates of the closed or open universes. Substituting for ρm(t) from Eqn 33 in Eqn 56, the energy
density versus time will be given as:

ρ(t) =
3c4

2πGA2

1

a3(t)
(59)

Further, substituting for the energy densities ρc and ρ(t) from Eqn's 55 and 59, respectively, in
Eqn 58 we arrive at:

Ω =
4c2

H2A2a3
(60)

and then substituting for H and a from Eqn's 57 and 22, respectively, in Eqn 60 we finally arrive
at:

Ω = 1 (61)

confirming the inevitability of flat space under our cosmological model. Knowing to = 15.96e9(years),
the current epoch energy density (which is also equal to the critical energy density of the universe)
is found to be ρ = ρc ∼ 2.82e-10 (J/m3). In comparison, the energy density of the PBH core (or
black hole cores, in general) is ρs ∼ 1.23e38 (J/m3).

11 Recession velocity of galaxies

To calculate the recession velocity of an emitting object relative to the Milky Way, the Hubble flow
velocities ṙe and ṙo at the emission and observation points are calculated from Eqn 27 using their
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Figure 23: Hubble constant Ho = 40.83 from numerical simulation

corresponding cosmic times te and to, respectively. The recession velocity ∆v along the vector ~dC
is then obtained using:

∆v = ê · ~̇re − ê · ~̇ro (62)

where:

~̇ro = ṙoî (63)

~̇re = ṙe cos(θ)̂i+ ṙe sin(θ)n̂

ê = cos(θ′)̂i+ sin(θ′)n̂

where the offset angle θ between the primary direction and Re is calculated knowing:

Re sin(θ) = dC sin(θ′) (64)

The vectors î and n̂ are the unit vectors along the primary direction and normal to it, respectively.
These vectors are defined on the plane containing the singularity, the Milky Way and the emission
point. The unit vector ê is along the line-of-sight of the emitting object, as illustrated in Fig 22.

Using these equations, the recession velocity ∆v of the emitting object versus its proper distance
dP from the Milky Way is calculated and plotted in Fig 23 to arrive at the value of the Hubble
constant Ho = 40.83(km/sec/Mpc). Note on the graph that the recessional velocities of objects close
to the observable horizon of the universe is approaching to 2c, as had discussed before. According
to the model, recessional velocity of the LSS is v/c = 1.939 at the proper distance 14236 (Mpc).
Moreover, objects with a proper distance larger than dsu ≥ 7342 (Mpc) have superluminal recession
velocities (points to the right of the red circle on the black curve). Also according to the model,
as shown in Fig 24, the measurable redshift of an object with the recessional velocity of v/c = 1
is in the range of 3.953 ≤ zxg ≤ 4.038, where the min and max values correspond to the hot and
cold CMB pole directions, i.e. the black and blue curves, respectively. Contribution of the spatial
expansion (the red dashed curve) to the measureable redshift in the superluminal case is zx = 3 (the
last point on the red curve). This was also illustrated earlier in Fig 6. The recessional velocity versus
the entire range of measureable redshifts is shown in Fig 25. The superluminal recession velocity in
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the standard cosmology [22], on the other hand, under generally accepted parameters (ΩM ,ΩΛ) =
(0.3, 0.7), starts at measurable z ≥ 1.46. In our model, the proper distance corresponding to such
redshift is found to be dsu standard z = 4430 (Mpc). According to our model, an object with such
redshift has v/c ∼ 0.6, i.e. the red × mark on Fig 23. However, in the standard model, an object in
such distance (or redshift) has superluminal velocity v/c = 1.0, i.e. the red � on the Figure, which
results in the misestimated Hubble constant of c/dsu standard z = 67.7 (km/sec/Mpc), in line with
the current estimates of the Hubble constant in the literature. According to our model, therefore,
the current estimate of the Hubble constant from the standard model could be overestimated by a
factor of 1.0

0.6 , i.e. by ∼ 66%.

Figure 24: Recession velocity of objects in the low range of z

12 Conclusion

A cosmological model is introduced wherein the universe is in a condensed steady state condition
prior to its expansion at the Big Bang. The steady state condition represents the state of the core
of a primordial super-massive black hole in this theory. At the Big Bang, velocity of the concentric
spherical shells of the primordial condensation change from initial value zero to the speed of light
c - relative to their local rest frames - within one cosmological time step A/c. The work done on
the condensation increases the core temperature by some 50 orders of magnitude; i.e. from its
initial value in the range 30.009e-34 − 1.167e-34 (K) to post Big Bang temperature of 2.13e16 (K).
Immediately after the Big Bang the universe begins to decelerate. The known universe was shown
to be the observable part of a much bigger structure - named the grand universe. It was shown that
the CMB dipole of amplitude 3.35 mK could be due to the gravitational redshift anisotropy caused
by the matter residing beyond the horizon of the observable universe. The graviational redshift
of CMB is found to be zg CMB > 30(−). The measureable redshift was shown to be made of the
superposition of the gravitational and spatial redshifts. The Hubble diagram constructed using the
numerical simulation of the apparent magnitudes and the measureable redshifts of type Ia SN was
compared against a large set of observational data. The best fit to the data was found when type Ia
SN absolute luminosity L? was taken to be 3.02e9 times that of the sun L�. The age of the universe
was found to be 15.96e9 (years), i.e ∼ 2.14e9 (years) older than that of the standard cosmology.
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The recombination time was found to be 456600 (years) after the Big Bang. The actual value of the
Hubble constant was found to be 40.83 (km/sec/Mpc). The discrepancy with the current estimated
range of 67 − 71 (km/sec/Mpc) is partly due to neglecting the gravitational redshifts of the grand
universe in the standard cosmology.

Figure 25: Recession velocity of objects in the entire range of z
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