Proofs of Four Conjectures in Number Theory : Beal's Conjecture, Riemann Hypothesis, The $a b c$ and $c<R^{1.63}$ Conjectures

- version 2 - December 2022 -

Abdelmajid Ben Hadj Salem

Résidence Bousten 8, Mosquée Raoudha, 1181 Soukra Raoudha, Tunisia
Email: abenhadjsalem@gmail.com

Abstract

This monograph presents the proofs of 4 important conjectures in the field of number theory: - The Beal's conjecture. - The Riemann Hypothesis. - The $c<R^{1.63}$ conjecture. - The $a b c$ conjecture is true.

We give in detail all the proofs.

Résumé

Cette monographie présente les preuves de 4 conjectures importantes dans le domaine de la théorie des nombres à savoir:

- La conjecture de Beal.
- L'Hypothèse de Riemann.
- La conjecture $c<R^{1.63}$.
- La conjecture abc est vraie.

Nous donnons les détails des différentes démonstrations.

Figure 1: Photo of the Author

Dedication

To the memory of my Parents, to my wife Wahida, my daughter Sinda and my son Mohamed Mazen. To my Teachers, to my Friends.

Contents

1 A Complete Proof of Beal's Conjecture 2
1.1 Introduction 3
1.2 Trivial Case 4
1.2.1 Case $1 A_{1}=1 \Longrightarrow C_{1}=1$ 4
1.2.2 Case $2 A_{1}>1 \Longrightarrow C_{1}>1$ 4
1.3 Preliminaries 5
1.3.1 Expressions of the roots 6
1.4 Preamble of the Proof of the Main Theorem 8
1.4.1 Case $\cos ^{2} \frac{\theta}{3}=\frac{1}{b}$ 9
1.4.2 Case $a>1, \cos ^{2} \frac{\theta}{3}=\frac{a}{b}$ 10
1.5 Hypothesis: $\{3 \mid a$ and $b \mid 4 p\}$ 10
1.5.1 Case $b=2$ and $3 \mid a$ 10
1.5.2 Case $b=4$ and $3 \mid a$ 10
1.5.3 Case $b=p$ and $3 \mid a$ 10
1.5.4 Case $b \mid p \Rightarrow p=b \cdot p^{\prime}, p^{\prime}>1, b \neq 2, b \neq 4$ and $3 \mid a$ 14
1.5.5 Case $b=2 p$ and $3 \mid a$ 16
1.5.6 Case $b=4 p$ and $3 \mid a$ 17
1.5.7 Case $3 \mid a$ and $b=2 p^{\prime}, b \neq 2$ with $p^{\prime} \mid p$ 20
1.5.8 Case $3 \mid a$ and $b=4 p^{\prime}, b \neq 4$ with $p^{\prime} \mid p$ 22
1.5.9 Case $3 \mid a$ and $b \mid 4 p$ 25
1.6 Hypothèse: $\{3 \mid p$ and $b \mid 4 p\}$ 27
1.6.1 Case $b=2$ and $3 \mid p$ 27
1.6.2 Case $b=4$ and $3 \mid p$ 27
1.6.3 Case: $b \neq 2, b \neq 4, b \neq 3, b \mid p$ and $3 \mid p$ 28
1.6.4 Case $b=3$ and $3 \mid p$ 30
1.6.5 Case $3 \mid p$ and $b=p$ 31
1.6.6 Case $3 \mid p$ and $b=4 p$ 31
1.6.7 Case $3 \mid p$ and $b=2 p$ 31
1.6.8 Case $3 \mid p$ and $b \neq 3$ a divisor of p 32
1.6.9 Case $3 \mid p$ and $b \mid 4 p$ 39
1.7 Examples and Conclusion 48
1.7.1 Numerical Examples 48
1.7.2 Conclusion 49
2 Is The Riemann Hypothesis True? Yes It Is 52
2.1 Introduction 52
2.1.1 The function ζ. 53
2.1.2 A Equivalent statement to the Riemann Hypothesis. 54
2.2 Preliminaries of the proof 54
2.3 Case $\sigma=\frac{1}{2}$. 56
2.4 Case $0<\Re(s)<\frac{1}{2}$. 56
2.4.1 Case where there are zeros of $\eta(s)$ with $s=\sigma+$ it and $0<\sigma<\frac{1}{2}$. 56
2.5 Case $\frac{1}{2}<\Re(s)<1$. 57
2.6 Conclusion. 59
3 Is The Conjecture $c<\operatorname{rad}^{1.63}(a b c)$ True? 61
3.1 Introduction and notations 61
3.2 The Proof of the conjecture $c<\operatorname{rad}^{1.63}(a b c)$, case $c=a+b$ 62
4 Is The $a b c$ Conjecture True? 75
4.1 Introduction and notations 75
4.2 The Proof of the abc conjecture 76
4.2.1 Case : $\epsilon \geq 1$ 76
4.2.2 Case: $\epsilon<1$ 76
4.3 Conclusion 78

Chapter

A Complete Proof of Beal's Conjecture

Abstract

In 1997, Andrew Beal announced the following conjecture: Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If $A^{m}+B^{n}=C^{l}$ then A, B, and C have a common factor. We begin to construct the polynomial $P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-p x+q$ with p, q integers depending of A^{m}, B^{n} and C^{l}. We resolve $x^{3}-p x+q=0$ and we obtain the three roots x_{1}, x_{2}, x_{3} as functions of p, q and a parameter θ. Since $A^{m}, B^{n},-C^{l}$ are the only roots of $x^{3}-p x+q=0$, we discuss the conditions that x_{1}, x_{2}, x_{3} are integers and have or not a common factor. Three numerical examples are given.

Résumé

En 1997, Andrew Beal avait annoncé la conjecture suivante: Soient A, B, C, m, n, et l des entiers positifs avec $m, n, l>2$. Si $A^{m}+B^{n}=C^{l}$ alors A, B, et C ont un facteur commun.

Je commence par construire le polynôme $P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-p x+q$ avec p, q des entiers qui dépendent de A^{m}, B^{n} et C^{l}. Nous résolvons $x^{3}-p x+q=0$ et nous obtenons les trois racines x_{1}, x_{2}, x_{3} comme fonctions de p, q et d'un paramètre θ. Comme $A^{m}, B^{n},-C^{l}$ sont les seules racines de $x^{3}-p x+q=0$, nous discutons les conditions pourque x_{1}, x_{2}, x_{3} soient des entiers. Trois exemples numériques sont présentés.

Contents

1.1 Introduction 3
1.2 Trivial Case 4
1.2.1 Case $1 A_{1}=1 \Longrightarrow C_{1}=1$ 4
1.2.2 Case $2 A_{1}>1 \Longrightarrow C_{1}>1$ 4
1.3 Preliminaries 5
1.3.1 Expressions of the roots 6
1.4 Preamble of the Proof of the Main Theorem 8
1.4.1 Case $\cos ^{2} \frac{\theta}{3}=\frac{1}{b}$ 9
1.4.2 Case $a>1, \cos ^{2} \frac{\theta}{3}=\frac{a}{b}$ 10
1.5 Hypothesis: $\{3 \mid a$ and $b \mid 4 p\}$ 10
1.5.1 Case $b=2$ and $3 \mid a$ 10
1.5.2 Case $b=4$ and $3 \mid a$ 10
1.5.3 Case $b=p$ and $3 \mid a$ 10
1.5.4 Case $b \mid p \Rightarrow p=b \cdot p^{\prime}, p^{\prime}>1, b \neq 2, b \neq 4$ and $3 \mid a$ 14
1.5.5 Case $b=2 p$ and $3 \mid a$ 16
1.5.6 Case $b=4 p$ and $3 \mid a$ 17
1.5.7 Case $3 \mid a$ and $b=2 p^{\prime}, b \neq 2$ with $p^{\prime} \mid p$ 20
1.5.8 Case $3 \mid a$ and $b=4 p^{\prime}, b \neq 4$ with $p^{\prime} \mid p$ 22
1.5.9 Case $3 \mid a$ and $b \mid 4 p$ 25
1.6 Hypothèse: $\{3 \mid p$ and $b \mid 4 p\}$ 27
1.6.1 Case $b=2$ and $3 \mid p$ 27
1.6.2 Case $b=4$ and $3 \mid p$ 27
1.6.3 Case: $b \neq 2, b \neq 4, b \neq 3, b \mid p$ and $3 \mid p$ 28
1.6.4 Case $b=3$ and $3 \mid p$ 30
1.6.5 Case $3 \mid p$ and $b=p$ 31
1.6.6 Case $3 \mid p$ and $b=4 p$ 31
1.6.7 Case $3 \mid p$ and $b=2 p$ 31
1.6.8 Case $3 \mid p$ and $b \neq 3$ a divisor of p 32
1.6.9 Case $3 \mid p$ and $b \mid 4 p$ 39
1.7 Examples and Conclusion 48
1.7.1 Numerical Examples 48
1.7.2 Conclusion 49

1.1 Introduction

In 1997, Andrew Beal [4] announced the following conjecture :
Conjecture 1.1.1. Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1.1.1}
\end{equation*}
$$

then A, B, and C have a common factor.

The purpose of this paper is to give a complete proof of Beal's conjecture. Our proof of the conjecture contains many cases to study using elementary number theory. Our idea is to construct a polynomial $P(x)$ of order three having as roots A^{m}, B^{n} and $-C^{l}$ with the condition (1.1.1). The paper is organized as follows. In section 1, It is an introduction of the paper. The trivial case, where $A^{m}=B^{n}$, is studied in section 2. The preliminaries needed for the proof are given in section 3 where we consider the polynomial $P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-p x+q$. We express the three roots of $P(x)=x^{3}-p x+q=0$ in function of two parameters p, θ that depend on A^{m}, B^{n}, C^{l}. The section 4 is the preamble of the proof of the main theorem. We find the expression of $A^{2 m}$ equal to $\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}$. As $A^{2 m}$ is an integer, it follows that $\cos ^{2} \frac{\theta}{3}$ must be written as $\frac{a}{b}$ where a, b are two positive coprime integers. We discuss the conditions of divisibility of p, a, b so that the expression of $A^{2 m}$ is an integer. Depending of each individual case, we obtain that A, B, C have or do have not a common factor. Section 5 treats the cases of the first hypothesis $3 \mid a$ and $b \mid 4 p$. We study the cases of the second hypothesis $3 \mid p$ and $b \mid 4 p$ in section 6 . Finally, we present three numerical examples and the conclusion in section 7 .

In 1997, Andrew Beal [4] announced the following conjecture :

Conjecture 1.1.2. Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1.1.2}
\end{equation*}
$$

then A, B, and C have a common factor.

1.2 Trivial Case

We consider the trivial case when $A^{m}=B^{n}$. The equation (1.1.2) becomes:

$$
\begin{equation*}
2 A^{m}=C^{l} \tag{1.2.1}
\end{equation*}
$$

then $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{q} . C_{1}$ with $q \geq 1,2 \nmid C_{1}$ and $2 A^{m}=2^{q l} C_{1}^{l} \Longrightarrow A^{m}=2^{q l-1} C_{1}^{l}$. As $l>2, q \geq 1$, then $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{r} A_{1}$ with $r \geq 1$ and $2 \nmid A_{1}$. The equation (1.2.1),becomes:

$$
\begin{equation*}
2 \times 2^{r m} A_{1}^{m}=2^{q l} C_{1}^{l} \tag{1.2.2}
\end{equation*}
$$

As $2 \nmid A_{1}$ and $2 \nmid C_{1}$, we obtain the first condition :

$$
\begin{equation*}
\text { there exists two positive integers } r, q \text { with } r \cdot q \geq 1 \text { so that } q l=m r+1 \tag{1.2.3}
\end{equation*}
$$

Then from (1.2.2):

$$
\begin{equation*}
A_{1}^{m}=C_{1}^{l} \tag{1.2.4}
\end{equation*}
$$

1.2.1 Case $1 A_{1}=1 \Longrightarrow C_{1}=1$

Using the condition (1.2.3) above, we obtain 2. $\left(2^{r}\right)^{m}=\left(2^{q}\right)^{l}$ and the Beal conjecture is verified.

1.2.2 Case $2 A_{1}>1 \Longrightarrow C_{1}>1$

From the fundamental theorem of the arithmetic, we can write:

$$
\begin{gather*}
A_{1}=a_{1}^{\alpha_{1}} \ldots a_{I}^{\alpha_{I}}, \quad a_{1}<a_{2}<\cdots<a_{I} \Longrightarrow A_{1}^{m}=a_{1}^{m \alpha_{1}} \ldots a_{I}^{m \alpha_{I}} \tag{1.2.5}\\
C_{1}=c_{1}^{\beta_{1}} \ldots c_{J}^{\beta_{I}}, \quad c_{1}<c_{2}<\cdots<c_{J} \Longrightarrow C_{1}^{l}=c_{1}^{\beta_{1}} \ldots c_{J}^{\beta_{J}} \tag{1.2.6}
\end{gather*}
$$

where a_{i} (respectively c_{j}) are distinct positive prime numbers and α_{i} (respectively β_{j}) are integers >0.
From (1.2.4) and using the uniqueness of the factorization of A_{1}^{m} and C_{1}^{l}, we obtain necessary:

$$
\left\{\begin{array}{l}
I=J \tag{1.2.7}\\
a_{i}=c_{i}, \quad i=1,2, \ldots, I \\
m \alpha_{i}=l \beta_{i}
\end{array}\right.
$$

As one $a_{i}\left|A^{m} \Longrightarrow a_{i}\right| B^{m} \Longrightarrow a_{i} \mid B$ and in this case, the Beal conjecture is verified.
We suppose in the following that $A^{m}>B^{n}$.

1.3 Preliminaries

Let $m, n, l \in \mathbb{N}^{*}>2$ and $A, B, C \in \mathbb{N}^{*}$ such:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1.3.1}
\end{equation*}
$$

We call:

$$
\begin{gather*}
P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-x^{2}\left(A^{m}+B^{n}-C^{l}\right) \\
+x\left[A^{m} B^{n}-C^{l}\left(A^{m}+B^{n}\right)\right]+C^{l} A^{m} B^{n} \tag{1.3.2}
\end{gather*}
$$

Using the equation (1.3.1), $P(x)$ can be written as:

$$
\begin{equation*}
P(x)=x^{3}+x\left[A^{m} B^{n}-\left(A^{m}+B^{n}\right)^{2}\right]+A^{m} B^{n}\left(A^{m}+B^{n}\right) \tag{1.3.3}
\end{equation*}
$$

We introduce the notations:

$$
\begin{array}{r}
p=\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n} \\
\quad q=A^{m} B^{n}\left(A^{m}+B^{n}\right)
\end{array}
$$

As $A^{m} \neq B^{n}$, we have $p>\left(A^{m}-B^{n}\right)^{2}>0$. Equation (1.3.3) becomes:

$$
P(x)=x^{3}-p x+q
$$

Using the equation (1.3.2), $P(x)=0$ has three different real roots : A^{m}, B^{n} and $-C^{l}$.
Now, let us resolve the equation:

$$
\begin{equation*}
P(x)=x^{3}-p x+q=0 \tag{1.3.4}
\end{equation*}
$$

To resolve (1.3.4) let:

$$
x=u+v
$$

Then $P(x)=0$ gives:

$$
\begin{equation*}
P(x)=P(u+v)=(u+v)^{3}-p(u+v)+q=0 \Longrightarrow u^{3}+v^{3}+(u+v)(3 u v-p)+q=0 \tag{1.3.5}
\end{equation*}
$$

To determine u and v, we obtain the conditions:

$$
\begin{gathered}
u^{3}+v^{3}=-q \\
u v=p / 3>0
\end{gathered}
$$

Then u^{3} and v^{3} are solutions of the second order equation:

$$
\begin{equation*}
X^{2}+q X+p^{3} / 27=0 \tag{1.3.6}
\end{equation*}
$$

Its discriminant Δ is written as :

$$
\Delta=q^{2}-4 p^{3} / 27=\frac{27 q^{2}-4 p^{3}}{27}=\frac{\bar{\Delta}}{27}
$$

Let:

$$
\begin{align*}
\bar{\Delta}=27 q^{2}-4 p^{3} & =27\left(A^{m} B^{n}\left(A^{m}+B^{n}\right)\right)^{2}-4\left[\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n}\right]^{3} \\
& =27 A^{2 m} B^{2 n}\left(A^{m}+B^{n}\right)^{2}-4\left[\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n}\right]^{3} \tag{1.3.7}
\end{align*}
$$

Noting :

$$
\begin{array}{r}
\alpha=A^{m} B^{n}>0 \\
\beta=\left(A^{m}+B^{n}\right)^{2}
\end{array}
$$

we can write (1.3.7) as:

$$
\begin{equation*}
\bar{\Delta}=27 \alpha^{2} \beta-4(\beta-\alpha)^{3} \tag{1.3.8}
\end{equation*}
$$

As $\alpha \neq 0$, we can also rewrite (1.3.8) as :

$$
\bar{\Delta}=\alpha^{3}\left(27 \frac{\beta}{\alpha}-4\left(\frac{\beta}{\alpha}-1\right)^{3}\right)
$$

We call t the parameter :

$$
t=\frac{\beta}{\alpha}
$$

$\bar{\Delta}$ becomes :

$$
\bar{\Delta}=\alpha^{3}\left(27 t-4(t-1)^{3}\right)
$$

Let us calling :

$$
y=y(t)=27 t-4(t-1)^{3}
$$

Since $\alpha>0$, the sign of $\bar{\Delta}$ is also the sign of $y(t)$. Let us study the sign of y. We obtain $y^{\prime}(t)$:

$$
y^{\prime}(t)=y^{\prime}=3(1+2 t)(5-2 t)
$$

$y^{\prime}=0 \Longrightarrow t_{1}=-1 / 2$ and $t_{2}=5 / 2$, then the table of variations of y is given below:

t	$-\infty$	-1/2		5/2	4	$+\infty$
$1+2 \mathrm{t}$	-	0	$+$		+	
5-2t	+		+	0	-	
$y^{\prime}(t)$	-	0	+	0	-	
$y(t)$						

Figure 1.1: The table of variations
The table of the variations of the function y shows that $y<0$ for $t>4$. In our case, we are interested for $t>0$. For $t=4$ we obtain $y(4)=0$ and for $t \in] 0,4\left[\Longrightarrow y>0\right.$. As we have $t=\frac{\beta}{\alpha}>4$ because as $A^{m} \neq B^{n}$:

$$
\left(A^{m}-B^{n}\right)^{2}>0 \Longrightarrow \beta=\left(A^{m}+B^{n}\right)^{2}>4 \alpha=4 A^{m} B^{n}
$$

Then $y<0 \Longrightarrow \bar{\Delta}<0 \Longrightarrow \Delta<0$. Then, the equation (1.3.6) does not have real solutions u^{3} and v^{3}. Let us find the solutions u and v with $x=u+v$ is a positive or a negative real and $u \cdot v=p / 3$.

1.3.1 Expressions of the roots

Proof. The solutions of (1.3.6) are:

$$
\begin{aligned}
X_{1} & =\frac{-q+i \sqrt{-\Delta}}{2} \\
X_{2}=\overline{X_{1}} & =\frac{-q-i \sqrt{-\Delta}}{2}
\end{aligned}
$$

We may resolve:

$$
\begin{aligned}
& u^{3}=\frac{-q+i \sqrt{-\Delta}}{2} \\
& v^{3}=\frac{-q-i \sqrt{-\Delta}}{2}
\end{aligned}
$$

Writing X_{1} in the form:

$$
X_{1}=\rho e^{i \theta}
$$

with:

$$
\begin{aligned}
& \rho=\frac{\sqrt{q^{2}-\Delta}}{2}=\frac{p \sqrt{p}}{3 \sqrt{3}} \\
& \text { and } \sin \theta=\frac{\sqrt{-\Delta}}{2 \rho}>0 \\
& \qquad \cos \theta=-\frac{q}{2 \rho}<0
\end{aligned}
$$

Then $\theta[2 \pi] \in]+\frac{\pi}{2},+\pi[$, let:

$$
\begin{equation*}
\frac{\pi}{2}<\theta<+\pi \Rightarrow \frac{\pi}{6}<\frac{\theta}{3}<\frac{\pi}{3} \Rightarrow \frac{1}{2}<\cos \frac{\theta}{3}<\frac{\sqrt{3}}{2} \tag{1.3.9}
\end{equation*}
$$

and:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4} \tag{1.3.10}
\end{equation*}
$$

hence the expression of X_{2} :

$$
\begin{equation*}
X_{2}=\rho e^{-i \theta} \tag{1.3.11}
\end{equation*}
$$

Let:

$$
\begin{array}{r}
u=r e^{i \psi} \\
\text { and } j=\frac{-1+i \sqrt{3}}{2}=e^{i \frac{2 \pi}{3}} \\
j^{2}=e^{i \frac{4 \pi}{3}}=-\frac{1+i \sqrt{3}}{2}=\bar{j} \tag{1.3.14}
\end{array}
$$

j is a complex cubic root of the unity $\Longleftrightarrow j^{3}=1$. Then, the solutions u and v are:

$$
\begin{array}{r}
u_{1}=r e^{i \psi_{1}}=\sqrt[3]{\rho} e^{i \frac{\theta}{3}} \\
u_{2}=r e^{i \psi_{2}}=\sqrt[3]{\rho} j e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i+2 \pi} 3 \\
u_{3}=r e^{i \psi_{3}}=\sqrt[3]{\rho} j^{2} e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi}{3}} e^{+i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{\theta+4 \pi}{3}} \tag{1.3.17}
\end{array}
$$

and similarly:

$$
\begin{array}{r}
v_{1}=r e^{-i \psi_{1}}=\sqrt[3]{\rho} e^{-i \frac{\theta}{3}} \\
v_{2}=r e^{-i \psi_{2}}=\sqrt[3]{\rho} j^{2} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi}{3}} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi-\theta}{3}} \\
v_{3}=r e^{-i \psi_{3}}=\sqrt[3]{\rho} j e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{2 \pi-\theta}{3}} \tag{1.3.20}
\end{array}
$$

We may now choose u_{k} and v_{h} so that $u_{k}+v_{h}$ will be real. In this case, we have necessary :

$$
\begin{align*}
v_{1} & =\overline{u_{1}} \tag{1.3.21}\\
v_{2} & =\overline{u_{2}} \tag{1.3.22}\\
v_{3} & =\overline{u_{3}} \tag{1.3.23}
\end{align*}
$$

We obtain as real solutions of the equation (1.3.5):

$$
\begin{gather*}
x_{1}=u_{1}+v_{1}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3}>0 \tag{1.3.24}\\
x_{2}=u_{2}+v_{2}=2 \sqrt[3]{\rho} \cos \frac{\theta+2 \pi}{3}=-\sqrt[3]{\rho}\left(\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)<0 \tag{1.3.25}\\
x_{3}=u_{3}+v_{3}=2 \sqrt[3]{\rho} \cos \frac{\theta+4 \pi}{3}=\sqrt[3]{\rho}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)>0 \tag{1.3.26}
\end{gather*}
$$

+ We compare the expressions of x_{1} and x_{3}, we obtain:

$$
\begin{gather*}
2 \sqrt[3]{p} \cos \frac{\theta}{3} \overbrace{>}^{?} \sqrt[3]{p}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right) \\
3 \cos \frac{\theta}{3} \overbrace{>}^{?} \sqrt{3} \sin \frac{\theta}{3} \tag{1.3.27}
\end{gather*}
$$

As $\left.\frac{\theta}{3} \in\right]+\frac{\pi}{6},+\frac{\pi}{3}\left[\right.$, then $\sin \frac{\theta}{3}$ and $\cos \frac{\theta}{3}$ are >0. Taking the square of the two members of the last equation, we get:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3} \tag{1.3.28}
\end{equation*}
$$

which is true since $\left.\frac{\theta}{3} \in\right]+\frac{\pi}{6},+\frac{\pi}{3}\left[\right.$ then $x_{1}>x_{3}$. As A^{m}, B^{n} and $-C^{l}$ are the only real solutions of (1.3.4), we consider, as A^{m} is supposed great than B^{n}, the expressions:

$$
\left\{\begin{array}{l}
A^{m}=x_{1}=u_{1}+v_{1}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \tag{1.3.29}\\
B^{n}=x_{3}=u_{3}+v_{3}=2 \sqrt[3]{\rho} \cos \frac{\theta+4 \pi}{3}=\sqrt[3]{\rho}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right) \\
-C^{l}=x_{2}=u_{2}+v_{2}=2 \sqrt[3]{\rho} \cos \frac{\theta+2 \pi}{3}=-\sqrt[3]{\rho}\left(\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)
\end{array}\right.
$$

1.4 Preamble of the Proof of the Main Theorem

Theorem 1.4.1. Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1.4.1}
\end{equation*}
$$

then A, B, and C have a common factor.
Proof. $A^{m}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3}$ is an integer $\Rightarrow A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}$ is also an integer. But :

$$
\begin{equation*}
\sqrt[3]{\rho^{2}}=\frac{p}{3} \tag{1.4.2}
\end{equation*}
$$

Then:

$$
\begin{equation*}
A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 \frac{p}{3} \cdot \cos ^{2} \frac{\theta}{3}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3} \tag{1.4.3}
\end{equation*}
$$

As $A^{2 m}$ is an integer and p is an integer, then $\cos ^{2} \frac{\theta}{3}$ must be written under the form:

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{1}{b} \quad \text { or } \quad \cos ^{2} \frac{\theta}{3}=\frac{a}{b} \tag{1.4.4}
\end{equation*}
$$

with $b \in \mathbb{N}^{*}$; for the last condition $a \in \mathbb{N}^{*}$ and a, b coprime.
Notations: In the following of the paper, the scalars $a, b, \ldots, z, \alpha, \beta, \ldots, A, B, C, \ldots$ and Δ, Φ, \ldots represent positive integers except the parameters θ, ρ, or others cited in the text, are reals.
1.4.1 Case $\cos ^{2} \frac{\theta}{3}=\frac{1}{b}$

We obtain:

$$
\begin{equation*}
A^{2 m}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p}{3 \cdot b} \tag{1.4.5}
\end{equation*}
$$

As $\frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4} \Rightarrow \frac{1}{4}<\frac{1}{b}<\frac{3}{4} \Rightarrow b<4<3 b \Rightarrow b=1,2,3$.
$b=1$
$b=1 \Rightarrow 4<3$ which is impossible.
$b=2$
$\left.b=2 \Rightarrow A^{2 m}=p \cdot \frac{4}{3} \cdot \frac{1}{2}=\frac{2 \cdot p}{3} \Rightarrow 3 \right\rvert\, p \Rightarrow p=3 p^{\prime}$ with $p^{\prime} \neq 1$ because $3 \ll p$, we obtain:

$$
\begin{gather*}
\left.A^{2 m}=\left(A^{m}\right)^{2}=\frac{2 p}{3}=2 \cdot p^{\prime} \Longrightarrow 2 \right\rvert\, p^{\prime} \Longrightarrow p^{\prime}=2^{\alpha} p_{1}^{2} \\
\text { with } 2 \nmid p_{1}, \quad \alpha+1=2 \beta \\
A^{m}=2^{\beta} p_{1} \tag{1.4.6}\\
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=p^{\prime}=2^{\alpha} p_{1}^{2} \tag{1.4.7}
\end{gather*}
$$

From the equation (1.4.6), it follows that $2 \mid A^{m} \Longrightarrow A=2^{i} A_{1}, i \geq 1$ and $2 \nmid A_{1}$. Then, we have $\beta=i . m=i m$. The equation (1.4.7) implies that $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.

Case $2 \mid B^{n}$: - If $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $2 \nmid B_{1}$. The expression of $B^{n} C^{l}$ becomes:

$$
B_{1}^{n} C^{l}=2^{2 i m-1-j n} p_{1}^{2}
$$

- If $2 i m-1-j n \geq 1,2\left|C^{l} \Longrightarrow 2\right| C$ according to $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 i m-1-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.

Case $2 \mid C^{l}$: If $2 \mid C^{l}$: with the same method used above, we obtain the identical results.
$b=3$
$\left.b=3 \Rightarrow A^{2 m}=p \cdot \frac{4}{3} \cdot \frac{1}{3}=\frac{4 p}{9} \Rightarrow 9 \right\rvert\, p \Rightarrow p=9 p^{\prime}$ with $p^{\prime} \neq 1$, as $9 \ll p$ then $A^{2 m}=4 p^{\prime}$. If p^{\prime} is prime, it is impossible. We suppose that p^{\prime} is not a prime, as $m \geq 3$, it follows that $2 \mid p^{\prime}$, then $2 \mid A^{m}$. But $B^{n} C^{l}=5 p^{\prime}$ and $2 \mid\left(B^{n} C^{l}\right)$. Using the same method for the case $b=2$, we obtain the identical results.
1.4.2 Case $a>1, \cos ^{2} \frac{\theta}{3}=\frac{a}{b}$

We have:

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b} ; \quad A^{2 m}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p \cdot a}{3 \cdot b} \tag{1.4.8}
\end{equation*}
$$

where a, b verify one of the two conditions:

$$
\begin{equation*}
\{3 \mid a \text { and } b \mid 4 p\} \text { or }\{3 \mid p \text { and } b \mid 4 p\} \tag{1.4.9}
\end{equation*}
$$

and using the equation (1.3.10), we obtain a third condition:

$$
\begin{equation*}
b<4 a<3 b \tag{1.4.10}
\end{equation*}
$$

For these conditions, $A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 \frac{p}{3} \cdot \cos ^{2} \frac{\theta}{3}$ is an integer.
Let us study the conditions given by the equation (1.4.9) in the following two sections.

1.5 Hypothesis: $\{3 \mid a$ and $b \mid 4 p\}$

We obtain :

$$
\begin{equation*}
3 \mid a \Longrightarrow \exists a^{\prime} \in \mathbb{N}^{*} / a=3 a^{\prime} \tag{1.5.1}
\end{equation*}
$$

1.5.1 Case $b=2$ and $3 \mid a$

$A^{2 m}$ is written as:

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{4 p}{3} \cdot \frac{a}{2}=\frac{2 \cdot p \cdot a}{3} \tag{1.5.2}
\end{equation*}
$$

Using the equation (1.5.1), $A^{2 m}$ becomes :

$$
\begin{equation*}
A^{2 m}=\frac{2 \cdot p \cdot 3 a^{\prime}}{3}=2 \cdot p \cdot a^{\prime} \tag{1.5.3}
\end{equation*}
$$

but $\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{2}>1$ which is impossible, then $b \neq 2$.

1.5.2 Case $b=4$ and $3 \mid a$

$A^{2 m}$ is written :

$$
\begin{align*}
& A^{2 m}=\frac{4 \cdot p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot p}{3} \cdot \frac{a}{4}=\frac{p \cdot a}{3}=\frac{p \cdot 3 a^{\prime}}{3}=p \cdot a^{\prime} \tag{1.5.4}\\
& \quad \text { and } \cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 \cdot a^{\prime}}{4}<\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{3}{4} \Longrightarrow a^{\prime}<1 \tag{1.5.5}
\end{align*}
$$

which is impossible. Then the case $b=4$ is impossible.

1.5.3 Case $b=p$ and $3 \mid a$

We have :

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{p} \tag{1.5.6}
\end{equation*}
$$

and:

$$
\begin{array}{r}
A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{p}=4 a^{\prime}=\left(A^{m}\right)^{2} \\
\exists a^{\prime \prime} / a^{\prime}=a^{\prime \prime 2} \\
\text { and } \quad B^{n} C^{l}=p-A^{2 m}=b-4 a^{\prime}=b-4 a^{\prime \prime 2} \tag{1.5.9}
\end{array}
$$

The calculation of $A^{m} B^{n}$ gives :

$$
\begin{align*}
& A^{m} B^{n}=p \cdot \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}-2 a^{\prime} \\
\text { or } & A^{m} B^{n}+2 a^{\prime}=p \cdot \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3} \tag{1.5.10}
\end{align*}
$$

The left member of (1.5.10) is an integer and p also, then $2 \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}$ is written under the form :

$$
\begin{equation*}
2 \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}} \tag{1.5.11}
\end{equation*}
$$

where k_{1}, k_{2} are two coprime integers and $k_{2} \mid p \Longrightarrow p=b=k_{2} \cdot k_{3}, k_{3} \in \mathbb{N}^{*}$.

We suppose that $k_{3} \neq 1$

We obtain :

$$
\begin{equation*}
A^{m}\left(A^{m}+2 B^{n}\right)=k_{1} \cdot k_{3} \tag{1.5.12}
\end{equation*}
$$

Let μ be a prime integer with $\mu \mid k_{3}$, then $\mu \mid b$ and $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
${ }^{* *}$ A-1-1- If $\mu\left|A^{m} \Longrightarrow \mu\right| A$ and $\mu \mid A^{2 m}$, but $A^{2 m}=4 a^{\prime} \Longrightarrow \mu \mid 4 a^{\prime} \Longrightarrow\left(\mu=2\right.$, but $\left.2 \mid a^{\prime}\right)$ or ($\mu \mid a^{\prime}$). Then $\mu \mid a$ it follows the contradiction with a, b coprime.
${ }^{* *}$ A-1-2- If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$ then $\mu \neq 2$ and $\mu \nmid B^{n}$. We write $\mu \mid\left(A^{m}+2 B^{n}\right)$ as:

$$
\begin{equation*}
A^{m}+2 B^{n}=\mu . t^{\prime} \tag{1.5.13}
\end{equation*}
$$

It follows :

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p :

$$
\begin{equation*}
p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right) \tag{1.5.14}
\end{equation*}
$$

As $p=b=k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid b \Longrightarrow \exists \mu^{\prime}$ and $b=\mu \mu^{\prime}$, so we can write:

$$
\begin{equation*}
\mu^{\prime} \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right) \tag{1.5.15}
\end{equation*}
$$

From the last equation, we obtain $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
** A-1-2-1- If $\mu \mid B^{n}$ which is in contradiction with $\mu \nmid B^{n}$.
** A-1-2-2- If $\mu \mid\left(B^{n}-A^{m}\right)$ and using that $\mu \mid\left(A^{m}+2 B^{n}\right)$, we arrive to :

$$
\mu \left\lvert\, 3 B^{n}\left\{\begin{array}{l}
\mu \mid B^{n} \tag{1.5.16}\\
\text { or } \\
\mu=3
\end{array}\right.\right.
$$

** A-1-2-2-1- If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, it is the contradiction with $\mu \nmid B$ cited above.
** A-1-2-2-2- If $\mu=3$, then $3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime.

We assume now $k_{3}=1$
Then :

$$
\begin{align*}
A^{2 m}+2 A^{m} B^{n} & =k_{1} \tag{1.5.17}\\
b & =k_{2} \tag{1.5.18}\\
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3} & =\frac{k_{1}}{b} \tag{1.5.19}
\end{align*}
$$

Taking the square of the last equation, we obtain:

$$
\begin{gathered}
\frac{4}{3} \sin ^{2} \frac{2 \theta}{3}=\frac{k_{1}^{2}}{b^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cos ^{2} \frac{\theta}{3}=\frac{k_{1}^{2}}{b^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cdot \frac{3 a^{\prime}}{b}=\frac{k_{1}^{2}}{b^{2}}
\end{gathered}
$$

Finally:

$$
\begin{equation*}
4^{2} a^{\prime}(p-a)=k_{1}^{2} \tag{1.5.20}
\end{equation*}
$$

but $a^{\prime}=a^{\prime \prime 2}$, then $p-a$ is a square. Let:

$$
\begin{equation*}
\lambda^{2}=p-a=b-a=b-3 a^{\prime \prime 2} \Longrightarrow \lambda^{2}+3 a^{\prime \prime 2}=b \tag{1.5.21}
\end{equation*}
$$

The equation (1.5.20) becomes:

$$
\begin{equation*}
4^{2} a^{\prime \prime 2} \lambda^{2}=k_{1}^{2} \Longrightarrow k_{1}=4 a^{\prime \prime} \lambda \tag{1.5.22}
\end{equation*}
$$

taking the positive root, but $k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)=2 a^{\prime \prime}\left(A^{m}+2 B^{n}\right)$, then :

$$
\begin{equation*}
A^{m}+2 B^{n}=2 \lambda \Longrightarrow \lambda=a^{\prime \prime}+B^{n} \tag{1.5.23}
\end{equation*}
$$

** A-2-1- As $A^{m}=2 a^{\prime \prime} \Longrightarrow 2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$, with $i \geq 1$ and $2 \nmid A_{1}$, then $A^{m}=2 a^{\prime \prime}=2^{i m} A_{1}^{m} \Longrightarrow a^{\prime \prime}=2^{i m-1} A_{1}^{m}$, but $i m \geq 3 \Longrightarrow 4 \mid a^{\prime \prime}$. As $p=b=A^{2 m}+A^{m} B^{n}+B^{2 n}=\lambda=$ $2^{i m-1} A_{1}^{m}+B^{n}$. Taking its square, then :

$$
\lambda^{2}=2^{2 i m-2} A_{1}^{2 m}+2^{i m} A_{1}^{m} B^{n}+B^{2 n}
$$

As im ≥ 3, we can write $\lambda^{2}=4 \lambda_{1}+B^{2 n} \Longrightarrow \lambda^{2} \equiv B^{2 n}(\bmod 4) \Longrightarrow \lambda^{2} \equiv B^{2 n} \equiv 0(\bmod 4)$ or $\lambda^{2} \equiv B^{2 n} \equiv 1(\bmod 4)$.
** A-2-1-1- We suppose that $\lambda^{2} \equiv B^{2 n} \equiv 0(\bmod 4) \Longrightarrow 4\left|\lambda^{2} \Longrightarrow 2\right|(b-a)$. But $2 \mid a$ because $a=3 a^{\prime}=3 a^{\prime \prime 2}=3 \times 2^{2(i m-1)} A_{1}^{2 m}$ and $i m \geq 3$. Then $2 \mid b$, it follows the contradiction with a, b coprime.
** A-2-1-2- We suppose now that $\lambda^{2} \equiv B^{2 n} \equiv 1(\bmod 4)$. As $A^{m}=2^{i m-1} A_{1}^{m}$ and $i m-1 \geq 2$, then $A^{m} \equiv 0(\bmod 4)$. As $B^{2 n} \equiv 1(\bmod 4)$, then B^{n} verifies $B^{n} \equiv 1(\bmod 4)$ or $B^{n} \equiv 3(\bmod 4)$ which gives for the two cases $B^{n} C^{l} \equiv 1(\bmod 4)$.

We have also $p=b=A^{2 m}+A^{m} B^{n}+B^{2 n}=4 a^{\prime}+B^{n} \cdot C^{l}=4 a^{\prime \prime 2}+B^{n} C^{l} \Longrightarrow B^{n} C^{l}=\lambda^{2}-a^{\prime \prime 2}=$ $B^{n} . C^{l}$, then $\lambda, a^{\prime \prime} \in \mathbb{N}^{*}$ are solutions of the Diophantine equation :

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{1.5.24}
\end{equation*}
$$

with $N=B^{n} C^{l}>0$. Let $Q(N)$ be the number of the solutions of (1.5.24) and $\tau(N)$ is the number of suitable factorization of N, then we announce the following result concerning the solutions of the equation (1.5.24) (see theorem 27.3 in [7]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$.
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$.
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.
$[x]$ is the integral part of x for which $[x] \leq x<[x]+1$.
As $\lambda, a^{\prime \prime}$ is a couple of solutions of the Diophantine equation (1.5.24), then $\exists d, d^{\prime}$ positive integers with $d>d^{\prime}$ and $N=d . d^{\prime}$ so that :

$$
\begin{gather*}
d+d^{\prime}=2 \lambda \tag{1.5.25}\\
d-d^{\prime}=2 a^{\prime \prime} \tag{1.5.26}
\end{gather*}
$$

** A-2-1-2-1- We suppose as $C^{l}>B^{n}$ that $d=C^{l}$ and $d^{\prime}=B^{n}$. It follows:

$$
\begin{array}{r}
2 \lambda=C^{l}+B^{n}=A^{m}+2 B^{n} \\
 \tag{1.5.28}\\
2 a^{\prime \prime}=C^{l}-B^{n}=A^{m}
\end{array}
$$

From the paragraph A-2-1 above, we have $\lambda=p=A^{2 m}+A^{m} B^{n}+B^{2 n}>\left(A^{m}+2 B^{n}\right)$, then the case $d=C^{l}$ and $d^{\prime}=B^{n}$ gives a contradiction.
** A-2-1-2-2- Now, we consider the case $d=c_{1}^{l r-1} C_{1}^{l}$ where c_{1} is a prime integer with $c_{1} \nmid C_{1}$ and $C=c_{1}^{r} C_{1}, r \geq 1$. It follows that $d^{\prime}=c_{1} \cdot B^{n}$. We rewrite the equations (1.5.25-1.5.26):

$$
\begin{align*}
& c_{1}^{l r-1} C_{1}^{l}+c_{1} \cdot B^{n}=2 \lambda \tag{1.5.29}\\
& c_{1}^{l r-1} C_{1}^{l}-c_{1} \cdot B^{n}=2 a^{\prime \prime} \tag{1.5.30}
\end{align*}
$$

As $l \geq 3$, from the last two equations above, it follows that $c_{1} \mid(2 \lambda)$ and $c_{1} \mid\left(2 a^{\prime \prime}\right)$. Then $c_{1}=2$, or $c_{1} \mid \lambda$ and $c_{1} \mid a^{\prime \prime}$.
** A-2-1-2-2-1- We suppose $c_{1}=2$. As $2 \mid A^{m}$ and $2 \mid C^{l}$ because $l \geq 3$, it follows $2 \mid B^{n}$, then $2 \mid(p=b)$. Then the contradiction with a, b coprime.
** A-2-1-2-2-2- We suppose $c_{1} \neq 2$ and $c_{1} \mid a^{\prime \prime}$ and $c_{1}\left|\lambda . c_{1}\right| a^{\prime \prime} \Longrightarrow c_{1} \mid a$ and $c_{1} \mid\left(A^{m}=2 a^{\prime \prime}\right)$. $B^{n}=C^{l}-A^{m} \Longrightarrow c_{1} \mid B^{n}$. It follows that $c_{1} \mid(p=b)$. Then the contradiction with a, b coprime.

The others cases of the expressions of d and d^{\prime} with d, d^{\prime} not coprime so that $N=B^{n} C^{l}=d . d^{\prime}$ give also contradictions.

Hence, the case $k_{3}=1$ is impossible.
Let us verify the condition (1.4.10) given by $b<4 a<3 b$. In our case, the condition becomes :

$$
\begin{equation*}
p<3 A^{2 m}<3 p \text { with } p=A^{2 m}+B^{2 n}+A^{m} B^{n} \tag{1.5.31}
\end{equation*}
$$

and $3 A^{2 m}<3 p \Longrightarrow A^{2 m}<p$ that is verified. If :

$$
p<3 A^{2 m} \Longrightarrow 2 A^{2 m}-A^{m} B^{n}-B^{2 n} \overbrace{>}^{?} 0
$$

Studying the sign of the polynomial $Q(Y)=2 Y^{2}-B^{n} Y-B^{2 n}$ and taking $Y=A^{m}>B^{n}$, the condition $2 A^{2 m}-A^{m} B^{n}-B^{2 n}>0$ is verified, then the condition $b<4 a<3 b$ is true.

In the following of the paper, we verify easily that the condition $b<4 a<3 b$ implies to verify that $A^{m}>B^{n}$ which is true.
1.5.4 Case $b \mid p \Rightarrow p=b \cdot p^{\prime}, p^{\prime}>1, b \neq 2, b \neq 4$ and $3 \mid a$

$$
\begin{equation*}
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot b \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{3 \cdot b}=4 \cdot p^{\prime} a^{\prime} \tag{1.5.32}
\end{equation*}
$$

We calculate $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) \tag{1.5.33}
\end{equation*}
$$

but $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$, we obtain:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=p^{\prime}\left(b-4 a^{\prime}\right) \tag{1.5.34}
\end{equation*}
$$

As $p=b \cdot p^{\prime}$, and $p^{\prime}>1$, so we have :

$$
\begin{align*}
& B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right) \tag{1.5.35}\\
& \text { and } \quad A^{2 m}=4 \cdot p^{\prime} \cdot a^{\prime} \tag{1.5.36}
\end{align*}
$$

** B-1- We suppose that p^{\prime} is prime, then $A^{2 m}=4 a^{\prime} p^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow p^{\prime} \mid a^{\prime}$. But $B^{n} C^{l}=$ $p^{\prime}\left(b-4 a^{\prime}\right) \Longrightarrow p^{\prime} \mid B^{n}$ or $p^{\prime} \mid C^{l}$.
${ }^{* *}$ B-1-1- If $p^{\prime}\left|B^{n} \Longrightarrow p^{\prime}\right| B \Longrightarrow B=p^{\prime} B_{1}$ with $B_{1} \in \mathbb{N}^{*}$. Hence : $p^{\prime n-1} B_{1}^{n} C^{l}=b-4 a^{\prime}$. But $n>2 \Rightarrow(n-1)>1$ and $p^{\prime} \mid a^{\prime}$, then $p^{\prime} \mid b \Longrightarrow a$ and b are not coprime, then the contradiction.
** B-1-2- If $p^{\prime}\left|C^{l} \Longrightarrow p^{\prime}\right| C$. The same method used above, we obtain the same results.
** B-2- We consider that p^{\prime} is not a prime integer.
** B-2-1- p^{\prime}, a are supposed coprime: $A^{2 m}=4 a^{\prime} p^{\prime} \Longrightarrow A^{m}=2 a^{\prime \prime} . p_{1}$ with $a^{\prime}=a^{\prime \prime 2}$ and $p^{\prime}=p_{1}^{2}$, then $a^{\prime \prime}, p_{1}$ are also coprime. As $A^{m}=2 a^{\prime \prime} \cdot p_{1}$ then $2 \mid a^{\prime \prime}$ or $2 \mid p_{1}$.
${ }^{* *}$ B-2-1-1- $2 \mid a^{\prime \prime}$, then $2 \nmid p_{1}$. But $p^{\prime}=p_{1}^{2}$.
** B-2-1-1-1- If p_{1} is prime, it is impossible with $A^{m}=2 a^{\prime \prime} . p_{1}$.
** B-2-1-1-2- We suppose that p_{1} is not prime, we can write it as $p_{1}=\omega^{m} \Longrightarrow p^{\prime}=\omega^{2 m}$, then: $B^{n} C^{l}=\omega^{2 m}\left(b-4 a^{\prime}\right)$.
** B-2-1-1-2-1- If ω is prime, it is different of 2, then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
${ }^{* *}$ B-2-1-1-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$, then $B_{1}^{n} \cdot C^{l}=\omega^{2 m-n j}\left(b-4 a^{\prime}\right)$.
** B-2-1-1-2-1-1-1- If $2 m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=b-4 a^{\prime}$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, and $\omega \mid\left(b-4 a^{\prime}\right)$. But $\omega \neq 2$ and ω is coprime with a^{\prime} then coprime with a, then $\omega \nmid b$. The conjecture (3.1.1) is verified.
** B-2-1-1-2-1-1-2- If $2 m-n j \geq 1$, in this case with the same method, we obtain $\omega\left|C^{l} \Longrightarrow \omega\right| C$ and $\omega \mid\left(b-4 a^{\prime}\right)$ and $\omega \nmid a$ and $\omega \nmid b$. The conjecture (3.1.1) is verified.
** B-2-1-1-2-1-1-3- If $2 m-n j<0 \Longrightarrow \omega^{n . j-2 m} B_{1}^{n} \cdot C^{l}=b-4 a^{\prime}$. As $\omega \mid C$ using $C^{l}=A^{m}+B^{n}$ then $C=\omega^{h} . C_{1} \Longrightarrow \omega^{n . j-2 m+h . l} B_{1}^{n} . C_{1}^{l}=b-4 a^{\prime}$. If $n . j-2 m+h . l<0 \Longrightarrow \omega \mid B_{1}^{n} C_{1}^{l}$, it follows the contradiction that $\omega \nmid B_{1}$ or $\omega \nmid C_{1}$. Then if $n . j-2 m+h . l>0$ and $\omega \mid\left(b-4 a^{\prime}\right)$ with ω, a, b coprime and the conjecture (3.1.1) is verified.
** B-2-1-1-2-1-2- We obtain the same results if $\omega \mid C^{l}$.
** B-2-1-1-2-2- Now, $p^{\prime}=\omega^{2 m}$ and ω not prime, we write $\omega=\omega_{1}^{f}$. Ω with ω_{1} prime $\nmid \Omega$ and $f \geq 1$ an integer, and $\omega_{1} \mid A$. Then $B^{n} C^{l}=\omega_{1}^{2 f \cdot m} \Omega^{2 m}\left(b-4 a^{\prime}\right) \Longrightarrow \omega_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega_{1}\right| B^{n}$ or $\omega_{1} \mid C^{l}$.
${ }^{* *}$ B-2-1-1-2-2-1- If $\omega_{1}\left|B^{n} \Longrightarrow \omega_{1}\right| B \Longrightarrow B=\omega_{1}^{j} B_{1}$ with $\omega_{1} \nmid B_{1}$, then $B_{1}^{n} \cdot C^{l}=\omega_{1}^{2 m f-n j} \Omega^{2 m}\left(b-4 a^{\prime}\right)$:
${ }^{* *}$ B-2-1-1-2-2-1-1- If $2 f . m-n . j=0$, we obtain $B_{1}^{n} \cdot C^{l}=\Omega^{2 m}\left(b-4 a^{\prime}\right)$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega_{1} \mid$ $C^{l} \Longrightarrow \omega_{1}\left|C \Longrightarrow \omega_{1}\right|\left(b-4 a^{\prime}\right)$. But $\omega_{1} \neq 2$ and ω_{1} is coprime with a^{\prime}, then coprime with a, we deduce $\omega_{1} \nmid b$. Then the conjecture (3.1.1) is verified.
** B-2-1-1-2-2-1-2- If $2 f . m-n . j \geq 1$, we have $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C \Longrightarrow \omega_{1} \mid\left(b-4 a^{\prime}\right)$ and $\omega_{1} \nmid a$ and $\omega_{1} \nmid b$. The conjecture (3.1.1) is verified.
** B-2-1-1-2-2-1-3- If $2 f . m-n . j<0 \Longrightarrow \omega_{1}^{n . j-2 m . f} B_{1}^{n} \cdot C^{l}=\Omega^{2 m}\left(b-4 a^{\prime}\right)$. As $\omega_{1} \mid C$ using $C^{l}=A^{m}+$ B^{n}, then $C=\omega_{1}^{h} \cdot C_{1} \Longrightarrow \omega^{n . j-2 m . f+h . l} B_{1}^{n} \cdot C_{1}^{l}=\Omega^{2 m}\left(b-4 a^{\prime}\right)$. If $n . j-2 m . f+h . l<0 \Longrightarrow \omega_{1} \mid B_{1}^{n} C_{1}^{l}$, it follows the contradiction with $\omega_{1} \nmid B_{1}$ and $\omega_{1} \nmid C_{1}$. Then if $n . j-2 m . f+h . l>0$ and $\omega_{1} \mid\left(b-4 a^{\prime}\right)$ with ω_{1}, a, b coprime and the conjecture (3.1.1) is verified.
** B-2-1-1-2-2-2- We obtain the same results if $\omega_{1} \mid C^{l}$.
** B-2-1-2- If $2 \mid p_{1}$, then $2 \mid p_{1} \Longrightarrow 2 \nmid a^{\prime} \Longrightarrow 2 \nmid a$. But $p^{\prime}=p_{1}^{2}$.
** B-2-1-2-1- If $p_{1}=2$, we obtain $A^{m}=4 a^{\prime \prime} \Longrightarrow 2 \mid a^{\prime \prime}$ as $m \geq 3$, then the contradiction with a, b coprime.
** B-2-1-2-2- We suppose that p_{1} is not prime and $2 \mid p_{1}$, as $A^{m}=2 a^{\prime \prime} p_{1}, p_{1}$ is written as $p_{1}=$ $2^{m-1} \omega^{m} \Longrightarrow p^{\prime}=2^{2 m-2} \omega^{2 m}$. It follows $B^{n} C^{l}=2^{2 m-2} \omega^{2 m}\left(b-4 a^{\prime}\right) \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** B-2-1-2-2-1- If $2\left|B^{n} \Longrightarrow 2\right| B$, as $2 \mid A$, then $2 \mid C$. From $B^{n} C^{l}=2^{2 m-2} \omega^{2 m}\left(b-4 a^{\prime}\right)$, it follows if $2\left|\left(b-4 a^{\prime}\right) \Longrightarrow 2\right| b$ but as $2 \nmid a^{\prime}$, there is no contradiction with a, b coprime and the conjecture (3.1.1) is verified.
** B-2-1-2-2-2- If $2 \mid C^{l}$, using the same method as above, we obtain the identical results.
${ }^{* *}$ B-2-2- p^{\prime}, a^{\prime} are supposed not coprime. Let ω be a prime integer so that $\omega \mid a^{\prime}$ and $\omega \mid p^{\prime}$.
** B-2-2-1- We suppose firstly $\omega=3$. As $A^{2 m}=4 a^{\prime} p^{\prime} \Longrightarrow 3 \mid A$, but $3\left|p^{\prime} \Longrightarrow 3\right| p$, as $p=$ $A^{2 m}+B^{2 n}+A^{m} B^{n} \Longrightarrow 3\left|B^{2 n} \Longrightarrow 3\right| B$, then $3\left|C^{l} \Longrightarrow 3\right| C$. We write $A=3^{i} A_{1}, B=3^{j} B_{1}$, $C=3^{h} C_{1}$ and 3 coprime with A_{1}, B_{1} and C_{1} and $p=3^{2 i m} A_{1}^{2 m}+3^{2 n j} B_{1}^{2 n}+3^{i m+j n} A_{1}^{m} B_{1}^{n}=3^{k} . g$ with $k=\min (2 i m, 2 j n, i m+j n)$ and $3 \nmid g$. We have also $(\omega=3) \mid a$ and $(\omega=3) \mid p^{\prime}$ that gives $a=3^{\alpha} a_{1}=$ $3 a^{\prime} \Longrightarrow a^{\prime}=3^{\alpha-1} a_{1}, 3 \nmid a_{1}$ and $p^{\prime}=3^{\mu} p_{1}, 3 \nmid p_{1}$ with $A^{2 m}=4 a^{\prime} p^{\prime}=3^{2 i m} A_{1}^{2 m}=4 \times 3^{\alpha-1+\mu} \cdot a_{1} \cdot p_{1} \Longrightarrow$ $\alpha+\mu-1=2 \mathrm{im}$. As $p=b p^{\prime}=b .3^{\mu} p_{1}=3^{\mu} . b . p_{1}$. The exponent of the term 3 of p is k, the exponent of the term 3 of the left member of the last equation is μ. If $3 \mid b$ it is a contradiction with a, b coprime. Then, we suppose that $3 \nmid b$, and the equality of the exponents: $\min (2 i m, 2 j n, i m+j n)=\mu$, recall that $\alpha+\mu-1=2 i m$. But $B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right)$ that gives $3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu} p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)$. We have also $A^{m}+B^{n}=C^{l}$ gives $3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}=3^{h l} C_{1}^{l}$. Let $\epsilon=\min (i m, j n)$, we have $\epsilon=h l=\min (i m, j n)$. Then, we obtain the conditions:

$$
\begin{array}{r}
k=\min (2 i m, 2 j n, i m+j n)=\mu \\
\alpha+\mu-1=2 i m \\
\epsilon=h l=\min (i m, j n) \\
3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu} p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right) \tag{1.5.40}
\end{array}
$$

${ }^{* *}$ B-2-2-1-1- $\alpha=1 \Longrightarrow a=3 a_{1}=3 a^{\prime}$ and $3 \nmid a_{1}$, the equation (1.5.38) becomes:

$$
\mu=2 i m
$$

and the first equation (1.5.37) is written as:

$$
k=\min (2 i m, 2 j n, i m+j n)=2 i m
$$

- If $k=2 i m$, then $2 i m \leq 2 j n \Longrightarrow i m \leq j n \Longrightarrow h l=i m$, and (1.5.40) gives $\mu=2 i m=n j+h l=$ $i m+n j \Longrightarrow i m=j n=h l$. Hence $3|A, 3| B$ and $3 \mid C$ and the conjecture (3.1.1) is verified.
- If $k=2 j n \Longrightarrow 2 j n=2 i m \Longrightarrow i m=j n=h l$. Hence $3|A, 3| B$ and $3 \mid C$ and the conjecture (3.1.1) is verified.
- If $k=i m+j n=2 i m \Longrightarrow i m=j n \Longrightarrow \epsilon=h l=i m=j n$ case that is seen above and we deduce that $3|A, 3| B$ and $3 \mid C$, and the conjecture (3.1.1) is verified.
** B-2-2-1-2- $\alpha>1 \Longrightarrow \alpha \geq 2$ and $a^{\prime}=3^{\alpha-1} a_{1}$.
- If $k=2 i m \Longrightarrow 2 i m=\mu$, but $\mu=2 i m+1-\alpha$ that is impossible.
- If $k=2 j n=\mu \Longrightarrow 2 j n=2 i m+1-\alpha$. We obtain $2 j n<2 i m \Longrightarrow j n<i m \Longrightarrow 2 j n<i m+j n$, $k=2 j n$ is just the minimum of $(2 i m, 2 j n, i m+j n)$. We obtain $j n=h l<i m$ and the equation (1.5.40) becomes:

$$
B_{1}^{n} C_{1}^{l}=p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)
$$

The conjecture (3.1.1) is verified.

- If $k=i m+j n \leq 2 i m \Longrightarrow j n \leq i m$ and $k=i m+j n \leq 2 j n \Longrightarrow i m \leq j n \Longrightarrow i m=j n \Longrightarrow k=$ $i m+j n=2 i m=\mu$ but $\mu=2 i m+1-\alpha$ that is impossible.
- If $k=i m+j n<2 i m \Longrightarrow j n<i m$ and $2 j n<i m+j n=k$ that is a contradiction with $k=\min (2 i m, 2 j n, i m+j n)$.
** B-2-2-2- We suppose that $\omega \neq 3$. We write $a=\omega^{\alpha} a_{1}$ with $\omega \nmid a_{1}$ and $p^{\prime}=\omega^{\mu} p_{1}$ with $\omega \nmid p_{1}$. As $A^{2 m}=4 a^{\prime} p^{\prime}=4 \omega^{\alpha+\mu} \cdot a_{1} \cdot p_{1} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}, \omega \nmid A_{1}$. But $B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right)=$ $\omega^{\mu} p_{1}\left(b-4 a^{\prime}\right) \Longrightarrow \omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
${ }^{* *}$ B-2-2-2-1- $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ and $\omega \nmid B_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$. As $p=b p^{\prime}=\omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)$ with $k=\min (2 i m, 2 j n, i m+$ $j n)$. Then :
- If $\mu=k$, then $\omega \nmid b$ and the conjecture (3.1.1) is verified.
- If $k>\mu$, then $\omega \mid b$, but $\omega \mid a$ we deduce the contradiction with a, b coprime.
- If $k<\mu$, it follows from :

$$
\omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)
$$

that $\omega \mid A_{1}$ or $\omega \mid B_{1}$ that is a contradiction with the hypothesis.
** B-2-2-2-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega+C_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega \mid$ $\left(C^{l}-A^{m}\right) \Longrightarrow \omega \mid B$. Then, we obtain the same results as B-2-2-2-1- above.

1.5.5 Case $b=2 p$ and $3 \mid a$

We have :

$$
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{2 p} \Longrightarrow A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{2 p}=2 a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow 2\left|a^{\prime} \Longrightarrow 2\right| a
$$

Then $2 \mid a$ and $2 \mid b$ that is a contradiction with a, b coprime.

1.5.6 Case $b=4 p$ and $3 \mid a$

We have :

$$
\begin{array}{r}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{4 p} \Longrightarrow A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{4 p}=a^{\prime}=\left(A^{m}\right)^{2}=a^{\prime \prime 2} \\
\text { with } \quad A^{m}=a^{\prime \prime}
\end{array}
$$

Let us calculate $A^{m} B^{n}$, we obtain:

$$
\begin{array}{r}
A^{m} B^{n}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}-\frac{2 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}-\frac{a^{\prime}}{2} \Longrightarrow \\
A^{m} B^{n}+\frac{A^{2 m}}{2}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}
\end{array}
$$

Let:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3} \tag{1.5.41}
\end{equation*}
$$

The left member of (1.5.41) is an integer and p is an integer, then $\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3}$ will be written as :

$$
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}}
$$

where k_{1}, k_{2} are two integers coprime and $k_{2} \mid p \Longrightarrow p=k_{2} . k_{3}$.
${ }^{* *}$ C-1- Firstly, we suppose that $k_{3} \neq 1$. Then :

$$
A^{2 m}+2 A^{m} B^{n}=k_{3} \cdot k_{1}
$$

Let μ be a prime integer and $\mu \mid k_{3}$, then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
${ }^{* *}$ C-1-1- If $\mu\left|\left(A^{m}=a^{\prime \prime}\right) \Longrightarrow \mu\right|\left(a^{\prime \prime 2}=a^{\prime}\right) \Longrightarrow \mu \mid\left(3 a^{\prime}=a\right)$. As $\mu\left|k_{3} \Longrightarrow \mu\right| p \Longrightarrow \mu \mid(4 p=b)$, then the contradiction with a, b coprime.
${ }^{* *}$ C-1-2- If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$, then:

$$
\begin{equation*}
\mu \neq 2 \text { and } \mu \nmid B^{n} \tag{1.5.42}
\end{equation*}
$$

$\mu \mid\left(A^{m}+2 B^{n}\right)$, we write:

$$
A^{m}+2 B^{n}=\mu \cdot t^{\prime}
$$

Then:

$$
\begin{aligned}
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m} & +B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n} \\
& \Longrightarrow p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right)
\end{aligned}
$$

As $b=4 p=4 k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid b \Longrightarrow \exists \mu^{\prime}$ so that $b=\mu \cdot \mu^{\prime}$, we obtain:

$$
\mu^{\prime} \cdot \mu=\mu\left(4 \mu t^{\prime 2}-8 t^{\prime} B^{n}\right)+4 B^{n}\left(B^{n}-A^{m}\right)
$$

The last equation implies $\mu \mid 4 B^{n}\left(B^{n}-A^{m}\right)$, but $\mu \neq 2$ then $\mu \mid B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
${ }^{* *} \mathrm{C}$-1-1-1- If $\mu \mid B^{n} \Longrightarrow$ then the contradiction with (1.5.42).
${ }^{* *}$ C-1-1-2- If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we have :

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu \mid B^{n} \\
o r \\
\mu=3
\end{array}\right.\right.
$$

${ }^{* *}$ C-1-1-2-1- If $\mu \mid B^{n}$ then the contradiction with (1.5.42).
** C-1-1-2-2- If $\mu=3$, then $3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime.
** $\mathrm{C}-2-\mathrm{We}$ assume now that $k_{3}=1$, then:

$$
\begin{align*}
A^{2 m}+2 A^{m} B^{n} & =k_{1} \tag{1.5.43}\\
p & =k_{2} \\
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3} & =\frac{k_{1}}{p}
\end{align*}
$$

We take the square of the last equation, we obtain :

$$
\begin{gathered}
\frac{4}{3} \sin ^{2} \frac{2 \theta}{3}=\frac{k_{1}^{2}}{p^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cos ^{2} \frac{\theta}{3}=\frac{k_{1}^{2}}{p^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cdot \frac{3 a^{\prime}}{b}=\frac{k_{1}^{2}}{p^{2}}
\end{gathered}
$$

Finally:

$$
\begin{equation*}
a^{\prime}\left(4 p-3 a^{\prime}\right)=k_{1}^{2} \tag{1.5.44}
\end{equation*}
$$

but $a^{\prime}=a^{\prime \prime 2}$, then $4 p-3 a^{\prime}$ is a square. Let:

$$
\lambda^{2}=4 p-3 a^{\prime}=4 p-a=b-a
$$

The equation (1.5.44) becomes :

$$
\begin{equation*}
a^{\prime \prime 2} \lambda^{2}=k_{1}^{2} \Longrightarrow k_{1}=a^{\prime \prime} \lambda \tag{1.5.45}
\end{equation*}
$$

taking the positive root. Using (1.5.43), we have:

$$
k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)=a^{\prime \prime}\left(A^{m}+2 B^{n}\right)
$$

Then :

$$
A^{m}+2 B^{n}=\lambda
$$

Now, we consider that $b-a=\lambda^{2} \Longrightarrow \lambda^{2}+3 a^{\prime \prime 2}=b$, then the couple $\left(\lambda, a^{\prime \prime}\right)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
X^{2}+3 Y^{2}=b \tag{1.5.46}
\end{equation*}
$$

with $X=\lambda$ and $Y=a^{\prime \prime}$. But using one theorem on the solutions of the equation given by (1.5.46), b is written under the form (see theorem 37.4 in [1]):

$$
b=2^{2 s} \times 3^{t} \cdot p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

where p_{i} are prime integers so that $p_{i} \equiv 1(\bmod 6)$, the q_{j} are also prime integers so that $q_{j} \equiv$ $5(\bmod 6)$. Then, as $b=4 p$:

- If $t \geq 1 \Longrightarrow 3 \mid b$, but $3 \mid a$, then the contradiction with a, b coprime.

${ }^{* *}$ C-2-2-1-Hence, we suppose that p is written under the form:

$$
p=p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

with $p_{i} \equiv 1(\bmod 6)$ and $q_{j} \equiv 5(\bmod 6)$. Finally, we obtain that $p \equiv 1(\bmod 6)$. We will verify if this condition does not give contradictions.

Table 1.1: Table of $p(\bmod 6)$

A^{m}, B^{n}	0	1	2	3	4	5
0	0	$\mathbf{1}$	4	3	4	$\mathbf{1}$
1	$\mathbf{1}$	3	$\mathbf{1}$	$\mathbf{1}$	3	$\mathbf{1}$
2	4	$\mathbf{1}$	0	$\mathbf{1}$	4	3
3	3	$\mathbf{1}$	$\mathbf{1}$	3	$\mathbf{1}$	$\mathbf{1}$
4	4	3	4	$\mathbf{1}$	0	$\mathbf{1}$
5	$\mathbf{1}$	$\mathbf{1}$	3	$\mathbf{1}$	$\mathbf{1}$	3

We will present the table of the value modulo 6 of $p=A^{2 m}+A^{m} B^{n}+B^{2 n}$ in function of the values of $A^{m}, B^{n}(\bmod 6)$. We obtain the table below:
${ }^{* *}$ C-2-2-1-1- Case $A^{m} \equiv 0(\bmod 6) \Longrightarrow 2\left|\left(A^{m}=a^{\prime \prime}\right) \Longrightarrow 2\right|\left(a^{\prime}=a^{\prime \prime 2}\right) \Longrightarrow 2 \mid a$, but $2 \mid b$, then the contradiction with a, b coprime. All the cases of the first line of the table 1.1 are to reject.
${ }^{* *}$ C-2-2-1-2- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 0(\bmod 6)$, then $2 \mid B^{n} \Longrightarrow B^{n}=2 B^{\prime}$ and p is written as $p=\left(A^{m}+B^{\prime}\right)^{2}+3 B^{\prime 2}$ with $(p, 3)=1$, if not $3 \mid p$, then $3 \mid b$, but $3 \mid a$, then the contradiction with a, b coprime. Hence, the pair $\left(A^{m}+B^{\prime}, B^{\prime}\right)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}+3 y^{2}=p \tag{1.5.47}
\end{equation*}
$$

The solution $x=A^{m}+B^{\prime}, y=B^{\prime}$ is unique because $x-y$ verifies $x-y=A^{m}$. If (u, v) is another pair solution of (1.5.47), with $u, v \in \mathbb{N}^{*}$, then we obtain:

$$
\begin{gathered}
u^{2}+3 v^{2}=p \\
u-v=A^{m}
\end{gathered}
$$

Then $u=v+A^{m}$ and we obtain the equation of second degree $4 v^{2}+2 v A^{m}-2 B^{\prime}\left(A^{m}+2 B^{\prime}\right)=0$ that gives as positive root $v_{1}=B^{\prime}=y$, then $u=A^{m}+B^{\prime}=x$. It follows that p in (1.5.47) has an unique representation under the form $X^{2}+3 Y^{2}$ with $X, 3 Y$ coprime. As p is an odd integer number, we applique one of Euler's theorems on convenient numbers "numerus idoneus" (see [2, 3]) : Let m be an odd number relatively prime to n which is properly represented by $x^{2}+n y^{2}$. If the equation $m=x^{2}+n y^{2}$ has only one solution with $x, y>0$, then m is a prime number. Then p is prime and $4 p$ has an unique representation (we put $U=2 u, V=2 v$, with $U^{2}+3 V^{2}=4 p$ and $U-V=2 A^{m}$). But $b=4 p \Longrightarrow \lambda^{2}+3 a^{\prime \prime 2}=\left(2\left(A^{m}+B^{\prime}\right)\right)^{2}+3\left(2 B^{\prime}\right)^{2}$, the representation of $4 p$ is unique gives:

$$
\begin{aligned}
\lambda=2\left(A^{m}+B^{\prime}\right) & =2 a^{\prime \prime}+B^{n} \\
\text { and } a^{\prime \prime}=2 B^{\prime} & =B^{n}=A^{m}
\end{aligned}
$$

But $A^{m}>B^{n}$, then the contradiction.
${ }^{* *}$ C-2-2-1-3- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 2(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-
** C-2-2-1-4- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 3(\bmod 6)$, then $3 \mid B^{n} \Longrightarrow B^{n}=3 B^{\prime}$. We can write $b=4 p=\left(2 A^{m}+3 B^{\prime}\right)^{2}+3\left(3 B^{\prime}\right)^{2}=\lambda^{2}+3 a^{\prime \prime 2}$. The unique representation of b as $x^{2}+3 y^{2}=$ $\lambda^{2}+3 a^{\prime \prime 2} \Longrightarrow a^{\prime \prime}=A^{m}=3 B^{\prime}=B^{n}$, then the contradiction with $A^{m}>B^{n}$.
${ }^{* *}$ C-2-2-1-5- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 5(\bmod 6)$, then $C^{l} \equiv 0(\bmod 6) \Longrightarrow 2 \mid C^{l}$, see C-2-2-1-2-
${ }^{* *}$ C-2-2-1-6- Case $A^{m} \equiv 2(\bmod 6) \Longrightarrow 2\left|a^{\prime \prime} \Longrightarrow 2\right| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** C-2-2-1-7- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 1(\bmod 6)$, then $C^{l} \equiv 4(\bmod 6) \Longrightarrow 2 \mid C^{l} \Longrightarrow C^{l}=$ $2 C^{\prime}$, we can write that $p=\left(C^{\prime}-B^{n}\right)^{2}+3 C^{\prime 2}$, see C-2-2-1-2-.
${ }^{* *}$ C-2-2-1-8- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 2(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
${ }^{* *}$ C-2-2-1-9- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 4(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
${ }^{* *}$ C-2-2-1-10-Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 5(\bmod 6)$, then $C^{l} \equiv 2(\bmod 6) \Longrightarrow 2 \mid C^{l}$, see C-2-2-1-2-.
${ }^{* *}$ C-2-2-1-11- Case $A^{m} \equiv 4(\bmod 6) \Longrightarrow 2\left|a^{\prime \prime} \Longrightarrow 2\right| a$, but $2 \mid b$, then the contradiction with a, b coprime.
${ }^{* *}$ C-2-2-1-12- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 0(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
${ }^{* *}$ C-2-2-1-13- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 1(\bmod 6)$, then $C^{l} \equiv 0(\bmod 6) \Longrightarrow 2 \mid C^{l}$, see C-2-2-1-2-.
** C-2-2-1-14- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 3(\bmod 6)$, then $C^{l} \equiv 2(\bmod 6) \Longrightarrow 2 \mid C^{l} \Longrightarrow C^{l}=$ $2 C^{\prime}, p$ is written as $p=\left(C^{\prime}-B^{n}\right)^{2}+3 C^{\prime 2}$, see C-2-2-1-2-.
${ }^{* *}$ C-2-2-1-15- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 4(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
We have achieved the study all the cases of the table 1.1 giving contradictions.
Then the case $k_{3}=1$ is impossible.

1.5.7 Case $3 \mid a$ and $b=2 p^{\prime}, b \neq 2$ with $p^{\prime} \mid p$

$3 \mid a \Longrightarrow a=3 a^{\prime}, b=2 p^{\prime}$ with $p=k \cdot p^{\prime}$, then:

$$
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot k \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{6 p^{\prime}}=2 \cdot k \cdot a^{\prime}
$$

We calculate $B^{n} C^{l}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)
$$

but $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, then using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=k\left(p^{\prime}-2 a^{\prime}\right)
$$

As $p=b \cdot p^{\prime}$, and $p^{\prime}>1$, then we have:

$$
\begin{align*}
& B^{n} C^{l}=k\left(p^{\prime}-2 a^{\prime}\right) \tag{1.5.48}\\
& \text { and } \quad A^{2 m}=2 k \cdot a^{\prime} \tag{1.5.49}
\end{align*}
$$

** D-1- We suppose that k is prime.
** D-1-1- If $k=2$, then we have $p=2 p^{\prime}=b \Longrightarrow 2 \mid b$, but $A^{2 m}=4 a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow A^{m}=2 a^{\prime \prime}$ with $a^{\prime}=a^{\prime \prime 2}$, then $2\left|a^{\prime \prime} \Longrightarrow 2\right|\left(a=3 a^{\prime \prime 2}\right)$, it follows the contradiction with a, b coprime.
** D-1-2- We suppose $k \neq 2$. From $A^{2 m}=2 k \cdot a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow k \mid a^{\prime}$ and $2 \mid a^{\prime} \Longrightarrow a^{\prime}=$ 2.k. $a^{\prime \prime 2} \Longrightarrow A^{m}=2 . k \cdot a^{\prime \prime}$. Then $k\left|A^{m} \Longrightarrow k\right| A \Longrightarrow A=k^{i} . A_{1}$ with $i \geq 1$ and $k \nmid A_{1}$. $k^{i m} A_{1}^{m}=2 k a^{\prime \prime} \Longrightarrow 2 a^{\prime \prime}=k^{i m-1} A_{1}^{m}$. From $B^{n} C^{l}=k\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow k\left|\left(B^{n} C^{l}\right) \Longrightarrow k\right| B^{n}$ or $k \mid C^{l}$.
** D-1-2-1- We suppose that $k\left|B^{n} \Longrightarrow k\right| B \Longrightarrow B=k^{j} . B_{1}$ with $j \geq 1$ and $k \nmid B_{1}$. It follows $k^{n j-1} B_{1}^{n} C^{l}=p^{\prime}-2 a^{\prime}=p^{\prime}-4 k a^{\prime \prime 2}$. As $n \geq 3 \Longrightarrow n j-1 \geq 2$, then $k \mid p^{\prime}$ but $k \neq 2 \Longrightarrow k \mid\left(2 p^{\prime}=b\right)$, but $k\left|a^{\prime} \Longrightarrow k\right|\left(3 a^{\prime}=a\right)$. It follows the contradiction with a, b coprime.
** D-1-2-2- If $k \mid C^{l}$ we obtain the identical results.
** D-2- We suppose that k is not prime. Let ω be an integer prime so that $k=\omega^{s} . k_{1}$, with $s \geq 1, \omega \nmid$ k_{1}. The equations (1.5.48-1.5.49) become:

$$
\begin{aligned}
& B^{n} C^{l}=\omega^{s} \cdot k_{1}\left(p^{\prime}-2 a^{\prime}\right) \\
& \text { and } \quad A^{2 m}=2 \omega^{s} \cdot k_{1} \cdot a^{\prime}
\end{aligned}
$$

** D-2-1- We suppose that $\omega=2$, then we have the equations:

$$
\begin{array}{r}
A^{2 m}=2^{s+1} \cdot k_{1} \cdot a^{\prime} \\
B^{n} C^{l}=2^{s} \cdot k_{1}\left(p^{\prime}-2 a^{\prime}\right) \tag{1.5.51}
\end{array}
$$

** D-2-1-1- Case: $2\left|a^{\prime} \Longrightarrow 2\right| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** D-2-1-2- Case: $2 \nmid a^{\prime}$. As $2 \nmid k_{1}$, the equation (1.5.50) gives $2 \mid A^{2 m} \Longrightarrow A=2^{i} A_{1}$, with $i \geq 1$ and $2 \nmid A_{1}$. It follows that $2 i m=s+1$.
** D-2-1-2-1- We suppose that $2 \nmid\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow 2 \nmid p^{\prime}$. From the equation (1.5.51), we obtain that $2\left|B^{n} C^{l} \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** D-2-1-2-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $2 \nmid B_{1}$ and $j \geq 1$, then $B_{1}^{n} C^{l}=2^{s-j n} k_{1}\left(p^{\prime}-2 a^{\prime}\right)$:

- If $s-j n \geq 1$, then $2\left|C^{l} \Longrightarrow 2\right| C$, and no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$, and the conjecture (3.1.1) is verified.
- If $s-j n \leq 0$, from $B_{1}^{n} C^{l}=2^{s-j n} k_{1}\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
** D-2-1-2-1-2- Using the same method of the proof above, we obtain the identical results if $2 \mid \mathrm{C}^{l}$.
** D-2-1-2-2- We suppose now that $2 \mid\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow p^{\prime}-2 a^{\prime}=2^{\mu} . \Omega$, with $\mu \geq 1$ and $2 \nmid \Omega$. We recall that $2 \nmid a^{\prime}$. The equation (1.5.51) is written as:

$$
B^{n} C^{l}=2^{s+\mu} \cdot k_{1} \cdot \Omega
$$

This last equation implies that $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** D-2-1-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $j \geq 1$ and $2 \nmid B_{1}$. Then $B_{1}^{n} C^{l}=2^{s+\mu-j n} \cdot k_{1} \cdot \Omega$:

- If $s+\mu-j n \geq 1$, then $2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$, and the conjecture (3.1.1) is verified.
- If $s+\mu-j n \leq 0$, from $B_{1}^{n} C^{l}=2^{s+\mu-j n} k_{1} . \Omega \Longrightarrow 2 \nmid C^{l}$, then contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
** D-2-1-2-2-2- We obtain the identical results if $2 \mid C^{l}$.
** D-2-2- We suppose that $\omega \neq 2$. We have then the equations:

$$
\begin{array}{r}
A^{2 m}=2 \omega^{s} \cdot k_{1} \cdot a^{\prime} \\
B^{n} C^{l}=\omega^{s} \cdot k_{1} \cdot\left(p^{\prime}-2 a^{\prime}\right) \tag{1.5.53}
\end{array}
$$

As $\omega \neq 2$, from the equation (1.5.52), we have $2 \mid\left(k_{1} \cdot a^{\prime}\right)$. If $2\left|a^{\prime} \Longrightarrow 2\right| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** D-2-2-1- Case: $2 \nmid a^{\prime}$ and $2 \mid k_{1} \Longrightarrow k_{1}=2^{\mu} . \Omega$ with $\mu \geq 1$ and $2 \nmid \Omega$. From the equation (1.5.52), we have $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$ with $i \geq 1$ and $2 \nmid A_{1}$, then $2 i m=1+\mu$. The equation (1.5.53) becomes:

$$
\begin{equation*}
B^{n} C^{l}=\omega^{s} \cdot 2^{\mu} \cdot \Omega \cdot\left(p^{\prime}-2 a^{\prime}\right) \tag{1.5.54}
\end{equation*}
$$

From the equation (1.5.54), we obtain $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** D-2-2-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$, with $j \in \mathbb{N}^{*}$ and $2 \nmid B_{1}$.
** D-2-2-1-1-1- We suppose that $2 \nmid\left(p^{\prime}-2 a^{\prime}\right)$, then we have $B_{1}^{n} C^{l}=\omega^{5} 2^{\mu-j n} \Omega\left(p^{\prime}-2 a^{\prime}\right)$:

- If $\mu-j n \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $\mu-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$ then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
${ }^{* *}$ D-2-2-1-1-2- We suppose that $2 \mid\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow p^{\prime}-2 a^{\prime}=2^{\alpha} . P$, with $\alpha \in \mathbb{N}^{*}$ and $2 \nmid P$. It follows that $B_{1}^{n} C^{l}=\omega^{s} 2^{\mu+\alpha-j n} \Omega . P$:
- If $\mu+\alpha-j n \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $\mu+\alpha-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$ then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** D-2-2-1-2- We suppose now that $2\left|C^{n} \Longrightarrow 2\right| C$. Using the same method described above, we obtain the identical results.

1.5.8 Case $3 \mid a$ and $b=4 p^{\prime}, b \neq 4$ with $p^{\prime} \mid p$

$3 \mid a \Longrightarrow a=3 a^{\prime}, b=4 p^{\prime}$ with $p=k \cdot p^{\prime}, k \neq 1$ if not $b=4 p$ this case has been studied (see paragraph 1.5.6), then we have :

$$
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot k \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{12 p^{\prime}}=k \cdot a^{\prime}
$$

We calculate $B^{n} C^{l}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)
$$

but $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, then using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=k\left(p^{\prime}-a^{\prime}\right)
$$

As $p=b \cdot p^{\prime}$, and $p^{\prime}>1$, we have :

$$
\begin{align*}
& B^{n} C^{l}=k\left(p^{\prime}-a^{\prime}\right) \tag{1.5.55}\\
& \text { and } \quad A^{2 m}=k \cdot a^{\prime} \tag{1.5.56}
\end{align*}
$$

${ }^{* *}$ E-1- We suppose that k is prime. From $A^{2 m}=k \cdot a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow k \mid a^{\prime}$ and $a^{\prime}=k \cdot a^{\prime \prime 2} \Longrightarrow A^{m}=$ $k \cdot a^{\prime \prime}$. Then $k\left|A^{m} \Longrightarrow k\right| A \Longrightarrow A=k^{i} \cdot A_{1}$ with $i \geq 1$ and $k \nmid A_{1} . k^{m i} A_{1}^{m}=k a^{\prime \prime} \Longrightarrow a^{\prime \prime}=k^{m i-1} A_{1}^{m}$. From $B^{n} C^{l}=k\left(p^{\prime}-a^{\prime}\right) \Longrightarrow k\left|\left(B^{n} C^{l}\right) \Longrightarrow k\right| B^{n}$ or $k \mid C^{l}$.
** E-1-1- We suppose that $k\left|B^{n} \Longrightarrow k\right| B \Longrightarrow B=k^{j} \cdot B_{1}$ with $j \geq 1$ and $k \nmid B_{1}$. Then $k^{n . j-1} B_{1}^{n} C^{l}=p^{\prime}-a^{\prime}$. As $n . j-1 \geq 2 \Longrightarrow k \mid\left(p^{\prime}-a^{\prime}\right)$. But $k\left|a^{\prime} \Longrightarrow k\right| a$, then $k\left|p^{\prime} \Longrightarrow k\right|\left(4 p^{\prime}=b\right)$ and we arrive to the contradiction that a, b are coprime.
** E-1-2- We suppose that $k \mid C^{l}$, using the same method with the above hypothesis $k \mid B^{n}$, we obtain the identical results.
** E-2- We suppose that k is not prime.
${ }^{* *}$ E-2-1- We take $k=4 \Longrightarrow p=4 p^{\prime}=b$, it is the case 1.5.3 studied above.
** E-2-2- We suppose that $k \geq 6$ not prime. Let ω be a prime so that $k=\omega^{s} . k_{1}$, with $s \geq 1, \omega \nmid k_{1}$. The equations (1.5.55-1.5.56) become:

$$
\begin{align*}
& B^{n} C^{l}=\omega^{s} \cdot k_{1}\left(p^{\prime}-a^{\prime}\right) \tag{1.5.57}\\
& \text { and } \quad A^{2 m}=\omega^{s} \cdot k_{1} \cdot a^{\prime} \tag{1.5.58}
\end{align*}
$$

** E-2-2-1- We suppose that $\omega=2$.
${ }^{* *}$ E-2-2-1-1- If $2\left|a^{\prime} \Longrightarrow 2\right|\left(3 a^{\prime}=a\right)$, but $2 \mid\left(4 p^{\prime}=b\right)$, then the contradiction with a, b coprime.
** E-2-2-1-2- We consider that $2 \nmid a^{\prime}$. From the equation (1.5.58), it follows that $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow$ $A=2^{i} A_{1}$ with $2 \nmid A_{1}$ and:

$$
B^{n} C^{l}=2^{s} k_{1}\left(p^{\prime}-a^{\prime}\right)
$$

${ }^{* *}$ E-2-2-1-2-1- We suppose that $2 \nmid\left(p^{\prime}-a^{\prime}\right)$, from the above expression, we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
${ }^{* *}$ E-2-2-1-2-1-1- If $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $2 \nmid B_{1}$. Then $B_{1}^{n} C^{l}=2^{2 i m-j n} k_{1}\left(p^{\prime}-a^{\prime}\right)$:

- If $2 i m-j n \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 i m-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
** E-2-2-1-2-1-2- If $2\left|C^{l} \Longrightarrow 2\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-1-2-2- We suppose that $2 \mid\left(p^{\prime}-a^{\prime}\right)$. As $2 \nmid a^{\prime} \Longrightarrow 2 \nmid p^{\prime}, 2 \mid\left(p^{\prime}-a^{\prime}\right) \Longrightarrow p^{\prime}-a^{\prime}=2^{\alpha} . P$ with $\alpha \geq 1$ and $2 \nmid P$. The equation (1.5.57) is written as :

$$
\begin{equation*}
B^{n} C^{l}=2^{s+\alpha} k_{1} \cdot P=2^{2 i m+\alpha} k_{1} \cdot P \tag{1.5.59}
\end{equation*}
$$

then $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** E-2-2-1-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$, with $2 \nmid B_{1}$. The equation (1.5.59) becomes $B_{1}^{n} C^{l}=2^{2 i m+\alpha-j n} k_{1} P$:

- If $2 i m+\alpha-j n \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 i m+\alpha-j n \leq 0 \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
** E-2-2-1-2-2-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C$. Using the same method described above, we obtain the identical results.
** E-2-2-2- We suppose that $\omega \neq 2$. We recall the equations:

$$
\begin{array}{r}
A^{2 m}=\omega^{s} \cdot k_{1} \cdot a^{\prime} \\
B^{n} C^{l}=\omega^{s} \cdot k_{1}\left(p^{\prime}-a^{\prime}\right) \tag{1.5.61}
\end{array}
$$

** E-2-2-2-1- We suppose that ω, a^{\prime} are coprime, then $\omega \nmid a^{\prime}$. From the equation (1.5.60), we have $\omega\left|A^{2 m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} A_{1}$ with $\omega \nmid A_{1}$ and $s=2 \mathrm{im}$.
** E-2-2-2-1-1- We suppose that $\omega \nmid\left(p^{\prime}-a^{\prime}\right)$. From the equation (1.5.61) above, we have $\omega \mid$ $\left(B^{n} C^{l}\right) \Longrightarrow \omega \mid B^{n}$ or $\omega \mid C^{l}$.
${ }^{* *}$ E-2-2-2-1-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$. Then $B_{1}^{n} C^{l}=2^{2 i m-j n} k_{1}\left(p^{\prime}-a^{\prime}\right)$:

- If $2 \mathrm{im}-j n \geq 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 i m-j n \leq 0 \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n} \Longrightarrow \omega \mid C^{l}$.
** E-2-2-2-1-1-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-2-1-2- We suppose that $\omega \mid\left(p^{\prime}-a^{\prime}\right) \Longrightarrow \omega \nmid p^{\prime}$ as ω and a^{\prime} are coprime. $\omega \mid\left(p^{\prime}-a^{\prime}\right) \Longrightarrow$ $p^{\prime}-a^{\prime}=\omega^{\alpha}$. P with $\alpha \geq 1$ and $\omega \nmid P$. The equation (1.5.61) becomes :

$$
\begin{equation*}
B^{n} C^{l}=\omega^{s+\alpha} k_{1} \cdot P=\omega^{2 i m+\alpha} k_{1} \cdot P \tag{1.5.62}
\end{equation*}
$$

then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
${ }^{* *}$ E-2-2-2-1-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$, with $\omega \nmid B_{1}$. The equation (1.5.62) is written as $B_{1}^{n} C^{l}=2^{2 i m+\alpha-j n} k_{1} P$:

- If $2 i m+\alpha-j n \geq 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 i m+\alpha-j n \leq 0 \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n} \Longrightarrow \omega \mid C^{l}$.
** E-2-2-2-1-2-2- We suppose that $\omega\left|C^{l} \Longrightarrow \omega\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-2-2- We suppose that ω, a^{\prime} are not coprime, then $a^{\prime}=\omega^{\beta} \cdot a^{\prime \prime}$ with $\omega \nmid a^{\prime \prime}$. The equation (1.5.60) becomes:

$$
A^{2 m}=\omega^{s} k_{1} a^{\prime}=\omega^{s+\beta} k_{1} \cdot a^{\prime \prime}
$$

We have $\omega\left|A^{2 m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} A_{1}$ with $\omega \nmid A_{1}$ and $s+\beta=2 \mathrm{im}$.
** E-2-2-2-2-1- We suppose that $\omega \nmid\left(p^{\prime}-a^{\prime}\right) \Longrightarrow \omega \nmid p^{\prime} \Longrightarrow \omega \nmid\left(b=4 p^{\prime}\right)$. From the equation (1.5.61), we obtain $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
${ }^{* *}$ E-2-2-2-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$. Then $B_{1}^{n} C^{l}=2^{s-j n} k_{1}\left(p^{\prime}-a^{\prime}\right)$:

- If $s-j n \geq 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $s-j n \leq 0 \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n} \Longrightarrow \omega \mid C^{l}$.
** E-2-2-2-2-1-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-2-2-2- We suppose that $\omega\left|\left(p^{\prime}-a^{\prime}=p^{\prime}-\omega^{\beta} \cdot a^{\prime \prime}\right) \Longrightarrow \omega\right| p^{\prime} \Longrightarrow \omega \mid\left(4 p^{\prime}=b\right)$, but $\omega\left|a^{\prime} \Longrightarrow \omega\right| a$. Then the contradiction with a, b coprime.

The study of the cases of 1.5 .8 is achieved.

1.5.9 Case $3 \mid a$ and $b \mid 4 p$

$a=3 a^{\prime}$ and $4 p=k_{1} b$. As $A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{3 a^{\prime}}{b}=k_{1} a^{\prime}$ and $B^{n} C^{l}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 a^{\prime}}{b}\right)=\frac{k_{1}}{4}\left(b-4 a^{\prime}\right)
$$

As $B^{n} C^{l}$ is an integer, we must obtain $4 \mid k_{1}$, or $4 \mid\left(b-4 a^{\prime}\right)$ or $\left(2 \mid k_{1}\right.$ and $\left.2 \mid\left(b-4 a^{\prime}\right)\right)$.
${ }^{* *}$ F-1- If $k_{1}=1 \Rightarrow b=4 p$: it is the case 1.5.6.
${ }^{* *}$ F-2- If $k_{1}=4 \Rightarrow p=b:$ it is the case 1.5.3.
** F-3- If $k_{1}=2$ and $2 \mid\left(b-4 a^{\prime}\right)$: in this case, we have $A^{2 m}=2 a^{\prime} \Longrightarrow 2\left|a^{\prime} \Longrightarrow 2\right| a$. $2\left|\left(b-4 a^{\prime}\right) \Longrightarrow 2\right| b$ then the contradiction with a, b coprime.
** F-4- If $2 \mid k_{1}$ and $2\left|\left(b-4 a^{\prime}\right): 2\right|\left(b-4 a^{\prime}\right) \Longrightarrow b-4 a^{\prime}=2^{\alpha} \lambda, \alpha$ and $\lambda \in \mathbb{N}^{*} \geq 1$ with $2 \nmid \lambda$; $2 \mid k_{1} \Longrightarrow k_{1}=2^{t} k_{1}^{\prime}$ with $t \geq 1 \in \mathbb{N}^{*}$ with $2 \nmid k_{1}^{\prime}$ and we have:

$$
\begin{gather*}
A^{2 m}=2^{t} k_{1}^{\prime} a^{\prime} \tag{1.5.63}\\
B^{n} C^{l}=2^{t+\alpha-2} k_{1}^{\prime} \lambda \tag{1.5.64}
\end{gather*}
$$

From the equation (1.5.63), we have $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}, i \geq 1$ and $2 \nmid A_{1}$.
** F-4-1- We suppose that $t=\alpha=1$, then the equations (1.5.63-1.5.64) become :

$$
\begin{gather*}
A^{2 m}=2 k_{1}^{\prime} a^{\prime} \tag{1.5.65}\\
B^{n} C^{l}=k_{1}^{\prime} \lambda \tag{1.5.66}
\end{gather*}
$$

From the equation (1.5.65) it follows that $2\left|a^{\prime} \Longrightarrow 2\right|\left(a=3 a^{\prime}\right)$. But $b=4 a^{\prime}+2 \lambda \Longrightarrow 2 \mid b$, then the contradiction with a, b coprime.
** F-4-2- We suppose that $t+\alpha-2 \geq 1$ and we have the expressions:

$$
\begin{array}{r}
A^{2 m}=2^{t} k_{1}^{\prime} a^{\prime} \\
B^{n} C^{l}=2^{t+\alpha-2} k_{1}^{\prime} \lambda \tag{1.5.68}
\end{array}
$$

** F-4-2-1- We suppose that $2\left|a^{\prime} \Longrightarrow 2\right| a$, but $b=2^{\alpha} \lambda+4 a^{\prime} \Longrightarrow 2 \mid b$, then the contradiction with a, b coprime.
${ }^{* *}$ F-4-2-2- We suppose that $2 \nmid a^{\prime}$. From (1.5.67), we have $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$ and $B^{n} C^{l}=2^{t+\alpha-2} k_{1}^{\prime} \lambda \Longrightarrow 2\left|B^{n} C^{l} \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
${ }^{* *}$ F-4-2-2-1- We suppose that $2 \mid B^{n}$. We have $2 \mid B \Longrightarrow B=2^{j} B_{1}, j \geq 1$ and $2 \nmid B_{1}$. The equation (1.5.68) becomes $B_{1}^{n} C^{l}=2^{t+\alpha-2-j n} k_{1}^{\prime} \lambda$:

- If $t+\alpha-2-j n>0 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $t+\alpha-2-j n<0 \Longrightarrow 2 \mid k_{1}^{\prime} \lambda$, but $2 \nmid k_{1}^{\prime}$ and $2 \nmid \lambda$. Then this case is impossible.
- If $t+\alpha-2-j n=0 \Longrightarrow B_{1}^{n} C^{l}=k_{1}^{\prime} \lambda \Longrightarrow 2 \nmid C^{l}$ then it is a contradiction with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** F-4-2-2-2- We suppose that $2 \mid C^{l}$. We use the same method described above, we obtain the identical results.
** F-5- We suppose that $4 \mid k_{1}$ with $k_{1}>4 \Rightarrow k_{1}=4 k_{2}^{\prime}$, we have :

$$
\begin{array}{r}
A^{2 m}=4 k_{2}^{\prime} a^{\prime} \\
B^{n} C^{l}=k_{2}^{\prime}\left(b-4 a^{\prime}\right) \tag{1.5.70}
\end{array}
$$

** F-5-1- We suppose that k_{2}^{\prime} is prime, from (1.5.69), we have $k_{2}^{\prime} \mid a^{\prime}$. From (1.5.70), $k_{2}^{\prime} \mid\left(B^{n} C^{l}\right) \Longrightarrow$ $k_{2}^{\prime} \mid B^{n}$ or $k_{2}^{\prime} \mid C^{l}$.
** F-5-1-1- We suppose that $k_{2}^{\prime}\left|B^{n} \Longrightarrow k_{2}^{\prime}\right| B \Longrightarrow B=k_{2}^{\prime \beta} . B_{1}$ with $\beta \geq 1$ and $k_{2}^{\prime} \nmid B_{1}$. It follows that we have $k_{2}^{\prime n \beta-1} B_{1}^{n} C^{l}=b-4 a^{\prime} \Longrightarrow k_{2}^{\prime} \mid b$ then the contradiction with a, b coprime.
** F-5-1-2- We obtain identical results if we suppose that $k_{2}^{\prime} \mid C^{l}$.
** F-5-2- We suppose that k_{2}^{\prime} is not prime.
** F-5-2-1- We suppose that k_{2}^{\prime} and a^{\prime} are coprime. From (1.5.69), k_{2}^{\prime} can be written under the form $k_{2}^{\prime}=q_{1}^{2 j} \cdot q_{2}^{2}$ and $q_{1} \nmid q_{2}$ and q_{1} prime. We have $A^{2 m}=4 q_{1}^{2 j} \cdot q_{2}^{2} a^{\prime} \Longrightarrow q_{1} \mid A$ and $B^{n} C^{l}=$ $q_{1}^{2 j} \cdot q_{2}^{2}\left(b-4 a^{\prime}\right) \Longrightarrow q_{1} \mid B^{n}$ or $q_{1} \mid C^{l}$.
** F-5-2-1-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{f} \cdot B_{1}$ with $q_{1} \nmid B_{1}$. We obtain $B_{1}^{n} C^{l}=$ $q_{1}^{2 j-f n} q_{2}^{2}\left(b-4 a^{\prime}\right)$:

- If $2 j-f . n \geq 1 \Longrightarrow q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$ but $C^{l}=A^{m}+B^{n}$ gives also $q_{1} \mid C$ and the conjecture (3.1.1) is verified.
- If $2 j$ - f.n $=0$, we have $B_{1}^{n} C^{l}=q_{2}^{2}\left(b-4 a^{\prime}\right)$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then $q_{1} \mid\left(b-4 a^{\prime}\right)$. As q_{1} and a^{\prime} are coprime, then $q_{1} \nmid b$, and the conjecture (3.1.1) is verified.
- If $2 j-f . n<0 \Longrightarrow q_{1} \mid\left(b-4 a^{\prime}\right) \Longrightarrow q_{1} \nmid b$ because a^{\prime} is coprime with q_{1}, and $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, and the conjecture (3.1.1) is verified.
** F-5-2-1-2- We obtain identical results if we suppose that $q_{1} \mid C^{l}$.
** F-5-2-2- We suppose that $k_{2}^{\prime}, a^{\prime}$ are not coprime. Let q_{1} be a prime so that $q_{1} \mid k_{2}^{\prime}$ and $q_{1} \mid a^{\prime}$. We write k_{2}^{\prime} under the form $q_{1}^{j} \cdot q_{2}$ with $j \geq 1, q_{1} \nmid q_{2}$. From $A^{2 m}=4 k_{2}^{\prime} a^{\prime} \Longrightarrow q_{1}\left|A^{2 m} \Longrightarrow q_{1}\right| A$. Then from $B^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right)$, it follows that $q_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow q_{1}\right| B^{n}$ or $q_{1} \mid C^{l}$.
${ }^{* *}$ F-5-2-2-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{\beta} . B_{1}$ with $\beta \geq 1$ and $q_{1} \nmid B_{1}$. Then, we have $q_{1}^{n \beta} B_{1}^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right) \Longrightarrow B_{1}^{n} C^{l}=q_{1}^{j-n \beta} q_{2}\left(b-4 a^{\prime}\right)$.
- If $j-n \beta \geq 1$, then $q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then the conjecture (3.1.1) is verified.
- If $j-n \beta=0$, we obtain $B_{1}^{n} C^{l}=q_{2}\left(b-4 a^{\prime}\right)$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then $q_{1} \mid\left(b-4 a^{\prime}\right) \Longrightarrow$ $q_{1} \mid b$ because $q_{1}\left|a^{\prime} \Longrightarrow q_{1}\right| a$, then the contradiction with a, b coprime.
- If $j-n \beta<0 \Longrightarrow q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$, because $q_{1}\left|a^{\prime} \Longrightarrow q_{1}\right| a$, then the contradiction with a, b coprime.
** F-5-2-2-2- We obtain identical results if we suppose that $q_{1} \mid C^{l}$.
** F-6- If $4 \nmid\left(b-4 a^{\prime}\right)$ and $4 \nmid k_{1}$ it is impossible. We suppose that $4\left|\left(b-4 a^{\prime}\right) \Rightarrow 4\right| b$, and $b-4 a^{\prime}=4^{t} . g, t \geq 1$ with $4 \nmid g$, then we have :

$$
\begin{gathered}
A^{2 m}=k_{1} a^{\prime} \\
B^{n} C^{l}=k_{1} \cdot 4^{t-1} \cdot g
\end{gathered}
$$

** F-6-1- We suppose that k_{1} is prime. From $A^{2 m}=k_{1} a^{\prime}$ we deduce easily that $k_{1} \mid a^{\prime}$. From $B^{n} C^{l}=k_{1} \cdot 4^{t-1} . g$ we obtain that $k_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow k_{1}\right| B^{n}$ or $k_{1} \mid C^{l}$.
** F-6-1-1- We suppose that $k_{1}\left|B^{n} \Longrightarrow k_{1}\right| B \Longrightarrow B=k_{1}^{j} \cdot B_{1}$ with $j>0$ and $k_{1} \nmid B_{1}$, then $k_{1}^{n . j} B_{1}^{n} C^{l}=k_{1} .4^{t-1} . g \Longrightarrow k_{1}^{n . j-1} B_{1}^{n} C^{l}=4^{t-1}$.g. But $n \geq 3$ and $j \geq 1$, then $n . j-1 \geq 2$. We deduce as $k_{1} \neq 2$ that $k_{1}\left|g \Longrightarrow k_{1}\right|\left(b-4 a^{\prime}\right)$, but $k_{1}\left|a^{\prime} \Longrightarrow k_{1}\right| b$, then the contradiction with a, b coprime.
${ }^{* *}$ F-6-1-2- We obtain identical results if we suppose that $k_{1} \mid C^{l}$.
** F-6-2- We suppose that k_{1} is not prime $\neq 4$, ($k_{1}=4$ see case F-2, above) with $4 \nmid k_{1}$.
${ }^{* *}$ F-6-2-1- If $k_{1}=2 k^{\prime}$ with k^{\prime} odd >1. Then $A^{2 m}=2 k^{\prime} a^{\prime} \Longrightarrow 2\left|a^{\prime} \Longrightarrow 2\right| a$, as $4 \mid b$ it follows the contradiction with a, b coprime.
** F-6-2-2- We suppose that k_{1} is odd with k_{1} and a^{\prime} coprime. We write k_{1} under the form $k_{1}=q_{1}^{j} \cdot q_{2}$ with $q_{1} \nmid q_{2}, q_{1}$ prime and $j \geq 1$. $B^{n} C^{l}=q_{1}^{j} \cdot q_{2} 4^{t-1} g \Longrightarrow q_{1} \mid B^{n}$ or $q_{1} \mid C^{l}$.
** F-6-2-2-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{f}$. B_{1} with $q_{1} \nmid B_{1}$. We obtain $B_{1}^{n} C^{l}=$ $q_{1}^{j-f . n} q_{2} 4^{t-1} g$.

- If $j-f . n \geq 1 \Longrightarrow q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$, but $C^{l}=A^{m}+B^{n}$ gives also $q_{1} \mid C$ and the conjecture (3.1.1) is verified.
- If $j-f . n=0$, we have $B_{1}^{n} C^{l}=q_{2} 4^{t-1} g$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then $q_{1} \mid\left(b-4 a^{\prime}\right)$. As q_{1} and a^{\prime} are coprime then $q_{1} \nmid b$ and the conjecture (3.1.1) is verified.
- If $j-f . n<0 \Longrightarrow q_{1} \mid\left(b-4 a^{\prime}\right) \Longrightarrow q_{1} \nmid b$ because q_{1}, a^{\prime} are primes. $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$ and the conjecture (3.1.1) is verified.
** F-6-2-2-2- We obtain identical results if we suppose that $q_{1} \mid C^{l}$.
** F-6-2-3- We suppose that k_{1} and a^{\prime} are not coprime. Let q_{1} be a prime so that $q_{1} \mid k_{1}$ and $q_{1} \mid a^{\prime}$. We write k_{1} under the form $q_{1}^{j} \cdot q_{2}$ with $q_{1} \nmid q_{2}$. From $A^{2 m}=k_{1} a^{\prime} \Longrightarrow q_{1}\left|A^{2 m} \Longrightarrow q_{1}\right| A$. From $B^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right)$, it follows that $q_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow q_{1}\right| B^{n}$ or $q_{1} \mid C^{l}$.
** F-6-2-3-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{\beta} \cdot B_{1}$ with $\beta \geq 1$ and $q_{1} \nmid B_{1}$. Then we have $q_{1}^{n \beta} B_{1}^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right) \Longrightarrow B_{1}^{n} C^{l}=q_{1}^{j-n \beta} q_{2}\left(b-4 a^{\prime}\right):$
- If $j-n \beta \geq 1$, then $q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, and the conjecture (3.1.1) is verified.
- If $j-n \beta=0$, we obtain $B_{1}^{n} C^{l}=q_{2}\left(b-4 a^{\prime}\right)$, but $q_{1} \mid A$ and $q_{1} \mid B$ then $q_{1} \mid C$ and we obtain $q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$ because $q_{1}\left|a^{\prime} \Longrightarrow q_{1}\right| a$, then the contradiction with a, b coprime.
- If $j-n \beta<0 \Longrightarrow q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$, then the contradiction with a, b coprime.
** F-6-2-3-2- We obtain identical results as above if we suppose that $q_{1} \mid C^{l}$.

1.6 Hypothèse: $\{3 \mid p$ and $b \mid 4 p\}$

1.6.1 Case $b=2$ and $3 \mid p$

$3 \mid p \Rightarrow p=3 p^{\prime}$ with $p^{\prime} \neq 1$ because $3 \ll p$, and $b=2$, we obtain:

$$
A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 \cdot 3 p^{\prime} \cdot a}{3 b}=\frac{4 \cdot p^{\prime} \cdot a}{2}=2 \cdot p^{\prime} \cdot a
$$

As:

$$
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{2}<\frac{3}{4} \Rightarrow 1<2 a<3 \Rightarrow a=1 \Longrightarrow \cos ^{2} \frac{\theta}{3}=\frac{1}{2}
$$

but this case was studied (see case 1.4.1).

1.6.2 Case $b=4$ and $3 \mid p$

we have $3 \mid p \Longrightarrow p=3 p^{\prime}$ with $p^{\prime} \in \mathbb{N}^{*}$, it follows :

$$
A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4.3 p^{\prime} \cdot a}{3 \times 4}=p^{\prime} \cdot a
$$

and:

$$
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{4}<\frac{3}{4} \Rightarrow 1<a<3 \Rightarrow a=2
$$

as a, b are coprime, then the case $b=4$ and $3 \mid p$ is impossible.
1.6.3 Case: $b \neq 2, b \neq 4, b \neq 3, b \mid p$ and $3 \mid p$

As $3 \mid p$, then $p=3 p^{\prime}$ and :

$$
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{4 \times 3 p^{\prime}}{3} \frac{a}{b}=\frac{4 p^{\prime} a}{b}
$$

We consider the case: $b \mid p^{\prime} \Longrightarrow p^{\prime}=b p^{\prime \prime}$ and $p^{\prime \prime} \neq 1$ (If $p^{\prime \prime}=1$, then $p=3 b$, see paragraph 1.6.8 Case $k^{\prime}=1$). Finally, we obtain:

$$
A^{2 m}=\frac{4 b p^{\prime \prime} a}{b}=4 a p^{\prime \prime} ; \quad B^{n} C^{l}=p^{\prime \prime} \cdot(3 b-4 a)
$$

${ }^{* *}$ G-1- We suppose that $p^{\prime \prime}$ is prime, then $A^{2 m}=4 a p^{\prime \prime}=\left(A^{m}\right)^{2} \Longrightarrow p^{\prime \prime} \mid a$. But $B^{n} C^{l}=$ $p^{\prime \prime}(3 b-4 a) \Longrightarrow p^{\prime \prime} \mid B^{n}$ or $p^{\prime \prime} \mid C^{l}$.
${ }^{* *}$ G-1-1- If $p^{\prime \prime}\left|B^{n} \Longrightarrow p^{\prime \prime}\right| B \Longrightarrow B=p^{\prime \prime} B_{1}$ with $B_{1} \in \mathbb{N}^{*}$. Then $p^{\prime \prime n-1} B_{1}^{n} C^{l}=3 b-4 a$. As $n>2$, then $(n-1)>1$ and $p^{\prime \prime} \mid a$, then $p^{\prime \prime} \mid 3 b \Longrightarrow p^{\prime \prime}=3$ or $p^{\prime \prime} \mid b$.
** G-1-1-1- If $p^{\prime \prime}=3 \Longrightarrow 3 \mid a$, with a that we write as $a=3 a^{\prime 2}$, but $A^{m}=6 a^{\prime} \Longrightarrow 3 \mid A^{m} \Longrightarrow$ $3 \mid A \Longrightarrow A=3 A_{1}$, then $3^{m-1} A_{1}^{m}=2 a^{\prime} \Longrightarrow 3 \mid a^{\prime} \Longrightarrow a^{\prime}=3 a^{\prime \prime}$. As $p^{\prime \prime n-1} B_{1}^{n} C^{l}=3^{n-1} B_{1}^{n} C^{l}=$ $3 b-4 a \Longrightarrow 3^{n-2} B_{1}^{n} C^{l}=b-36 a^{\prime \prime 2}$. As $n>2 \Longrightarrow n-2 \geq 1$, then $3 \mid b$ and the contradiction with a, b coprime.
** G-1-1-2- We suppose that $p^{\prime \prime} \mid b$, as $p^{\prime \prime} \mid a$, then the contradiction with a, b coprime.
** G-1-2- If we suppose $p^{\prime \prime} \mid C^{l}$, we obtain identical results (contradictions).
** G-2- We consider now that p " is not prime.
${ }^{* *}$ G-2-1- $p^{\prime \prime}, a$ coprime: $A^{2 m}=4 a p^{\prime \prime} \Longrightarrow A^{m}=2 a^{\prime} \cdot p_{1}$ with $a=a^{\prime 2}$ and $p^{\prime \prime}=p_{1}^{2}$, then a^{\prime}, p_{1} are also coprime. As $A^{m}=2 a^{\prime} . p_{1}$, then $2 \mid a^{\prime}$ or $2 \mid p_{1}$.
${ }^{* *}$ G-2-1-1- We suppose that $2 \mid a^{\prime}$, then $2 \mid a^{\prime} \Longrightarrow 2 \nmid p_{1}$, but $p^{\prime \prime}=p_{1}^{2}$.
${ }^{* *}$ G-2-1-1-1- If p_{1} is prime, it is impossible with $A^{m}=2 a^{\prime} \cdot p_{1}$.
${ }^{* *}$ G-2-1-1-2- We suppose that p_{1} is not prime so we can write $p_{1}=\omega^{m} \Longrightarrow p^{\prime \prime}=\omega^{2 m}$. Then $B^{n} C^{l}=\omega^{2 m}(3 b-4 a)$.
${ }^{* *} \mathrm{G}-2-1-1-2-1$ - If ω is prime, $\omega \neq 2$, then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
${ }^{* *}$ G-2-1-1-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$, then $B_{1}^{n} \cdot C^{l}=\omega^{2 m-n j}(3 b-4 a)$.
** G-2-1-1-2-1-1-1- If $2 m-n . j=0$, we obtain $B_{1}^{n} \cdot C^{l}=3 b-4 a$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right|$ C, and $\omega \mid(3 b-4 a)$. But $\omega \neq 2$ and ω, a^{\prime} are coprime, then ω, a are coprime, it follows $\omega \nmid(3 b)$, then $\omega \neq 3$ and $\omega \nmid b$, the conjecture (3.1.1) is verified.
** G-2-1-1-2-1-1-2- If $2 m-n j \geq 1$, using the method as above, we obtain $\omega\left|C^{l} \Longrightarrow \omega\right| C$ and $\omega \mid(3 b-4 a)$ and $\omega \nmid a$ and $\omega \neq 3$ and $\omega \nmid b$, then the conjecture (3.1.1) is verified.
${ }^{* *}$ G-2-1-1-2-1-1-3- If $2 m-n j<0 \Longrightarrow \omega^{n . j-2 m} B_{1}^{n} \cdot C^{l}=3 b-4 a$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega \mid C^{l} \Longrightarrow$ $\omega \mid C$, then $C=\omega^{h} . C_{1}$, with $\omega \nmid C_{1}$, we obtain $\omega^{n . j-2 m+h . l} B_{1}^{n} . C_{1}^{l}=3 b-4 a$. If n.j $-2 m+h . l<0 \Longrightarrow$ $\omega \mid B_{1}^{n} C_{1}^{l}$ then the contradiction with $\omega \nmid B_{1}$ or $\omega \nmid C_{1}$. It follows $n . j-2 m+h . l>0$ and $\omega \mid(3 b-4 a)$ with ω, a, b coprime and the conjecture is verified.
** G-2-1-1-2-1-2- Using the same method above, we obtain identical results if $\omega \mid C^{l}$.
** G-2-1-1-2-2- We suppose that $p^{\prime \prime}=\omega^{2 m}$ and ω is not prime. We write $\omega=\omega_{1}^{f}$. Ω with ω_{1} prime $\dagger \Omega, f \geq 1$, and $\omega_{1} \mid A$. Then $B^{n} C^{l}=\omega_{1}^{2 f \cdot m} \Omega^{2 m}(3 b-4 a) \Longrightarrow \omega_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega_{1}\right| B^{n}$ or $\omega_{1} \mid C^{l}$.
${ }^{* *}$ G-2-1-1-2-2-1- If $\omega_{1}\left|B^{n} \Longrightarrow \omega_{1}\right| B \Longrightarrow B=\omega_{1}^{j} B_{1}$ with $\omega_{1} \nmid B_{1}$, then $B_{1}^{n} \cdot C^{l}=\omega_{1}^{2 . m-n j} \Omega^{2 m}(3 b-4 a)$:
${ }^{* *}$ G-2-1-1-2-2-1-1- If $2 f . m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=\Omega^{2 m}(3 b-4 a)$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega_{1} \mid$ $C^{l} \Longrightarrow \omega_{1} \mid C$, and $\omega_{1} \mid(3 b-4 a)$. But $\omega_{1} \neq 2$ and ω_{1}, a^{\prime} are coprime, then ω, a are coprime, it follows $\omega_{1} \nmid(3 b)$, then $\omega_{1} \neq 3$ and $\omega_{1} \nmid b$, and the conjecture (3.1.1) is verified.
** G-2-1-1-2-2-1-2- If $2 f . m-n . j \geq 1$, we have $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$ and $\omega_{1} \mid(3 b-4 a)$ and $\omega_{1} \nmid a$ and $\omega_{1} \neq 3$ and $\omega_{1} \nmid b$, it follows that the conjecture (3.1.1) is verified.
** G-2-1-1-2-2-1-3- If $2 f . m-n . j<0 \Longrightarrow \omega_{1}^{n . j-2 m . f} B_{1}^{n} \cdot C^{l}=\Omega^{2 m}(3 b-4 a)$. As $\omega_{1} \mid C$ using $C^{l}=A^{m}+$ B^{n}, then $C=\omega_{1}^{h} . C_{1} \Longrightarrow \omega^{n . j-2 m . f+h . l} B_{1}^{n} \cdot C_{1}^{l}=\Omega^{2 m}(3 b-4 a)$. If $n . j-2 m . f+h . l<0 \Longrightarrow \omega_{1} \mid B_{1}^{n} C_{1}^{l}$, then the contradiction with $\omega_{1} \nmid B_{1}$ and $\omega_{1} \nmid C_{1}$. Then if $n . j-2 m . f+h . l>0$ and $\omega_{1} \mid(3 b-4 a)$ with ω_{1}, a, b coprime and the conjecture (3.1.1) is verified.
${ }^{* *}$ G-2-1-1-2-2-2- Using the same method above, we obtain identical results if $\omega_{1} \mid C^{l}$.
** G-2-1-2- We suppose that $2 \mid p_{1}$: then $2 \mid p_{1} \Longrightarrow 2 \nmid a^{\prime} \Longrightarrow 2 \nmid a$, but $p^{\prime \prime}=p_{1}^{2}$.
** G-2-1-2-1- We suppose that $p_{1}=2$, we obtain $A^{m}=4 a^{\prime} \Longrightarrow 2 \mid a^{\prime}$, then the contradiction with a, b coprime.
** G-2-1-2-2- We suppose that p_{1} is not prime and $2 \mid p_{1}$. As $A^{m}=2 a^{\prime} p_{1}, p_{1}$ can written as $p_{1}=2^{m-1} \omega^{m} \Longrightarrow p^{\prime \prime}=2^{2 m-2} \omega^{2 m}$. Then $B^{n} C^{l}=2^{2 m-2} \omega^{2 m}(3 b-4 a) \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** G-2-1-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B$. As $2 \mid A$, then $2 \mid C$. From $B^{n} C^{l}=2^{2 m-2} \omega^{2 m}(3 b-$ $4 a)$ it follows that if $2|(3 b-4 a) \Longrightarrow 2| b$ but as $2 \nmid a$ there is no contradiction with a, b coprime and the conjecture (3.1.1) is verified.
** G-2-1-2-2-2- We suppose that $2 \mid C^{l}$, using the same method above, we obtain identical results.
** G-2-2- We suppose that $p^{\prime \prime}, a$ are not coprime: let ω be a prime integer so that $\omega \mid a$ and $\omega \mid p^{\prime \prime}$.
** G-2-2-1- We suppose that $\omega=3$. As $A^{2 m}=4 a p^{\prime \prime} \Longrightarrow 3 \mid A$, but $3 \mid p$. As $p=A^{2 m}+$ $B^{2 n}+A^{m} B^{n} \Longrightarrow 3\left|B^{2 n} \Longrightarrow 3\right| B$, then $3\left|C^{l} \Longrightarrow 3\right| C$. We write $A=3^{i} A_{1}, B=3^{j} B_{1}$, $C=3^{h} C_{1}$ with 3 coprime with A_{1}, B_{1} and C_{1} and $p=3^{2 i m} A_{1}^{2 m}+3^{2 n j} B_{1}^{2 n}+3^{i m+j n} A_{1}^{m} B_{1}^{n}=3^{k} . g$ with $k=\min (2 i m, 2 j n, i m+j n)$ and $3 \nmid g$. We have also $(\omega=3) \mid a$ and $(\omega=3) \mid p^{\prime \prime}$ that gives $a=3^{\alpha} a_{1}$, $3 \nmid a_{1}$ and $p^{\prime \prime}=3^{\mu} p_{1}, 3 \nmid p_{1}$ with $A^{2 m}=4 a p^{\prime \prime}=3^{2 i m} A_{1}^{2 m}=4 \times 3^{\alpha+\mu} \cdot a_{1} \cdot p_{1} \Longrightarrow \alpha+\mu=2 \mathrm{im}$. As $p=3 p^{\prime}=3 b . p^{\prime \prime}=3 b .3^{\mu} p_{1}=3^{\mu+1} . b . p_{1}$, the exponent of the factor 3 of p is k, the exponent of the factor 3 of the left member of the last equation is $\mu+1$ added of the exponent β of 3 of the term b, with $\beta \geq 0$, let $\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta$ and we recall that $\alpha+\mu=2 i m$. But $B^{n} C^{l}=p^{\prime \prime}(3 b-4 a)$, we obtain $3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)=3^{\mu+1} p_{1}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right)$, $3 \nmid b_{1}$. We have also $A^{m}+B^{n}=C^{l} \Longrightarrow 3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}=3^{h l} C_{1}^{l}$. We call $\epsilon=\min (i m, j n)$, we have
$\epsilon=h l=\min (i m, j n)$. We obtain the conditions:

$$
\begin{array}{r}
k=\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta \\
\alpha+\mu=2 i m \tag{1.6.2}\\
\epsilon=h l=\min (i m, j n) \\
3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{1}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right)
\end{array}
$$

** G-2-2-1-1- $\alpha=1 \Longrightarrow a=3 a_{1}$ and $3 \nmid a_{1}$, the equation (1.6.2) becomes:

$$
1+\mu=2 i m
$$

and the first equation (1.6.1) is written as:

$$
k=\min (2 i m, 2 j n, i m+j n)=2 i m+\beta
$$

- If $k=2 i m \Longrightarrow \beta=0$ then $3 \nmid b$. We obtain $2 i m \leq 2 j n \Longrightarrow i m \leq j n$, and $2 i m \leq i m+j n \Longrightarrow i m \leq j n$. The third equation gives $h l=i m$ and the last equation gives $n j+h l=\mu+1=2 i m \Longrightarrow i m=n j$, then $i m=n j=h l$ and $B_{1}^{n} C_{1}^{l}=p_{1}\left(b-4 a_{1}\right)$. As a, b are coprime, the conjecture (3.1.1) is verified.
- If $k=2 j n$ or $k=i m+j n$, we obtain $\beta=0, i m=j n=h l$ and $B_{1}^{n} C_{1}^{l}=p_{1}\left(b-4 a_{1}\right)$. As a, b are coprime, the conjecture (3.1.1) is verified.
** G-2-2-1-2- $\alpha>1 \Longrightarrow \alpha \geq 2$.
- If $k=2 i m \Longrightarrow 2 i m=\mu+1+\beta$, but $\mu=2 i m-\alpha$ that gives $\alpha=1+\beta \geq 2 \Longrightarrow \beta \neq 0 \Longrightarrow 3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime.
- If $k=2 j n=\mu+1+\beta \leq 2 i m \Longrightarrow \mu+1+\beta \leq \mu+\alpha \Longrightarrow 1+\beta \leq \alpha \Longrightarrow \beta \geq 1$. If $\beta \geq 1 \Longrightarrow 3 \mid b$ but $3 \mid a$, then the contradiction with a, b coprime.
- If $k=i m+j n \Longrightarrow i m+j n \leq 2 i m \Longrightarrow j n \leq i m$, and $i m+j n \leq 2 j n \Longrightarrow i m \leq j n$, then $i m=j n$. As $k=i m+j n=2 i m=1+\mu+\beta$ and $\alpha+\mu=2 i m$, we obtain $\alpha=1+\beta \geq 2 \Longrightarrow \beta \geq 1 \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime.
** G-2-2-2- We suppose that $\omega \neq 3$. We write $a=\omega^{\alpha} a_{1}$ with $\omega \nmid a_{1}$ and $p^{\prime \prime}=\omega^{\mu} p_{1}$ with $\omega \nmid p_{1}$. As $A^{2 m}=4 a p^{\prime \prime}=4 \omega^{\alpha+\mu} \cdot a_{1} \cdot p_{1} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}, \omega \nmid A_{1}$. But $B^{n} C^{l}=p^{\prime \prime}(3 b-4 a)=$ $\omega^{\mu} p_{1}(3 b-4 a) \Longrightarrow \omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** G-2-2-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ and $\omega \nmid B_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow$ $\omega\left|C^{l} \Longrightarrow \omega\right| C$. As $p=b p^{\prime}=3 b p^{\prime \prime}=3 \omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)$ with $k=\min (2 i m, 2 j n, i m+j n)$. Then:
- If $k=\mu$, then $\omega \nmid b$ and the conjecture (3.1.1) is verified.
- If $k>\mu$, then $\omega \mid b$, but $\omega \mid a$ then the contradiction with a, b coprime.
- If $k<\mu$, it follows from:

$$
3 \omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)
$$

that $\omega \mid A_{1}$ or $\omega \mid B_{1}$ then the contradiction with $\omega \nmid A_{1}$ or $\omega \nmid B_{1}$.
** G-2-2-2-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega \mid$ $\left(C^{l}-A^{m}\right) \Longrightarrow \omega \mid B$. Then, using the same method as for the case G-2-2-2-1-, we obtain identical results.

1.6.4 Case $b=3$ and $3 \mid p$

As $3 \mid p \Longrightarrow p=3 p^{\prime}$, We write :

$$
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{4 \times 3 p^{\prime}}{3} \frac{a}{3}=\frac{4 p^{\prime} a}{3}
$$

As $A^{2 m}$ is an integer and a, b are coprime and $\cos ^{2} \frac{\theta}{3}<1$ (see equation (1.3.9)), then we have necessary $3 \mid p^{\prime} \Longrightarrow p^{\prime}=3 p^{\prime \prime}$ with $p^{\prime \prime} \neq 1$, if not $p=3 p^{\prime}=3 \times 3 p^{\prime \prime}=9$, but $9 \ll(p=$ $A^{2 m}+B^{2 n}+A^{m} B^{n}$), the hypothesis $p^{\prime \prime}=1$ is impossible, then $p^{\prime \prime}>1$, and we obtain:

$$
A^{2 m}=\frac{4 p^{\prime} a}{3}=\frac{4 \times 3 p^{\prime \prime} a}{3}=4 p^{\prime \prime} a ; \quad B^{n} C^{l}=p^{\prime \prime} .(9-4 a)
$$

As $\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{3}<\frac{3}{4} \Longrightarrow 3<4 a<9 \Longrightarrow$ as $a>1, a=2$ and we obtain:

$$
\begin{equation*}
A^{2 m}=4 p^{\prime \prime} a=8 p^{\prime \prime} ; \quad B^{n} C^{l}=\frac{3 p^{\prime \prime}(9-4 a)}{3}=p^{\prime \prime} \tag{1.6.3}
\end{equation*}
$$

The two last equations above imply that $p^{\prime \prime}$ is not a prime. We can write $p^{\prime \prime}$ as : $p^{\prime \prime}=\prod_{i \in I} p_{i}^{\alpha_{i}}$ where p_{i} are distinct primes, α_{i} elements of \mathbb{N}^{*} and $i \in I$ a finite set of indexes. We can write also $p^{\prime \prime}=p_{1}^{\alpha_{1}} . q_{1}$ with $p_{1} \nmid q_{1}$. From (1.6.3), we have $p_{1} \mid A$ and $p_{1}\left|B^{n} C^{l} \Longrightarrow p_{1}\right| B^{n}$ or $p_{1} \mid C^{l}$.
** H-1- We suppose that $p_{1} \mid B^{n} \Longrightarrow B=p_{1}^{\beta_{1}} . B_{1}$ with $p_{1} \nmid B_{1}$ and $\beta_{1} \geq 1$. Then, we obtain $B_{1}^{n} C^{l}=p_{1}^{\alpha_{1}-n \beta_{1}} \cdot q_{1}$ with the following cases:

- If $\alpha_{1}-n \beta_{1} \geq 1 \Longrightarrow p_{1}\left|C^{l} \Longrightarrow p_{1}\right| C$, in accord with $p_{1} \mid\left(C^{l}=A^{m}+B^{n}\right)$, it follows that the conjecture (3.1.1) is verified.
- If $\alpha_{1}-n \beta_{1}=0 \Longrightarrow B_{1}^{n} C^{l}=q_{1} \Longrightarrow p_{1} \nmid C^{l}$, it is a contradiction with $p_{1}\left|\left(A^{m}-B^{n}\right) \Longrightarrow p_{1}\right| C^{l}$. Then this case is impossible.
- If $\alpha_{1}-n \beta_{1}<0$, we obtain $p_{1}^{n \beta_{1}-\alpha_{1}} B_{1}^{n} C^{l}=q_{1} \Longrightarrow p_{1} \mid q_{1}$, it is a contradiction with $p_{1} \nmid q_{1}$. Then this case is impossible.
${ }^{* *}$ H-2- We suppose that $p_{1} \mid C^{l}$, using the same method as for the case $p_{1} \mid B^{n}$, we obtain identical results.

1.6.5 Case $3 \mid p$ and $b=p$

We have $\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{p}$ and:

$$
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{p}=\frac{4 a}{3}
$$

As $A^{2 m}$ is an integer, it implies that $3 \mid a$, but $3|p \Longrightarrow 3| b$. As a and b are coprime, then the contradiction and the case $3 \mid p$ and $b=p$ is impossible.

1.6.6 Case $3 \mid p$ and $b=4 p$

$3 \mid p \Longrightarrow p=3 p^{\prime}, p^{\prime} \neq 1$ because $3 \ll p$, then $b=4 p=12 p^{\prime}$.

$$
\left.A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{a}{3} \Longrightarrow 3 \right\rvert\, a
$$

as $A^{2 m}$ is an integer. But $3|p \Longrightarrow 3|[(4 p)=b]$, then the contradiction with a, b coprime and the case $b=4 p$ is impossible.

1.6.7 Case $3 \mid p$ and $b=2 p$

$3 \mid p \Longrightarrow p=3 p^{\prime}, p^{\prime} \neq 1$ because $3 \ll p$, then $b=2 p=6 p^{\prime}$.

$$
\left.A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{2 a}{3} \Longrightarrow 3 \right\rvert\, a
$$

as $A^{2 m}$ is an integer. But $3|p \Longrightarrow 3|(2 p) \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime and the case $b=2 p$ is impossible.

1.6.8 Case $3 \mid p$ and $b \neq 3$ a divisor of p

We have $b=p^{\prime} \neq 3$, and p is written as $p=k p^{\prime}$ with $3 \mid k \Longrightarrow k=3 k^{\prime}$ and :

$$
\begin{array}{r}
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{b}=4 a k^{\prime} \\
B^{n} C^{l}=\frac{p}{3} \cdot\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=k^{\prime}\left(3 p^{\prime}-4 a\right)=k^{\prime}(3 b-4 a)
\end{array}
$$

** $\mathrm{I}-1-k^{\prime} \neq 1$:
${ }^{* *}$ I-1-1- We suppose that k^{\prime} is prime, then $A^{2 m}=4 a k^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow k^{\prime} \mid a$. But $B^{n} C^{l}=k^{\prime}(3 b-4 a) \Longrightarrow$ $k^{\prime} \mid B^{n}$ or $k^{\prime} \mid C^{l}$.
** I-1-1-1- If $k^{\prime}\left|B^{n} \Longrightarrow k^{\prime}\right| B \Longrightarrow B=k^{\prime} B_{1}$ with $B_{1} \in \mathbb{N}^{*}$. Then $k^{\prime n-1} B_{1}^{n} C^{l}=3 b-4 a$. As $n>2$, then $(n-1)>1$ and $k^{\prime} \mid a$, then $k^{\prime} \mid 3 b \Longrightarrow k^{\prime}=3$ or $k^{\prime} \mid b$.
** I-1-1-1-1- If $k^{\prime}=3 \Longrightarrow 3 \mid a$, with a that we can write it under the form $a=3 a^{\prime 2}$. But $A^{m}=$ $6 a^{\prime} \Longrightarrow 3\left|A^{m} \Longrightarrow 3\right| A \Longrightarrow A=3 A_{1}$ with $A_{1} \in \mathbb{N}^{*}$. Then $3^{m-1} A_{1}^{m}=2 a^{\prime} \Longrightarrow 3 \mid a^{\prime} \Longrightarrow a^{\prime}=3 a^{\prime \prime}$. But $k^{\prime n-1} B_{1}^{n} C^{l}=3^{n-1} B_{1}^{n} C^{l}=3 b-4 a \Longrightarrow 3^{n-2} B_{1}^{n} C^{l}=b-36 a^{\prime \prime 2}$. As $n \geq 3 \Longrightarrow n-2 \geq 1$, then $3 \mid b$. Hence the contradiction with a, b coprime.
${ }^{* *}$ I-1-1-1-2- We suppose that $k^{\prime} \mid b$, but $k^{\prime} \mid a$, then the contradiction with a, b coprime.
** I-1-1-2- We suppose that $k^{\prime} \mid C^{l}$, using the same method as for the case $k^{\prime} \mid B^{n}$, we obtain identical results.
** $\mathrm{I}-1-2-$ We consider that k^{\prime} is not a prime.
** I-1-2-1- We suppose that k^{\prime}, a coprime: $A^{2 m}=4 a k^{\prime} \Longrightarrow A^{m}=2 a^{\prime} . p_{1}$ with $a=a^{\prime 2}$ and $k^{\prime}=p_{1}^{2}$, then a^{\prime}, p_{1} are also coprime. As $A^{m}=2 a^{\prime} \cdot p_{1}$ then $2 \mid a^{\prime}$ or $2 \mid p_{1}$.
** I-1-2-1-1- We suppose that $2 \mid a^{\prime}$, then $2 \mid a^{\prime} \Longrightarrow 2 \nmid p_{1}$, but $k^{\prime}=p_{1}^{2}$.
${ }^{* *}$ I-1-2-1-1-1- If p_{1} is prime, it is impossible with $A^{m}=2 a^{\prime} \cdot p_{1}$.
** I-1-2-1-1-2- We suppose that p_{1} is not prime and it can be written as $p_{1}=\omega^{m} \Longrightarrow k^{\prime}=\omega^{2 m}$. Then $B^{n} C^{l}=\omega^{2 m}(3 b-4 a)$.
${ }^{* *}$ I-1-2-1-1-2-1- If ω is prime $\neq 2$, then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** I-1-2-1-1-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$, then $B_{1}^{n} \cdot C^{l}=\omega^{2 m-n j}(3 b-4 a)$.

- If $2 m-n . j=0$, we obtain $B_{1}^{n} \cdot C^{l}=3 b-4 a$, as $C^{l}=A^{m}+B^{n} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, and $\omega \mid(3 b-4 a)$. But $\omega \neq 2$ and ω, a^{\prime} are coprime, then $\omega \nmid(3 b) \Longrightarrow \omega \neq 3$ and $\omega \nmid b$. Hence, the conjecture (3.1.1) is verified.
- If $2 m-n j \geq 1$, using the same method, we have $\omega\left|C^{l} \Longrightarrow \omega\right| C$ and $\omega \mid(3 b-4 a)$ and $\omega \nmid a$ and $\omega \neq 3$ and $\omega \nmid b$. Then the conjecture (3.1.1) is verified.
- If $2 m-n j<0 \Longrightarrow \omega^{n . j-2 m} B_{1}^{n} . C^{l}=3 b-4 a$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega \mid C$ then $C=\omega^{h} . C_{1} \Longrightarrow$ $\omega^{n . j-2 m+h . l} B_{1}^{n} \cdot C_{1}^{l}=3 b-4 a$. If $n . j-2 m+h . l<0 \Longrightarrow \omega \mid B_{1}^{n} C_{1}^{l}$, then the contradiction with $\omega \nmid B_{1}$ or $\omega \nmid C_{1}$. If $n . j-2 m+h . l>0 \Longrightarrow \omega \mid(3 b-4 a)$ with ω, a, b coprime, it implies that the conjecture (3.1.1) is verified.
** I-1-2-1-1-2-1-2- We suppose that $\omega \mid C^{l}$, using the same method as for the case $\omega \mid B^{n}$, we obtain identical results.
** I-1-2-1-1-2-2- Now $k^{\prime}=\omega^{2 m}$ and ω not a prime, we write $\omega=\omega_{1}^{f}$. Ω with ω_{1} a prime $\nmid \Omega$ and $f \geq 1$ an integer, and $\omega_{1} \mid A$, then $B^{n} C^{l}=\omega_{1}^{2 f \cdot m} \Omega^{2 m}(3 b-4 a) \Longrightarrow \omega_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega_{1}\right| B^{n}$ or $\omega_{1} \mid C^{l}$. ${ }^{* *}$ I-1-2-1-1-2-2-1- If $\omega_{1}\left|B^{n} \Longrightarrow \omega_{1}\right| B \Longrightarrow B=\omega_{1}^{j} B_{1}$ with $\omega_{1} \nmid B_{1}$, then $B_{1}^{n} . C^{l}=\omega_{1}^{2 . f m-n j} \Omega^{2 m}(3 b-$ $4 a$).
- If $2 f . m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=\Omega^{2 m}(3 b-4 a)$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$, and $\omega_{1} \mid(3 b-4 a)$. But $\omega_{1} \neq 2$ and ω_{1}, a^{\prime} are coprime, then ω, a are coprime, then $\omega_{1} \nmid(3 b) \Longrightarrow$ $\omega_{1} \neq 3$ and $\omega_{1} \nmid b$. Hence, the conjecture (3.1.1) is verified.
- If $2 f . m-n . j \geq 1$, we have $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$ and $\omega_{1} \mid(3 b-4 a)$ and $\omega_{1} \nmid a$ and $\omega_{1} \neq 3$ and $\omega_{1} \nmid b$, then the conjecture (3.1.1) is verified.
- If $2 f . m-n . j<0 \Longrightarrow \omega_{1}^{n . j-2 m . f} B_{1}^{n} . C^{l}=\Omega^{2 m}(3 b-4 a)$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega_{1} \mid C$, then $C=\omega_{1}^{h} \cdot C_{1} \Longrightarrow \omega^{n . j-2 m . f+h . l} B_{1}^{n} . C_{1}^{l}=\Omega^{2 m}(3 b-4 a)$. If $n . j-2 m . f+h . l<0 \Longrightarrow \omega_{1} \mid B_{1}^{n} C_{1}^{l}$, then the contradiction with $\omega_{1} \nmid B_{1}$ and $\omega_{1} \nmid C_{1}$. Then if $n . j-2 m . f+h . l>0$ and $\omega_{1} \mid(3 b-4 a)$ with ω_{1}, a, b coprime, then the conjecture (3.1.1) is verified.
** I-1-2-1-1-2-2-2- As in the case $\omega_{1} \mid B^{n}$, we obtain identical results if $\omega_{1} \mid C^{l}$.
${ }^{* *}$ I-1-2-1-2- If $2 \mid p_{1}$: then $2 \mid p_{1} \Longrightarrow 2 \nmid a^{\prime} \Longrightarrow 2 \nmid a$, but $k^{\prime}=p_{1}^{2}$.
** I-1-2-1-2-1- If $p_{1}=2$, we obtain $A^{m}=4 a^{\prime} \Longrightarrow 2 \mid a^{\prime}$, then the contradiction with $2 \nmid a^{\prime}$. Case to reject.
** I-1-2-1-2-2- We suppose that p_{1} is not prime and $2 \mid p_{1}$. As $A^{m}=2 a^{\prime} p_{1}, p_{1}$ is written under the form $p_{1}=2^{m-1} \omega^{m} \Longrightarrow p_{1}^{2}=2^{2 m-2} \omega^{2 m}$. Then $B^{n} C^{l}=k^{\prime}(3 b-4 a)=2^{2 m-2} \omega^{2 m}(3 b-4 a) \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** I-1-2-1-2-2-1- If $2\left|B^{n} \Longrightarrow 2\right| B$, as $2|A \Longrightarrow 2| C$. From $B^{n} C^{l}=2^{2 m-2} \omega^{2 m}(3 b-4 a)$ it follows that if $2|(3 b-4 a) \Longrightarrow 2| b$ but as $2 \nmid a$, there is no contradiction with a, b coprime and the conjecture (3.1.1) is verified.
** I-1-2-1-2-2-2- We obtain identical results as above if $2 \mid C^{l}$.
${ }^{* *}$ I-1-2-2- We suppose that k^{\prime}, a are not coprime: let ω be a prime integer so that $\omega \mid a$ and $\omega \mid p_{1}^{2}$.
** I-1-2-2-1- We suppose that $\omega=3$. As $A^{2 m}=4 a k^{\prime} \Longrightarrow 3 \mid A$, but $3 \mid p$. As $p=A^{2 m}+$ $B^{2 n}+A^{m} B^{n} \Longrightarrow 3\left|B^{2 n} \Longrightarrow 3\right| B$, then $3\left|C^{l} \Longrightarrow 3\right| C$. We write $A=3^{i} A_{1}, B=3^{j} B_{1}$, $C=3^{h} C_{1}$ with 3 coprime with A_{1}, B_{1} and C_{1} and $p=3^{2 i m} A_{1}^{2 m}+3^{2 n j} B_{1}^{2 n}+3^{i m+j n} A_{1}^{m} B_{1}^{n}=3^{s} \cdot g$ with $s=\min (2 i m, 2 j n, i m+j n)$ and $3 \nmid g$. We have also $(\omega=3) \mid a$ and $(\omega=3) \mid k^{\prime}$ that give $a=3^{\alpha} a_{1}, 3 \nmid a_{1}$ and $k^{\prime}=3^{\mu} p_{2}, 3 \nmid p_{2}$ with $A^{2 m}=4 a k^{\prime}=3^{2 i m} A_{1}^{2 m}=4 \times 3^{\alpha+\mu} \cdot a_{1} \cdot p_{2} \Longrightarrow \alpha+\mu=2 \mathrm{im}$. As $p=3 p^{\prime}=3 b \cdot k^{\prime}=3 b .3^{\mu} p_{2}=3^{\mu+1}$.b. p_{2}. The exponent of the factor 3 of p is s, the exponent of the factor 3 of the left member of the last equation is $\mu+1$ added of the exponent β of 3 of the factor b, with $\beta \geq 0$, let $\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta$, we recall that $\alpha+\mu=2 i m$. But $B^{n} C^{l}=k^{\prime}(4 b-3 a)$ that gives $3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{2}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)=3^{\mu+1} p_{2}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right)$, $3 \nmid b_{1}$. We have also $A^{m}+B^{n}=C^{l}$ that gives $3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}=3^{h l} C_{1}^{l}$. We call $\epsilon=\min (i m, j n)$, we obtain $\epsilon=h l=\min (i m, j n)$. We have then the conditions:

$$
\begin{array}{r}
s=\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta \\
\alpha+\mu=2 i m \\
\epsilon=h l=\min (i m, j n) \\
3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{2}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right) \tag{1.6.7}
\end{array}
$$

** $\mathrm{I}-1-2-2-1-1-\alpha=1 \Longrightarrow a=3 a_{1}$ and $3 \nmid a_{1}$, the equation (1.6.5) becomes:

$$
1+\mu=2 i m
$$

and the first equation (1.6.4) is written as :

$$
s=\min (2 i m, 2 j n, i m+j n)=2 i m+\beta
$$

- If $s=2 i m \Longrightarrow \beta=0 \Longrightarrow 3 \nmid b$. We obtain $2 i m \leq 2 j n \Longrightarrow i m \leq j n$, and $2 i m \leq i m+j n \Longrightarrow i m \leq j n$. The third equation (1.6.6) gives $h l=i m$. The last equation (1.6.7) gives $n j+h l=\mu+1=2 \mathrm{im} \Longrightarrow$ $i m=j n$, then $i m=j n=h l$ and $B_{1}^{n} C_{1}^{l}=p_{2}\left(b-4 a_{1}\right)$. As a, b are coprime, the conjecture (3.1.1) is verified.
- If $s=2 j n$ or $s=i m+j n$, we obtain $\beta=0, i m=j n=h l$ and $B_{1}^{n} C_{1}^{l}=p_{2}\left(b-4 a_{1}\right)$. Then as a, b are coprime, the conjecture (3.1.1) is verified.
** $\mathrm{I}-1-2-2-1-2-\alpha>1 \Longrightarrow \alpha \geq 2$.
- If $s=2 i m \Longrightarrow 2 i m=\mu+1+\beta$, but $\mu=2 i m-\alpha$ it gives $\alpha=1+\beta \geq 2 \Longrightarrow \beta \neq 0 \Longrightarrow 3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime and the conjecture (3.1.1) is not verified.
- If $s=2 j n=\mu+1+\beta \leq 2 i m \Longrightarrow \mu+1+\beta \leq \mu+\alpha \Longrightarrow 1+\beta \leq \alpha \Longrightarrow \beta=1$. If $\beta=1 \Longrightarrow 3 \mid b$ but $3 \mid a$, then the contradiction with a, b coprime and the conjecture (3.1.1) is not verified.
- If $s=i m+j n \Longrightarrow i m+j n \leq 2 i m \Longrightarrow j n \leq i m$, and $i m+j n \leq 2 j n \Longrightarrow i m \leq j n$, then $i m=j n$. As $s=i m+j n=2 i m=1+\mu+\beta$ and $\alpha+\mu=2 i m$ it gives $\alpha=1+\beta \geq 2 \Longrightarrow \beta \geq 1 \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime and the conjecture (3.1.1) is not verified.
** I-1-2-2-2- We suppose that $\omega \neq 3$. We write $a=\omega^{\alpha} a_{1}$ with $\omega \nmid a_{1}$ and $k^{\prime}=\omega^{\mu} p_{2}$ with $\omega \nmid p_{2}$. As $A^{2 m}=4 a k^{\prime}=4 \omega^{\alpha+\mu} \cdot a_{1} \cdot p_{2} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}, \omega \nmid A_{1}$. But $B^{n} C^{l}=k^{\prime}(3 b-4 a)=$ $\omega^{\mu} p_{2}(3 b-4 a) \Longrightarrow \omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** I-1-2-2-2-1- $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B^{n}=\omega^{j} B_{1}$ and $\omega \nmid B_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega \mid$ $C^{l} \Longrightarrow \omega \mid C$. As $p=b p^{\prime}=3 b k^{\prime}=3 \omega^{\mu} b p_{2}=\omega^{s}\left(\omega^{2 i m-s} A_{1}^{2 m}+\omega^{2 j n-s} B_{1}^{2 n}+\omega^{i m+j n-s} A_{1}^{m} B_{1}^{n}\right)$ with $s=\min (2 i m, 2 j n, i m+j n)$. Then:
- If $s=\mu$, then $\omega \nmid b$ and the conjecture (3.1.1) is verified.
- If $s>\mu$, then $\omega \mid b$, but $\omega \mid a$ then the contradiction with a, b coprime and the conjecture (3.1.1) is not verified.
- If $s<\mu$, it follows from:

$$
3 \omega^{\mu} b p_{1}=\omega^{s}\left(\omega^{2 i m-s} A_{1}^{2 m}+\omega^{2 j n-s} B_{1}^{2 n}+\omega^{i m+j n-s} A_{1}^{m} B_{1}^{n}\right)
$$

that $\omega \mid A_{1}$ or $\omega \mid B_{1}$ that is the contradiction with the hypothesis and the conjecture (3.1.1) is not verified.
${ }^{* *}$ I-1-2-2-2-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega \mid$ $\left(C^{l}-A^{m}\right) \Longrightarrow \omega \mid B$. Then we obtain identical results as the case above I-1-2-2-2-1-.
${ }^{* *}$ I-2- We suppose $k^{\prime}=1$: then $k^{\prime}=1 \Longrightarrow p=3 b$, then we have $A^{2 m}=4 a=\left(2 a^{\prime}\right)^{2} \Longrightarrow A^{m}=2 a^{\prime}$, then $a=a^{\prime 2}$ is even and:

$$
A^{m} B^{n}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \cdot \sqrt[3]{\rho}\left(\sqrt{3} \sin \frac{\theta}{3}-\cos \frac{\theta}{3}\right)=\frac{p \sqrt{3}}{3} \sin \frac{2 \theta}{3}-2 a
$$

and we have also:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3}=2 b \sqrt{3} \sin \frac{2 \theta}{3} \tag{1.6.8}
\end{equation*}
$$

The left member of the equation (1.6.8) is a naturel number and also b, then $2 \sqrt{3} \sin \frac{2 \theta}{3}$ can be written under the form :

$$
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}}
$$

where k_{1}, k_{2} are two natural numbers coprime and $k_{2} \mid b \Longrightarrow b=k_{2} \cdot k_{3}$.
${ }^{* *}$ I-2-1- $k^{\prime}=1$ and $k_{3} \neq 1$: then $A^{2 m}+2 A^{m} B^{n}=k_{3} . k_{1}$. Let μ be a prime integer so that $\mu \mid k_{3}$. If $\mu=2 \Rightarrow 2 \mid b$, but $2 \mid a$, it is a contradiction with a, b coprime. We suppose that $\mu \neq 2$ and $\mu \mid k_{3}$, then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
${ }^{* *}$ I-2-1-1- $\mu \mid A^{m}$: If $\mu\left|A^{m} \Longrightarrow \mu\right| A^{2 m} \Longrightarrow \mu|4 a \Longrightarrow \mu| a$. As $\mu\left|k_{3} \Longrightarrow \mu\right| b$, the contradiction with a, b coprime.
** I-2-1-2- $\mu \mid\left(A^{m}+2 B^{n}\right)$: If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$, then $\mu \neq 2$ and $\mu \nmid B^{n}$. $\mu \mid\left(A^{m}+2 B^{n}\right)$, we can write $A^{m}+2 B^{n}=\mu . t^{\prime}$. It follows:

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p, we obtain:

$$
p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right)
$$

As $p=3 b=3 k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid p \Longrightarrow p=\mu \cdot \mu^{\prime}$, then we obtain:

$$
\mu^{\prime} \cdot \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right)
$$

and $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
${ }^{* *}$ I-2-1-2-1- $\mu \mid B^{n}$: If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, that is the contradiction with I-2-1-2- above.
${ }^{* *}$ I-2-1-2-2- $\mu \mid\left(B^{n}-A^{m}\right)$: If $\mu \mid\left(B^{n}-A^{m}\right)$ and using that $\mu \mid\left(A^{m}+2 B^{n}\right)$, we obtain:

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu\left|B^{n} \Longrightarrow \mu\right| B \\
\text { or } \\
\mu=3
\end{array}\right.\right.
$$

${ }^{* *}$ I-2-1-2-2-1- $\mu \mid B^{n}$: If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, that is the contradiction with I-2-1-2- above.
** I-2-1-2-2-2- $\mu=3$: If $\mu=3 \Longrightarrow 3 \mid k_{3} \Longrightarrow k_{3}=3 k_{3}^{\prime}$, and we have $b=k_{2} k_{3}=3 k_{2} k_{3}^{\prime}$, it follows $p=3 b=9 k_{2} k_{3}^{\prime}$, then $9 \mid p$, but $p=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$ then:

$$
9 k_{2} k_{3}^{\prime}-3 A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}
$$

that we write as:

$$
\begin{equation*}
3\left(3 k_{2} k_{3}^{\prime}-A^{m} B^{n}\right)=\left(A^{m}-B^{n}\right)^{2} \tag{1.6.9}
\end{equation*}
$$

then:

$$
3\left|\left(3 k_{2} k_{3}^{\prime}-A^{m} B^{n}\right) \Longrightarrow 3\right| A^{m} B^{n} \Longrightarrow 3 \mid A^{m} \text { or } 3 \mid B^{n}
$$

** I-2-1-2-2-2-1-3 $\mid A^{m}$: If $3\left|A^{m} \Longrightarrow 3\right| A$ and we have also $3 \mid A^{2 m}$, but $A^{2 m}=4 a \Longrightarrow 3 \mid 4 a \Longrightarrow$ $3 \mid a$. As $b=3 k_{2} k_{3}^{\prime}$ then $3 \mid b$, but a, b are coprime, then the contradiction and $3 \nmid A$.

[^0]Finally the hypothesis $k_{3} \neq 1$ is impossible.
** I-2-2- Now, we suppose that $k_{3}=1 \Longrightarrow b=k_{2}$ and $p=3 b=3 k_{2}$, then we have:

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{b} \tag{1.6.10}
\end{equation*}
$$

with k_{1}, b coprime. We write (1.6.10) as :

$$
4 \sqrt{3} \sin \frac{\theta}{3} \cos \frac{\theta}{3}=\frac{k_{1}}{b}
$$

Taking the square of the two members and replacing $\cos ^{2} \frac{\theta}{3}$ by $\frac{a}{b}$, we obtain:

$$
3 \times 4^{2} \cdot a(b-a)=k_{1}^{2} \Longrightarrow k_{1}^{2}=3 \times 4^{2} \cdot a^{\prime 2}(b-a)
$$

it implies that :

$$
b-a=3 \alpha^{2} \Longrightarrow b=a^{\prime 2}+3 \alpha^{2} \Longrightarrow k_{1}=12 a^{\prime} \alpha
$$

As:

$$
k_{1}=12 a^{\prime} \alpha=A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow 3 \alpha=a^{\prime}+B^{n}
$$

We consider now that $3 \mid(b-a)$ with $b=a^{\prime 2}+3 \alpha^{2}$. The case $\alpha=1$ gives $a^{\prime}+B^{n}=3$ that is impossible. We suppose $\alpha>1$, the pair $\left(a^{\prime}, \alpha\right)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
X^{2}+3 Y^{2}=b \tag{1.6.11}
\end{equation*}
$$

with $X=a^{\prime}$ and $Y=\alpha$. But using a theorem on the solutions of the equation given by (1.6.11), b is written as (see theorem in [7]):

$$
b=2^{2 s} \times 3^{t} . p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

where p_{i} are prime numbers verifying $p_{i} \equiv 1(\bmod 6)$, the q_{j} are also prime numbers so that $q_{j} \equiv$ $5(\bmod 6)$, then :

- If $s \geq 1 \Longrightarrow 2 \mid b$, as $2 \mid a$, then the contradiction with a, b coprime.
- If $t \geq 1 \Longrightarrow 3 \mid b$, but $3|(b-a) \Longrightarrow 3| a$, then the contradiction with a, b coprime.
** $\mathrm{I}-2-2-1-$ We suppose that b is written as:

$$
b=p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

with $p_{i} \equiv 1(\bmod 6)$ and $q_{j} \equiv 5(\bmod 6)$. Finally, we obtain that $b \equiv 1(\bmod 6)$. We will verify then this condition.
** I-2-2-1-1- We present the table below giving the value of $A^{m}+B^{n}=C^{l}$ modulo 6 in function of the value of $A^{m}, B^{n}(\bmod 6)$. We obtain the table below after retiring the lines (respectively the colones) of $A^{m} \equiv 0(\bmod 6)$ and $A^{m} \equiv 3(\bmod 6)\left(\right.$ respectively of $B^{n} \equiv 0(\bmod 6)$ and $\left.B^{n} \equiv 3(\bmod 6)\right)$, they present cases with contradictions:

Table 1.2: Table of $C^{l}(\bmod 6)$

A^{m}, B^{n}	1	2	4	5
1	2	3	5	0
2	3	4	0	1
4	5	0	2	3
5	0	1	3	4

** I-2-2-1-1-1- For the case $C^{l} \equiv 0(\bmod 6)$ and $C^{l} \equiv 3(\bmod 6)$, we deduce that $3\left|C^{l} \Longrightarrow 3\right| C \Longrightarrow$ $C=3^{h} C_{1}$, with $h \geq 1$ and $3 \nmid C_{1}$. It follows that $p-B^{n} C^{l}=3 b-3^{l h} C_{1}^{l} B^{n}=A^{2 m} \Longrightarrow 3 \mid\left(A^{2 m}=\right.$
$4 a) \Longrightarrow 3|a \Longrightarrow 3| b$, then the contradiction with a, b coprime.
** I-2-2-1-1-2- For the case $C^{l} \equiv 0(\bmod 6), C^{l} \equiv 2(\bmod 6)$ and $C^{l} \equiv 4(\bmod 6)$, we deduce that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. It follows that $p=3 b=A^{2 m}+B^{n} C^{l}=$ $4 a+2^{l h} C_{1}^{l} B^{n} \Longrightarrow 2|3 b \Longrightarrow 2| b$, then the contradiction with a, b coprime.
** I-2-2-1-1-3- We consider the cases $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 4(\bmod 6)\left(\right.$ respectively $B^{n} \equiv$ $2(\bmod 6)$): then $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $j \geq 1$ and $2 \nmid B_{1}$. It follows from $3 b=A^{2 m}+B^{n} C^{l}=4 a+2^{j n} B_{1}^{n} C^{l}$ that $2 \mid b$, then the contradiction with a, b coprime.
** I-2-2-1-1-4- We consider the case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 2(\bmod 6)$: then $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow$ $B=2^{j} B_{1}$ with $j \geq 1$ and $2 \nmid B_{1}$. It follows that $3 b=A^{2 m}+B^{n} C^{l}=4 a+2^{j n} B_{1}^{n} C^{l}$, then $2 \mid b$ and we obtain the contradiction with a, b coprime.
${ }^{* *}$ I-2-2-1-1-5- We consider the case $A^{m} \equiv 2(\bmod 6)$ and $B^{n} \equiv 5(\bmod 6):$ as $A^{m} \equiv 2(\bmod 6) \Longrightarrow$ $A^{m} \equiv 2(\bmod 3)$, then A^{m} is not a square and also for B^{n}. Hence, we can write A^{m} and B^{n} as:

$$
\begin{array}{r}
A^{m}=a_{0} \cdot \mu A^{2} \\
B^{n}=b_{0} \mu B^{2}
\end{array}
$$

where a_{0} (respectively b_{0}) regroups the product of the prime numbers of A^{m} with exponent 1 (respectively of B^{n}) with not necessary $\left(a_{0}, \mu A\right)=1$ and $\left(b_{0}, \mu B\right)=1$. We have also $p=3 b=$ $A^{2 m}+A^{m} B^{n}+B^{2 n}=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n} \Longrightarrow 3 \mid\left(b-A^{m} B^{n}\right) \Longrightarrow A^{m} B^{n} \equiv b(\bmod 3)$ but $b=a+3 \alpha^{2} \Longrightarrow b \equiv a \equiv a^{\prime 2}(\bmod 3)$, then $A^{m} B^{n} \equiv a^{\prime 2}(\bmod 3)$. But $A^{m} \equiv 2(\bmod 6) \Longrightarrow$ $2 a^{\prime} \equiv 2(\bmod 6) \Longrightarrow 4 a^{\prime 2} \equiv 4(\bmod 6) \Longrightarrow a^{\prime 2} \equiv 1(\bmod 3)$. It follows that $A^{m} B^{n}$ is a square, let $A^{m} B^{n}=\mu N^{2}=\mu A^{2} \cdot \mu B^{2} \cdot a_{0} \cdot b_{0}$. We call $\mu N_{1}^{2}=a_{0} \cdot b_{0}$. Let p_{1} be a prime number so that $p_{1} \mid a_{0} \Longrightarrow a_{0}=p_{1} \cdot a_{1}$ with $p_{1} \nmid a_{1} \cdot p_{1}\left|\mu N_{1}^{2} \Longrightarrow p_{1}\right| \mu N_{1} \Longrightarrow \mu N_{1}=p_{1}^{t} \mu N_{1}^{\prime}$ with $t \geq 1$ and $p_{1} \nmid \mu N_{1}^{\prime}$, then $p_{1}^{2 t-1} \mu N_{1}^{\prime 2}=a_{1} \cdot b_{0}$. As $2 t \geq 2 \Longrightarrow 2 t-1 \geq 1 \Longrightarrow p_{1} \mid a_{1} \cdot b_{0}$ but $\left(p_{1}, a_{1}\right)=1$, then $p_{1}\left|b_{0} \Longrightarrow p_{1}\right| B^{n} \Longrightarrow p_{1} \mid B$. But $p_{1} \mid\left(A^{m}=2 a^{\prime}\right)$, and $p_{1} \neq 2$ because $p_{1} \mid B^{n}$ and B^{n} is odd, then the contradiction. Hence, $p_{1}\left|a^{\prime} \Longrightarrow p_{1}\right| a$. If $p_{1}=3$, from $3|(b-a) \Longrightarrow 3| b$ then the contradiction with a, b coprime. Then $p_{1}>3$ a prime that divides A^{m} and B^{n}, then $p_{1}\left|(p=3 b) \Longrightarrow p_{1}\right| b$, it follows the contradiction with a, b coprime, knowing that $p=3 b \equiv 3(\bmod 6)$ and we choose the case $b \equiv 1(\bmod 6)$ of our interest.
** I-2-2-1-1-6- We consider the last case of the table above $A^{m} \equiv 4(\bmod 6)$ and $B^{n} \equiv 1(\bmod 6)$. We return to the equation (1.6.11) that b verifies :

$$
\begin{array}{r}
b=X^{2}+3 Y^{2} \tag{1.6.12}\\
\text { with } X=a^{\prime} ; \quad Y=\alpha \\
\text { and } \quad 3 \alpha=a^{\prime}+B^{n}
\end{array}
$$

Suppose that it exists another solution of (1.6.12):

$$
b=X^{2}+3 Y^{3}=u^{2}+3 v^{2} \Longrightarrow 2 u \neq A^{m}, 3 v \neq a^{\prime}+B^{n}
$$

But $B^{n}=\frac{6 \alpha-A^{m}}{2}=3 \alpha-a^{\prime}$ and b verifies also : $3 b=p=A^{2 m}+A^{m} B^{n}+B^{2 n}$, it is impossible that u, v verify:

$$
\begin{array}{r}
6 v=2 u+2 B^{n} \\
3 b=4 u^{2}+2 u B^{n}+B^{2 n}
\end{array}
$$

If we consider that : $6 v-2 u=6 \alpha-2 a^{\prime} \Longrightarrow u=3 v-3 \alpha+a^{\prime}$, then $b=u^{2}+3 v^{2}=\left(3 v-3 \alpha+a^{\prime}\right)^{2}+$ $3 v^{2}$, it gives:

$$
\begin{aligned}
2 v^{2}-B^{n} v+\alpha^{2}-a^{\prime} \alpha & =0 \\
2 v^{2}-B^{n} v-\frac{\left(a^{\prime}+B^{n}\right)\left(A^{m}-B^{n}\right)}{9} & =0
\end{aligned}
$$

The resolution of the last equation gives with taking the positive root (because $A^{m}>B^{n}$), $v_{1}=\alpha$, then $u=a^{\prime}$. It follows that b in (1.6.12) has an unique representation under the form $X^{2}+3 Y^{2}$ with $X, 3 Y$ coprime. As b is odd, we applique one of Euler's theorems on the convenient numbers "numerus idoneus" as cited above (Case C-2-2-1-2). It follows that b is prime.

We have also $p=3 b=A^{2 m}+A^{m} B^{n}+B^{2 n}=4 a^{\prime 2}+B^{n} . C^{l} \Longrightarrow 9 \alpha^{2}-a^{\prime 2}=B^{n} . C^{l}$, then $3 \alpha, a^{\prime} \in \mathbb{N}^{*}$ are solutions of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{1.6.13}
\end{equation*}
$$

with $N=B^{n} C^{l}>0$. Let $Q(N)$ be the number of the solutions of (1.6.13) and $\tau(N)$ the number of ways to write the factors of N, then we announce the following result concerning the number of the solutions of (1.6.13) (see theorem 27.3 in [7]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$.
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$.
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.

We recall that $A^{m} \equiv 0(\bmod 4)$. Concerning B^{n}, for $B^{n} \equiv 0(\bmod 4)$ or $B^{n} \equiv 2(\bmod 4)$, we find that $2\left|B^{n} \Longrightarrow 2\right| \alpha \Longrightarrow 2 \mid b$, then the contradiction with a, b coprime.

For the last case $B^{n} \equiv 3(\bmod 4) \Longrightarrow C^{l} \equiv 3(\bmod 4) \Longrightarrow N=B^{n} C^{l} \equiv 1(\bmod 4) \Longrightarrow Q(N)=$ $[\tau(N) / 2]>1$.

As $\left(3 \alpha, a^{\prime}\right)$ is a couple of solutions of the Diophantine equation (1.6.13) and $3 \alpha>a^{\prime}$, then $\exists d, d^{\prime}$ positive integers with $d>d^{\prime}$ and $N=d . d^{\prime}$ so that :

$$
\begin{align*}
& d+d^{\prime}=6 \alpha \tag{1.6.14}\\
& d-d^{\prime}=2 a^{\prime} \tag{1.6.15}
\end{align*}
$$

** I-2-2-1-1-6-1 Now, we consider the case $d=c_{1}^{l r-1} C_{1}^{l}$ where c_{1} is a prime integer with $c_{1} \nmid C_{1}$ and $C=c_{1}^{r} C_{1}, r \geq 1$. It follows that $d^{\prime}=c_{1} \cdot B^{n}$. We rewrite the equations (3.2.36-3.2.37):

$$
\begin{align*}
& c_{1}^{l r-1} C_{1}^{l}+c_{1} \cdot B^{n}=6 \alpha \tag{1.6.16}\\
& c_{1}^{l r-1} C_{1}^{l}-c_{1} \cdot B^{n}=2 a^{\prime} \tag{1.6.17}
\end{align*}
$$

As $l \geq 3$, from the last two equations above, it follows that $c_{1} \mid(6 \alpha)$ and $c_{1} \mid\left(2 a^{\prime}\right)$. Then $c_{1}=2$, or $c_{1}=3$ and $3 \mid a^{\prime}$ or $c_{1} \neq 3 \mid \alpha$ and $c_{1} \mid a^{\prime}$.
** I-2-2-1-1-6-1-1 We suppose $c_{1}=2$. As $2\left|\left(A^{m}=2 a^{\prime}\right) \Rightarrow 2\right| a$ and $2 \mid C^{l}$ because $l \geq 3$, it follows $2 \mid B^{n}$, then $2 \mid(p=3 b)$. Then the contradiction with a, b coprime.
** I-2-2-1-1-6-1-2 We suppose $c_{1}=3 \Rightarrow c_{1} \mid\left(a=3 a^{\prime}\right)$ and $c_{1}=3 \mid a^{\prime}$. It follows that $\left(c_{1}=3\right) \mid(b=$ $a^{\prime 2}+3 \alpha^{2}$), then the contradiction with a, b coprime.
${ }^{* *}$ I-2-2-1-1-6-1-3 We suppose $c_{1} \neq 3$ and $c_{1} \mid 3 \alpha$ and $c_{1} \mid a^{\prime}$. It follows that $c_{1} \mid a$ and $c_{1} \mid b$, then the contradiction with a, b coprime.

The others cases of the expressions of d and d^{\prime} not coprime so that $N=B^{n} C^{l}=d . d^{\prime}$ give also contradictions.
** I-2-2-1-1-6-2 The last case is to consider $d=C^{l}$ and $d^{\prime}=B^{n}$, so we obtain the only solution $\left(3 \alpha, a^{\prime}\right)$ of the Diophantine equation (1.6.13). It follows that $Q(N)=1$, then the contradiction with $Q(N)=[\tau(N) / 2]>1$ the number of the solution of (1.6.13).

It follows that the condition $3 \mid(b-a)$ is a contradiction.

The study of the case 1.6 .8 is achieved.

1.6.9 Case $3 \mid p$ and $b \mid 4 p$

The following cases have been soon studied:
${ }^{*} 3|p, b=2 \Longrightarrow b| 4 p$: case 1.6.1,
*3|p, $b=4 \Longrightarrow b \mid 4 p$: case 1.6.2,

* $3\left|p \Longrightarrow p=3 p^{\prime}, b\right| p^{\prime} \Longrightarrow p^{\prime}=b p^{\prime \prime}, p^{\prime \prime} \neq 1$: case 1.6.3,
${ }^{*} 3|p, b=3 \Longrightarrow b| 4 p$: case 1.6.4,
*3 $\left|p \Longrightarrow p=3 p^{\prime}, b=p^{\prime} \Longrightarrow b\right| 4 p$: case 1.6.8.
** J-1- Particular case: $b=12$. In fact $3 \mid p \Longrightarrow p=3 p^{\prime}$ and $4 p=12 p^{\prime}$. Taking $b=12$, we have $b \mid 4 p$. But $b<4 a<3 b$, that gives $12<4 a<36 \Longrightarrow 3<a<9$. As $2 \mid b$ and $3 \mid b$, the possible values of a are 5 and 7 .
${ }^{* *} \mathrm{~J}-1-1-a=5$ and $b=12 \Longrightarrow 4 p=12 p^{\prime}=b p^{\prime}$. But $\left.A^{2 m}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{5 b p^{\prime}}{3 b}=\frac{5 p^{\prime}}{3} \Longrightarrow 3 \right\rvert\, p^{\prime} \Longrightarrow p^{\prime}=$ $3 p^{\prime \prime}$ with $p^{\prime \prime} \in \mathbb{N}^{*}$, then $p=9 p^{\prime \prime}$, we obtain the expressions:

$$
\begin{align*}
A^{2 m} & =5 p^{\prime \prime} \tag{1.6.18}\\
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) & =4 p^{\prime \prime} \tag{1.6.19}
\end{align*}
$$

As $n, l \geq 3$, we deduce from the equation (1.6.19) that $2 \mid p^{\prime \prime} \Longrightarrow p^{\prime \prime}=2^{\alpha} p_{1}$ with $\alpha \geq 1$ and $2 \nmid p_{1}$. Then (1.6.18) becomes: $A^{2 m}=5 p^{\prime \prime}=5 \times 2^{\alpha} p_{1} \Longrightarrow 2 \mid A \Longrightarrow A=2^{i} A_{1}, i \geq 1$ and $2 \nmid A_{1}$. We have also $B^{n} C^{l}=2^{\alpha+2} p_{1} \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** J-1-1-1- We suppose that $2 \mid B^{n} \Longrightarrow B=2^{j} B_{1}, j \geq 1$ and $2 \nmid B_{1}$. We obtain $B_{1}^{n} C^{l}=2^{\alpha+2-j n} p_{1}$:

- If $\alpha+2-j n>0 \Longrightarrow 2 \mid C^{l}$, there is no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$ and the conjecture (3.1.1) is verified.
- If $\alpha+2$ - jn $=0 \Longrightarrow B_{1}^{n} C^{l}=p_{1}$. From $C^{=} 2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$ that implies that $2 \mid p_{1}$, then the contradiction with $2 \nmid p_{1}$.
- If $\alpha+2-j n<0 \Longrightarrow 2^{j n-\alpha-2} B_{1}^{n} C^{l}=p_{1}$, it implies that $2 \mid p_{1}$, then the contradiction as above.
** J-1-1-2- We suppose that $2 \mid C^{l}$, using the same method above, we obtain the identical results.
** J-1-2- We suppose that $a=7$ and $b=12 \Longrightarrow 4 p=12 p^{\prime}=b p^{\prime}$. But $A^{2 m}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{12 p^{\prime}}{3} \cdot \frac{7}{12}=$ $\left.\frac{7 p^{\prime}}{3} \Longrightarrow 3 \right\rvert\, p^{\prime} \Longrightarrow p=9 p^{\prime \prime}$, we obtain:

$$
\begin{aligned}
A^{2 m} & =7 p^{\prime \prime} \\
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) & =2 p^{\prime \prime}
\end{aligned}
$$

The last equation implies that $2 \mid B^{n} C^{l}$. Using the same method as for the case J-1-1- above, we obtain the identical results.

We study now the general case. As $3 \mid p \Rightarrow p=3 p^{\prime}$ and $b \mid 4 p \Rightarrow \exists k_{1} \in \mathbb{N}^{*}$ and $4 p=12 p^{\prime}=k_{1} b$.
${ }^{* *} \mathrm{~J}-2-k_{1}=1:$ If $k_{1}=1$ then $b=12 p^{\prime},\left(p^{\prime} \neq 1\right.$, if not $\left.p=3 \ll A^{2 m}+B^{2 n}+A^{m} B^{n}\right)$. But $\left.A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{12 p^{\prime}}{3} \frac{a}{b}=\frac{4 p^{\prime} \cdot a}{12 p^{\prime}}=\frac{a}{3} \Rightarrow 3 \right\rvert\, a$ because $A^{2 m}$ is a natural number, then the contradiction with a, b coprime.
${ }^{* *} \mathrm{~J}-3-k_{1}=3$: If $k_{1}=3$, then $b=4 p^{\prime}$ and $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{k_{1} \cdot a}{3}=a=\left(A^{m}\right)^{2}=a^{\prime 2} \Longrightarrow A^{m}=a^{\prime}$. The term $A^{m} B^{n}$ gives $A^{m} B^{n}=\frac{p \sqrt{3}}{3} \sin \frac{2 \theta}{3}-\frac{a}{2}$, then:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3}=2 p^{\prime} \sqrt{3} \sin \frac{2 \theta}{3} \tag{1.6.20}
\end{equation*}
$$

The left member of (1.6.20) is an integer number and also p^{\prime}, then $2 \sqrt{3} \sin \frac{2 \theta}{3}$ can be written under the form:

$$
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{2}}{k_{3}}
$$

where k_{2}, k_{3} are two integer numbers and are coprime and $k_{3} \mid p^{\prime} \Longrightarrow p^{\prime}=k_{3} \cdot k_{4}$.
** J-3-1- $k_{4} \neq 1$: We suppose that $k_{4} \neq 1$, then:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=k_{2} \cdot k_{4} \tag{1.6.21}
\end{equation*}
$$

Let μ be a prime number so that $\mu \mid k_{4}$, then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
${ }^{* *}$ J-3-1-1- $\mu \mid A^{m}$: If $\mu\left|A^{m} \Longrightarrow \mu\right| A^{2 m} \Longrightarrow \mu \mid a$. As $\mu\left|k_{4} \Longrightarrow \mu\right| p^{\prime} \Rightarrow \mu \mid\left(4 p^{\prime}=b\right)$. But a, b are coprime, then the contradiction.
** J-3-1-2- $\mu \mid\left(A^{m}+2 B^{n}\right):$ If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$, then $\mu \neq 2$ and $\mu \nmid B^{n}$. $\mu \mid\left(A^{m}+2 B^{n}\right)$, we can write $A^{m}+2 B^{n}=\mu . t^{\prime}$. It follows:

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p, we obtain $p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right)$. As $p=3 p^{\prime}$ and $\mu \mid p^{\prime} \Rightarrow$ $\mu\left|\left(3 p^{\prime}\right) \Rightarrow \mu\right| p$, we can write : $\exists \mu^{\prime}$ and $p=\mu \mu^{\prime}$, then we arrive to:

$$
\mu^{\prime} \cdot \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right)
$$

and $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
** J-3-1-2-1- $\mu \mid B^{n}:$ If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, it is in contradiction with J-3-1-2-.
** J-3-1-2-2- $\mu \mid\left(B^{n}-A^{m}\right):$ If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we obtain :

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu \mid B^{n} \\
\text { or } \\
\mu=3
\end{array}\right.\right.
$$

** J-3-1-2-2-1- $\mu \mid B^{n}:$ If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, it is in contradiction with J-3-1-2-.
** J-3-1-2-2-2- $\mu=3$: If $\mu=3 \Longrightarrow 3 \mid k_{4} \Longrightarrow k_{4}=3 k_{4}^{\prime}$, and we have $p^{\prime}=k_{3} k_{4}=3 k_{3} k_{4}^{\prime}$, it follows that $p=3 p^{\prime}=9 k_{3} k_{4}^{\prime}$, then $9 \mid p$, but $p=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$, then we obtain:

$$
9 k_{3} k_{4}^{\prime}-3 A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}
$$

that we write : $3\left(3 k_{3} k_{4}^{\prime}-A^{m} B^{n}\right)=\left(A^{m}-B^{n}\right)^{2}$, then : $3\left|\left(3 k_{3} k_{4}^{\prime}-A^{m} B^{n}\right) \Longrightarrow 3\right| A^{m} B^{n} \Longrightarrow 3 \mid A^{m}$ or $3 \mid B^{n}$.
** J-3-1-2-2-2-1-3| A^{m} : If $3\left|A^{m} \Longrightarrow 3\right| A^{2 m} \Rightarrow 3 \mid a$, but $3\left|p^{\prime} \Rightarrow 3\right|\left(4 p^{\prime}\right) \Rightarrow 3 \mid b$, then the contradiction with a, b coprime and $3 \nmid A$.
** J-3-1-2-2-2-2-3| B^{n} : If $3 \mid B^{n}$ but $A^{m}=\mu t^{\prime}-2 B^{n}=3 t^{\prime}-2 B^{n} \Longrightarrow 3 \mid A^{m}$, it is in contradiction with $3 \nmid A$.

Then the hypothesis $k_{4} \neq 1$ is impossible.
${ }^{* *} \mathrm{~J}-3-2-k_{4}=1$: We suppose now that $k_{4}=1 \Longrightarrow p^{\prime}=k_{3} k_{4}=k_{3}$. Then we have:

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{2}}{p^{\prime}} \tag{1.6.22}
\end{equation*}
$$

with k_{2}, p^{\prime} coprime, we write (1.6.22) as :

$$
4 \sqrt{3} \sin \frac{\theta}{3} \cos \frac{\theta}{3}=\frac{k_{2}}{p^{\prime}}
$$

Taking the square of the two members and replacing $\cos ^{2} \frac{\theta}{3}$ by $\frac{a}{b}$ and $b=4 p^{\prime}$, we obtain:

$$
3 \cdot a(b-a)=k_{2}^{2}
$$

As $A^{2 m}=a=a^{\prime 2}$, it implies that:

$$
3 \mid(b-a), \quad \text { and } \quad b-a=b-a^{\prime 2}=3 \alpha^{2}
$$

As $k_{2}=A^{m}\left(A^{m}+2 B^{n}\right)$ following the equation (1.6.21) and that $3\left|k_{2} \Longrightarrow 3\right| A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow$ $3 \mid A^{m}$ or $3 \mid\left(A^{m}+2 B^{n}\right)$.
** J-3-2-1-3| A^{m} : If $3\left|A^{m} \Longrightarrow 3\right| A^{2 m} \Longrightarrow 3 \mid a$, but $3|(b-a) \Longrightarrow 3| b$, then the contradiction with a, b coprime.
** J-3-2-2-3| $\left(A^{m}+2 B^{n}\right) \Longrightarrow 3 \nmid A^{m}$ and $3 \nmid B^{n}$. As $k_{2}^{2}=9 a \alpha^{2}=9 a^{\prime 2} \alpha^{2} \Longrightarrow k_{2}=3 a^{\prime} \alpha=$ $A^{m}\left(A^{m}+2 B^{n}\right)$, then :

$$
\begin{equation*}
3 \alpha=A^{m}+2 B^{n} \tag{1.6.23}
\end{equation*}
$$

As b can be written under the form $b=a^{\prime 2}+3 \alpha^{2}$, then the pair $\left(a^{\prime}, \alpha\right)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}+3 y^{2}=b \tag{1.6.24}
\end{equation*}
$$

As $b=4 p^{\prime}$, then :
** J-3-2-2-1- If x, y are even, then $2\left|a^{\prime} \Longrightarrow 2\right| a$, it is a contradiction with a, b coprime.
** J-3-2-2-2- If x, y are odd, then a^{\prime}, α are odd, it implies $A^{m}=a^{\prime} \equiv 1(\bmod 4)$ or $A^{m} \equiv 3(\bmod 4)$. If u, v verify (1.6.24), then $b=u^{2}+3 v^{2}$, with $u \neq a^{\prime}$ and $v \neq \alpha$, then u, v do not verify (1.6.23): $3 v \neq u+2 B^{n}$, if not, $u=3 v-2 B^{n} \Longrightarrow b=\left(3 v-2 B^{n}\right)^{2}+3 v^{2}=a^{\prime 2}+3 \alpha$, the resolution of the obtained equation of second degree in v gives the positive root $v_{1}=\alpha$, then $u=3 \alpha-2 B^{n}=a^{\prime}$, then the uniqueness of the representation of b by the equation (1.6.24).
** J-3-2-2-2-1- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 0(\bmod 4)$, then B^{n} is even and $B^{n}=2 B^{\prime}$. The expression of p becomes:

$$
\begin{gathered}
p=a^{\prime 2}+2 a^{\prime} B^{\prime}+4 B^{\prime 2}=\left(a^{\prime}+B^{\prime}\right)^{2}+3 B^{\prime 2}=3 p^{\prime} \Longrightarrow 3 \mid\left(a^{\prime}+B^{\prime}\right) \Longrightarrow a^{\prime}+B^{\prime}=3 B^{\prime \prime} \\
p^{\prime}=B^{\prime 2}+3 B^{\prime \prime 2} \Longrightarrow b=4 p^{\prime}=\left(2 B^{\prime}\right)^{2}+3\left(2 B^{\prime \prime}\right)^{2}=a^{\prime 2}+3 \alpha^{2}
\end{gathered}
$$

that gives $2 B^{\prime}=B^{n}=a^{\prime}=A^{m}$, then the contradiction with $A^{m}>B^{n}$.
${ }^{* *} \mathrm{~J}-3-2-2-2-2-$ We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 1(\bmod 4)$, then C^{l} is even and $C^{l}=2 C^{\prime}$. The expression of p becomes:

$$
\begin{gathered}
p=C^{2 l}-C^{l} B^{n}+B^{2 n}=4 C^{\prime 2}-2 C^{\prime} B^{n}+B^{2 n}=\left(C^{\prime}-B^{n}\right)^{2}+3 C^{\prime 2}=3 p^{\prime} \\
\Longrightarrow 3 \mid\left(C^{\prime}-B^{n}\right) \Longrightarrow C^{\prime}-B^{n}=3 C^{\prime \prime} \\
p^{\prime}=C^{\prime 2}+3 C^{\prime \prime 2} \Longrightarrow b=4 p^{\prime}=\left(2 C^{\prime}\right)^{2}+3\left(2 C^{\prime \prime}\right)^{2}=a^{\prime 2}+3 \alpha^{2}
\end{gathered}
$$

We obtain $2 C^{\prime}=C^{l}=a^{\prime}=A^{m}$, then the contradiction.
${ }^{* *}$ J-3-2-2-2-3- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 2(\bmod 4)$, then B^{n} is even, see J-3-2-2-2-1-.
${ }^{* *} \mathrm{~J}-3-2-2-2-4-$ We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 3(\bmod 4)$, then C^{l} is even, see J-3-2-2-2-2-.
${ }^{* *} \mathrm{~J}-3-2-2-2-5-$ We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 0(\bmod 4)$, then B^{n} is even, see J-3-2-2-2-1-.
${ }^{* *}$ J-3-2-2-2-6- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 1(\bmod 4)$, then C^{l} is even, see J-3-2-2-2-2-.
** J-3-2-2-2-7- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 2(\bmod 4)$, then B^{n} is even, see J-3-2-2-2-1-.
${ }^{* *} \mathrm{~J}-3-2-2-2-8-$ We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 3(\bmod 4)$, then C^{l} is even, see J-3-2-2-2-2-.
We have achieved the study of the case J-3-2-2- . It gives contradictions.
** J-4- We suppose that $k_{1} \neq 3$ and $3 \mid k_{1} \Longrightarrow k_{1}=3 k_{1}^{\prime}$ with $k_{1}^{\prime} \neq 1$, then $4 p=12 p^{\prime}=$ $k_{1} b=3 k_{1}^{\prime} b \Rightarrow 4 p^{\prime}=k_{1}^{\prime} b . A^{2 m}$ can be written as $A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{3 k_{1}^{\prime} b a}{3} \frac{a}{b}=k_{1}^{\prime} a$ and $B^{n} C^{l}=$ $\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{k_{1}^{\prime}}{4}(3 b-4 a)$. As $B^{n} C^{l}$ is an integer number, we must have $4 \mid(3 b-4 a)$ or $4 \mid k_{1}^{\prime}$ or $\left[2 \mid k_{1}^{\prime}\right.$ and $\left.2 \mid(3 b-4 a)\right]$.
** J-4-1- We suppose that $4 \mid(3 b-4 a)$.
** J-4-1-1- We suppose that $3 b-4 a=4 \Longrightarrow 4|b \Longrightarrow 2| b$. Then, we have:

$$
\begin{gathered}
A^{2 m}=k_{1}^{\prime} a \\
B^{n} C^{l}=k_{1}^{\prime}
\end{gathered}
$$

** J-4-1-1-1- If k_{1}^{\prime} is prime, from $B^{n} C^{l}=k_{1}^{\prime}$, it is impossible.
** J-4-1-1-2- We suppose that $k_{1}^{\prime}>1$ is not prime. Let ω be a prime number so that $\omega \mid k_{1}^{\prime}$.
** J-4-1-1-2-1- We suppose that $k_{1}^{\prime}=\omega^{s}$, with $s \geq 6$. Then we have :

$$
\begin{gather*}
A^{2 m}=\omega^{s} \cdot a \tag{1.6.25}\\
B^{n} C^{l}=\omega^{s} \tag{1.6.26}
\end{gather*}
$$

${ }^{* *} \mathrm{~J}-4-1-1-2-1-1$ We suppose that $\omega=2$. If a, k_{1}^{\prime} are not coprime, then $2 \mid a$, as $2 \mid b$, it is the contradiction with a, b coprime.
** J-4-1-1-2-1-2- We suppose $\omega=2$ and a, k_{1}^{\prime} are coprime, then $2 \nmid a$. From (1.6.26), we deduce that $B=C=2$ and $n+l=s$, and $A^{2 m}=2^{s} . a$, but $A^{m}=2^{l}-2^{n} \Longrightarrow A^{2 m}=\left(2^{l}-2^{n}\right)^{2}=$ $2^{2 l}+2^{2 n}-2\left(2^{l+n}\right)=2^{2 l}+2^{2 n}-2 \times 2^{s}=2^{s} . a \Longrightarrow 2^{2 l}+2^{2 n}=2^{s}(a+2)$. If $l=n$, we obtain $a=0$ then the contradiction. If $l \neq n$, as $A^{m}=2^{l}-2^{n}>0 \Longrightarrow n<l \Longrightarrow 2 n<s$, then $2^{2 n}\left(1+2^{2 l-2 n}-2^{s+1-2 n}\right)=2^{n} 2^{l} . a$. We call $l=n+n_{1} \Longrightarrow 1+2^{2 l-2 n}-2^{s+1-2 n}=2^{n_{1}} . a$, but the left member is odd and the right member is even, then the contradiction. Then the case $\omega=2$ is impossible.
** J-4-1-1-2-1-3- We suppose that $k_{1}^{\prime}=\omega^{s}$ with $\omega \neq 2$:
${ }^{* *}$ J-4-1-1-2-1-3-1- Suppose that a, k_{1}^{\prime} are not coprime, then $\omega \mid a \Longrightarrow a=\omega^{t} \cdot a_{1}$ and $t \nmid a_{1}$. Then, we have:

$$
\begin{gather*}
A^{2 m}=\omega^{s+t} \cdot a_{1} \tag{1.6.27}\\
B^{n} C^{l}=\omega^{s} \tag{1.6.28}
\end{gather*}
$$

From (1.6.28), we deduce that $B^{n}=\omega^{n}, C^{n}=\omega^{l}, s=n+l$ and $A^{m}=\omega^{l}-\omega^{n}>0 \Longrightarrow l>n$. We have also $A^{2 m}=\omega^{s+t} \cdot a_{1}=\left(\omega^{l}-\omega^{n}\right)^{2}=\omega^{2 l}+\omega^{2 n}-2 \times \omega^{s}$. As $\omega \neq 2 \Longrightarrow \omega$ is odd, then $A^{2 m}=\omega^{s+t} \cdot a_{1}=\left(\omega^{l}-\omega^{n}\right)^{2}$ is even, then $2\left|a_{1} \Longrightarrow 2\right| a$, it is in contradiction with a, b coprime, then this case is impossible.
** J-4-1-1-2-1-3-2- Suppose that a, k_{1}^{\prime} are coprime, with :

$$
\begin{gather*}
A^{2 m}=\omega^{s} \cdot a \tag{1.6.29}\\
B^{n} C^{l}=\omega^{s} \tag{1.6.30}
\end{gather*}
$$

From (1.6.30), we deduce that $B^{n}=\omega^{n}, C^{l}=\omega^{l}$ and $s=n+l$. As $\omega \neq 2 \Longrightarrow \omega$ is odd and $A^{2 m}=\omega^{s} \cdot a=\left(\omega^{l}-\omega^{n}\right)^{2}$ is even, then $2 \mid a$. It follows the contradiction with a, b coprime and this case is impossible.
** J-4-1-1-2-2- We suppose that $k_{1}^{\prime}=\omega^{s} . k_{2}$, with $s \geq 6, \omega \nmid k_{2}$. We have :

$$
\begin{gathered}
A^{2 m}=\omega^{s} \cdot k_{2} \cdot a \\
B^{n} C^{l}=\omega^{s} \cdot k_{2}
\end{gathered}
$$

** J-4-1-1-2-2-1- If k_{2} is prime, from the last equation above, $\omega=k_{2}$, it is in contradiction with $\omega \nmid k_{2}$. Then this case is impossible.
** J-4-1-1-2-2-2- We suppose that $k_{1}^{\prime}=\omega^{s} . k_{2}$, with $s \geq 6, \omega \nmid k_{2}$ and k_{2} not a prime. Then, we have:

$$
\begin{gather*}
A^{2 m}=\omega^{s} \cdot k_{2} \cdot a \\
B^{n} C^{l}=\omega^{s} \cdot k_{2} \tag{1.6.31}
\end{gather*}
$$

** J-4-1-1-2-2-2-1- We suppose that ω, a are coprime, then $\omega \nmid a$. As $A^{2 m}=\omega^{s} \cdot k_{2} \cdot a \Longrightarrow \omega \mid A \Longrightarrow$ $A=\omega^{i} . A_{1}$ with $i \geq 1$ and $\omega \nmid A_{1}$, then $s=2 i . m$. From (1.6.31), we have $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-1-2-2-2-1-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} . B_{1}$ with $j \geq 1$ and $\omega \nmid B_{1}$. then :

$$
B_{1}^{n} C^{l}=\omega^{2 i m-j n} k_{2}
$$

- If $2 i m-j n>0, \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 i m-j n=0 \Longrightarrow B_{1}^{n} C^{l}=k_{2}$, as $\omega \nmid k_{2} \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $\omega \mid\left(C^{l}=\right.$ $\left.A^{m}+B^{n}\right)$.
- If 2im - jn $<0 \Longrightarrow \omega^{j n-2 i m} B_{1}^{n} C^{l}=k_{2} \Longrightarrow \omega \mid k_{2}$, then the contradiction with $\omega \nmid k_{2}$.
** J-4-1-1-2-2-2-1-2- We suppose that $\omega \mid C^{l}$. Using the same method used above, we obtain identical results.
** J-4-1-1-2-2-2-2- We suppose that a, ω are not coprime, then $\omega \mid a \Longrightarrow a=\omega^{t} \cdot a_{1}$ and $\omega \nmid a_{1}$. So we have :

$$
\begin{array}{r}
A^{2 m}=\omega^{s+t} \cdot k_{2} \cdot a_{1} \\
B^{n} C^{l}=\omega^{s} \cdot k_{2} \tag{1.6.33}
\end{array}
$$

As $A^{2 m}=\omega^{s+t} \cdot k_{2} \cdot a_{1} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}$ with $i \geq 1$ and $\omega \nmid A_{1}$, then $s+t=2 \mathrm{im}$. From (1.6.33), we have $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-1-2-2-2-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $j \geq 1$ and $\omega \nmid B_{1}$. then:

$$
B_{1}^{n} C^{l}=\omega^{2 i m-t-j n} k_{2}
$$

- If $2 i m-t-j n>0, \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 i m-t-j n=0 \Longrightarrow B_{1}^{n} C^{l}=k_{2}$, As $\omega \nmid k_{2} \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $\omega \mid\left(C^{l}=A^{m}+B^{n}\right)$.
- If $2 i m-t-j n<0 \Longrightarrow \omega^{j n+t-2 i m} B_{1}^{n} C^{l}=k_{2} \Longrightarrow \omega \mid k_{2}$, then the contradiction with $\omega \nmid k_{2}$.
** J-4-1-1-2-2-2-2-2- We suppose that $\omega \mid C^{l}$. Using the same method used above, we obtain identical results.
${ }^{* *}$ J-4-1-2- $3 b-4 a \neq 4$ and $4 \mid(3 b-4 a) \Longrightarrow 3 b-4 a=4^{s} \Omega$ with $s \geq 1$ and $4 \nmid \Omega$. We obtain:

$$
\begin{array}{r}
A^{2 m}=k_{1}^{\prime} a \\
B^{n} C^{l}=4^{s-1} k_{1}^{\prime} \Omega \tag{1.6.35}
\end{array}
$$

** J-4-1-2-1- We suppose that $k_{1}^{\prime}=2$. From (1.6.34), we deduce that $2 \mid a$. As $4|(3 b-4 a) \Longrightarrow 2| b$, then the contradiction with a, b coprime and this case is impossible.
** J-4-1-2-2- We suppose that $k_{1}^{\prime}=3$. From (1.6.34) we deduce that $3^{3} \mid A^{2 m}$. From (1.6.35), it follows that $3^{3} \mid B^{n}$ or $3^{3} \mid C^{l}$. In the last two cases, we obtain $3^{3} \mid p$. But $4 p=3 k_{1}^{\prime} b=9 b \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime. Then this case is impossible.
** J-4-1-2-3- We suppose that k_{1}^{\prime} is prime ≥ 5 :
** J-4-1-2-3-1- Suppose that k_{1}^{\prime} and a are coprime. The equation (1.6.34) gives $\left(A^{m}\right)^{2}=k_{1}^{\prime} \cdot a$, that is impossible with $k_{1}^{\prime} \nmid a$. Then this case is impossible.
** J-4-1-2-3-2- Suppose that k_{1}^{\prime} and a are not coprime. Let $k_{1}^{\prime} \mid a \Longrightarrow a=k_{1}^{\prime \alpha} a_{1}$ with $\alpha \geq 1$ and $k_{1}^{\prime} \nmid a_{1}$. The equation (1.6.34) is written as :

$$
A^{2 m}=k_{1}^{\prime} a=k_{1}^{\prime \alpha+1} a_{1}
$$

The last equation gives $k_{1}^{\prime}\left|A^{2 m} \Longrightarrow k_{1}^{\prime}\right| A \Longrightarrow A=k_{1}^{\prime i} \cdot A_{1}$, with $k_{1}^{\prime} \nmid A_{1}$. If $2 i \cdot m \neq(\alpha+1)$, it is impossible. We suppose that $2 i . m=\alpha+1$, then $k_{1}^{\prime} \mid A^{m}$. We return to the equation (1.6.35). If k_{1}^{\prime} and Ω are coprime, it is impossible. We suppose that k_{1}^{\prime} and Ω are not coprime, then $k_{1}^{\prime} \mid \Omega$ and the exponent of k_{1}^{\prime} in Ω is so the equation (1.6.35) is satisfying. We deduce easily that $k_{1}^{\prime} \mid B^{n}$. Then $k_{1}^{\prime 2} \mid\left(p=A^{2 m}+B^{2 n}+A^{m} B^{n}\right)$, but $4 p=3 k_{1}^{\prime} b \Longrightarrow k_{1}^{\prime} \mid b$, then the contradiction with a, b coprime.
** J-4-1-2-4- We suppose that $k_{1}^{\prime} \geq 4$ is not a prime.
** J-4-1-2-4-1- We suppose that $k_{1}^{\prime}=4$, we obtain then $A^{2 m}=4 a$ and $B^{n} C^{l}=3 b-4 a=3 p^{\prime}-4 a$. This case was studied in the paragraph 1.6.8, case ${ }^{* *}$ I-2-.
** J-4-1-2-4-2- We suppose that $k_{1}^{\prime}>4$ is not a prime.
** J-4-1-2-4-2-1- We suppose that a, k_{1}^{\prime} are coprime. From the expression $A^{2 m}=k_{1}^{\prime} \cdot a$, we deduce that $a=a_{1}^{2}$ and $k_{1}^{\prime}=k_{1}^{\prime \prime 2}$. It gives :

$$
\begin{array}{r}
A^{m}=a_{1} \cdot k^{\prime \prime}{ }_{1} \\
B^{n} C^{l}=4^{s-1} k^{\prime \prime 2} \cdot \Omega
\end{array}
$$

Let ω be a prime so that $\omega \mid k^{\prime \prime}{ }_{1}$ and $k^{\prime \prime}{ }_{1}=\omega^{t} . k^{\prime \prime}{ }_{2}$ with $\omega \nmid k^{\prime \prime}{ }_{2}$. The last two equations become :

$$
\begin{array}{r}
A^{m}=a_{1} \cdot \omega^{t} \cdot k^{\prime \prime}{ }_{2} \\
B^{n} C^{l}=4^{s-1} \omega^{2 t} \cdot k^{\prime \prime 2} \cdot{ }_{2} \cdot \Omega \tag{1.6.37}
\end{array}
$$

From (1.6.36), $\omega\left|A^{m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} . A_{1}$ with $\omega \nmid A_{1}$ and $i m=t$. From (1.6.37), we obtain $\omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-2-4-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} . B_{1}$ with $\omega \nmid B_{1}$. From (1.6.36), we have $B_{1}^{n} C^{l}=\omega^{2 t-j \cdot n} 4^{s-1} \cdot k^{\prime \prime}{ }_{2} . \Omega$.
** J-4-1-2-4-2-1-1-1- If $\omega=2$ and $2 \nmid \Omega$, we have $B_{1}^{n} C^{l}=2^{2 t+2 s-j . n-2} k^{\prime \prime}{ }_{2} . \Omega$:

- If $2 t+2 s-j n-2 \leq 0$ then $2 \nmid C^{l}$, then the contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$.
- If $2 t+2 s-j n-2 \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$ and the conjecture (3.1.1) is verified.
** J-4-1-2-4-2-1-1-2- If $\omega=2$ and if $2 \mid \Omega \Longrightarrow \Omega=2 . \Omega_{1}$ because $4 \nmid \Omega$, we have $B_{1}^{n} C^{l}=$ $2^{2 t+2 s+1-j . n-2} k^{\prime \prime}{ }_{2} \Omega_{1}$:
- If $2 t+2 s-j n-3 \leq 0$ then $2 \nmid C^{l}$, then the contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$.
- If $2 t+2 s-j n-3 \geq 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$ and the conjecture (3.1.1) is verified.
** J-4-1-2-4-2-1-1-3- If $\omega \neq 2$, we have $B_{1}^{n} C^{l}=\omega^{2 t-j \cdot n} 4^{s-1} \cdot k^{\prime \prime}{ }_{2} \cdot \Omega$:
-If $2 t-j n \leq 0 \Longrightarrow \omega \nmid C^{l}$ it is in contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$.
-If $2 t-j n \geq 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$ and the conjecture (3.1.1) is verified.
** J-4-1-2-4-2-1-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} . C_{1}$, with $\omega \nmid C_{1}$. Using the same method as in the case J-4-1-2-4-2-1-1 above, we obtain identical results.
** J-4-1-2-4-2-2- We suppose that a, k_{1}^{\prime} are not coprime. Let ω be a prime so that $\omega \mid a$ and $\omega \mid k_{1}^{\prime}$. We write:

$$
\begin{array}{r}
a=\omega^{\alpha} \cdot a_{1} \\
k_{1}^{\prime}=\omega^{\mu} \cdot k^{\prime \prime}{ }_{1}
\end{array}
$$

with $a_{1}, k^{\prime \prime}{ }_{1}$ coprime. The expression of $A^{2 m}$ becomes $A^{2 m}=\omega^{\alpha+\mu} \cdot a_{1} \cdot k^{\prime \prime}{ }_{1}$. The term $B^{n} C^{l}$ becomes:

$$
\begin{equation*}
B^{n} C^{l}=4^{s-1} \cdot \omega^{\mu} \cdot k^{\prime \prime}{ }_{1} \cdot \Omega \tag{1.6.38}
\end{equation*}
$$

** J-4-1-2-4-2-2-1- If $\omega=2 \Longrightarrow 2 \mid a$, but $2 \mid b$, then the contradiction with a, b coprime, this case is impossible.
** J-4-1-2-4-2-2-2- If $\omega \geq 3$, we have $\omega \mid a$. If $\omega \mid b$ then the contradiction with a, b coprime. We suppose that $\omega \nmid b$. From the expression of $A^{2 m}$, we obtain $\omega\left|A^{2 m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} . A_{1}$ with $\omega \nmid A_{1}, i \geq 1$ and $2 i . m=\alpha+\mu$. From (1.6.38), we deduce that $\omega \mid B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-2-4-2-2-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$ and $j \geq 1$. Then, $B_{1}^{n} C^{l}=4^{s-1} \omega^{\mu-j n} \cdot k^{\prime \prime}{ }_{1} \cdot \Omega$:

* $\omega \nmid \Omega$:
- If $\mu-j n \geq 1$, we have $\omega\left|C^{l} \Longrightarrow \omega\right| C$, there is no contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $\mu-j n \leq 0$, then $\omega \nmid C^{l}$ and it is a contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$. Then this case is impossible.
* $\omega \mid \Omega$: we write $\Omega=\omega^{\beta} . \Omega_{1}$ with $\beta \geq 1$ and $\omega \nmid \Omega_{1}$. As $3 b-4 a=4^{s} . \Omega=4^{s} \cdot \omega^{\beta} \cdot \Omega_{1} \Longrightarrow 3 b=$ $4 a+4^{s} \cdot \omega^{\beta} \cdot \Omega_{1}=4 \omega^{\alpha} \cdot a_{1}+4^{s} \cdot \omega^{\beta} \cdot \Omega_{1} \Longrightarrow 3 b=4 \omega\left(\omega^{\alpha-1} \cdot a_{1}+4^{s-1} \cdot \omega^{\beta-1} \cdot \Omega_{1}\right)$. If $\omega=3$ and $\beta=1$, we obtain $b=4\left(3^{\alpha-1} a_{1}+4^{s-1} \Omega_{1}\right)$ and $B_{1}^{n} C^{l}=4^{s-1} 3^{\mu+1-j n} \cdot k^{\prime \prime}{ }_{1} \Omega_{1}$.
- If $\mu-j n+1 \geq 1$, then $3 \mid C^{l}$ and the conjecture (3.1.1) is verified.
- If $\mu-j n+1 \leq 0$, then $3 \nmid C^{l}$ and it is the contradiction with $C^{l}=3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}$.

Now, if $\beta \geq 2$ and $\alpha=$ im ≥ 3, we obtain $3 b=4 \omega^{2}\left(\omega^{\alpha-2} a_{1}+4^{s-1} \omega^{\beta-2} \Omega_{1}\right)$. If $\omega=3$ or not, then $\omega \mid b$, but $\omega \mid a$, then the contradiction with a, b coprime.
${ }^{* *}$ J-4-1-2-4-2-2-2-2- We suppose that $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$ and $h \geq 1$. Then, $B^{n} C_{1}^{l}=4^{s-1} \omega^{\mu-h l} \cdot k^{\prime \prime}{ }_{1} . \Omega$. Using the same method as above, we obtain identical results.
** J-4-2- We suppose that $4 \mid k_{1}^{\prime}$.
${ }^{* *} \mathrm{~J}-4-2-1-k_{1}^{\prime}=4 \Longrightarrow 4 p=3 k_{1}^{\prime} b=12 b \Longrightarrow p=3 b=3 p^{\prime}$, this case has been studied (see case I-2paragraph 1.6.8).
** J-4-2-2- $k_{1}^{\prime}>4$ with $4 \mid k_{1}^{\prime} \Longrightarrow k_{1}^{\prime}=4^{s} k^{\prime \prime}{ }_{1}$ and $s \geq 1,4 \nmid k^{\prime \prime}{ }_{1}$. Then, we obtain:

$$
\begin{array}{r}
A^{2 m}=4^{s} k^{\prime \prime}{ }_{1} a=2^{2 s} k^{\prime \prime}{ }_{1} a \\
B^{n} C^{l}=4^{s-1} k^{\prime \prime}{ }_{1}(3 b-4 a)=2^{2 s-2} k^{\prime \prime}{ }_{1}(3 b-4 a)
\end{array}
$$

** J-4-2-2-1- We suppose that $s=1$ and $k_{1}^{\prime}=4 k^{\prime \prime}{ }_{1}$ with $k^{\prime \prime}{ }_{1}>1$, so $p=3 p^{\prime}$ and $p^{\prime}=k^{\prime \prime}{ }_{1} b$, this is the case 1.6.3 already studied.
** J-4-2-2-2- We suppose that $s>1$, then $k_{1}^{\prime}=4^{s} k^{\prime \prime}{ }_{1} \Longrightarrow 4 p=3 \times 4^{s} k^{\prime \prime}{ }_{1} b$ and we obtain:

$$
\begin{array}{r}
A^{2 m}=4^{s} k^{\prime \prime}{ }_{1} a \\
B^{n} C^{l}=4^{s-1} k^{\prime \prime}{ }_{1}(3 b-4 a) \tag{1.6.40}
\end{array}
$$

** J-4-2-2-2-1- We suppose that $2 \nmid\left(k^{\prime \prime}{ }_{1} \cdot a\right) \Longrightarrow 2 \nmid k^{\prime \prime}{ }_{1}$ and $2 \nmid a$. As $\left(A^{m}\right)^{2}=\left(2^{s}\right)^{2} \cdot\left(k^{\prime \prime}{ }_{1} \cdot a\right)$, we call $d^{2}=k^{\prime \prime} \cdot a$, then $A^{m}=2^{s} . d \Longrightarrow 2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$ with $2 \nmid A_{1}$ and $i \geq 1$, then: $2^{i m} A_{1}^{m}=2^{s} . d \Longrightarrow s=i m$. From the equation (1.6.40), we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} \cdot B_{1}$, with $j \geq 1$ and $2 \nmid B_{1}$. The equation (1.6.40) becomes:

$$
B_{1}^{n} C^{l}=2^{2 s-j n-2} k^{\prime \prime}{ }_{1}(3 b-4 a)=2^{2 i m-j n-2} k^{\prime \prime}{ }_{1}(3 b-4 a)
$$

* We suppose that $2 \nmid(3 b-4 a)$:
- If $2 i m-j n-2 \geq 1$, then $2 \mid C^{l}$, there is no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 i m-j n-2 \leq 0$, then $2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\mu} \mid(3 b-4 a), \mu \geq 1$:
- If $2 i m+\mu-j n-2 \geq 1$, then $2 \mid{ }^{l}{ }^{l}$, no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 i m+\mu-j n-2 \leq 0$, then $2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** J-4-2-2-2-1-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-2-2-2-2- We suppose that $2 \mid\left(k^{\prime \prime}{ }_{1} \cdot a\right)$:
** J-4-2-2-2-2-1- We suppose that $k^{\prime \prime}{ }_{1}$ and a are coprime:
** J-4-2-2-2-2-1-1- We suppose that $2 \nmid a$ and $2 \mid k^{\prime \prime}{ }_{1} \Longrightarrow k^{\prime \prime}{ }_{1}=2^{2 \mu} \cdot k^{\prime \prime 2}$ and $a=a_{1}^{2}$, then the equations (1.6.39-1.6.40) become:

$$
\begin{array}{r}
A^{2 m}=4^{s} \cdot 2^{2 \mu} k_{2}^{\prime \prime 2} a_{1}^{2} \Longrightarrow A^{m}=2^{s+\mu} \cdot k^{\prime \prime}{ }_{2} \cdot a_{1} \\
B^{n} C^{l}=4^{s-1} 2^{2 \mu} k_{2}^{\prime \prime 2}(3 b-4 a)=2^{2 s+2 \mu-2} k^{\prime \prime 2}(3 b-4 a) \tag{1.6.42}
\end{array}
$$

The equation (1.6.41) gives $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} . A_{1}$ with $2 \nmid A_{1}, i \geq 1$ and $i m=s+\mu$. From the equation (1.6.42), we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-2-1-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}, 2 \nmid B_{1}$ and $j \geq 1$, then $B_{1}^{n} C^{l}=2^{2 s+2 \mu-j n-2} k^{\prime \prime}{ }_{2}(3 b-4 a)$:

* We suppose that $2 \nmid(3 b-4 a)$:
- If $2 i m+2 \mu-j n-2 \geq 1 \Rightarrow 2 \mid C^{l}$, then there is no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 i m+2 \mu-j n-2 \leq 0 \Rightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\alpha} \mid(3 b-4 a), \alpha \geq 1$ so that a, b remain coprime:
- If $2 i m+2 \mu+\alpha-j n-2 \geq 1 \Rightarrow 2 \mid C^{l}$, then no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 i m+2 \mu+\alpha-j n-2 \leq 0 \Rightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** J-4-2-2-2-2-1-1-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-2-2-2-2-1-2- We suppose that $2 \nmid k^{\prime \prime}{ }_{1}$ and $2 \mid a \Longrightarrow a=2^{2 \mu} \cdot a_{1}^{2}$ and $k^{\prime \prime}{ }_{1}=k^{\prime \prime}{ }_{2}$, then the equations (1.6.39-1.6.40) become:

$$
\begin{gather*}
A^{2 m}=4^{s} \cdot 2^{2 \mu} a_{1}^{2} k_{2}^{\prime \prime 2} \Longrightarrow A^{m}=2^{s+\mu} \cdot a_{1} \cdot k^{\prime \prime}{ }_{2} . \tag{1.6.43}\\
B^{n} C^{l}=4^{s-1} k^{\prime \prime 2}{ }_{2}(3 b-4 a)=2^{2 s-2} k_{2}^{\prime \prime 2}(3 b-4 a) \tag{1.6.44}
\end{gather*}
$$

The equation (1.6.43) gives $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} . A_{1}$ with $2 \nmid A_{1}, i \geq 1$ and $i m=s+\mu$. From the equation (1.6.44), we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-2-1-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}, 2 \nmid B_{1}$ and $j \geq 1$. Then we obtain $B_{1}^{n} C^{l}=2^{2 s-j n-2} k^{\prime \prime 2}(3 b-4 a):$

* We suppose that $2 \nmid(3 b-4 a) \Longrightarrow 2 \nmid b$:
- If $2 i m-j n-2 \geq 1 \Rightarrow 2 \mid C^{l}$, then no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 i m-j n-2 \leq 0 \Rightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\alpha} \mid(3 b-4 a), \alpha \geq 1$, in this case a, b are not coprime, then the contradiction.
** J-4-2-2-2-2-1-2-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-2-2-2-2-2- We suppose that $k^{\prime \prime}{ }_{1}$ and a are not coprime $2 \mid a$ and $2 \mid k^{\prime \prime}{ }_{1}$. Let $a=2^{t} \cdot a_{1}$ and $k^{\prime \prime}{ }_{1}=2^{\mu} k^{\prime \prime}{ }_{2}$ and $2 \nmid a_{1}$ and $2 \nmid k^{\prime \prime}{ }_{2}$. From (1.6.39), we have $\mu+t=2 \lambda$ and $a_{1} \cdot k^{\prime \prime}{ }_{2}=\omega^{2}$. The equations (1.6.39-1.6.40) become:

$$
\begin{array}{r}
A^{2 m}=4^{s} k^{\prime \prime}{ }_{1} a=2^{2 s} \cdot 2^{\mu} k^{\prime \prime}{ }_{2} \cdot 2^{t} \cdot a_{1}=2^{2 s+2 \lambda} \cdot \omega^{2} \Longrightarrow A^{m}=2^{s+\lambda} \cdot \omega \\
B^{n} C^{l}=4^{s-1} 2^{\mu} k^{\prime \prime}{ }_{2}(3 b-4 a)=2^{2 s+\mu-2} k^{\prime \prime}{ }_{2}(3 b-4 a) \tag{1.6.46}
\end{array}
$$

From (1.6.45) we have $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}, i \geq 1$ and $2 \nmid A_{1}$. From(1.6.46), $2 s+\mu-2 \geq 1$, we deduce that $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
${ }^{* *}$ J-4-2-2-2-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}, 2 \nmid B_{1}$ and $j \geq 1$. Then we obtain $B_{1}^{n} C^{l}=2^{2 s+\mu-j n-2} k^{\prime \prime 2}(3 b-4 a)$:

* We suppose that $2 \nmid(3 b-4 a)$:
- If $2 s+\mu-j n-2 \geq 1 \Rightarrow 2 \mid C^{l}$, then no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 s+\mu-j n-2 \leq 0 \Rightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
${ }^{*}$ We suppose that $2^{\alpha} \mid(3 b-4 a)$, for one value $\alpha \geq 1$. As $2 \mid a$, then $2^{\alpha}|(3 b-4 a) \Longrightarrow 2|$ $(3 b-4 a) \Longrightarrow 2|(3 b) \Longrightarrow 2| b$, then the contradiction with a, b coprime.
** J-4-2-2-2-2-2-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geq 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-3-2 $\mid k_{1}^{\prime}$ and $2 \mid(3 b-4 a)$: then we obtain $2 \mid k_{1}^{\prime} \Longrightarrow k_{1}^{\prime}=2^{t} . k_{1}^{\prime \prime}{ }_{1}$ with $t \geq 1$ and $2 \nmid k^{\prime \prime}{ }_{1}$, $2 \mid(3 b-4 a) \Longrightarrow 3 b-4 a=2^{\mu} . d$ with $\mu \geq 1$ and $2 \nmid d$. We have also $2 \mid b$. If $2 \mid a$, it is a contradition with a, b coprime.

We suppose, in the following, that $2 \nmid a$. The equations (1.6.39-1.6.40) become:

$$
\begin{array}{r}
A^{2 m}=2^{t} \cdot k_{1}^{\prime \prime} \cdot a=\left(A^{m}\right)^{2} \\
B^{n} C^{l}=2^{t-1} k_{1}^{\prime \prime} \cdot 2^{\mu-1} d=2^{t+\mu-2} k^{\prime \prime}{ }_{1} \cdot d \tag{1.6.48}
\end{array}
$$

From (1.6.47), we deduce that the exponent t is even, let $t=2 \lambda$. Then we call $\omega^{2}=k^{\prime \prime}{ }_{1} \cdot a$, it gives $A^{m}=2^{\lambda} . \omega \Longrightarrow 2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} . A_{1}$ with $i \geq 1$ and $2 \nmid A_{1}$. From (1.6.48), we have $2 \lambda+\mu-2 \geq 1$, then $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$:
** J-4-3-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$, with $j \geq 1$ and $2 \nmid B_{1}$. Then we obtain $B_{1}^{n} C^{l}=2^{2 \lambda+\mu-j n-2} \cdot k^{\prime \prime}{ }_{1} \cdot d$.

- If $2 \lambda+\mu-j n-2 \geq 1 \Rightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, there is no contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (3.1.1) is verified.
- If $2 s+t+\mu-j n-2 \leq 0 \Rightarrow 2 \nmid C$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** J-4-3-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C$. With the same method used above, we obtain identical results.

The Main Theorem is proved.

1.7 Examples and Conclusion

1.7.1 Numerical Examples

Example 1:

We consider the example : $6^{3}+3^{3}=3^{5}$ with $A^{m}=6^{3}, B^{n}=3^{3}$ and $C^{l}=3^{5}$. With the notations used in the paper, we obtain:

$$
\begin{gather*}
p=3^{6} \times 73, \quad q=8 \times 3^{11}, \quad \bar{\Delta}=4 \times 3^{18}\left(3^{7} \times 4^{2}-73^{3}\right)<0 \\
\rho=\frac{3^{8} \times 73 \sqrt{73}}{\sqrt{3}}, \quad \cos \theta=-\frac{4 \times 3^{3} \times \sqrt{3}}{73 \sqrt{73}} \tag{1.7.1}
\end{gather*}
$$

As $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3} \Longrightarrow \cos ^{2} \frac{\theta}{3}=\frac{3 A^{2 m}}{4 p}=\frac{3 \times 2^{4}}{73}=\frac{a}{b} \Longrightarrow a=3 \times 2^{4}, b=73$; then we obtain:

$$
\begin{equation*}
\cos \frac{\theta}{3}=\frac{4 \sqrt{3}}{\sqrt{73}}, \quad p=3^{6} . b \tag{1.7.2}
\end{equation*}
$$

We verify easily the equation (1.7.1) to calculate $\cos \theta$ using (1.7.2). For this example, we can use the two conditions from (1.4.9) as $3|a, b| 4 p$ and $3 \mid p$. The cases 1.5.4 and 1.6.3 are respectively used. For the case 1.5.4, it is the case B-2-2-1- that was used and the conjecture (3.1.1) is verified. Concerning the case 1.6.3, it is the case G-2-2-1- that was used and the conjecture (3.1.1) is verified.

Example 2:

The second example is: $7^{4}+7^{3}=14^{3}$. We take $A^{m}=7^{4}, B^{n}=7^{3}$ and $C^{l}=14^{3}$. We obtain $p=57 \times 7^{6}=3 \times 19 \times 7^{6}, \quad q=8 \times 7^{10}, \quad \bar{\Delta}=27 q^{2}-4 p^{3}=27 \times 4 \times 7^{18}\left(16 \times 49-19^{3}\right)=$ $-27 \times 4 \times 7^{18} \times 6075<0, \quad \rho=19 \times 7^{9} \times \sqrt{19}, \quad \cos \theta=-\frac{4 \times 7}{19 \sqrt{19}} . \quad$ As $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3} \Longrightarrow$ $\cos ^{2} \frac{\theta}{3}=\frac{3 A^{2 m}}{4 p}=\frac{7^{2}}{4 \times 19}=\frac{a}{b} \Longrightarrow a=7^{2}, b=4 \times 19$, then $\cos \frac{\theta}{3}=\frac{7}{2 \sqrt{19}}$ and we have the two principal conditions $3 \mid p$ and $b \mid(4 p)$. The calculation of $\cos \theta$ from the expression of $\cos \frac{\theta}{3}$ is confirmed by the value below:

$$
\cos \theta=\cos 3(\theta / 3)=4 \cos ^{3} \frac{\theta}{3}-3 \cos \frac{\theta}{3}=4\left(\frac{7}{2 \sqrt{19}}\right)^{3}-3 \frac{7}{2 \sqrt{19}}=-\frac{4 \times 7}{19 \sqrt{19}}
$$

Then, we obtain $3\left|p \Rightarrow p=3 p^{\prime}, b\right|(4 p)$ with $b \neq 2,4$ then $12 p^{\prime}=k_{1} b=3 \times 7^{6} b$. It concerns the paragraph 1.6 .9 of the second hypothesis. As $k_{1}=3 \times 7^{6}=3 k_{1}^{\prime}$ with $k_{1}^{\prime}=7^{6} \neq 1$. It is the case J-4-1-2-4-2-2- with the condition $4 \mid(3 b-4 a)$. So we verify :

$$
3 b-4 a=3 \times 4 \times 19-4 \times 7^{2}=32 \Longrightarrow 4 \mid(3 b-4 a)
$$

with $A^{2 m}=7^{8}=7^{6} \times 7^{2}=k_{1}^{\prime}$ a and k_{1}^{\prime} not a prime, with a and k_{1}^{\prime} not coprime with $\omega=7 \nmid \Omega(=2)$. We find that the conjecture (3.1.1) is verified with a common factor equal to 7 (prime and divisor of $k_{1}^{\prime}=7^{6}$).

Example 3:

The third example is: $19^{4}+38^{3}=57^{3}$ with $A^{m}=19^{4}, B^{n}=38^{3}$ and $C^{l}=57^{3}$. We obtain $p=$ $19^{6} \times 577, \quad q=8 \times 27 \times 19^{10}, \quad \bar{\Delta}=27 q^{2}-4 p^{3}=4 \times 19^{18}\left(27^{3} \times 16 \times 19^{2}-577^{3}\right)<0, \quad \rho=$ $\frac{19^{9} \times 577 \sqrt{577}}{3 \sqrt{3}}, \quad \cos \theta=-\frac{4 \times 3^{4} \times 19 \sqrt{3}}{577 \sqrt{577}} . \quad$ As $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3} \Longrightarrow \cos ^{2} \frac{\theta}{3}=\frac{3 A^{2 m}}{4 p}=\frac{3 \times 19^{2}}{4 \times 577}=$ $\frac{a}{b} \Longrightarrow a=3 \times 19^{2}, b=4 \times 577$, then $\cos \frac{\theta}{3}=\frac{19 \sqrt{3}}{2 \sqrt{577}}$ and we have the first hypothesis $3 \mid a$ and $b \mid(4 p)$. Here again, the calculation of $\cos \theta$ from the expression of $\cos \frac{\theta}{3}$ is confirmed by the value below:

$$
\cos \theta=\cos 3(\theta / 3)=4 \cos ^{3} \frac{\theta}{3}-3 \cos \frac{\theta}{3}=4\left(\frac{19 \sqrt{3}}{2 \sqrt{577}}\right)^{3}-3 \frac{19 \sqrt{3}}{2 \sqrt{577}}=-\frac{4 \times 3^{4} \times 19 \sqrt{3}}{577 \sqrt{577}}
$$

Then, we obtain $3\left|a \Rightarrow a=3 a^{\prime}=3 \times 19^{2}, b\right|(4 p)$ with $b \neq 2,4$ and $b=4 p^{\prime}$ with $p=k p^{\prime}$ soit $p^{\prime}=$ 577 and $k=19^{6}$. This concerns the paragraph 1.5 .8 of the first hypothesis. It is the case E-2-2-2-2-1with $\omega=19, a^{\prime}, \omega$ not coprime and $\omega=19 \nmid\left(p^{\prime}-a^{\prime}\right)=\left(577-19^{2}\right)$ with $s-j n=6-1 \times 3=3 \geq 1$, and the conjecture (3.1.1) is verified.

1.7.2 Conclusion

The method used to give the proof of the conjecture of Beal has discussed many possibles cases, using elementary number theory and the results of some theorems about Diophantine equations. We have confirmed the method by three numerical examples. In conclusion, we can announce the theorem:

Theorem 1.7.1. Let A, B, C, m, n, and l be positive natural numbers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1.7.3}
\end{equation*}
$$

then A, B, and C have a common factor.
Acknowledgements. My acknowledgements to Professor Thong Nguyen Quang Do for indicating me the book of D.A. Cox cited below in References.

Bibliography

[1] Bolker, E.D.(1970). Elementary Number Theory: An Algebraic Approach. New-York: W.A. Benjamin Inc.
[2] Cox, D.A.(1989). Primes of the form : $x^{2}+n y^{2}$, Fermat, class field theory and complex multiplication. New-York: A Wiley-Interscience Publication, John Wiley \& Sons.
[3] Frei, G.(1985). Leonhard Euler's convenient numbers. The Mathematical Intelligencer.7: $n^{\circ} 3$. https://doi.org/10.1007/BF03025809.
[4] Maildin, D.R.(1977). A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem. Notice of Amer.Math.Soci.. 44(11):1436-1437. https://www.ams.org/notices/199711/beal.pdf.
[5] Stewart, B.M.(1964). Theory of Numbers. New-York:The Macmillan Compagny.

Chapter 2

Is The Riemann Hypothesis True? Yes It

Abstract

In 1859, Georg Friedrich Bernhard Riemann had announced the following conjecture, called Riemann Hypothesis : The nontrivial roots (zeros) $s=\sigma+$ it of the zeta function, defined by: $$
\zeta(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}, \text { for } \Re(s)>1
$$ have real part $\sigma=\frac{1}{2}$. We give a proof that $\sigma=\frac{1}{2}$ using an equivalent statement of the Riemann Hypothesis concerning the Dirichlet η function.

Résumé

En 1859, Georg Friedrich Bernhard Riemann avait annoncé la conjecture suivante, dite Hypothèse de Riemann: Les zéros non triviaux $s=\sigma+$ it de la fonction zeta définie par:

$$
\zeta(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}, \text { pour } \quad \Re(s)>1
$$

ont comme parties réelles $\sigma=\frac{1}{2}$.
On donne une démonstration que $\sigma=\frac{1}{2}$ en utilisant une proposition équivalente de l'Hypothèse de Riemann.

2.1 Introduction

In 1859, G.F.B. Riemann had announced the following conjecture [1]:

Conjecture 2.1.1. Let $\zeta(s)$ be the complex function of the complex variable $s=\sigma+$ it defined by the analytic continuation of the function:

$$
\zeta_{1}(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}, \text { for } \Re(s)=\sigma>1
$$

over the whole complex plane, with the exception of $s=1$. Then the nontrivial zeros of $\zeta(s)=0$ are written as :

$$
s=\frac{1}{2}+i t
$$

In this paper, our idea is to start from an equivalent statement of the Riemann Hypothesis, namely the one concerning the Dirichlet η function. The latter is related to Riemann's ζ function where we do not need to manipulate any expression of $\zeta(s)$ in the critical band $0<\Re(s)<1$. In our calculations, we will use the definition of the limit of real sequences. We arrive to give the proof that $\sigma=\frac{1}{2}$.

2.1.1 The function ζ.

We denote $s=\sigma+$ it the complex variable of \mathbb{C}. For $\Re(s)=\sigma>1$, let ζ_{1} be the function defined by

$$
\zeta_{1}(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}, \text { for } \Re(s)=\sigma>1
$$

We know that with the previous definition, the function ζ_{1} is an analytical function of s. Denote by $\zeta(s)$ the function obtained by the analytic continuation of $\zeta_{1}(s)$ to the whole complex plane, minus the point $s=1$, then we recall the following theorem [2]:

Theorem 2.1.2. The function $\zeta(s)$ satisfies the following :

1. $\zeta(s)$ has no zero for $\Re(s)>1$;
2. the only pole of $\zeta(s)$ is at $s=1$; it has residue 1 and is simple;
3. $\zeta(s)$ has trivial zeros at $s=-2,-4, \ldots$;
4. the nontrivial zeros lie inside the region $0 \leq \Re(s) \leq 1$ (called the critical strip) and are symmetric about both the vertical line $\Re(s)=\frac{1}{2}$ and the real axis $\Im(s)=0$.

The vertical line $\Re(s)=\frac{1}{2}$ is called the critical line.
The Riemann Hypothesis is formulated as:

Conjecture 2.1.3. (The Riemann Hypothesis,[2]) All nontrivial zeros of ζ (s) lie on the critical line $\Re(s)=\frac{1}{2}$.

In addition to the properties cited by the theorem 2.1.2 above, the function $\zeta(s)$ satisfies the functional relation [2] called also the reflection functional equation for $s \in \mathbb{C} \backslash\{0,1\}$:

$$
\begin{equation*}
\zeta(1-s)=2^{1-s} \pi^{-s} \cos \frac{s \pi}{2} \Gamma(s) \zeta(s) \tag{2.1.1}
\end{equation*}
$$

where $\Gamma(s)$ is the gamma function defined only for $\Re(s)>0$, given by the formula :

$$
\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} d t, \quad \Re(s)>0
$$

So, instead of using the functional given by (2.1.1), we will use the one presented by G.H. Hardy [3] namely Dirichlet's eta function [2]:

$$
\eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s)
$$

The function eta is convergent for all $s \in \mathbb{C}$ with $\Re(s)>0$ [2].
We have also the theorem (see page 16, [3]):
Theorem 2.1.4. For all $t \in \mathbb{R}, \zeta(1+i t) \neq 0$.
So, we take the critical strip as the region defined as $0<\Re(s)<1$.

2.1.2 A Equivalent statement to the Riemann Hypothesis.

Among the equivalent statements to the Riemann Hypothesis is that of the Dirichlet function eta which is stated as follows [2]:

Equivalence 2.1.5. The Riemann Hypothesis is equivalent to the statement that all zeros of the Dirichlet eta function :

$$
\begin{equation*}
\eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s), \quad \sigma>1 \tag{2.1.2}
\end{equation*}
$$

that fall in the critical strip $0<\Re(s)<1$ lie on the critical line $\Re(s)=\frac{1}{2}$.
The series (2.1.2) is convergent, and represents $\left(1-2^{1-s}\right) \zeta(s)$ for $\Re(s)=\sigma>0$ ([3], pages 20-21). We can rewrite:

$$
\begin{equation*}
\eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s), \quad \Re(s)=\sigma>0 \tag{2.1.3}
\end{equation*}
$$

$\eta(s)$ is a complex number, it can be written as :

$$
\begin{equation*}
\eta(s)=\rho \cdot e^{i \alpha} \Longrightarrow \rho^{2}=\eta(s) \cdot \overline{\eta(s)} \tag{2.1.4}
\end{equation*}
$$

and $\eta(s)=0 \Longleftrightarrow \rho=0$.

2.2 Preliminaries of the proof

Proof. . We denote $s=\sigma+$ it with $0<\sigma<1$. We consider one zero of $\eta(s)$ that falls in critical strip and we write it as $s=\sigma+i t$, then we obtain $0<\sigma<1$ and $\eta(s)=0 \Longleftrightarrow\left(1-2^{1-s}\right) \zeta(s)=0$. We verifies easily the two propositions:

$$
\begin{equation*}
s \text {, is one zero of } \eta(s) \text { that falls in the critical strip, is also one zero of } \zeta(s) \tag{2.2.1}
\end{equation*}
$$

Conversely, if s is a zero of $\zeta(s)$ in the critical strip, let $\zeta(s)=0 \Longrightarrow \eta(s)=\left(1-2^{1-s}\right) \zeta(s)=0$, then s is also one zero of $\eta(s)$ in the critical strip. We can write:

$$
\begin{equation*}
s, \text { is one zero of } \zeta(s) \text { that falls in the critical strip, is also one zero of } \eta(s) \tag{2.2.2}
\end{equation*}
$$

Let us write the function η :

$$
\begin{aligned}
& \eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\sum_{n=1}^{+\infty}(-1)^{n-1} e^{-s \log n}=\sum_{n=1}^{+\infty}(-1)^{n-1} e^{-(\sigma+i t) \log n}= \\
&=\sum_{n=1}^{+\infty}(-1)^{n-1} e^{-\sigma \log n} \cdot e^{-i t \log n} \\
&=\sum_{n=1}^{+\infty}(-1)^{n-1} e^{-\sigma \log n}(\cos (t \log n)-i \sin (t \log n))
\end{aligned}
$$

The function η is convergent for all $s \in \mathbb{C}$ with $\Re(s)>0$, but not absolutely convergent. Let s be one zero of the function eta, then :

$$
\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=0
$$

or:

$$
\forall \epsilon^{\prime}>0 \quad \exists n_{0}, \forall N>n_{0},\left|\sum_{n=1}^{N} \frac{(-1)^{n-1}}{n^{s}}\right|<\epsilon^{\prime}
$$

We definite the sequence of functions $\left(\left(\eta_{n}\right)_{n \in \mathbb{N}^{*}}(s)\right)$ as:

$$
\eta_{n}(s)=\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{s}}=\sum_{k=1}^{n}(-1)^{k-1} \frac{\cos (t \log k)}{k^{\sigma}}-i \sum_{k=1}^{n}(-1)^{k-1} \frac{\sin (t \log k)}{k^{\sigma}}
$$

with $s=\sigma+$ it and $t \neq 0$.
Let s be one zero of η that lies in the critical strip, then $\eta(s)=0$, with $0<\sigma<1$. It follows that we can write $\lim _{n} \rightarrow+\infty \eta_{n}(s)=0=\eta(s)$. We obtain:

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \sum_{k=1}^{n}(-1)^{k-1} \frac{\cos (t \log k)}{k^{\sigma}}=0 \\
& \lim _{n \rightarrow+\infty} \sum_{k=1}^{n}(-1)^{k-1} \frac{\sin (t \log k)}{k^{\sigma}}=0
\end{aligned}
$$

Using the definition of the limit of a sequence, we can write:

$$
\begin{align*}
& \forall \epsilon_{1}>0 \exists n_{r}, \forall N>n_{r},\left|\Re\left(\eta(s)_{N}\right)\right|<\epsilon_{1} \Longrightarrow \Re\left(\eta(s)_{N}\right)^{2}<\epsilon_{1}{ }^{2} \tag{2.2.3}\\
& \forall \epsilon_{2}>0 \exists n_{i}, \forall N>n_{i},\left|\Im\left(\eta(s)_{N}\right)\right|<\epsilon_{2} \Longrightarrow \Im\left(\eta(s)_{N}\right)^{2}<\epsilon_{2}{ }^{2} \tag{2.2.4}
\end{align*}
$$

Then:

$$
\begin{aligned}
& 0<\sum_{k=1}^{N} \frac{\cos ^{2}(t \log k)}{k^{2 \sigma}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N} \frac{(-1)^{k+k^{\prime}} \cos (t \log k) \cdot \cos \left(t \log k^{\prime}\right)}{k^{\sigma} k^{\prime \sigma}}<\epsilon_{1}^{2} \\
& 0<\sum_{k=1}^{N} \frac{\sin ^{2}(t \log k)}{k^{2 \sigma}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N} \frac{(-1)^{k+k^{\prime}} \sin (t \log k) \cdot \sin \left(t \log k^{\prime}\right)}{k^{\sigma} k^{\prime \sigma}}<\epsilon_{2}^{2}
\end{aligned}
$$

Taking $\epsilon=\epsilon_{1}=\epsilon_{2}$ and $N>\max \left(n_{r}, n_{i}\right)$, we get by making the sum member to member of the last two inequalities:

$$
\begin{equation*}
0<\sum_{k=1}^{N} \frac{1}{k^{2 \sigma}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t \log \left(k / k^{\prime}\right)\right)}{k^{\sigma} k^{\prime \sigma}}<2 \epsilon^{2} \tag{2.2.5}
\end{equation*}
$$

We can write the above equation as :

$$
\begin{equation*}
0<\rho_{N}^{2}<2 \epsilon^{2} \tag{2.2.6}
\end{equation*}
$$

or $\rho(s)=0$.
2.3 Case $\sigma=\frac{1}{2}$.

We suppose that $\sigma=\frac{1}{2}$. Let's start by recalling Hardy's theorem (1914) ([2], page 24):
Theorem 2.3.1. There are infinitely many zeros of $\zeta(s)$ on the critical line.
From the propositions (2.2.1-2.2.2), it follows the proposition :
Proposition 2.3.2. There are infinitely many zeros of $\eta(s)$ on the critical line.
Let $s_{j}=\frac{1}{2}+i t_{j}$ one of the zeros of the function $\eta(s)$ on the critical line, so $\eta\left(s_{j}\right)=0$. The equation (2.2.5) is written for s_{j} :

$$
0<\sum_{k=1}^{N} \frac{1}{k}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t_{j} \log \left(k / k^{\prime}\right)\right)}{\sqrt{k} \sqrt{k^{\prime}}}<2 \epsilon^{2}
$$

or:

$$
\sum_{k=1}^{N} \frac{1}{k}<2 \epsilon^{2}-2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t_{j} \log \left(k / k^{\prime}\right)\right)}{\sqrt{k} \sqrt{k^{\prime}}}
$$

If $N \longrightarrow+\infty$, the series $\sum_{k=1}^{N} \frac{1}{k}$ is divergent and becomes infinite. then:

$$
\sum_{k=1}^{+\infty} \frac{1}{k} \leq 2 \epsilon^{2}-2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{\cos \left(t_{j} \log \left(k / k^{\prime}\right)\right)}{\sqrt{k} \sqrt{k^{\prime}}}
$$

Hence, we obtain the following result:

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t_{j} \log \left(k / k^{\prime}\right)\right)}{\sqrt{k} \sqrt{k^{\prime}}}=-\infty \tag{2.3.1}
\end{equation*}
$$

if not, we will have a contradiction with the fact that :

$$
\lim _{N \rightarrow+\infty} \sum_{k=1}^{N}(-1)^{k-1} \frac{1}{k^{s_{j}}}=0 \Longleftrightarrow \eta(s) \text { is convergent for } s_{j}=\frac{1}{2}+i t_{j}
$$

2.4 Case $0<\Re(s)<\frac{1}{2}$.
2.4.1 Case where there are zeros of $\eta(s)$ with $s=\sigma+$ it and $0<\sigma<\frac{1}{2}$.

Suppose that there exists $s=\sigma+$ it one zero of $\eta(s)$ or $\eta(s)=0 \Longrightarrow \rho^{2}(s)=0$ with $0<\sigma<\frac{1}{2} \Longrightarrow s$ lies inside the critical band. We write the equation (2.2.5):

$$
0<\sum_{k=1}^{N} \frac{1}{k^{2 \sigma}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t \log \left(k / k^{\prime}\right)\right)}{k^{\sigma} k^{\prime \sigma}}<2 \epsilon^{2}
$$

or:

$$
\sum_{k=1}^{N} \frac{1}{k^{2 \sigma}}<2 \epsilon^{2}-2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t \log \left(k / k^{\prime}\right)\right)}{k^{\sigma} k^{\prime \sigma}}
$$

But $2 \sigma<1$, it follows that $\lim _{N \rightarrow+\infty} \sum_{k=1}^{N} \frac{1}{k^{2 \sigma}} \longrightarrow+\infty$ and then, we obtain :

$$
\begin{equation*}
\sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{\cos \left(t \log \left(k / k^{\prime}\right)\right)}{k^{\sigma} k^{\prime \sigma}}=-\infty \tag{2.4.1}
\end{equation*}
$$

2.5 Case $\frac{1}{2}<\Re(s)<1$.

Let $s=\sigma+$ it be the zero of $\eta(s)$ in $0<\Re(s)<\frac{1}{2}$, object of the previous paragraph. From the proposition (2.2.1), $\zeta(s)=0$. According to point 4 of theorem 2.1.2, the complex number $s^{\prime}=1-\sigma+i t=\sigma^{\prime}+i t^{\prime}$ with $\sigma^{\prime}=1-\sigma, t^{\prime}=t$ and $\frac{1}{2}<\sigma^{\prime}<1$ verifies $\zeta\left(s^{\prime}\right)=0$, so s^{\prime} is also a zero of the function $\zeta(s)$ in the band $\frac{1}{2}<\Re(s)<1$, it follows from the proposition (2.2.2) that $\eta\left(s^{\prime}\right)=0 \Longrightarrow \rho\left(s^{\prime}\right)=0$. By applying (2.2.5), we get:

$$
\begin{equation*}
0<\sum_{k=1}^{N} \frac{1}{k^{2 \sigma^{\prime}}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t^{\prime} \log \left(k / k^{\prime}\right)\right)}{k^{\sigma^{\prime}} k^{\prime \sigma^{\prime}}}<2 \epsilon^{2} \tag{2.5.1}
\end{equation*}
$$

As $0<\sigma<\frac{1}{2} \Longrightarrow 2>2 \sigma^{\prime}=2(1-\sigma)>1$, then the series $\sum_{k=1}^{N} \frac{1}{k^{2 \sigma^{\prime}}}$ is convergent to a positive constant not null $C\left(\sigma^{\prime}\right)$. As $1 / k^{2}<1 / k^{2 \sigma^{\prime}}$ for all $k>0$, then :

$$
0<\zeta(2)=\frac{\pi^{2}}{6}=\sum_{k=1}^{+\infty} \frac{1}{k^{2}}<\sum_{k=1}^{+\infty} \frac{1}{k^{2 \sigma^{\prime}}}=C\left(\sigma^{\prime}\right)=\zeta_{1}\left(2 \sigma^{\prime}\right)=\zeta\left(2 \sigma^{\prime}\right)
$$

From the equation (2.5.1), it follows that :

$$
\begin{equation*}
\sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{\cos \left(t^{\prime} \log \left(k / k^{\prime}\right)\right)}{k^{\sigma^{\prime}} k^{\prime \sigma^{\prime}}}=-\frac{C\left(\sigma^{\prime}\right)}{2}=-\frac{\zeta\left(2 \sigma^{\prime}\right)}{2}>-\infty \tag{2.5.2}
\end{equation*}
$$

Case $t=0$
We suppose that $t=0 \Longrightarrow t^{\prime}=0$. The equation (2.5.2) becomes:

$$
\begin{equation*}
\sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{1}{k^{\sigma^{\prime}} k^{\prime \sigma^{\prime}}}=-\frac{C\left(\sigma^{\prime}\right)}{2}=-\frac{\zeta\left(2 \sigma^{\prime}\right)}{2}>-\infty \tag{2.5.3}
\end{equation*}
$$

Then $s^{\prime}=\sigma^{\prime}>1 / 2$ is a zero of $\eta(s)$, we obtain :

$$
\begin{equation*}
\eta\left(s^{\prime}\right)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s^{\prime}}}=0 \tag{2.5.4}
\end{equation*}
$$

Let us define the sequence S_{m} as:

$$
\begin{equation*}
S_{m}\left(s^{\prime}\right)=\sum_{n=1}^{m} \frac{(-1)^{n-1}}{n^{s^{\prime}}}=\sum_{n=1}^{m} \frac{(-1)^{n-1}}{n^{\sigma^{\prime}}}=S_{m}\left(\sigma^{\prime}\right) \tag{2.5.5}
\end{equation*}
$$

From the definition of S_{m}, we obtain :

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} S_{m}\left(s^{\prime}\right)=\eta\left(s^{\prime}\right)=\eta\left(\sigma^{\prime}\right) \tag{2.5.6}
\end{equation*}
$$

We have also:

$$
\begin{array}{r}
S_{1}\left(\sigma^{\prime}\right)=1>0 \\
S_{2}\left(\sigma^{\prime}\right)=1-\frac{1}{2 \sigma^{\sigma^{\prime}}}>0 \quad \text { because } 2^{\sigma^{\prime}}>1 \\
S_{3}\left(\sigma^{\prime}\right)=S_{2}\left(\sigma^{\prime}\right)+\frac{1}{3 \sigma^{\prime}}>0 \tag{2.5.9}
\end{array}
$$

We proceed by recurrence, we suppose that $S_{m}\left(\sigma^{\prime}\right)>0$.

1. $m=2 q \Longrightarrow S_{m+1}\left(\sigma^{\prime}\right)=\sum_{n=1}^{m+1} \frac{(-1)^{n-1}}{n^{s^{\prime}}}=S_{m}\left(\sigma^{\prime}\right)+\frac{(-1)^{m+1-1}}{(m+1)^{\sigma^{\prime}}}$, it gives:

$$
S_{m+1}\left(\sigma^{\prime}\right)=S_{m}\left(\sigma^{\prime}\right)+\frac{(-1)^{2 q}}{(m+1)^{\sigma^{\prime}}}=S_{m}\left(\sigma^{\prime}\right)+\frac{1}{(m+1)^{\sigma^{\prime}}}>0 \Rightarrow S_{m+1}\left(\sigma^{\prime}\right)>0
$$

2. $m=2 q+1$, we can write $S_{m+1}\left(\sigma^{\prime}\right)$ as:

$$
S_{m+1}\left(\sigma^{\prime}\right)=S_{m-1}\left(\sigma^{\prime}\right)+\frac{(-1)^{m-1}}{m^{\sigma^{\prime}}}+\frac{(-1)^{m+1-1}}{(m+1)^{\sigma^{\prime}}}
$$

We have $S_{m-1}\left(\sigma^{\prime}\right)>0$, let $T=\frac{(-1)^{m-1}}{m^{\sigma^{\prime}}}+\frac{(-1)^{m}}{(m+1)^{\sigma^{\prime}}}$, we obtain:

$$
\begin{equation*}
T=\frac{(-1)^{2 q}}{(2 q+1)^{\sigma^{\prime}}}+\frac{(-1)^{2 q+1}}{(2 q+2)^{\sigma^{\prime}}}=\frac{1}{(2 q+1)^{\sigma^{\prime}}}-\frac{1}{(2 q+2)^{\sigma^{\prime}}}>0 \tag{2.5.10}
\end{equation*}
$$

and $S_{m+1}\left(\sigma^{\prime}\right)>0$.
Then all the terms $S_{m}\left(\sigma^{\prime}\right)$ of the sequence S_{m} are great then 0 , it follows that $\lim _{m \rightarrow+\infty} S_{m}\left(s^{\prime}\right)=$ $\eta\left(s^{\prime}\right)=\eta\left(\sigma^{\prime}\right)>0$ and $\eta\left(\sigma^{\prime}\right)<+\infty$ because $\Re\left(s^{\prime}\right)=\sigma^{\prime}>0$ and $\eta\left(s^{\prime}\right)$ is convergent. We deduce the contradiction with the hypothesis s^{\prime} is a zero of $\eta(s)$ and:

$$
\begin{equation*}
\text { The equation (2.5.3) is false for the case } t^{\prime}=t=0 \tag{2.5.11}
\end{equation*}
$$

Case $t \neq 0$

We suppose that $t \neq 0$. For each $s^{\prime}=\sigma^{\prime}+i t^{\prime}=1-\sigma+$ it a zero of $\eta(s)$, we have:

$$
\begin{equation*}
\sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{\cos \left(t^{\prime} \log \left(k / k^{\prime}\right)\right)}{k^{\sigma^{\prime}} k^{\prime \sigma^{\prime}}}=-\frac{C\left(\sigma^{\prime}\right)}{2}=-\frac{\zeta\left(2 \sigma^{\prime}\right)}{2}>-\infty \tag{2.5.12}
\end{equation*}
$$

the left member of the equation (2.5.12) above is finite and depends of σ^{\prime} and t^{\prime}, but the right member is a function only of σ^{\prime} equal to $-\zeta\left(2 \sigma^{\prime}\right) / 2$. But for all $\sigma^{\prime \prime}$ so that $2 \sigma^{\prime \prime}>1$, we have $\zeta\left(2 \sigma^{\prime \prime}\right)$:

$$
\zeta\left(2 \sigma^{\prime \prime}\right)=\zeta_{1}\left(2 \sigma^{\prime \prime}\right)=\sum_{k=1}^{+\infty} \frac{1}{k^{2 \sigma^{\prime \prime}}}<+\infty
$$

It depends only of $\sigma^{\prime \prime}$, then in particular for all $\sigma^{\prime \prime}$ with $2>2 \sigma^{\prime \prime}>1, \zeta\left(2 \sigma^{\prime \prime}\right)$ depends only of $\sigma^{\prime \prime}$. Let $\lambda>0$ be an arbitrary real number very infinitesimal so that $\left.\sigma^{\prime}+\lambda \in\right] 1 / 2,1[$ is not the real part of a zero of $\eta(s)$. We can write to the first order:

$$
\begin{equation*}
\zeta\left(2 \sigma^{\prime}+2 \lambda\right)=\zeta\left(2 \sigma^{\prime}\right)+2 \lambda \cdot \zeta^{\prime}\left(2 \sigma^{\prime}\right) \tag{2.5.13}
\end{equation*}
$$

$\zeta^{\prime}\left(2 \sigma^{\prime}\right)$ is given by:

$$
\begin{equation*}
\zeta^{\prime}\left(2 \sigma^{\prime}\right)=-\sum_{k=2}^{+\infty} \frac{\log k}{k^{2 \sigma^{\prime}}}>-\infty \tag{2.5.14}
\end{equation*}
$$

because we can choose $\alpha>0$ so that $\sigma^{\prime}>1 / 2+\alpha \Longrightarrow 2 \sigma^{\prime}-2 \alpha>1$ and we obtain:

$$
\left|\zeta^{\prime}\left(2 \sigma^{\prime}\right)\right| \leq \frac{1}{2 \alpha} \sum_{k=2}^{+\infty} \frac{\log k^{2 \alpha}}{k^{2 \alpha}} \frac{1}{k^{2\left(\sigma^{\prime}-\alpha\right)}} \leq \frac{1}{2 \alpha} \sum_{k=2}^{+\infty} \frac{1}{k^{2\left(\sigma^{\prime}-\alpha\right)}}<+\infty
$$

Numerically, the left member of the equation (2.5.13) is independent of t^{\prime}, the preponderant term of the right member $\zeta\left(2 \sigma^{\prime}\right)$ depends of t^{\prime} using the equation (2.5.12), then the contradiction and we conclude that the result giving by the equation (2.5.12) is false.

$$
\begin{equation*}
\text { It follows that the equation (2.5.12) is false for the cases } t^{\prime} \neq 0 \text {. } \tag{2.5.15}
\end{equation*}
$$

From (2.5.11-2.5.15), we conclude that the function $\eta(s)$ has no zeros for all $s^{\prime}=\sigma^{\prime}+i t^{\prime}$ with $\left.\sigma^{\prime} \in\right] 1 / 2,1\left[\right.$, it follows that the case of the paragraph (2.4) above concerning the case $0<\Re(s)<\frac{1}{2}$ is false. Then, the function $\eta(s)$ has all its zeros on the critical line $\sigma=\frac{1}{2}$. From the equivalent statement (3.1.1), it follows that the Riemann hypothesis is verified.

From the calculations above, we can verify easily the following known proposition:
Proposition 2.5.1. For all $s=\sigma$ real with $0<\sigma<1, \eta(s)>0$ and $\zeta(s)<0$.

2.6 Conclusion.

In summary: for our proofs, we made use of Dirichlet's $\eta(s)$ function:

$$
\eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s), \quad s=\sigma+i t
$$

on the critical band $0<\Re(s)<1$, in obtaining:
$-\eta(s)$ vanishes for $0<\sigma=\Re(s)=\frac{1}{2}$;

- $\eta(s)$ does not vanish for $0<\sigma=\Re(s)<\frac{1}{2}$ and $\frac{1}{2}<\sigma=\Re(s)<1$.

Consequently, all the zeros of $\eta(s)$ inside the critical band $0<\Re(s)<1$ are on the critical line $\Re(s)=\frac{1}{2}$. Applying the equivalent proposition to the Riemann Hypothesis (3.1.1), we conclude that the Riemann hypothesis is verified and all the nontrivial zeros of the function $\zeta(s)$ lie on the critical line $\Re(s)=\frac{1}{2}$. The proof of the Riemann Hypothesis is thus completed.

We therefore announce the important theorem as follows:
Theorem 2.6.1. The Riemann Hypothesis is true:
All nontrivial zeros of the function $\zeta(s)$ with $s=\sigma+$ it lie on the vertical line $\Re(s)=\frac{1}{2}$.

Bibliography

[1] E. Bombieri, The Riemann Hypothesis. In The millennium prize problems, edited by J. Carlson, A. Jaffe and A. Wiles, pp. 107-124, Clay Math. Institute, Amer. Math. Soc., Providence, RI, 2006.
[2] P. Borwein, S. Choi, B. Rooney and A. Weirathmueller, The Riemann hypothesis - a resource for the afficionado and virtuoso alike. 1st Ed. CMS Books in Mathematics, Springer-Verlag, NewYork, 2008. https://doi.org/10.1007/978-0-387-72126-2
[3] E.C. Titchmarsh, D.R. Heath-Brown: The theory of the Riemann zeta-function. 2sd Ed. revised by D.R. Heath-Brown. Oxford University Press, New-York, 1986.

Chapter 3

Is The Conjecture $c<\operatorname{rad}^{1.63}(a b c)$ True?

Abstract

In this paper, we consider the abc conjecture, we will give the proof that the conjecture $c<$ $r a d^{1.63}(a b c)$ is true. It constitutes the key to resolve the $a b c$ conjecture.

Résumé:

Dans cet article, nous considérons la conjecture $a b c$. Nous donnons la preuve de la conjecture $c<\operatorname{rad}^{1.63}(a b c)$ qui constitue la clé pour résoudre la conjecture $a b c$.

3.1 Introduction and notations

Let a be a positive integer, $a=\prod_{i} a_{i}^{\alpha_{i}}, a_{i}$ prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of a the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then a is written as:

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) \cdot \prod_{i} a_{i}^{\alpha_{i}-1} \tag{3.1.1}
\end{equation*}
$$

We denote:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot \operatorname{rad}(a) \tag{3.1.2}
\end{equation*}
$$

The $a b c$ conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph EEsterlé of Pierre et Marie Curie University (Paris 6) [1]. It describes the distribution of the prime factors of two integers with those of its sum. The definition of the $a b c$ conjecture is given below:

Conjecture 3.1.1. (abc Conjecture): For each $\epsilon>0$, there exists $K(\epsilon)$ such that if a, b, c positive integers relatively prime with $c=a+b$, then :

$$
\begin{equation*}
c<K(\epsilon) \cdot r a d^{1+\epsilon}(a b c) \tag{3.1.3}
\end{equation*}
$$

where K is a constant depending only of ϵ.
We know that numerically, $\frac{\log c}{\log (\operatorname{rad}(a b c))} \leq 1.629912$ [2]. It concerned the best example given by E. Reyssat [2]:

$$
\begin{equation*}
2+3^{10} \cdot 109=23^{5} \Longrightarrow c<r a d^{1.629912}(a b c) \tag{3.1.4}
\end{equation*}
$$

A conjecture was proposed that $c<\operatorname{rad}^{2}(a b c)$ [3]. In 2012, A. Nitaj [4] proposed the following conjecture:

Conjecture 3.1.2. Let a, b, c be positive integers relatively prime with $c=a+b$, then:

$$
\begin{align*}
c & <\operatorname{rad}^{1.63}(a b c) \tag{3.1.5}\\
a b c & <\operatorname{rad}^{4.42}(a b c) \tag{3.1.6}
\end{align*}
$$

In this paper, we will give the proof of the conjecture given by (3.1.5) that constitutes the key to obtain the proof of the $a b c$ conjecture using classical methods with the help of some theorems from the field of the number theory.

3.2 The Proof of the conjecture $c<\operatorname{rad}^{1.63}(a b c)$, case $c=a+b$

Let a, b, c be positive integers, relatively prime, with $c=a+b, b<a$ and $R=\operatorname{rad}(a b c), c=$ $\prod_{j^{\prime}=1}^{j^{\prime}=J^{\prime}} c_{j^{\prime}}^{\beta_{j^{\prime}}}, \beta_{j^{\prime}} \geq 1, c_{j^{\prime}} \geq 2$ prime integers.
In the following, we will give the proof of the conjecture $c<\operatorname{rad}^{1.63}(a b c)$.
Proof. :
I- We suppose that $c<\operatorname{rad}(a b c)$, then we obtain:

$$
c<\operatorname{rad}(a b c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}
$$

and the condition (3.1.5) is satisfied.
II- We suppose that $c=\operatorname{rad}(a b c)$, then a, b, c are not coprime, case to reject.
III- In the following, we suppose that $c>\operatorname{rad}(a b c)$ and a, b and c are not all prime numbers.

$$
\begin{equation*}
c=\mu_{c} \operatorname{rad}(c)=a+b=\mu_{a} \operatorname{rad}(a)+\mu_{b} \operatorname{rad}(b) \stackrel{?}{<} \operatorname{rad}^{1.63}(a b c) \tag{3.2.1}
\end{equation*}
$$

III-1- We suppose $\mu_{a} \leq \operatorname{rad}^{0.63}(a)$. We obtain :

$$
c=a+b<2 a \leq 2 \operatorname{rad}^{1.63}(a)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}
$$

Then (3.2.1) is satisfied.
III-2- We suppose $\mu_{c} \leq \operatorname{rad}^{0.63}(c)$. We obtain :

$$
c=\mu_{c} \operatorname{rad}(c) \leq \operatorname{rad}^{1.63}(c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}
$$

and the condition (3.2.1) is satisfied.
III-3- We suppose $\mu_{c}>\operatorname{rad}^{0.63}(c)$ and $\mu_{a}>\operatorname{rad}^{0.63}(a)$.
III-3-1- Case : $\operatorname{rad}^{0.63}(c)<\mu_{c} \leq \operatorname{rad}^{1.63}(c)$ and $\operatorname{rad}^{0.63}(a)<\mu_{a} \leq \operatorname{rad}^{1.63}(a)$.
We can write:

$$
\begin{aligned}
& \left.\begin{array}{l}
\mu_{c} \leq \operatorname{rad}^{1.63}(c) \Longrightarrow c \leq \operatorname{rad}^{2.63}(c) \\
\mu_{a} \leq \operatorname{rad}^{1.63}(a) \Longrightarrow a \leq \operatorname{rad}^{2.63}(a)
\end{array}\right\} \Longrightarrow a c \leq \operatorname{rad}^{2.63}(a c) \Longrightarrow a^{2}<a c \leq \operatorname{rad}^{2.63}(a c) \\
& \Longrightarrow a<\operatorname{rad}^{1.315}(a c) \Longrightarrow c<2 a<2 \operatorname{rad}^{1.315}(a c)<\operatorname{rad}^{1.63}(a b c) \\
& \Longrightarrow c=a+b<R^{1.63}
\end{aligned}
$$

III-3-2- Case : $\mu_{c}>\operatorname{rad}^{1.63}(c)$ or $\mu_{a}>\operatorname{rad}^{1.63}(a)$
III-3-2-1- We suppose that $\mu_{c}>\operatorname{rad}^{1.63}(c)$ and $\mu_{a} \leq \operatorname{rad}^{2}(a)$:
III-3-2-1-1- Case $\operatorname{rad}(a)<\operatorname{rad}(c)$:
In this case $a=\mu_{a} \cdot \operatorname{rad}(a) \leq \operatorname{rad}^{3}(a) \leq \operatorname{rad}^{1.63}(a) \operatorname{rad}^{1.37}(a)<\operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.37}(c) \Longrightarrow c<2 a<$ $2 \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.37}(c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}$.

III-3-2-1-2- Case $\operatorname{rad}(c)<\operatorname{rad}(a)<\operatorname{rad}^{\frac{1.63}{1.37}}(c):$ As $a \leq \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.37}(a)<\operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.63}(c)$ $\Longrightarrow c<2 a<2 \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.63}(c)<R^{1.63} \Longrightarrow c<R^{1.63}$.

III-3-2-1-3- Case $\operatorname{rad}^{1 .{ }^{1.53}}(c)<\operatorname{rad}(a)$:
III-3-2-1-3-1- We suppose $c \leq \operatorname{rad}^{3.26}(c)$, we obtain:

$$
\begin{gathered}
c \leq \operatorname{rad}^{3.26}(c) \Longrightarrow c \leq \operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.63}(c) \Longrightarrow \\
c<\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.37}(a)<\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.63}(b)=R^{1.63} \Longrightarrow c<R^{1.63}
\end{gathered}
$$

III-3-2-1-3-2- We suppose $c>\operatorname{rad}^{3.26}(c) \Longrightarrow \mu_{c}>\operatorname{rad}^{2.26}(c)$.
III-3-2-1-3-2-1- We consider the case $\mu_{a}=\operatorname{rad}^{2}(a) \Longrightarrow a=\operatorname{rad}^{3}(a)$. Then, we obtain that $X=\operatorname{rad}(a)$ is a solution in positive integers of the equation:

$$
\begin{equation*}
X^{3}+1=c-b+1=c^{\prime} \tag{3.2.2}
\end{equation*}
$$

But it is the case $c^{\prime}=1+a$.
III-3-2-1-3-2-1-1- We suppose that $c^{\prime}=\operatorname{rad}^{n}\left(c^{\prime}\right)$ with $n \geq 4$, we obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{n}\left(c^{\prime}\right)-\operatorname{rad}^{3}(a)=1 \tag{3.2.3}
\end{equation*}
$$

But the solutions of the equation (3.2.3) are [5] : $\left.\operatorname{rad}\left(c^{\prime}\right)=3, n=2, \operatorname{rad}(a)=+2\right)$, it follows the contradiction with $n \geq 4$ and the case $c^{\prime}=\operatorname{rad}^{n}\left(c^{\prime}\right), n \geq 4$ is to reject.

III-3-2-1-3-2-1-2- In the following, we will study the cases $\mu_{c^{\prime}}=A \cdot \operatorname{rad}^{n}\left(c^{\prime}\right)$ with $\operatorname{rad}\left(c^{\prime}\right) \nmid A, n \geq 0$. The above equation (3.2.2) can be written as :

$$
\begin{equation*}
(X+1)\left(X^{2}-X+1\right)=c^{\prime} \tag{3.2.4}
\end{equation*}
$$

Let δ any divisor of c^{\prime}, then:

$$
\begin{array}{r}
X+1=\delta \\
X^{2}-X+1=\frac{c^{\prime}}{\delta}=c^{\prime \prime}=\delta^{2}-3 X \tag{3.2.6}
\end{array}
$$

We recall that $\operatorname{rad}(a)>\operatorname{rad}^{\frac{1.63}{1.37}}(c)$.
III-3-2-1-3-2-1-2-1- We suppose $\delta=l \cdot \operatorname{rad}\left(c^{\prime}\right)$. We have $\delta=l \cdot \operatorname{rad}\left(c^{\prime}\right)<c^{\prime}=\mu_{c^{\prime}} \cdot \operatorname{rad}\left(c^{\prime}\right) \Longrightarrow l<\mu_{c^{\prime}}$. As δ is a divisor of c^{\prime}, then l is a divisor of $\mu_{c^{\prime}}$, we write $\mu_{c^{\prime}}=l$.m. From $\mu_{c^{\prime}}=l\left(\delta^{2}-3 X\right)$, we obtain:

$$
m=l^{2} r a d^{2}\left(c^{\prime}\right)-3 \operatorname{rad}(a) \Longrightarrow 3 \operatorname{rad}(a)=l^{2} \operatorname{rad}^{2}\left(c^{\prime}\right)-m
$$

A- Case $3 \mid m \Longrightarrow m=3 m^{\prime}, m^{\prime}>1$: As $\mu_{c^{\prime}}=m l=3 m^{\prime} l \Longrightarrow 3 \mid \operatorname{rad}\left(c^{\prime}\right)$ and $\left(\operatorname{rad}\left(c^{\prime}\right), m^{\prime}\right)$ not coprime. We obtain:

$$
\operatorname{rad}(a)=l^{2} \operatorname{rad}\left(c^{\prime}\right) \cdot \frac{\operatorname{rad}\left(c^{\prime}\right)}{3}-m^{\prime}
$$

It follows that a, c^{\prime} are not coprime, then the contradiction.
B - Case $m=3 \Longrightarrow \mu_{c^{\prime}}=3 l \Longrightarrow c^{\prime}=3 \operatorname{lrad}\left(c^{\prime}\right)=3 \delta=\delta\left(\delta^{2}-3 X\right) \Longrightarrow \delta^{2}=3(1+X)=3 \delta \Longrightarrow \delta=$ $\operatorname{lrad}\left(c^{\prime}\right)=3 \Longrightarrow c^{\prime}=3 \delta=9=a+1 \Longrightarrow a=8 \Longrightarrow c \leq 15$, then it is a trivial case.

III-3-2-1-3-2-1-2-2- We suppose $\delta=l \cdot \operatorname{rad}^{2}\left(c^{\prime}\right), l \geq 2$. If $n=0$ then $\mu_{c^{\prime}}=A$ and from the equation above (3.2.6):

$$
\left.c^{\prime \prime}=\frac{c^{\prime}}{\delta}=\frac{\mu_{c^{\prime}} \cdot \operatorname{rad}\left(c^{\prime}\right)}{\operatorname{lrad}\left(c^{\prime}\right)}=\frac{A \cdot \operatorname{rad}\left(c^{\prime}\right)}{\operatorname{lrad}^{2}\left(c^{\prime}\right)}=\frac{A}{\operatorname{lrad}\left(c^{\prime}\right)} \Rightarrow \operatorname{rad}\left(c^{\prime}\right) \right\rvert\, A
$$

It follows the contradiction with the hypothesis above $\operatorname{rad}\left(c^{\prime}\right) \nmid A$.
III-3-2-1-3-2-1-2-3- In the following, we suppose that $n>0$.
If $\operatorname{lrad}\left(c^{\prime}\right) \nmid \mu_{c^{\prime}}$ then the case is to reject. We suppose $\operatorname{lrad}\left(c^{\prime}\right) \mid \mu_{c^{\prime}} \Longrightarrow \mu_{c^{\prime}}=\operatorname{m\cdot lrad}\left(c^{\prime}\right)$, then $\frac{c^{\prime}}{\delta}=m=\delta^{2}-3 \operatorname{rad}(a)$.
C - Case $m=1=c^{\prime} / \delta \Longrightarrow \delta^{2}-3 \operatorname{rad}(a)=1 \Longrightarrow(\delta-1)(\delta+1)=3 \operatorname{rad}(a)=\operatorname{rad}(a)(\delta+1) \Longrightarrow \delta=$ $2=l . \mathrm{rad}^{2}\left(c^{\prime}\right)$, then the contradiction.

D - Case $m=3$, we obtain $3(1+\operatorname{rad}(a))=\delta^{2}=3 \delta \Longrightarrow \delta=3=\operatorname{lrad}^{2}\left(c^{\prime}\right)$. Then the contradiction.
E - Case $m \neq 1,3$, we obtain: $3 \operatorname{rad}(a)=l^{2} \operatorname{rad}^{4}\left(c^{\prime}\right)-m \Longrightarrow \operatorname{rad}(a)$ and $\operatorname{rad}\left(c^{\prime}\right)$ are not coprime. Then the contradiction.

III-3-2-1-3-2-1-2-4- We suppose $\delta=l \cdot \operatorname{rad}^{n}\left(c^{\prime}\right), l \geq 2$ with $n \geq 3$. From $\left.c^{\prime}=\mu_{c^{\prime}} \cdot \operatorname{rad}^{\prime} c^{\prime}\right)=\operatorname{lrad}^{n}\left(c^{\prime}\right)\left(\delta^{2}-\right.$ $3 \operatorname{rad}(a)$), we denote $m=\delta^{2}-3 \operatorname{rad}(a)=\delta^{2}-3 X$.

F - As seen above (paragraphs C,D), the cases $m=1$ and $m=3$ give contradictions, it follows the reject of these cases.

G - Case $m \neq 1,3$. Let q be a prime that divides m, it follows $q\left|\mu_{c}^{\prime} \Longrightarrow q=c_{j_{0}^{\prime}}^{\prime} \Longrightarrow c_{j_{0}^{\prime}}^{\prime}\right| \delta^{2} \Longrightarrow$ $c_{j_{0}^{\prime}}^{\prime} \mid 3 \operatorname{rad}(a)$. Then $\operatorname{rad}(a)$ and $\operatorname{rad}\left(c^{\prime}\right)$ are not coprime. It follows the contradiction.
III-3-2-1-3-2-1-2-5- We suppose $\delta=\prod_{j \in J_{1}} c_{j}^{\beta_{j}}, \beta_{j} \geq 1$ with at least one $j_{0} \in J_{1}$ with $\beta_{j_{0}} \geq 2, \operatorname{rad}\left(c^{\prime}\right) \nmid \delta$. We can write:

$$
\begin{equation*}
\delta=\mu_{\delta} \cdot \operatorname{rad}(\delta), \quad \operatorname{rad}\left(c^{\prime}\right)=\operatorname{m} \cdot \operatorname{rad}(\delta), \quad m>1, \quad\left(m, \mu_{\delta}\right)=1 \tag{3.2.7}
\end{equation*}
$$

Then, we obtain:

$$
\begin{align*}
c^{\prime}=\mu_{c^{\prime}} \cdot \operatorname{rad}\left(c^{\prime}\right)=\mu_{c^{\prime}} \cdot \operatorname{m} \cdot \operatorname{rad}(\delta) & =\delta\left(\delta^{2}-3 X\right)=\mu_{\delta} \cdot \operatorname{rad}(\delta)\left(\delta^{2}-3 X\right) \Longrightarrow \\
m \cdot \mu_{c^{\prime}} & =\mu_{\delta}\left(\delta^{2}-3 X\right) \tag{3.2.8}
\end{align*}
$$

- We suppose $\mu_{c^{\prime}}=\mu_{\delta} \Longrightarrow m=\delta^{2}-3 X=\left(\mu_{c^{\prime}} \cdot \operatorname{rad}(\delta)\right)^{2}-3 X$. As $\delta<\delta^{2}-3 X \Longrightarrow m>\delta \Longrightarrow$ $\operatorname{rad}\left(c^{\prime}\right)>m>\mu_{c^{\prime}} \cdot \operatorname{rad}(\delta)>\operatorname{rad}^{3}\left(c^{\prime}\right)$ because $\mu_{c^{\prime}}>\operatorname{rad}^{2.26}\left(c^{\prime}\right)$, it follows $\operatorname{rad}\left(c^{\prime}\right)>\operatorname{rad}^{2}\left(c^{\prime}\right)$. Then the contradiction.
- We suppose $\mu_{c^{\prime}}<\mu_{\delta}$. As $\operatorname{rad}(a)=\mu_{\delta} \operatorname{rad}(\delta)-1$, we obtain:

$$
\begin{gather*}
\operatorname{rad}(a)>\mu_{c^{\prime}} \cdot \operatorname{rad}(\delta)-1>0 \Longrightarrow \operatorname{rad}\left(a c^{\prime}\right)>c^{\prime} \cdot \operatorname{rad}(\delta)-\operatorname{rad}\left(c^{\prime}\right)>0 \Longrightarrow \\
c^{\prime}>\operatorname{rad}\left(a c^{\prime}\right)>c^{\prime} \cdot \operatorname{rad}(\delta)-\operatorname{rad}\left(c^{\prime}\right)>0 \Longrightarrow 1>\operatorname{rad}(\delta)-\frac{\operatorname{rad}\left(c^{\prime}\right)}{c^{\prime}}>0, \quad \operatorname{rad}(\delta) \geq 2 \\
\Longrightarrow \text { The contradiction } \tag{3.2.9}
\end{gather*}
$$

- We suppose $\mu_{c^{\prime}}>\mu_{\delta}$. In this case, from the equation (3.2.8) and as $\left(m, \mu_{\delta}\right)=1$, it follows we can write:

$$
\begin{array}{r}
\mu_{c^{\prime}}=\mu_{1} \cdot \mu_{2}, \quad \mu_{1}, \mu_{2}>1 \\
c^{\prime}=\mu_{c^{\prime}} \operatorname{rad}\left(c^{\prime}\right)=\mu_{1} \cdot \mu_{2} \cdot \operatorname{rad}(\delta) \cdot m=\delta \cdot\left(\delta^{2}-3 X\right) \\
\text { so that } \quad m \cdot \mu_{1}=\delta^{2}-3 X, \quad \mu_{2}=\mu_{\delta} \Longrightarrow \delta=\mu_{2} \cdot \operatorname{rad}(\delta) \tag{3.2.12}
\end{array}
$$

${ }^{* *} 1$ - We suppose $\left(\mu_{1}, \mu_{2}\right) \neq 1$, then $\exists c_{j_{0}}^{\prime}$ so that $c_{j_{0}}^{\prime} \mid \mu_{1}$ and $c_{j_{0}}^{\prime} \mid \mu_{2}$. But $\mu_{\delta}=\mu_{2} \Rightarrow c_{j_{0}}^{\prime 2} \mid \delta$. From $3 X=\delta^{2}-m \mu_{1} \Longrightarrow c_{j_{0}}^{\prime}\left|3 X \Longrightarrow c_{j_{0}}^{\prime}\right| X$ or $c_{j_{0}}^{\prime}=3$.

- If $c_{j_{0}}^{\prime} \mid X$, it follows the contradiction with $\left(c^{\prime}, a\right)=1$.
- If $c_{j_{0}}^{\prime}=3$. We have $m \mu_{1}=\delta^{2}-3 X=\delta^{2}-3(\delta-1) \Longrightarrow \delta^{2}-3 \delta+3-m \cdot \mu_{1}=0$. As $3 \mid \mu_{1} \Longrightarrow$ $\mu_{1}=3^{k} \mu_{1}^{\prime}, 3 \nmid \mu_{1}^{\prime}, k \geq 1$, we obtain:

$$
\begin{equation*}
\delta^{2}-3 \delta+3\left(1-3^{k-1} m \mu_{1}^{\prime}\right)=0 \tag{3.2.13}
\end{equation*}
$$

${ }^{* *} 1-1$ - We consider the case $k>1 \Longrightarrow 3 \nmid\left(1-3^{k-1} m \mu_{1}^{\prime}\right)$. Let us recall the Eisenstein criterion [6]:
Theorem 3.2.1. (Eisenstein Criterion) Let $f=a_{0}+\cdots+a_{n} X^{n}$ be a polynomial $\in \mathbb{Z}[X]$. We suppose that $\exists p$ a prime number so that $p \nmid a_{n}, p \mid a_{i},(0 \leq i \leq n-1)$, and $p^{2} \nmid a_{0}$, then f is irreducible in Q .

We apply Eisenstein criterion to the polynomial $R(Z)$ given by:

$$
\begin{equation*}
R(Z)=Z^{2}-3 Z+3\left(1-3^{k-1} m \mu_{1}^{\prime}\right) \tag{3.2.14}
\end{equation*}
$$

then:
$-3 \nmid 1,-3|(-3),-3| 3\left(1-3^{k-1} m \mu_{1}^{\prime}\right)$, and $-3^{2} \nmid 3\left(1-3^{k-1} m \mu_{1}^{\prime}\right)$.
It follows that the polynomial $R(Z)$ is irreducible in Q, then, the contradiction with $R(\delta)=0$.
${ }^{* *} 1-2$ - We consider the case $k=1$, then $\mu_{1}=3 \mu_{1}^{\prime}$ and $\left(\mu_{1}^{\prime}, 3\right)=1$, we obtain:

$$
\begin{equation*}
\delta^{2}-3 \delta+3\left(1-m \mu_{1}^{\prime}\right)=0 \tag{3.2.15}
\end{equation*}
$$

**1-2-1- We consider that $3 \nmid\left(1-m \cdot \mu_{1}^{\prime}\right)$, we apply the same Eisenstein criterion to the polynomial $R^{\prime}(Z)$ given by:

$$
R^{\prime}(Z)=Z^{2}-3 Z+3\left(1-m \mu_{1}^{\prime}\right)
$$

and we find a contradiction with $R^{\prime}(\delta)=0$.
${ }^{* *} 1$-2-2- We consider that $3 \mid\left(1-m . \mu_{1}^{\prime}\right) \Longrightarrow m \mu_{1}^{\prime}-1=3^{i} . h, i \geq 1,3 \nmid h, h \in \mathbb{N}^{*} . \delta$ is an integer root of the polynomial $R^{\prime}(Z)$:

$$
\begin{equation*}
R^{\prime}(Z)=Z^{2}-3 Z+3\left(1-m \mu_{1}^{\prime}\right)=0 \Rightarrow \text { the discriminant of } R^{\prime}(Z) \text { is }: \Delta=3^{2}+3^{i+1} \times 4 . h \tag{3.2.16}
\end{equation*}
$$

As the root δ is an integer, it follows that $\Delta=l^{2}>0$ with l a positive integer. We obtain:

$$
\begin{array}{r}
\Delta=3^{2}\left(1+3^{i-1} \times 4 h\right)=l^{2} \\
\Longrightarrow 1+3^{i-1} \times 4 h=q^{2}>1, q \in \mathbb{N}^{*} \tag{3.2.18}
\end{array}
$$

We can write the equation (3.2.15) as :

$$
\begin{gather*}
\delta(\delta-3)=3^{i+1} \cdot h \Longrightarrow 3^{3} \mu_{1}^{\prime} \frac{\operatorname{rad}(\delta)}{3} \cdot\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)=3^{i+1} \cdot h \Longrightarrow \tag{3.2.19}\\
\mu_{1}^{\prime} \frac{\operatorname{rad}(\delta)}{3} \cdot\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)=h \tag{3.2.20}
\end{gather*}
$$

We obtain $i=2$ and $q^{2}=1+12 h=1+4 \mu_{1}^{\prime} \operatorname{rad}(\delta)\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)$. Then, q satisfies :

$$
\begin{gather*}
q^{2}-1=12 h \Rightarrow \frac{(q-1)}{2} \cdot \frac{(q+1)}{2}=3 h=\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right) \cdot \mu_{1}^{\prime} \operatorname{rad}(\delta) \Rightarrow \tag{3.2.21}\\
q-1=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)-2 \tag{3.2.22}\\
q+1=2 \mu_{1}^{\prime} \operatorname{rad}(\delta) \tag{3.2.23}
\end{gather*}
$$

It follows that $(q=x, 1=y)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{3.2.24}
\end{equation*}
$$

with $N=12 h>0$. Let $Q(N)$ be the number of the solutions of (3.2.24) and $\tau(N)$ is the number of suitable factorization of N, then we announce the following result concerning the solutions of the Diophantine equation (3.2.24) (see theorem 27.3 in [7]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$.
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$.
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.
$[x]$ is the integral part of x for which $[x] \leq x<[x]+1$.
Let ($\alpha^{\prime}, m^{\prime}$), $\alpha^{\prime}, m^{\prime} \in \mathbb{N}^{*}$ be another pair, solution of the equation (3.2.24), then $\alpha^{\prime 2}-m^{\prime 2}=x^{2}-y^{2}=$ $N=12 h$, but $q=x$ and $1=y$ satisfy the equation (3.2.23) given by $x+y=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)$, it follows $\alpha^{\prime}, m^{\prime}$ verify also $\alpha^{\prime}+m^{\prime}=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)$, that gives $\alpha^{\prime}-m^{\prime}=2\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)$, then $\alpha^{\prime}=x=q=$ $2 \mu_{1}^{\prime} \operatorname{rad}(\delta)$ and $m^{\prime}=y=1$. So, we have given the proof of the uniqueness of the solutions of the equation (3.2.24) with the condition $x+y=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)$. As $N=12 h=4 \mu_{1}^{\prime} \operatorname{rad}(\delta) .\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right) \Longrightarrow$ $N \equiv 0(\bmod 4) \Longrightarrow Q(N)=[\tau(N / 4) / 2]=[\tau(3 h) / 2]$, the expression of $3 h=\mu_{1}^{\prime} \cdot \operatorname{rad}(\delta) .\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)$, then $Q(N)=[\tau(3 h) / 2]>1$. But $Q(N)=1$, then the contradiction and the case $3 \mid\left(1-m \cdot \mu_{1}^{\prime}\right)$ is to reject.
${ }^{* *} 2$ - We suppose that $\left(\mu_{1}, \mu_{2}\right)=1$.
From the equation $m \mu_{1}=\delta^{2}-3 X=\delta^{2}-3(\delta-1)$, we obtain that δ is a root of the following polynomial :

$$
\begin{equation*}
R(Z)=Z^{2}-3 Z+3-m \cdot \mu_{1}=0 \tag{3.2.25}
\end{equation*}
$$

The discriminant of $R(Z)$ is:

$$
\begin{equation*}
\Delta=9-4\left(3-m \cdot \mu_{1}\right)=4 m \cdot \mu_{1}-3=q^{2} \quad \text { with } q \in \mathbb{N}^{*} \text { as } \delta \in \mathbb{N}^{*} \tag{3.2.26}
\end{equation*}
$$

- We suppose that $2 \mid m \mu_{1} \Longrightarrow c^{\prime}$ is even. Then $q^{2} \equiv 5(\bmod 8)$, it gives a contradiction because a square is $\equiv 0,1$ or $4(\bmod 8)$.
- We suppose c^{\prime} an odd integer, then a is even. It follows $a=\operatorname{rad}^{3}(a) \equiv 0(\bmod 8) \Longrightarrow c^{\prime} \equiv$ $1(\bmod 8)$. As $c^{\prime}=\delta^{2}-3 X . \delta$, we obtain $\delta^{2}-3 X . \delta \equiv 1(\bmod 8)$. If $\delta^{2} \equiv 1(\bmod 8) \Longrightarrow-3 X . \delta \equiv$ $0(\bmod 8) \Longrightarrow 8|X . \delta \Longrightarrow 4| \delta \Longrightarrow c^{\prime}$ is even. Then, the contradiction. If $\delta^{2} \equiv 4(\bmod 8) \Longrightarrow \delta \equiv$ $2(\bmod 8)$ or $\delta \equiv 6(\bmod 8)$. In the two cases, we obtain $2 \mid \delta$. Then, the contradiction with c^{\prime} an odd integer.

It follows that the case $c>\operatorname{rad}^{3.26}(c)$ and $a=\operatorname{rad}^{3}(a)$ is impossible.
III-3-2-1-3-2-2- We suppose $c>\operatorname{rad}^{3.26}(c)$ and large and $\mu_{a}\left\langle\operatorname{rad}^{2}(a)\right.$. Then $\left.c=\operatorname{rad}^{3}(c)+h, h\right\rangle$ $\operatorname{rad}^{3}(c), h$ a positive integer and we can write $a+l=\operatorname{rad}^{3}(a), l>0$. Then we obtain :

$$
\begin{equation*}
\operatorname{rad}^{3}(c)+h=\operatorname{rad}^{3}(a)-l+b \Longrightarrow \operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)=h+l-b>0 \tag{3.2.27}
\end{equation*}
$$

as $\operatorname{rad}(a)>\operatorname{rad}^{\frac{1.63}{1.33}}(c)$. We obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)=h+l-b=m>0 \tag{3.2.28}
\end{equation*}
$$

Let $X=\operatorname{rad}(a)-\operatorname{rad}(c)$, then X is an integer root of the polynomial $H(X)$ defined as:

$$
\begin{equation*}
H(X)=X^{3}+3 \operatorname{rad}(a c) X-m=0 \tag{3.2.29}
\end{equation*}
$$

To resolve the above equation, we denote $X=u+v$, It follows that u^{3}, v^{3} are the roots of the polynomial $G(t)$ given by:

$$
\begin{equation*}
G(t)=t^{2}-m t-\operatorname{rad}^{3}(a c)=0 \tag{3.2.30}
\end{equation*}
$$

The discriminant of $G(t)$ is $\Delta=m^{2}+4 \operatorname{rad}^{3}(a c)=\alpha^{2}, \quad \alpha>0$. The two real roots of (3.2.30) are:

$$
\begin{equation*}
t_{1}=u^{3}=\frac{m+\alpha}{2}, \quad t_{2}=v^{3}=\frac{m-\alpha}{2} \tag{3.2.31}
\end{equation*}
$$

As $m=\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)>0$, we obtain that $\alpha=\operatorname{rad}^{3}(a)+\operatorname{rad}^{3}(c)>0$, then from the expression of the discriminant Δ, it follows that $(\alpha=x, m=y)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{3.2.32}
\end{equation*}
$$

with $N=4 r a d^{3}(a c)>0$. From the expression of Δ above, we remark that α and m verify the following equations:

$$
\begin{array}{r}
x+y=2 u^{3}=2 \operatorname{rad}^{3}(a) \\
x-y=-2 v^{3}=2 \operatorname{rad}^{3}(c) \\
\text { then } \quad x^{2}-y^{2}=N=4 \operatorname{rad}^{3}(a) \cdot \operatorname{rad}^{3}(c) \tag{3.2.35}
\end{array}
$$

As (α, m) is a couple of solutions of the Diophantine equation (3.2.32) and $\alpha>m$, then $\exists d, d^{\prime}$ positive integers with $d>d^{\prime}$ and $N=d . d^{\prime}$ so that:

$$
\begin{align*}
& d+d^{\prime}=2 \alpha \tag{3.2.36}\\
& d-d^{\prime}=2 m \tag{3.2.37}
\end{align*}
$$

III-3-2-1-3-2-2-1- Now, we consider for example, the case $d=4 r a d^{3}(a)$ and $d^{\prime}=\operatorname{rad}^{3}(c) \Longrightarrow d>$ d^{\prime}.We rewrite the equations (3.2.36-3.2.37):

$$
\begin{array}{r}
\left.4 \operatorname{rad}^{3}(a)+\operatorname{rad}^{3}(c)=2\left(\operatorname{rad}^{3}(a)+\operatorname{rad}^{3}(c)\right) \Longrightarrow 2 \operatorname{rad}^{3}(a)=\operatorname{rad}^{3}(c)\right) \\
\left.4 \operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)=2\left(\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)\right) \Longrightarrow 2 \operatorname{rad}^{3}(a)=-\operatorname{rad}^{3}(c)\right) \tag{3.2.39}
\end{array}
$$

Then the contradiction.
III-3-2-1-3-2-2-2- we consider the case $d=4 \operatorname{rad}^{3}(c) \operatorname{rad}^{3}(a)$ and $d^{\prime}=1 \Longrightarrow d>d^{\prime}$. We rewrite the equations (3.2.36-3.2.37):

$$
\begin{array}{r}
4 \operatorname{rad}^{3}(c) \operatorname{rad}^{3}(a)+1=2\left(\operatorname{rad}^{3}(c)+\operatorname{rad}^{3}(a)\right) \Longrightarrow 2 \operatorname{rad}^{3}(c)=1 \\
4 \operatorname{rad}^{3}(c) \operatorname{rad}^{3}(a)-1=2\left(\operatorname{rad}^{3}(c)-\operatorname{rad}^{3}(a)\right) \Longrightarrow 2 \operatorname{rad}^{3}(c)=-1 \tag{3.2.41}
\end{array}
$$

Then the contradiction.
III-3-2-1-3-2-2-3- Let c_{1} be the first factor of $\operatorname{rad}(c)$. we consider the case $d=4 c_{1} \operatorname{rad}^{3}(a)$ and $d^{\prime}=$ $\frac{r a d^{3}(c)}{c_{1}} \Longrightarrow d>d^{\prime}$. We rewrite the equation (3.2.36):

$$
\begin{array}{r}
4 c_{1} \operatorname{rad}^{3}(a)+\frac{\operatorname{rad}^{3}(c)}{c_{1}}=2\left(\operatorname{rad}^{3}(a)+\operatorname{rad}^{3}(c)\right) \Longrightarrow \\
2 \operatorname{rad}^{3}(a)\left(2 c_{1}-1\right)=\frac{\operatorname{rad}^{3}(c)}{c_{1}}\left(2 c_{1}-1\right) \Longrightarrow 2 \operatorname{rad}^{3}(a)=\operatorname{rad}^{2}(c) \cdot \frac{\operatorname{rad}(c)}{c_{1}} \tag{3.2.43}
\end{array}
$$

$c_{1}=2$ or not, there is a contradiction.

The others cases of the expressions of d and d^{\prime} not coprime so that $N=d . d^{\prime}$ give also contradictions.

Let $Q(N)$ be the number of the solutions of (3.2.32), as $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$. From the study of some cases above, we obtain that $Q(N)<[(\tau(N) / 4) / 2]$. It follows the contradiction.

Then the cases $\mu_{a} \leq \operatorname{rad}^{2}(a)$ and $c>\operatorname{rad}^{3.26}(c)$ are impossible.
III-3-2-2 We suppose that $\operatorname{rad}^{1.63}(c)<\mu_{c} \leq \operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$:
III-3-2-2-1-Case $\operatorname{rad}(c)<\operatorname{rad}(a):$ As $c \leq \operatorname{rad}^{3}(c)=\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.37}(c) \Longrightarrow c<\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.37}(a)<$ $\operatorname{rad}^{1.63}(a c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}$.

III-3-2-2-2- Case $\operatorname{rad}(a)<\operatorname{rad}(c)<\operatorname{rad}^{\frac{1.63}{1.37}}(a)$:
As $c \leq \operatorname{rad}^{3}(c) \leq \operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.37}(c) \Longrightarrow c<\operatorname{rad}^{1.63}(c) \cdot \operatorname{rad}^{1.63}(a)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63}$.
III-3-2-2-3- Case $\operatorname{rad}^{1.35}(a)<\operatorname{rad}(c)$:
III-3-2-2-3-1- We suppose $\operatorname{rad}^{1.63}(a)<\mu_{a} \leq \operatorname{rad}^{2.26}(a) \Longrightarrow a \leq \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.63}(a) \Longrightarrow a<$ $\operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.37}(c) \Longrightarrow c=a+b<2 a<2 \operatorname{rad}^{1.63}(a) \cdot \operatorname{rad}^{1.63}(c)<\operatorname{rad}^{1.63}(a b c) \Longrightarrow c<R^{1.63} \Longrightarrow$ $c<R^{1.63}$.

III-3-2-2-3-2- We suppose $\mu_{a}>\operatorname{rad}^{2.26}(a)$ and $\mu_{c} \leq \operatorname{rad}^{2}(c)$. Using the same method as it was explicated in the paragraphs III-3-2-1-3-2- (permuting a, c), we arrive at a contradiction (see the appendix). It follows that the case $\mu_{c}=\operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{2.26}(a)$ is impossible.

III-3-2-2-3-2-2- We suppose $a>\operatorname{rad}^{3.26}(a)$ and large and $\mu_{c}\left\langle\operatorname{rad}^{2}(c)\right.$. Then $\left.a=\operatorname{rad}^{3}(a)+h, h\right\rangle$ $\operatorname{rad}^{3}(a), h$ a positive integer and we can write $c+l=\operatorname{rad}^{3}(c), l>0$. Then we obtain :

$$
\begin{equation*}
\operatorname{rad}^{3}(c)-\operatorname{rad}^{3}(a)=h+l+b>0 \tag{3.2.44}
\end{equation*}
$$

as $\operatorname{rad}(c)>\operatorname{rad}^{\frac{1.63}{1 \cdot 5}}(a)$. Let $X=\operatorname{rad}(c)-\operatorname{rad}(a)$, then X is an integer root of the polynomial $H(X)$ defined as:

$$
\begin{equation*}
H(X)=X^{3}+3 \operatorname{rad}(a c) X-m=0 \tag{3.2.45}
\end{equation*}
$$

To resolve the above equation, we denote $X=u+v$, It follows that u^{3}, v^{3} are the roots of the polynomial $G(t)$ given by:

$$
\begin{equation*}
G(t)=t^{2}-m t-\operatorname{rad}^{3}(a c)=0 \tag{3.2.46}
\end{equation*}
$$

The discriminant of $G(t)$ is $\Delta=m^{2}+4 \operatorname{rad}^{3}(a c)=\alpha^{2}, \quad \alpha>0$. The two real roots of (3.2.46) are:

$$
\begin{equation*}
t_{1}=u^{3}=\frac{m+\alpha}{2}, \quad t_{2}=v^{3}=\frac{m-\alpha}{2} \tag{3.2.47}
\end{equation*}
$$

As $m=\operatorname{rad}^{3}(c)-\operatorname{rad}^{3}(a)>0$, we obtain that $\alpha=\operatorname{rad}^{3}(a)+\operatorname{rad}^{3}(c)>0$, then from the expression of the discriminant Δ, it follows that $(\alpha=x, m=y)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{3.2.48}
\end{equation*}
$$

with $N=4 \operatorname{rad}^{3}(a c)>0$. It is the same case (permuting a and c) as the case above III-3-2-1-3-2-2and we obtain contradictions.
Then the cases $\mu_{c} \leq \operatorname{rad}^{2}(c)$ and $a>\operatorname{rad}^{3.26}(a)$ are impossible.
III-3-3- Case $\mu_{a}>\operatorname{rad}^{1.63}(a)$ and $\mu_{c}>\operatorname{rad}^{1.63}(c)$: Taking into account the cases studied above, it remains to see the following two cases:

- $\mu_{c}>\operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$,
- $\mu_{a}>\operatorname{rad}^{2}(a)$ and $\mu_{c}>\operatorname{rad}^{1.63}(c)$.

III-3-3-1- We suppose $\mu_{c}>\operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a) \Longrightarrow c>\operatorname{rad}^{3}(c)$ and $a>\operatorname{rad}^{2.63}(a)$. We can write $c=\operatorname{rad}^{3}(c)+h$ and $a=\operatorname{rad}^{3}(a)+l$ with h a positive integer and $l \in \mathbb{Z}$.

III-3-3-1-1- We suppose $\operatorname{rad}(c)<\operatorname{rad}(a)$. We obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)=h-l-b=m>0 \tag{3.2.49}
\end{equation*}
$$

Let $X=\operatorname{rad}(a)-\operatorname{rad}(c)$, from the above equation, X is a real root of the polynomial:

$$
\begin{equation*}
H(X)=X^{3}+3 \operatorname{rad}(a c) X-m=0 \tag{3.2.50}
\end{equation*}
$$

As above, to resolve (3.2.50), we denote $X=u+v$, It follows that u^{3}, v^{3} are the roots of the polynomial $G(t)$ given by :

$$
\begin{equation*}
G(t)=t^{2}-m t-\operatorname{rad}^{3}(a c)=0 \tag{3.2.51}
\end{equation*}
$$

The discriminant of $G(t)$ is:

$$
\begin{equation*}
\Delta=m^{2}+4 r a d^{3}(a c)=\alpha^{2}, \quad \alpha>0 \tag{3.2.52}
\end{equation*}
$$

The two real roots of (3.2.51) are:

$$
\begin{equation*}
t_{1}=u^{3}=\frac{m+\alpha}{2}, \quad t_{2}=v^{3}=\frac{m-\alpha}{2} \tag{3.2.53}
\end{equation*}
$$

As $m=\operatorname{rad}^{3}(a)-\operatorname{rad}^{3}(c)>0$, we obtain that $\alpha=\operatorname{rad}^{3}(a)+\operatorname{rad}^{3}(c)>0$, then from the equation (3.2.52), it follows that ($\alpha=x, m=y$) is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{3.2.54}
\end{equation*}
$$

with $N=4 \operatorname{rad}^{3}(a c)>0$. From the equations (3.2.53), we remark that α and m verify the following equations:

$$
\begin{array}{r}
x+y=2 u^{3}=2 \operatorname{rad}^{3}(a) \\
x-y=-2 v^{3}=2 \operatorname{rad}^{3}(c) \\
\text { then } \quad x^{2}-y^{2}=N=4 \operatorname{rad}^{3}(a) \cdot \operatorname{rad}^{3}(c) \tag{3.2.57}
\end{array}
$$

Let $Q(N)$ be the number of the solutions of (3.2.54) and $\tau(N)$ is the number of suitable factorization of N, and using the same method as in the paragraph III-3-2-2-3-2-2- above, we obtain a contradiction.

III-3-3-1-2- We suppose $\operatorname{rad}(a)<\operatorname{rad}(c)$. We obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{3}(c)-\operatorname{rad}^{3}(a)=b+l-h=m>0 \tag{3.2.58}
\end{equation*}
$$

Let X be the variable $X=\operatorname{rad}(c)-\operatorname{rad}(a)$, we use the similar calculations as in the paragraph above III-3-3-1-1-, we find a contradiction.

It follows that the case $\mu_{c}>\operatorname{rad}^{2}(c)$ and $\mu_{a}>\operatorname{rad}^{1.63}(a)$ is impossible.
III-3-3-2- We suppose $\mu_{a}>\operatorname{rad}^{2}(a)$ and $\mu_{c}>\operatorname{rad}^{1.63}(c)$, we obtain $a>\operatorname{rad}^{3}(a)$ and $c>\operatorname{rad}^{2.63}(c)$. We can write $a=\operatorname{rad}^{3}(a)+h$ and $c=\operatorname{rad}^{3}(c)+l$ with h a positive integer and $l \in \mathbb{Z}$.

The calculations are similar to those in the case III-3-3-1-. We obtain a contradiction.
It follows that the case $\mu_{c}>\operatorname{rad}^{1.63}(c)$ and $\mu_{a}>\operatorname{rad}^{2}(a)$ is impossible.

We can state the following important theorem:
Theorem 3.2.2. Let a, b, c positive integers relatively prime with $c=a+b$, then $c<\operatorname{rad}^{1.63}(a b c)$.
From the theorem above, we can announce also:
Corollary 3.2.2.1. Let a, b, c positive integers relatively prime with $c=a+b$, then the conjecture $c<\operatorname{rad}^{2}(a b c)$ is true.

Acknowledgments. The author is very grateful to Professors Mihăilescu Preda and Gérald Tenenbaum for their comments about errors found in previous manuscripts concerning proposed proofs of the $a b c$ conjecture.

Appendix

III-3-2-2-3-2- We suppose $\mu_{a}>\operatorname{rad}^{2.26}(a)$ and $\mu_{c} \leq \operatorname{rad}^{2}(c)$
III-3-2-2-3-2-1- We consider the case $\mu_{c}=\operatorname{rad}^{2}(c) \Longrightarrow c=\operatorname{rad}^{3}(c)$. Then, we obtain that $Y=\operatorname{rad}(c)$ is a solution in positive integers of the equation:

$$
\begin{equation*}
Y^{3}+1=a+b+1=c^{\prime} \tag{3.2.59}
\end{equation*}
$$

But it is the case $c^{\prime}=1+c$.
III-3-2-2-3-2-1-1- We suppose that $c^{\prime}=\operatorname{rad}^{n}\left(c^{\prime}\right)$ with $n \geq 4$, we obtain the equation:

$$
\begin{equation*}
\operatorname{rad}^{n}\left(c^{\prime}\right)-\operatorname{rad}^{3}(c)=1 \tag{3.2.60}
\end{equation*}
$$

But the solutions of the equation (3.2.60) are [5] : $\left(\operatorname{rad}\left(c^{\prime}\right)=3, n=2, \operatorname{rad}(c)=+2\right)$, it follows the contradiction with $n \geq 4$ and the case $c^{\prime}=\operatorname{rad}^{n}\left(c^{\prime}\right), n \geq 4$ is to reject.

III-3-2-2-3-2-1-2-In the following, we will study the cases $\mu_{c^{\prime}}=A . \operatorname{rad}^{n}\left(c^{\prime}\right)$ with $\operatorname{rad}\left(c^{\prime}\right) \nmid A, n \geq 0$. The above equation (3.2.59) can be written as :

$$
\begin{equation*}
(Y+1)\left(Y^{2}-Y+1\right)=c^{\prime} \tag{3.2.61}
\end{equation*}
$$

Let δ any divisor of c^{\prime}, then:

$$
\begin{array}{r}
Y+1=\delta \\
Y^{2}-Y+1=\frac{c^{\prime}}{\delta}=c^{\prime \prime}=\delta^{2}-3 Y \tag{3.2.63}
\end{array}
$$

We recall that $\operatorname{rad}(c)>\operatorname{rad}^{1.63}(a)$.
III-3-2-2-3-2-1-2-1- We suppose $\delta=l . \operatorname{rad}\left(c^{\prime}\right)$. We have $\delta=l . \operatorname{rad}\left(c^{\prime}\right)<c^{\prime}=\mu_{c}^{\prime} \cdot \operatorname{rad}\left(c^{\prime}\right) \Longrightarrow l<\mu_{c}^{\prime}$. As δ is a divisor of c^{\prime}, then l is a divisor of μ_{c}^{\prime}, we write $\mu_{c}^{\prime}=l$.m. From $\mu_{c}^{\prime}=l\left(\delta^{2}-3 Y\right)$, we obtain:

$$
m=l^{2} \operatorname{rad}^{2}\left(c^{\prime}\right)-3 \operatorname{rad}(c) \Longrightarrow 3 \operatorname{rad}(c)=l^{2} \operatorname{rad}^{2}\left(c^{\prime}\right)-m
$$

A- Case $3 \mid m \Longrightarrow m=3 m^{\prime}, m^{\prime}>1$: As $\mu_{c}^{\prime}=m l=3 m^{\prime} l \Longrightarrow 3 \mid \operatorname{rad}\left(c^{\prime}\right)$ and $\left(\operatorname{rad}\left(c^{\prime}\right), m^{\prime}\right)$ not coprime. We obtain:

$$
\operatorname{rad}(c)=l^{2} \operatorname{rad}\left(c^{\prime}\right) \cdot \frac{\operatorname{rad}\left(c^{\prime}\right)}{3}-m^{\prime}
$$

It follows that $\mathrm{c}, \mathrm{c}^{\prime}$ are not coprime, then the contradiction.

B - Case $m=3 \Longrightarrow \mu_{c}^{\prime}=3 l \Longrightarrow c^{\prime}=3 \operatorname{lrad}\left(c^{\prime}\right)=3 \delta=\delta\left(\delta^{2}-3 Y\right) \Longrightarrow \delta^{2}=3(1+Y)=3 \delta \Longrightarrow \delta=$ $\operatorname{lrad}\left(c^{\prime}\right)=3 \Rightarrow c^{\prime}=3 \delta=9=c+1 \Rightarrow c=8$, then it is a trivial case.

III-3-2-2-3-2-1-2-2- We suppose $\delta=l \cdot \operatorname{rad}^{2}\left(c^{\prime}\right), l \geq 2$. If $n=0$ then $\mu_{c^{\prime}}=A$ and from the equation above (3.2.63):

$$
\left.c^{\prime \prime}=\frac{c^{\prime}}{\delta}=\frac{\mu_{c^{\prime}} \cdot \operatorname{rad}\left(c^{\prime}\right)}{\operatorname{lrad}^{2}\left(c^{\prime}\right)}=\frac{A \cdot \operatorname{rad}\left(c^{\prime}\right)}{\operatorname{lrad}^{2}\left(c^{\prime}\right)}=\frac{A}{\operatorname{lrad}\left(c^{\prime}\right)} \Rightarrow \operatorname{rad}\left(c^{\prime}\right) \right\rvert\, A
$$

It follows the contradiction with the hypothesis above $\operatorname{rad}\left(c^{\prime}\right) \nmid A$.
III-3-2-2-3-2-1-2-3- In the following, we suppose that $n>0$.
If $\operatorname{lrad}\left(c^{\prime}\right) \nmid \mu_{c^{\prime}}$ then the case is to reject. We suppose $\operatorname{lrad}\left(c^{\prime}\right) \mid \mu_{c^{\prime}} \Longrightarrow \mu_{c^{\prime}}=\operatorname{m\cdot lrad}\left(c^{\prime}\right)$, then $\frac{c^{\prime}}{\delta}=m=\delta^{2}-3 \operatorname{rad}(c)$.
$\mathrm{C}^{\prime}-$ Case $m=1=c^{\prime} / \delta \Longrightarrow \delta^{2}-3 \operatorname{rad}(c)=1 \Longrightarrow(\delta-1)(\delta+1)=3 \operatorname{rad}(c)=\operatorname{rad}(c)(\delta+1) \Longrightarrow \delta=$ $2=l . \mathrm{rad}^{2}\left(\mathrm{c}^{\prime}\right)$, then the contradiction.
D^{\prime} - Case $m=3$, we obtain $3(1+\operatorname{rad}(c))=\delta^{2}=3 \delta \Longrightarrow \delta=3=\operatorname{lrad} d^{2}\left(c^{\prime}\right)$. Then the contradiction.
E^{\prime} - Case $m \neq 1,3$, we obtain: $3 \operatorname{rad}(c)=l^{2} \operatorname{rad}^{4}\left(c^{\prime}\right)-m \Longrightarrow \operatorname{rad}(c)$ and $\operatorname{rad}\left(c^{\prime}\right)$ are not coprime. Then the contradiction.

III-3-2-2-3-2-1-2-4- We suppose $\delta=l \cdot \operatorname{rad}^{n}\left(c^{\prime}\right), l \geq 2$ with $n \geq 3$. From $\left.c^{\prime}=\mu_{c^{\prime}} \cdot \operatorname{rad}^{\prime} c^{\prime}\right)=\operatorname{lrad}^{n}\left(c^{\prime}\right)\left(\delta^{2}-\right.$ $3 \operatorname{rad}(c)$), we denote $m=\delta^{2}-3 \operatorname{rad}(c)=\delta^{2}-3 Y$.
F^{\prime} - As seen above (paragraphs $\mathrm{C}^{\prime}, \mathrm{D}^{\prime}$), the cases $m=1$ and $m=3$ give contradictions, it follows the reject of these cases.
G^{\prime} - Case $m \neq 1,3$. Let q be a prime that divides m, it follows $q\left|\mu_{c}^{\prime} \Longrightarrow q=c_{j_{0}^{\prime}}^{\prime} \Longrightarrow c_{j_{0}^{\prime}}^{\prime}\right| \delta^{2} \Longrightarrow$ $c_{j_{0}^{\prime}}^{\prime} \mid 3 \operatorname{rad}(c)$. Then $\operatorname{rad}(c)$ and $\operatorname{rad}\left(c^{\prime}\right)$ are not coprime. It follows the contradiction.

III-3-2-2-3-2-1-2-5- We suppose $\delta=\prod_{j \in J_{1}} c_{j}^{\prime \beta_{j}}, \beta_{j} \geq 1$ with at least one $j_{0} \in J_{1}$ with $\beta_{j_{0}} \geq 2, \operatorname{rad}\left(c^{\prime}\right) \nmid \delta$. We can write:

$$
\begin{equation*}
\delta=\mu_{\delta} \cdot \operatorname{rad}(\delta), \quad \operatorname{rad}\left(c^{\prime}\right)=m \cdot \operatorname{rad}(\delta), \quad m>1, \quad\left(m, \mu_{\delta}\right)=1 \tag{3.2.64}
\end{equation*}
$$

Then, we obtain:

$$
\begin{align*}
c^{\prime}=\mu_{c^{\prime}} \cdot \operatorname{rad}\left(c^{\prime}\right)=\mu_{c^{\prime}} \cdot m \cdot \operatorname{rad}(\delta) & =\delta\left(\delta^{2}-3 Y\right)=\mu_{\delta} \cdot \operatorname{rad}(\delta)\left(\delta^{2}-3 Y\right) \Longrightarrow \\
m \cdot \mu_{c^{\prime}} & =\mu_{\delta}\left(\delta^{2}-3 Y\right) \tag{3.2.65}
\end{align*}
$$

- We suppose $\mu_{c^{\prime}}=\mu_{\delta} \Longrightarrow m=\delta^{2}-3 Y=\left(\mu_{c^{\prime}} \cdot \operatorname{rad}(\delta)\right)^{2}-3 Y$. As $\delta<\delta^{2}-3 Y \Longrightarrow m>\delta \Longrightarrow$ $\operatorname{rad}\left(c^{\prime}\right)>m>\mu_{c^{\prime}} \cdot \operatorname{rad}(\delta)>\operatorname{rad}^{3}\left(c^{\prime}\right)$ because $\mu_{c^{\prime}}>\operatorname{rad}^{2.26}\left(c^{\prime}\right)$, it follows $\operatorname{rad}\left(c^{\prime}\right)>\operatorname{rad}^{2}\left(c^{\prime}\right)$. Then the contradiction.
- We suppose $\mu_{c^{\prime}}<\mu_{\delta}$. As $\operatorname{rad}(c)=\mu_{\delta} \operatorname{rad}(\delta)-1$, we obtain:

$$
\begin{align*}
& \operatorname{rad}(c)>\mu_{c^{\prime}} \cdot \operatorname{rad}(\delta)-1>0 \Longrightarrow \operatorname{rad}\left(c c^{\prime}\right)>c^{\prime} \cdot \operatorname{rad}(\delta)-\operatorname{rad}\left(c^{\prime}\right)>0 \Longrightarrow \\
& c^{\prime}>\operatorname{rad}\left(c c^{\prime}\right)>c^{\prime} \cdot \operatorname{rad}(\delta)-\operatorname{rad}\left(c^{\prime}\right)>0 \Longrightarrow 1>\operatorname{rad}(\delta)-\frac{\operatorname{rad}\left(c^{\prime}\right)}{c^{\prime}}>0, \quad \operatorname{rad}(\delta) \geq 2 \\
& \Longrightarrow \text { The contradiction } \tag{3.2.66}
\end{align*}
$$

- We suppose $\mu_{c^{\prime}}>\mu_{\delta}$. In this case, from the equation (3.2.65) and as $\left(m, \mu_{\delta}\right)=1$, it follows we can write:

$$
\begin{array}{r}
\mu_{c^{\prime}}=\mu_{1} \cdot \mu_{2}, \quad \mu_{1}, \mu_{2}>1 \\
c^{\prime}=\mu_{c^{\prime}} \operatorname{rad}\left(c^{\prime}\right)=\mu_{1} \cdot \mu_{2} \cdot \operatorname{rad}(\delta) \cdot m=\delta \cdot\left(\delta^{2}-3 Y\right) \\
\text { so that } \quad m \cdot \mu_{1}=\delta^{2}-3 Y, \quad \mu_{2}=\mu_{\delta} \Longrightarrow \delta=\mu_{2} \cdot \operatorname{rad}(\delta) \tag{3.2.69}
\end{array}
$$

${ }^{* *} 1$ - We suppose $\left(\mu_{1}, \mu_{2}\right) \neq 1$, then $\exists c_{j_{0}}^{\prime}$ so that $c_{j_{0}}^{\prime} \mid \mu_{1}$ and $c_{j_{0}}^{\prime} \mid \mu_{2}$. But $\mu_{\delta}=\mu_{2} \Rightarrow c_{j_{0}}^{\prime 2} \mid \delta$. From $3 Y=\delta^{2}-m \mu_{1} \Longrightarrow c_{j_{0}}^{\prime}\left|3 Y \Longrightarrow c_{j_{0}}^{\prime}\right| Y$ or $c_{j_{0}}^{\prime}=3$.

- If $c_{j_{0}}^{\prime} \mid Y$, it follows the contradiction with $\left(c^{\prime}, c\right)=1$.
- If $c_{j_{0}}^{\prime}=3$. We have $m \mu_{1}=\delta^{2}-3 Y=\delta^{2}-3(\delta-1) \Longrightarrow \delta^{2}-3 \delta+3-m \cdot \mu_{1}=0$. As $3 \mid \mu_{1} \Longrightarrow$ $\mu_{1}=3^{k} \mu_{1}^{\prime}, 3 \nmid \mu_{1}^{\prime}, k \geq 1$, we obtain:

$$
\begin{equation*}
\delta^{2}-3 \delta+3\left(1-3^{k-1} m \mu_{1}^{\prime}\right)=0 \tag{3.2.70}
\end{equation*}
$$

${ }^{* *} 1-1$ - We consider the case $k>1 \Longrightarrow 3 \nmid\left(1-3^{k-1} m \mu_{1}^{\prime}\right)$. We apply Eisenstein criterion [6] to the polynomial $R(Z)$ given by:

$$
\begin{equation*}
R(Z)=Z^{2}-3 Z+3\left(1-3^{k-1} m \mu_{1}^{\prime}\right) \tag{3.2.71}
\end{equation*}
$$

then:
$-3 \nmid 1,-3|(-3),-3| 3\left(1-3^{k-1} m \mu_{1}^{\prime}\right)$, and $-3^{2} \nmid 3\left(1-3^{k-1} m \mu_{1}^{\prime}\right)$.
It follows that the polynomial $R(Z)$ is irreducible in \mathbf{Q}, then, the contradiction with $R(\delta)=0$.
**1-2- We consider the case $k=1$, then $\mu_{1}=3 \mu_{1}^{\prime}$ and $\left(\mu_{1}^{\prime}, 3\right)=1$, we obtain:

$$
\begin{equation*}
\delta^{2}-3 \delta+3\left(1-m \mu_{1}^{\prime}\right)=0 \tag{3.2.72}
\end{equation*}
$$

* If $3 \nmid\left(1-m \cdot \mu_{1}^{\prime}\right)$, we apply the same Eisenstein criterion to the polynomial $R^{\prime}(Z)$ given by:

$$
R^{\prime}(Z)=Z^{2}-3 Z+3\left(1-m \mu_{1}^{\prime}\right)
$$

and we find a contradiction with $R^{\prime}(\delta)=0$.
${ }^{* *} 1-2-2$ - We consider that $3 \mid\left(1-m \cdot \mu_{1}^{\prime}\right) \Longrightarrow m \mu_{1}^{\prime}-1=3^{i} . h, i \geq 1,3 \nmid h, h \in \mathbb{N}^{*} . \delta$ is an integer root of the polynomial $R^{\prime}(Z)$:

$$
\begin{gather*}
R^{\prime}(Z)=Z^{2}-3 Z+3\left(1-m \mu_{1}^{\prime}\right)=0 \Rightarrow \text { the discriminant of } R^{\prime}(Z) \text { is : } \\
\Delta=3^{2}+3^{i+1} \times 4 . h \tag{3.2.73}
\end{gather*}
$$

As the root δ is an integer, it follows that $\Delta=l^{2}>0$ with l a positive integer. We obtain:

$$
\begin{align*}
& \Delta=3^{2}\left(1+3^{i-1} \times 4 h\right)=l^{2} \tag{3.2.74}\\
\Rightarrow & 1+3^{i-1} \times 4 h=q^{2}>1, q \in \mathbb{N}^{*} \tag{3.2.75}
\end{align*}
$$

We can write the equation (3.2.72) as :

$$
\begin{gather*}
\delta(\delta-3)=3^{i+1} \cdot h \Longrightarrow 3^{3} \mu_{1}^{\prime} \frac{\operatorname{rad}(\delta)}{3} \cdot\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)=3^{i+1} \cdot h \Longrightarrow \tag{3.2.76}\\
\mu_{1}^{\prime} \frac{\operatorname{rad}(\delta)}{3} \cdot\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)=h \tag{3.2.77}
\end{gather*}
$$

We obtain $i=2$ and $q^{2}=1+12 h=1+4 \mu_{1}^{\prime} \operatorname{rad}(\delta)\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)$. Then, q satisfies :

$$
\begin{gather*}
q^{2}-1=12 h \Rightarrow \frac{(q-1)}{2} \cdot \frac{(q+1)}{2}=3 h=\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right) \cdot \mu_{1}^{\prime} \operatorname{rad}(\delta) \Rightarrow \tag{3.2.78}\\
q-1=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)-2 \tag{3.2.79}\\
q+1=2 \mu_{1}^{\prime} \operatorname{rad}(\delta) \tag{3.2.80}
\end{gather*}
$$

It follows that $(q=x, 1=y)$ is a solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{3.2.81}
\end{equation*}
$$

with $N=12 h>0$. Let $Q(N)$ be the number of the solutions of (3.2.81) and $\tau(N)$ is the number of suitable factorization of N, then we announce the following result concerning the solutions of the Diophantine equation (3.2.81) (see theorem 27.3 in [7]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$.
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$.
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.

Let ($\alpha^{\prime}, m^{\prime}$), $\alpha^{\prime}, m^{\prime} \in \mathbb{N}^{*}$ be another pair, solution of the equation (3.2.81), then $\alpha^{\prime 2}-m^{\prime 2}=x^{2}-y^{2}=$ $N=12 h$, but $q=x$ and $1=y$ satisfy the equation (3.2.80) given by $x+y=2 \mu_{1}^{\prime} \mathrm{rad}(\delta)$, it follows $\alpha^{\prime}, m^{\prime}$ verify also $\alpha^{\prime}+m^{\prime}=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)$, that gives $\alpha^{\prime}-m^{\prime}=2\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)$, then $\alpha^{\prime}=x=$ $q=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)$ and $m^{\prime}=y=1$. So, we have given the proof of the uniqueness of the solutions of the equation (3.2.81) with the condition $x+y=2 \mu_{1}^{\prime} \operatorname{rad}(\delta)$. As $N=12 h \equiv 0(\bmod 4) \Longrightarrow$ $Q(N)=[\tau(N / 4) / 2]=[\tau(3 h) / 2]$, the expression of $3 h=\mu_{1}^{\prime} \cdot \operatorname{rad}(\delta) \cdot\left(\mu_{1}^{\prime} \operatorname{rad}(\delta)-1\right)$, then $Q(N)=$ $[\tau(3 h) / 2]>1$. But $Q(N)=1$, then the contradiction and the case $3 \mid\left(1-m \cdot \mu_{1}^{\prime}\right)$ is to reject.
${ }^{* *}$ We suppose that $\left(\mu_{1}, \mu_{2}\right)=1$.
From the equation $m \mu_{1}=\delta^{2}-3 X=\delta^{2}-3(\delta-1)$, we obtain that δ is a root of the following polynomial :

$$
\begin{equation*}
R(Z)=Z^{2}-3 Z+3-m \cdot \mu_{1}=0 \tag{3.2.82}
\end{equation*}
$$

The discriminant of $R(Z)$ is:

$$
\begin{equation*}
\Delta=9-4\left(3-m \cdot \mu_{1}\right)=4 m \cdot \mu_{1}-3=q^{2} \quad \text { with } q \in \mathbb{N}^{*} \quad \text { as } \delta \in \mathbb{N}^{*} \tag{3.2.83}
\end{equation*}
$$

- We suppose that $2 \mid m \mu_{1} \Longrightarrow c^{\prime}$ is even. Then $q^{2} \equiv 5(\bmod 8)$, it gives a contradiction because a square is $\equiv 0,1$ or $4(\bmod 8)$.
- We suppose c^{\prime} an odd integer, then c is even. It follows $c=\operatorname{rad}^{3}(c) \equiv 0(\bmod 8) \Longrightarrow c^{\prime} \equiv$ $1(\bmod 8)$. As $c^{\prime}=\delta^{2}-3 Y . \delta$, we obtain $\delta^{2}-3 Y . \delta \equiv 1(\bmod 8)$. If $\delta^{2} \equiv 1(\bmod 8) \Longrightarrow-3 Y . \delta \equiv$ $0(\bmod 8) \Longrightarrow 8|Y . \delta \Longrightarrow 4| \delta \Longrightarrow c^{\prime}$ is even. Then, the contradiction. If $\delta^{2} \equiv 4(\bmod 8) \Longrightarrow \delta \equiv$ $2(\bmod 8)$ or $\delta \equiv 6(\bmod 8)$. In the two cases, we obtain $2 \mid \delta$. Then, the contradiction with c^{\prime} an odd integer.

It follows that the case $\mu_{a}>\operatorname{rad}^{2.26}(a)$ and $\mu_{c}=\operatorname{rad}^{2}(c)$ is impossible.

Bibliography

[1] M. Waldschmidt, On the abc Conjecture and some of its consequences, presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9, (2013)
[2] B. De Smit, https://www.math.leidenuniv.nl/ desmit/abc/. Accessed December 2020.
[3] P. Mihăilescu, Around ABC, European Mathematical Society Newsletter, N ${ }^{\circ}$ 93, pp 29-34, Sept., (2014)
[4] A. Nitaj, Aspects expérimentaux de la conjecture abc. Séminaire de Théorie des Nombres de Paris(1993-1994), London Math. Soc. Lecture Note Ser., Vol n ${ }^{\circ}$ 235. Cambridge Univ. Press, pp 145-156. (1996)
[5] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan's Conjecture', Journal für die Reine und Angewandte Mathematik, Vol. 2004, Issue 572, (2004) pp 167-195. https://doi.org/10.1515/crll.2004.048
[6] C. Touibi, Algèbre Générale (in French), Cérès Editions, Tunis, pp 108-109. (1996)
[7] B.M. Stewart B.M, Theory of Numbers. $2^{\text {sd }}$ edition, The Macmillan Compagny, N.Y., pp 196-197. (1964)

Chapter 4

Is The $a b c$ Conjecture True?

Abstract

In this paper, we consider the $a b c$ conjecture. As the conjecture $c<\operatorname{rad}^{2}(a b c)$ is true, then we give the proof of the $a b c$ conjecture for $\epsilon \geq 1$ and for the case $\epsilon \in] 0,1[$, we consider that the abc conjecture is false, from the proof, we arrive in a contradiction.

Résumé

Dans cet article, nous considérons la conjecture $a b c$. Comme la conjecture $c<\operatorname{rad}^{2}(a b c)$ est vraie, nous donnons la preuve que la conjecture $a b c$ est vraie pour $\epsilon \geq 1$ et pour les cas $\epsilon \in] 0,1[$, supposant que la conjecture est fausse nous arrivons à une contradiction.

4.1 Introduction and notations

Let a positive integer $a=\prod_{i} a_{i}^{\alpha_{i}}, a_{i}$ prime integers and $\alpha_{i} \geq 1$ positive integers. We call radical of a the integer $\prod_{i} a_{i}$ noted by $\operatorname{rad}(a)$. Then a is written as :

$$
\begin{equation*}
a=\prod_{i} a_{i}^{\alpha_{i}}=\operatorname{rad}(a) \cdot \prod_{i} a_{i}^{\alpha_{i}-1} \tag{4.1.1}
\end{equation*}
$$

We note:

$$
\begin{equation*}
\mu_{a}=\prod_{i} a_{i}^{\alpha_{i}-1} \Longrightarrow a=\mu_{a} \cdot \operatorname{rad}(a) \tag{4.1.2}
\end{equation*}
$$

The $a b c$ conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph Esterlé of Pierre et Marie Curie University (Paris 6) [4]. It describes the distribution of the prime factors of two integers with those of its sum. The definition of the $a b c$ conjecture is given below:

Conjecture 4.1.1. (abc Conjecture): For each $\epsilon>0$, there exists $K(\epsilon)>0$ such that if a, b, c positive integers relatively prime with $c=a+b$, then :

$$
\begin{equation*}
c<K(\epsilon) \cdot r a d^{1+\epsilon}(a b c) \tag{4.1.3}
\end{equation*}
$$

where K is a constant depending only of ϵ.

The idea to try to write a paper about this conjecture was born after the publication in September 2018, of an article in Quanta magazine about the remarks of professors Peter Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt concerning the proof of Shinichi Mochizuki [2]. The difficulty to find a proof of the $a b c$ conjecture is due to the incomprehensibility how the prime factors are organized in c giving a, b with $c=a+b$. So, I will give a simple proof that can be understood by undergraduate students.

We know that numerically, $\frac{\log c}{\log (\operatorname{rad}(a b c))} \leq 1.629912$ [4]. A conjecture was proposed that $c<$ $\operatorname{rad}^{2}(a b c)$ [3]. It is the key to resolve the $a b c$ conjecture. In my paper, as the conjecture $c<\operatorname{rad}^{2}(a b c)$ holds (chapter 3), I propose an elementary proof of the abc conjecture.

4.2 The Proof of the $a b c$ conjecture

Proof. We note $R=\operatorname{rad}(a b c)$ in the case $c=a+b$ or $R=\operatorname{rad}(a c)$ in the case $c=a+1$.

4.2.1 Case : $\epsilon \geq 1$

As $c<R^{2}$ is true, we have $\forall \epsilon \geq 1$:

$$
\begin{equation*}
c<R^{2} \leq R^{1+\epsilon}<K(\epsilon) \cdot R^{1+\epsilon}, \text { with } K(\epsilon)=e, \epsilon \geq 1 \tag{4.2.1}
\end{equation*}
$$

Then the $a b c$ conjecture is true.

4.2.2 Case: $\epsilon<1$

From the statement of the abc conjecture 4.1.1, we want to give a proof that $c<K(\epsilon) R^{1+\epsilon} \Longrightarrow$ $\log K(\epsilon)+(1+\epsilon) \log R-\log c>0$.

For our proof, we proceed by contradiction of the abc conjecture. We suppose that the $a b c$ conjecture is false:

$$
\begin{gather*}
\left.\exists \epsilon_{0} \in\right] 0,1\left[\forall K(\epsilon)>0, \quad \exists c_{0}=a_{0}+b_{0} ; \quad a_{0}, b_{0}, c_{0}\right. \text { coprime so that } \\
\left.c_{0}>K\left(\epsilon_{0}\right) R_{0}^{1+\epsilon_{0}} \text { and } \forall \epsilon \in\right] 0,1\left[, c_{0}>K(\epsilon) R_{0}^{1+\epsilon}\right. \tag{4.2.2}
\end{gather*}
$$

We choose the constant $K(\epsilon)=e^{\frac{1}{\epsilon^{2}}}$. Let :

$$
\begin{equation*}
\left.Y_{c_{0}}(\epsilon)=\frac{1}{\epsilon^{2}}+(1+\epsilon) \log R_{0}-\log c_{0}, \epsilon \in\right] 0,1[\tag{4.2.3}
\end{equation*}
$$

From the above explications, if we will obtain $\forall \epsilon \in] 0,1\left[, Y_{c_{0}}(\epsilon)>0 \Longrightarrow c_{0}<K(\epsilon) R_{0}^{1+\epsilon} \Longrightarrow c_{0}<\right.$ $K\left(\epsilon_{0}\right) R_{0}^{1+\epsilon_{0}}$, then the contradiction with (4.2.2).

About the function $Y_{c_{0}}$, we have:

$$
\begin{array}{r}
\lim _{\epsilon \longrightarrow 1} Y_{c_{0}}(\epsilon)=1+\log \left(R_{0}^{2} / c_{0}\right)=\lambda>0 \\
\lim _{\epsilon \longrightarrow 0} Y_{c_{0}}(\epsilon)=+\infty
\end{array}
$$

The function $\Upsilon_{c_{0}}(\epsilon)$ has a derivative for $\left.\forall \epsilon \in\right] 0,1$ [, we obtain:

$$
\begin{equation*}
Y_{c_{0}}^{\prime}(\epsilon)=-\frac{2}{\epsilon^{3}}+\log R_{0}=\frac{\epsilon^{3} \log R_{0}-2}{\epsilon^{3}} \tag{4.2.4}
\end{equation*}
$$

$\left.Y_{c_{0}}^{\prime}(\epsilon)=0 \Longrightarrow \epsilon=\epsilon^{\prime}=\sqrt[3]{\frac{2}{\log R_{0}}} \in\right] 0,1\left[\right.$ for $R_{0} \geq 8$.

ε	0	0		ε^{\prime}		1
$Y^{\prime}(\varepsilon)$				0	+	
$Y(\varepsilon)$						

Figure 4.1: Table of variations

Discussion from the table (Fig.: 4.1):

- If $Y_{c_{0}}\left(\epsilon^{\prime}\right) \geq 0$, it follows that $\left.\forall \epsilon \in\right] 0,1\left[, Y_{c_{0}}(\epsilon) \geq 0\right.$, then the contradiction with $Y_{c_{0}}\left(\epsilon_{0}\right)<0 \Longrightarrow$ $c_{0}>K\left(\epsilon_{0}\right) R_{0}^{1+\epsilon_{0}}$ and the supposition that the $a b c$ conjecture is false can not hold. Hence the $a b c$ conjecture is true for $\epsilon \in] 0,1[$.
- If $Y_{c_{0}}\left(\epsilon^{\prime}\right)<0 \Longrightarrow \exists 0<\epsilon_{1}<\epsilon^{\prime}<\epsilon_{2}<1$, so that $Y_{c_{0}}\left(\epsilon_{1}\right)=Y_{c_{0}}\left(\epsilon_{2}\right)=0$. Then we obtain $c_{0}=K\left(\epsilon_{1}\right) R_{0}^{1+\epsilon_{1}}=K\left(\epsilon_{2}\right) R_{0}^{1+\epsilon_{2}}$. We recall the following definition:

Definition 4.2.1. The number ξ is called algebraic number if there is at least one polynomial:

$$
\begin{equation*}
l(x)=l_{0}+l_{1} x+\cdots+a_{m} x^{m}, \quad a_{m} \neq 0 \tag{4.2.5}
\end{equation*}
$$

with integral coefficients such that $l(\xi)=0$, and it is called transcendental if no such polynomial exists.

We consider the equality :

$$
\begin{equation*}
c_{0}=K\left(\epsilon_{1}\right) R_{0}^{1+\epsilon_{1}} \Longrightarrow \frac{c_{0}}{R_{0}}=\frac{\mu_{c_{0}}}{\operatorname{rad}\left(a_{0} b_{0}\right)}=e^{\frac{1}{\epsilon_{1}^{2}}} R_{0}^{\epsilon_{1}} \tag{4.2.6}
\end{equation*}
$$

i) - We suppose that $\epsilon_{1}=\beta_{1}$ is an algebraic number then $\beta_{0}=1 / \epsilon_{1}^{2}$ and $\alpha_{1}=R_{0}$ are also algebraic numbers. We obtain:

$$
\begin{equation*}
\frac{c_{0}}{R_{0}}=\frac{\mu_{c_{0}}}{\operatorname{rad}\left(a_{0} b_{0}\right)}=e^{\frac{1}{\epsilon_{1}^{2}}} R_{0}^{\epsilon_{1}}=e^{\beta_{0}} \cdot \alpha_{1}^{\beta_{1}} \tag{4.2.7}
\end{equation*}
$$

From the theorem (see theorem 3, page 196 in [1]):
Theorem 4.2.1. $e^{\beta_{0}} \alpha_{1}^{\beta_{1}} \ldots \alpha_{n}^{\beta_{n}}$ is transcendental for any nonzero algebraic numbers $\alpha_{1}, \ldots, \alpha_{n}, \beta_{0}, \ldots, \beta_{n}$.
we deduce that the right member $e^{\beta_{0}} . \alpha_{1}^{\beta_{1}}$ of (4.2.7) is transcendental, but the term $\frac{\mu_{c_{0}}}{\operatorname{rad}\left(a_{0} b_{0}\right)}$ is an algebraic number, then the contradiction and the case $Y_{c_{0}}\left(\epsilon^{\prime}\right)<0$ is impossible. It follows $Y_{c_{0}}\left(\epsilon^{\prime}\right) \geq 0$ then the $a b c$ conjecture is true.
ii) - We suppose that ϵ_{1} is transcendental, then $1 /\left(\epsilon_{1}^{2}\right), e^{1 /\left(\epsilon_{1}^{2}\right)}$ and $R_{0}^{\epsilon_{1}}=e^{\epsilon_{1} \log R_{0}}$ are also transcendental, we obtain that c_{0} / R_{0} is transcendental, then the contradiction with c_{0} / R_{0} an algebraic number. It follows that $Y_{c_{0}}\left(\epsilon^{\prime}\right) \geq 0$ and the $a b c$ conjecture is true.

Then the proof of the $a b c$ conjecture is finished. As $c<R^{2}$ is true, we obtain that $\forall \epsilon>0, \exists K(\epsilon)>0$, if $c=a+b$ with a, b, c positive integers relatively coprime, then :

$$
\begin{equation*}
c<K(\epsilon) \cdot r a d^{1+\epsilon}(a b c) \tag{4.2.8}
\end{equation*}
$$

and the constant $K(\epsilon)$ depends only of ϵ.
Q.E.D

Ouf, end of the mystery!

4.3 Conclusion

As $c<R^{2}$ is true, we have given an elementary proof of the $a b c$ conjecture. We can announce the important theorem:

Theorem 4.3.1. The abc conjecture is true:
For each $\epsilon>0$, there exists $K(\epsilon)>0$ such that if a, b, c positive integers relatively prime with $c=a+b$, then:

$$
\begin{equation*}
c<K(\epsilon) \cdot r a d^{1+\epsilon}(a b c) \tag{4.3.1}
\end{equation*}
$$

where K is a constant depending of ϵ.

Bibliography

[1] A. Baker, Effective Methods in Diophantine Problems. Proceedings of Symposia in Pure Mathematics, Volume XX, 1969 Number Theory Institute. AMS. (1971) 451 pages, pp 195-205.
[2] K. Kremmerz, Titans of Mathematics Clash Over Epic Proof of ABC Conjecture. The Quanta Newsletter, 20 September 2018. www.quantamagazine.org. (2018)
[3] P. Mihăilescu, Around ABC. European Mathematical Society Newsletter, N° 93, September 2014, (2014) pp 29-34.
[4] M. Waldschmidt, On the abc Conjecture and some of its consequences, presented at The 6th World Conference on 21st Century Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore (Pakistan), March 6-9. (2013)

List of Figures

1 Photo of the Author
1.1 The table of variations . 6
4.1 Table of variations . 77

List of Tables

1.1 Table of $p(\bmod 6)$ 19
1.2 Table of $C^{l}(\bmod 6)$ 36

[^0]: ** I-2-1-2-2-2-2-3| B^{m} : If $3\left|B^{n} \Longrightarrow 3\right| B$, but the equation (1.6.9) implies $3\left|\left(A^{m}-B^{n}\right)^{2} \Longrightarrow 3\right|$ $\left(A^{m}-B^{n}\right) \Longrightarrow 3\left|A^{m} \Longrightarrow 3\right| A$. The last case above has given that $3 \nmid A$. Then the case $3 \mid B^{m}$ is to reject.

