New Standard Model

Deokjin Kim
EnTEs Institute, Korea. E-mail: entes@outlook.kr

July 12, 2022
Keywords: Dark energy, Dark matter, Origin of life, Origin of mass, Theory of everything

Abstract

All things are composed of six fundamental particles: electron neutrino 0.1524 eV , muon neutrino 169.06 keV , tau neutrino 15.408 MeV , graviton $2.506 \mathrm{E}-10 \mathrm{eV}$, photon 0.1609 eV , and gluon 115.32 eV . All the other particles are the combined particles. They operate as logarithmic elliptic equations, which satisfy super symmetry, gauge symmetry, renormalization, spontaneous symmetry breaking, hierarchical problem, and fine-tuning universe. From this, a new standard model is drawn. In this paper, the core of previous research is summarized, errors are corrected, and new contents are described. The language of physics should be drawing. Various unsolved problems can be solved when the shape of every particle is accurately drawn. The core is two. 1) The compressive strength of three-dimensional quantum space formed as log-elliptic equation gives the particle mass. 2) The brane of quantum space is composed of dipoles of a total of 6 components: three generation neutrinos, graviton, photon, and gluon. Based on this, all problems in physics will be solved.

1. Introduction

In the previous study [1], the shape and mass of various particles were calculated in detail. The study was calculated with a total of 8 input variables. This study is calculated with a total of 6 input variables. In the previous study [2], a new diagram of standard model was proposed. Such as in previous studies [3], the calculation scope of this content is very wide. Therefore, the purpose of this study is to summarize the core of the above extensive research, to fix previous errors, and to add new important contents.

2. New Standard Model

2.1 Current Standard Model

The standard model of particle physics is shown in Fig. 1. It consists of a total of 17 elementary particles and graviton.

2.2 New Standard Model

A new standard model is proposed in Fig. 2. This is some improved in Fig. 2 of Ref [2].

2.3 Six fundamental particles

In Fig. 2, all things are composed of six fundamental particles: electron neutrino v_{e}^{n}, muon neutrino v_{μ}^{n}, tau neutrino v_{τ}^{n}, graviton ρ_{e}^{n}, photon ρ_{μ}^{n}, and gluon ρ_{τ}^{n}. Their shapes are shown in Fig. 3(a).

2.4 Combined particles

All the other particles are the combined particles. Fig. 3(b) is the shape of weak force, electromagnetic force, and strong force, and Fig. 3(d) is the shape of electron, muon, and tau.

2.5 Log-elliptic equation

The mass of particles and the change of the universe follow logarithmic elliptic equation with midpoint 6.00107D and vertex 0D. Since two of the four variables for solving elliptic equation have been identified, given two unknowns, the elliptic equation is drawn.

2.6 Kinetic state, Steady state, Combined state

Particle has the kinetic state rest mass of Fig. 4 and 5 and the steady state rest mass of Fig. 6 and 7. The change of the universe operates as the combined state of Fig. 8 and 9.

2.7 Particle and Antiparticle

Particle is red n and anti-particle is blue s. In fermion, the mass of antiparticle s is 2π times heavier than that of particle n. In boson, the mass of $n s$ is $(1+2 \pi)^{2} \cdot \sqrt{ } n$. That is, if the mass of particle n is known, the mass of antiparticle s is automatically calculated.

2.8 Normal and Oscillation

Lowercase n and s means normal mass, and uppercase N and S means oscillating mass. In Figs. 4-9, (a) is normal mass, and ($b-\mathrm{d}$) is oscillating mass. The shape of the oscillating particle is shown in Fig. 3(c), and its oscillating mass is calculated in Figs. 4-9(e).

Fig. 1 Current Standard Model

I 4D II 5D III 6.00107D(6)
Fundamental: Fermion
Time (1)

\sum Fermion

${ }_{\text {sd }}$ d	$510.999 \mathrm{keV}(5)(10)$
$\begin{aligned} & \text { © } \\ & \stackrel{0}{0} \end{aligned}$	$v_{e}^{N} v_{\mu}^{N} v_{\tau}^{N}$
$\stackrel{\square}{0}$	$\rho_{\mathrm{e}}^{\mathrm{N}} \rho_{\mathrm{H}}^{\mathrm{N}} \rho_{\tau}^{\mathrm{N}}$ electron

Anti-Quarks Quarks

Fig. 2 New Standard Model

a456 1.0775 11.952 eV

Electron

Muon

(d) Combination $\Sigma \mathrm{NG}$

Fig. 3 Particle shape and log-mass

(a) Normal mass

(c) 5D oscillation mass

(b) 4D oscillation mass

(d) 6D oscillation mass

Kinetic		Normal			Oscillation 4D			Oscillation 5D			Oscillation 6D		
high	6	-0.81690	5.22804	. 18775	7.13128 5.27069 -0.81690	$\begin{aligned} & 7.17393 \\ & 5.22804 \end{aligned}$	$\begin{aligned} & 7.18775 \\ & 5.21421 \end{aligned}$	6.95194	$\begin{aligned} & 7.13002 \\ & 5.22804 \end{aligned}$	7.18775	5.09258	5.22804	$\begin{aligned} & 7.18775 \\ & 5.27195 \end{aligned}$
middle	5												
low	4							-0.81690	-0.99498	-1.05271	-0.81690	-0.95236	-0.99628
Neutri		electron	muon	tau									
high	6				6.93658	6.74666	6.20098	6.13900	5.34599	3.06752			
middle	5				5.46538	5.65530	6.20098				4.47420	3.87099	2.13784
low	4							-0.00396	0.78905	3.06752	-0.19853	0.40469	2.13784

$$
\begin{aligned}
& \alpha_{N}^{456}=\left(\alpha_{n}^{44}+\alpha_{n}^{45}+\alpha_{n}^{46}\right) / 3=(-0.81690+5.27069+7.13128) / 3=3.86169,7.27258 \mathrm{keV} \\
& \beta_{N}^{56}=\left(\beta_{n}^{55}+\beta_{n}^{56}+\beta_{n}^{45}+\beta_{n}^{46}\right) / 4=(5.22804+7.13002+7.17393+5.22804) / 4=6.19001,1.54884 \mathrm{MeV} \\
& \gamma_{N}^{6}=\left(\gamma_{n}^{66}+\gamma_{n}^{56}+\gamma_{n}^{46}\right) / 3=(7.18776+7.18776+7.18776) / 3=7.18776,15.4082 \mathrm{MeV}
\end{aligned}
$$

(e) Log values

Fig. 4 Mass of neutrinos - Kinetic state

(a) Normal mass

(c) 5D oscillation mass

(b) 4D oscillation mass

(d) 6D oscillation mass

$$
\begin{gathered}
\alpha_{G}^{456}=\left(\alpha_{g}^{44}+\alpha_{g}^{45}+\alpha_{g}^{46}\right) / 3=(-9.60102+-0.73130+1.97960) / 3=-2.78424,1.64348 \mathrm{meV} \\
\beta_{G}^{56}=\left(\beta_{g}^{55}+\beta_{g}^{56}+\beta_{g}^{45}+\beta_{g}^{46}\right) / 4=(-0.79345+1.97777+2.04174+-0.79345) / 4=0.60816,4.05657 \mathrm{eV} \\
\gamma_{G}^{6}=\left(\gamma_{g}^{66}+\gamma_{g}^{56}+\gamma_{g}^{46}\right) / 3=(2.06189+2.06189+2.06189) / 3=2.06189,115.316 \mathrm{eV} \\
\text { (e) Log values }
\end{gathered}
$$

Fig. 5 Mass of graviton, photon, gluon - Kinetic state

(a) Normal mass

(c) 5D oscillation mass

Steady		Normal			Oscillation 4D			Oscillation 5D			Oscillation 6D		
high	6			7.19064	7.13386	7.17674	7.19064	6.95354	7.13260	7.19064			7.19064
middle	5		5.22019		5.26308	5.22019	5.20629		5.22019		5.08399	5.22019	5.26435
low	4	-0.85787			-0.85787			-0.85787	-1.03692	-1.09497	-0.85787	-0.99407	-1.03822
Neutrino		electron	muon	tau									
high	6				6.93810	6.74714	6.19847	6.13614	5.33879	3.04784			
middle	5				5.45884	5.64980	6.19847				4.46223	3.85571	2.11306
low	4							-0.04047	0.75688	3.04784	-0.23610	0.37042	2.11306

$\alpha_{N}=\left(\alpha_{n}^{44}+\alpha_{n}^{45}+\alpha_{n}^{46}\right) / 3=(-0.85786+5.26308+7.13386) / 3=3.84636,7.02031 \mathrm{keV}$ $\beta_{N}^{56}=\left(\beta_{n}^{55}+\beta_{n}^{56}+\beta_{n}^{45}+\beta_{n}^{46}\right) / 4=(5.22019+7.13259+7.17674+5.22019) / 4=6.18743,1.53968 \mathrm{MeV}$ $\gamma_{N}^{6}=\left(\gamma_{n}^{66}+\gamma_{n}^{56}+\gamma_{n}^{46}\right) / 3=(7.19064+7.19064+7.19064) / 3=7.19064,15.5111 \mathrm{MeV}$
(e) Log values

Fig. 6 Mass of neutrinos - Steady state

(a) Normal mass

(c) 5D oscillation mass

(b) 4D oscillation mass

(d) 6D oscillation mass

Steady		Normal		2.05900	Oscillation 4D			Oscillation 5D			Oscillation 6D			
high	6			1.97702	2.03893	2.05900	1.71671	1.97520	2.05900			2.05900		
middle	5	$-9.560055^{-0.78560}$			-0.72369	-0.78560	-0.80567		-0.78560		-0.98222	-0.78560	-0.72185	
low	4					-9.56005			-9.56005	-9.81854	-9.90234	-9.56005	-9.75667	-9.82042
Gravino		graviton photon gluon			graviton	photon gluon		graviton	photon	gluon	graviton	photon	gluon	
high	6				$\begin{aligned} & 1.69442 \\ & -0.44108 \end{aligned}$	1.41874	0.62667	0.53670	-0.61439	-3.92167				
middle	5				-0.16541	0.62667				-1.87981	-2.75540	-5.27113		
low	4						-8.38004	-7.22895	-3.92167	-8.66245	-7.78687	-5.27113		

$$
\begin{aligned}
& \alpha_{G}^{456}=\left(\alpha_{g}^{44}+\alpha_{g}^{45}+\alpha_{g}^{46}\right) / 3=(-9.56005+-0.72369+1.97702) / 3=-2.76890,1.70253 \mathrm{meV} \\
& \beta_{G}^{56}=\left(\beta_{g}^{55}+\beta_{g}^{56}+\beta_{g}^{45}+\beta_{g}^{46}\right) / 4=(-0.78560+1.97520+2.03893+-0.78560) / 4=0.61073,4.08069 \mathrm{eV} \\
& \gamma_{G}^{6}=\left(\gamma_{g}^{66}+\gamma_{g}^{56}+\gamma_{g}^{46}\right) / 3=(2.05900+2.05900+2.05900) / 3=2.05900,114.551 \mathrm{eV}
\end{aligned}
$$

(e) Log values

Fig. 7 Mass of graviton, photon, gluon - Steady state

(a) Normal mass

(c) 5D oscillation mass

(b) 4D oscillation mass

(d) 6D oscillation mass

Steady		Normal			Oscillation 4D			Oscillation 5D			Oscillation 6D		
high	6			7.18957	7.13290	7.17570	7.18957	6.95294	7.13164	7.18957			7.18957
middle	5		5.22311		5.26590	5.22311	5.20923		5.22311		5.08718	5.22311	5.26717
low	4	-0.84265			-0.84265			-0.84265	-1.02134	-1.07928	-0.84265	-0.97858	-1.02264
Neutr		electron	muon	tau									
high	6				6.93754	6.74696	6.19940	6.13721	5.34146	3.05515			
middle	5				5.46127	5.65184	6.19940				4.46668	3.86139	2.12227
low	4							-0.02691	0.76883	3.05515	-0.22215	0.38315	2.12227

$$
\begin{aligned}
& \alpha_{N}^{456}=\left(\alpha_{n}^{44}+\alpha_{n}^{45}+\alpha_{n}^{46}\right) / 3=(-0.84265+5.26590+7.13290) / 3=3.85205,7.11298 \mathrm{keV} \\
& \beta_{N}^{56}=\left(\beta_{n}^{55}+\beta_{n}^{56}+\beta_{n}^{45}+\beta_{n}^{46}\right) / 4=(5.22311+7.13164+7.17570+5.22311) / 4=6.18839,1.54308 \mathrm{MeV} \\
& \gamma_{N}^{6}=\left(\gamma_{n}^{66}+\gamma_{n}^{56}+\gamma_{n}^{46}\right) / 3=(7.18957+7.18957+7.18957) / 3=7.18957,15.4728 \mathrm{MeV}
\end{aligned}
$$

(e) Log values

Fig. 8 Mass of neutrinos - Combined state

(a) Normal mass

(b) 4D oscillation mass

(d) 6D oscillation mass

$$
\begin{aligned}
& \alpha_{G}^{456}=\left(\alpha_{g}^{44}+\alpha_{g}^{45}+\alpha_{g}^{46}\right) / 3=(-9.57526+-0.72652+1.97798) / 3=-2.77460,1.68035 \mathrm{meV} \\
& \beta_{G}^{56}=\left(\beta_{g}^{55}+\beta_{g}^{56}+\beta_{g}^{45}+\beta_{g}^{46}\right) / 4=(-0.78851+1.97615+2.03998+-0.78851) / 4=0.60978,4.07171 \mathrm{eV} \\
& \gamma_{G}^{6}=\left(\gamma_{g}^{66}+\gamma_{g}^{56}+\gamma_{g}^{46}\right) / 3=(2.06007+2.06007+2.06007) / 3=2.06007,114.835 \mathrm{eV}
\end{aligned}
$$

(e) Log values

Fig. 9 Mass of graviton, photon, gluon - Combined state

Fig. 10 Calculation of W and H boson

2.9 Three generation dark forces

There is dark time, not dark energy, and it causes the three generation dark forces. The red arrow is 4D dark force, the orange arrow is $5 D$ dark force, and the green arrow is $6 D$ dark force. They are calculated from the four forces in Fig. 15. At the chart, 2.6922 is calculated. The value of 2.6922 / ($1+2.6922$) is 72.916% and the value of $1 / 2.6922$ is 37.144%. These values are very important.

2.10 Weak, Electromagnetic, Strong forces

Gravino is a word coined by author, and it means graviton, photon, and gluon. The shapes of forces in Fig. 2 are shown in Fig. 3(b). Force is the combination particle of one normal neutrino and one oscillating gravino. They are always kinetic state particle forces. Weak force causes gravity. Here, weak force acts on quantum space, but gravitational force acts toward 4D empty space. Three generation dark forces are affecting above particle forces. The result is the four fundamental physical forces. The first-generation dark force is the dark energy of physics.

2.11 Electron, Muon, Tau

The shapes of electron, muon, and tau in Fig. 2 are shown in Fig. 3(d). They are the combination particle of oscillating neutrinos and oscillating gravinos.

2.12 Fermion and Boson

Fermion particles located on the left side of Figs. 4-9 make up our universe, and boson particles located on the right side are hidden in quarks. When the masses of fermion particles are known, the masses of boson particles are calculated with

Fig. 11 Collapse of quarks
the super-gauge symmetry of the elliptic equation. The fermion branes constitute dimensional multiverse with a size close to infinity, and the boson branes are a near-zero universe hidden in quarks. After $10^{\wedge} 111$ years, this reverse.

2.13 W, Z, H Bosons

The shapes of W, Z, and H bosons are equal to Fig. 3(a). Here, the masses of the normal bosons are calculated from super-gauge symmetry of oscillating fermions. When Z boson is 91.1876 GeV , from Fig. 10, W and H bosons are calculated as 80.376 GeV and 125.06 GeV . In Fig. 11, the w, z , h bosons are hidden in quarks. When the quark collapses, a boson pops out into the 5D quantum space of our world. It is Z boson. Fig. 8.2 of the previous study [1] was changed to above Fig. 11.

2.14 Down, Strange, Bottom

In Fig. 12, the shell of down, strange, and bottom quarks

Fig. 12 Shape of quarks

Fig. 13 Supergauge symmetry of combined Neutrinos
is the oscillating neutrinos of steady state, and the inside is the particle and anti-particle normal neutrino and gravino bosons of combined state. The boson particle in quark is lowercase w, z, or h with very little mass of Fig. 11. When the quark collapse, the w, z, h boson of the combined state change to kinetic state of Fig. 11 (See Table 3), and they transform into uppercase W, Z, or H with very large mass. The color of down, strange, and bottom is red. Therefore, they are matter.

2.15 Up, Charm, Top

In Fig. 12, the shell of up, charm, and top quarks is the normal anti-neutrinos of steady state, and the inside is the particle and antiparticle normal neutrino bosons of steady state. The boson mass of lowercase b is located in quark. When a quark collapse, it transforms into uppercase B with large mass. The color of up, charm, top is blue. Therefore, they are anti-matter.

3. New Interpretation

3.1 Too many input constants

As shown in Fig. 2, a total of 10 variables are needed to solve the problem. Here, 4 variables are resolved internally. Therefore, the total independent variables are 6 . If six exact values are given, everything is calculated accurately as shown in Fig. 20. In Fig. 3(a), the $n+g$ mass in kinetic state and the $\mathrm{n}+\mathrm{g}$ mass in steady state are the same. From this, two masses are calculated internally. In Ref. [1], the following calculations are not explained. In the W Z H mass of Fig. 10, the value of B / H is 2.0030 and the value of Hu is 133.23 GeV . Fig. 13 shows the combined state mass of Fig. 8(a). Two internal variables can be calculated from the E 2.0030 and the Bu 133.23 GeV.

Fig. 14 Shape of quantum space of universe

3.2 Why are particles three generations?

As shown in Fig. 14, all particles are classified into three generations because three generation quantum spaces of a, b, and c dimensions exist. The calculated quantum dimensions are 4D, 5D and 6.00107D.

3.3 What is Gravity?

Gravity is easily calculated from Fig. 15. (a) is the relative mass of the force particles, and (b) is the physical force affected by the dark force. Strong force is on 6D, electromagnetic force is on 5D, weak force is on 4D, and gravitational force is on 0 D . The 0D is empty, not quantum space. The 3D position is the space that we usually perceive.

3.4 What is the origin of mass?

As shown in Fig. 14, the compressive strength of three generation quantum space imparts a mass to quantum particle. That is, quantum particles do not have proper mass. In Fig. 16, the combination of 3 kg and 4 kg in quantum space is not addition 7 kg but multiplication 12 kg . In muon of Fig 2

Fig. 16 Calculation of quantum particle mass

Fig. 15 Unification of four fundamental forces
or Fig. 3(d), the value of $4.8852 \mathrm{MeV} \times 21.628 \mathrm{eV}$ is the muon mass of 105.658 MeV . There is a photon in the shape of muon. This is the cause of muon $\mathrm{g}-2$ problem.

3.5 Is the mass of neutrino 0 eV ?

There masses are calculated in Fig. 4, 6, 8(a).

3.6 Is the mass of gravino 0 eV ?

There masses are calculated in Fig. 5, 7, 9(a).

3.7 What is Oscillation?

Three generation neutrinos and three generation gravinos constantly jump through three generation quantum space of Fig. 14. Due to this, their masses always change to three generation masses. This is oscillation phenomenon. The oscillating masses are calculated in Figs. 4-9(b-c).

3.8 Does antineutrino also oscillate?

In Fig. 12, the red neutrino has oscillation, and the blue anti-neutrino has no oscillation.

3.9 Why is everything a particle?

The origin of particle is an extremely compressed universal brane. Part of brane breaks and turns into particle. Therefore, a particle is a very long line. When the line is placed in quantum space, it turns into a particle that has heavy mass.

3.10 Is particle correct? Is wave correct?

From the quantum space abc of Fig. 14, when the particle appears on our space XYZ, it turns into a wave line that has almost close 0 eV . This is because the compressive strength of our linear space is almost 0 eV . The mass of photon located in quantum space is 0.1609 eV . However, when it appears on our space, it turns into light with almost close 0 eV . See Fig. 3. Not particle, not wave, open particle is the correct answer.

3.11 Do hypothetical particles exist?

All particles are a combination of six fundamental particles. The mass of all particles can be calculated with the values in Figs. 4-9 and the dark forces in Fig. 15.

ν_{τ}^{S}	v_{τ}^{n}	$v_{\mathrm{e}}^{\mathrm{s}} \nu_{\mu}^{\mathrm{s}} \nu_{\tau}^{\mathrm{s}}$	$v_{e}^{N} v_{\mu}^{N} v_{\tau}^{N}$	$\nu^{\nu}{ }_{\mu}$	$V_{\mu}^{\sim} V_{\tau}^{N}$		τ
$v_{\text {lig }}^{\text {l }} v_{\text {il }}^{\text {S }}$	${ }_{6455}^{\rho_{\tau}^{\mathrm{N}}}$	$v_{10}^{10} v^{\text {S }}$		$\mathrm{\rho}_{0.045970}^{\mathrm{N}}$	$\rho_{\mu}^{N} \rho_{\mu}^{\mathrm{N}} \rho_{\tau}^{\mathrm{N}}$	เ-	$\rho_{\mu} \rho_{\tau}$
$\begin{gathered} \text { Up } \\ \substack{2.2572 \mathrm{MeV} \\ 6.353577} \end{gathered}$	$\begin{gathered} \text { Strong } \\ 42.152 \mathrm{keV} \\ 4.624822 \end{gathered}$	Up 2.2572 MeV 235 6.353577	$\begin{gathered} \text { Down } \\ 4.7342 \mathrm{MeV} \\ 6.675244 \end{gathered}$	Electromagnetic 828.13 eV 2.918099	Electron		$\rho_{\mathrm{e}}^{\mathrm{N}} \rho_{\mu}^{\mathrm{N}} \rho_{\tau}^{\mathrm{N}}$ monopole force
$10^{\wedge}[(6.355577+4.624822+6.355577+6.675244) / 4+0.006455+2.9180099+0.045970]=938.272 \mathrm{MeV}$ Proton							

Fig. 17 The number of particles and antiparticles in Hydrogen

Fig. 18 Dark energy and dark matter

3.12 Is super-symmetry correct?

In Fig. 4, the left side of ellipse is the real fermion universe, and the right side is the imaginary boson universe. The upper part is a positive universe, and the lower part is a negative universe. They have perfect super-gauge symmetry.

3.13 Will proton decay?

The three generation quantum spaces of Fig. 14 dominate everything. If quantum space were forever stable, proton would not decay by themselves.

3.14 Where is antimatter?

In Fig. 12, down, strange, and bottom are matter, and up, charm, and top are anti-matter. That is, they exist exactly in equal numbers in the universe. Fig. 17 is hydrogen. The red particles and blue antiparticles are equal numbers, and only the red monopole force particles remain. The force particles cause various chemical reactions.

3.15 What is consciousness?

In Fig. 17, there is only the red forces. The red and blue forces must be equal numbers. Where is the blue force? There is no blue force in inanimate objects.

3.16 Where is Dark Matter?

In Fig. 18, the object inside of the 3D universe is dark matter or Planck star. The object is composed of antiparticles, and antiparticle is 2π times more massive than particle. That is, dark matter cannot be observed in space.

3.17 Is Bing Bang theory correct?

In Fig. 18, (a) is Big Bang time, (b) is cosmological constant time, (c) is Hubble time, and (d) is double cosmological constant time. The standard for the interpretation of the universe is not Planck time $5.4 \mathrm{E}-44$ seconds, but the cosmological constant time of 10.048 billion years. Big bang theory adopts the value on OD in Fig. 3. The Big Bang, past, present, and future of our universe are all in 3D.

3.18 Why is it inconsistent with $\Lambda C D M$ model?

Planck length l_{P} is $1.61626 \mathrm{E}-35 \mathrm{~m}$, and the cosmological constant Λ in Planck 2018 data is $1.1056 \mathrm{E}-52 / \mathrm{m} 2$. Therefore, the value of $l_{P}^{2} \cdot \Lambda$ is $1 \mathrm{E}-121.5326$. In Fig. 8(a), the value of v_{0} / v_{3} is $1 \mathrm{E}-121.5326$. This means that l_{P} is 0 D value and Λ is 3 D value. It can be understood that there are N -D Planck length $l_{P N}$ and N -D cosmological constant Λ_{N}.

3.19 What is dark energy?

The value of $l_{P 3}^{2} \cdot \Lambda_{3}$ is $v_{3} / v_{3}=1$. Therefore, the 3D Planck time $t_{P 3}$ is $1 / c \sqrt{\Lambda_{3}}=1 /(2.9979 \mathrm{E} 8 \cdot 60 \cdot 60$. $\left.24 \cdot 365.24 \cdot \sqrt{\Lambda_{3}}\right)=10.053$ BY. In Fig. 18(b), the calculated value of this paper is 10.048 BY . In Plank 2018 data, the current time is 13.787 BY. The value of 10.053 / (13.787 -10.053) is 2.6923 . In Fig. 15(b), the calculated value of this paper is 2.6922 . The value of 10.053 / 13.787 is 72.915%, and this value is not dark energy but time ratio. In Plank 2018 data, the ratio of dark energy, dark matter, and ordinary matter is 68.89% : 26.19\% : 4.92\%. In Fig.18, our universe is an absolute 4D sphere. Its overall shape has nothing to do with the amount of ordinary matter.

3.20 What is the origin of force?

The shapes of force are drawn in Fig. 3(b). From Fig. 15(a), electromagnetic force is $10^{\wedge}-1.7067 / 2.6922=1 / 137.036$, and weak force is $10^{\wedge}-6.4254 \times 2.6922=1.01093 \mathrm{E} 6$. When plotting log parabola, the value of OD is $2.1938 \mathrm{E}-39$, and multiplying 2.6922 , the value is calculated as $5.9061 \mathrm{E}-39$. The 2.6922 is equally affecting above three forces. The 2.6922 is 10.048 / (13.780-10.048). Here 10.048 BY is constant and 13.780 is time flow variable. When time is around 10.048 BY , its value becomes infinity. This is very difficult to understand.

3.21 Arrow of time

In Fig. 4(a), our universe is on 3D. The change goes towards 2D. The reverse is impossible.

3.22 Dimensionless physical constant

As calculated above, the magnitude of forces can change according to time flow.

Fig. 19 Characteristics of log-elliptic equation

3.23 Fine-tuned universe

Everything is calculated from 6 input variables. It is the dark matter in Fig. 18 that fine-tunes our universe.

3.24 Planck particle, Cosmic inflation

In Fig. 18, (b) is the 3D cosmological constant time, which is 3D Planck unit. Planck particles calculated in physics do not exist in our universe. Big Bang must be reinterpreted.

3.25 Supermassive black hole

The universe of 2 D physics is spread out in it.

3.26 Galaxy rotation problem

Supermassive black hole is rotating galactic space and swallowing it. Against swallowing is Newton's law. The rotating galactic space is compressed such as convex lens, and it causes gravitational lensing.

3.27 Void, Filament, Supercluster, Great wall

As shown in Fig. 18(c), universe is a supergiant monopole superconductor. This forms the peculiar structure of galaxies.

3.28 Distinction between past and future

In Fig. 18(c), the left side is the past of kinetic state, and the right side is the future of steady state. (c) itself is the mixture of past 37.144% and future 62.856%. This is present.

3.29 Generation of hydrogen

Even now, elementary particles that did not exist are still
being generated in galaxies. All universes are open system.

3.30 Parallel universe, Holographic universe, Etc.

In Fig. 3(a), our universe is located on 3D. After countless times, our universe turns into unimaginable strange universe. In Fig. 18, (a) is integer 0, (b) is integer 1, and (d) is integer 2. That is, integers continue to occur every 10.048 BY. What does that integer mean?

4. Logarithmic Elliptic Equation

4.1 Normal distribution equation

Normal distribution diagram and equation are shown in the upper of Fig. 19(a).

4.2 Log-parabolic equation

As shown in the left middle of (a), the value of log-parabolic equation is the normal distribution equation.

4.3 Value scale and Log scale

(a) is value scale, and (b) is log scale. They are the same.

4.4 Log-elliptic equation

Log-elliptic equation is drawn in (b).

4.5 Dirac delta function

If the log-ellipse of (b) is again plotted as values, it is (a). That is, log-ellipse satisfies Dirac delta function.

4.6 Super symmetry

In (b), the left and right sides of elliptic equation are symmetrical. The left side is fermion real number universe, and the right side is boson imaginary number universe.

4.7 Gauge symmetry

In (b), the upper and lower sides of elliptic equation are symmetrical. The upper is particle positive universe, and the lower is anti-particle negative universe.

4.8 Renormalization

In (b), the left side of parabola towards $-\infty$, and the right side towards ${ }^{+\infty}$. Eventually, the extreme value become exactly 0 eV . The left end of the ellipse is $-\mathrm{a}(0 \mathrm{D})$ and the right end is $+\mathrm{a}(12 \mathrm{D})$.

4.9 Spontaneous symmetry breaking

In (b), elliptic equation has vertices at -a and $\mathrm{q}-\mathrm{b}$.

4.10 Hierarchical problem

In (b), The minimum value of the ellipse is $1 / \mathrm{E} 273$. This is an extremely small value, but not 0 eV .

4.11 Fine-tuning universe

In (b), the lower part of parabola and the right side of inverse parabola cannot be calculated. However, ellipse can calculate all area.

4.12 Anthropic principle

In (b), our universe is located on upper 3D. Therefore, it can be understood that 6D multiverses exist. The 6D12D universes of down ellipse are the super-gauge symmetry of 0D6D universes of upper ellipse.

5. Result of calculation

5.1 Six input conditions

In Fig. 2, there are a total of 10 independent variables, but 4 are calculated from internal equations. Therefore, there are 6 independent variables. The following six input conditions were substituted. Electromagnetic force 1/137.036, gravitational force $5.90615 \mathrm{E}-39$, proton 938.272 MeV , electron 510.999 keV , muon 105.658 MeV, Z boson 91.1876 GeV .

5.2 Neutrinos and Gravinos

From the six-variable root finding, the masses of neutrinos and gravinos are calculated as Figs. 4-9(a).

5.3 Oscillation phenomenon

The oscillation masses are calculated as Figs. 4-9(b-d).

5.4 Four forces

See Fig. 2. Strong force particle mass is $42.152 \mathrm{keV}=$ ($15.408 \mathrm{M} \cdot 115.32$) $11 / 2$, electromagnetic force particle mass is $828.13 \mathrm{eV}=(169.06 \mathrm{k} \cdot 4.0566)^{\wedge} 1 / 2$, and weak force particle mass is $15.828 \mathrm{meV}=(0.15244 \cdot 1.6435 \mathrm{~m})^{\wedge} 1 / 2$. Electromagnetic coupling constant is $1 / 137.036=823.13$ / $42.152 \mathrm{k} / 2.6922$. Weak force coupling constant is $1.01093 \mathrm{E}-$ $6=15.828 \mathrm{~m} / 42.152 \mathrm{k} \cdot 2.6922$. See log-parabolic line of Fig. $15(\mathrm{~b})$. The value on 0 D is calculated as $2.1938 \mathrm{E}-39$. Gravitational force coupling constant is calculated as $5.9061 \mathrm{E}-39$ $=2.1938 \mathrm{E}-39 \cdot 2.6922$. There is 2.6922 connected to all forces. The log value is 0.38414 .

5.5 Three generation dark forces ξ

See Fig. 15. $\xi 6$ is $0.00645, \xi w$ is $0.38414=\xi 4+\xi 5+\xi 6$, and $\xi w+\xi 5$ is 0.46963 . Therefore, $\xi 4, \xi 5$, $\xi 6$ is 0.38414 , $0.03952,0.00645$. Therefore, $\xi \mathrm{e}$ is $0.04597=\xi 5+\xi 6$, and ξs is $0.00645=\xi 6$. Three generation dark forces of ξw, $\} e$, and ξs are influencing the masses of weak, electromagnetic, and strong force particles.

5.6 Electron, Muon, Tau

See Fig. 2. Electron mass is $510.999 \mathrm{keV}=(7.27258 \mathrm{keV}$ - $1.54884 \mathrm{MeV} \cdot 15.4082 \mathrm{MeV}$)^1/3 x (1.64348 meV . $4.05657 \mathrm{eV} \cdot 115.316 \mathrm{eV})^{\wedge} 1 / 3$. Muon mass is 105.658 MeV $=(1.54884 \mathrm{MeV} \cdot 15.4082 \mathrm{MeV})^{\wedge} 1 / 2 \times(4.05657 \mathrm{eV}$. $115.316 \mathrm{eV})^{\wedge} 1 / 2$. Tau mass is $1176.82 \mathrm{MeV}=(15.4082$ $\mathrm{MeV})^{\wedge} 1 / 1 \times(115.316 \mathrm{eV}) \wedge 1 / 1$.

5.7 Muon g-2 problem

In Table 1, the standard model calculation of g-factor is ... 3604 or ...3620, and the measured value is ...4122. In Fig. 2, the mass of muon 105.658 MeV is the product of

Table 1 Muon g-2 problem

Case	Term	Muon	Equation
Standard Model	g-facto	$\begin{array}{r} 00233183604 \\ 3620 \end{array}$	
	a-value	$\begin{array}{r} 0.00116591802 \\ 1810 \end{array}$	$a_{S}=\left(g_{S}-2\right) / 2$
Experiment	g-factor $2.00233184122 g_{E}$		
Our Calculation	Muon	$105.658 \mathrm{MeV} m_{\mu}$ Given	
	Neutrino	4.88517 MeV $m_{N}=$ Fig. 2	
	Gravino	$21.6284 \mathrm{eV} m_{G}=$ Fig. 2	
	Ratio a-value	$\begin{array}{r} 0.0004427 \% \\ 0.00116592060 \\ 2068 \end{array}$	$\begin{aligned} & r=m_{G} / m_{N} \\ & a_{E}=a_{S} \cdot(2+r) / 2 \end{aligned}$
	g-factor $2.00233184120 g_{E}=2+2 \cdot a_{E}$ 4136		

Table 2 Mass calculation of Up, Charm, Top quark

Term	Reference	Kinetic State			Steady State			Unit	Symbol		
Dimension		4D	5D	6.001 D	4D	5D	6.001 D	-			
n Neutrino s Neutrino	Fig. 6(a)	0.15244	169.06k	15.408M	0.13872	166.03k	15.511M	eV	α_{n}^{f}	β_{n}^{f}	γ_{n}^{f}
		0.95782	1062.2k	96.813M	0.87160	1043.2k	97.459M	eV		$=n$.	
		-0.0187	6.0262	7.9859	-0.0597	6.0184	7.9888	\log	α_{s}^{f}	β_{s}^{f}	γ_{s}^{f}
Shell Fermion	(1)	4.6645	7.0061	7.9859	4.6492	7.0036	7.988	\log	$\alpha \beta \gamma_{s}^{f}$	$\beta \gamma_{s}^{f}$	γ_{s}^{f}
		46.18k	10.14M	96.81M	44.58k	10.08M	97.46M	eV			
Dimension		10.001D	11.001D	12.002D	10.001D	11.001D	12.002D	-			
n Neutrino	Fig. 6(c)	0.9909	6.1525	1168.2	0.9110	5.7133	1116.4	eV	$m_{n 5}^{10}$	$m_{n 5}^{11}$	$m_{n 5}^{12}$
ns Neutrino	(2)	52.804	131.57	1813.0	50.630	126.79	1772.4	eV	$m_{n s 5}^{10}$	$m_{n s 5}^{11}$	$m_{n s 5}^{12}$
Inside Boson		1.7227	2.1192	3.2584	1.7044	2.1031	3.2486	\log	$\alpha_{n s 5}^{10}$	$\beta_{n 55}^{11}$	$\gamma_{n s 5}^{12}$
Quarks		Up	Charm	Top	Up	Charm	Top				
Shell+Inside		6.3871	9.1252	11.2443	6.3536	9.1067	11.2374	\log	q_{u}	q_{c}	q_{t}
		2.4386M	1334.3M	175.53G	2.2572M	1278.4M	172.74G	eV	m_{u}	m_{c}	m_{t}
(1) $\alpha \beta \gamma_{s}^{f}=\left(\alpha_{s}^{f}+\beta_{s}^{f}+\gamma_{s}^{f}\right) / 3$ (2) $m_{n s 5}^{10}=(1+2 \pi)^{2} \cdot\left(m_{n 5}^{10}\right)^{1 / 2}$			$\beta \gamma_{s}^{f}=\left(\beta_{s}^{f}+\gamma_{s}^{f}\right) / 2 \quad \gamma_{s}^{f}=\gamma_{s}^{f} / 1$								
			$m_{n 55}^{11}=(1+2 \pi)^{2} \cdot\left(m_{n 5}^{11}\right)^{1 / 2}$			$m_{n S 5}^{12}=(1+2 \pi)^{2} \cdot\left(m_{n 5}^{12}\right)^{1 / 2}$					

neutrinos 4.88517 MeV and gravinos 21.6284 eV . The ratio of the above two is 0.000004427 . Therefore, the g-factor is calculated as ... 4120 or ...4136. In Fig. 2, electron and gluon in muon affect the magnetic field as 0.0004427%. The same logic occurs at electron and tau.

5.8 Proton mass

Proton mass is calculated in Fig. 17. If the dark forces of 0.006455 and 0.045970 are excluded, the mass is calculated as 88.6% of proton mass.

5.9 Proton radius puzzle

Hydrogen radius is 52.918 pm , weak force is $1.01093 \mathrm{E}-6$, and electromagnetic force is $1 / 137.036$. From the below equation, one proton radius and one quark radius are calculated as Rp 0.87506 pm and Rq 0.4401 am .
$1.01093 \mathrm{E}-6 \cdot 52.918 \mathrm{pm}=1 / 137.036 \cdot 8 \pi / 3 \cdot \mathrm{Rp}$

$$
1 / 137.036 \cdot 0.8751 \mathrm{pm}=1 \cdot 8 \pi / 3 \cdot \mathrm{Q} \rightarrow \mathrm{Rq}=\mathrm{Q} / \sqrt{ } 3
$$

Extending this logic, the acting radius of gravity is calculated as 12.70 BY . Above is the relationship between kinetic state force and kinetic state radius. The proton radius 0.8414 fm is the radius at which the force is steady state. To calculate this, the hydrogen radius when the force stops is needed. 0.8445 fm and 0.425 am are calculated. It is not exact values.

5.10 W Z H bosons

W and H boson masses are easily calculated in Fig. 10.

5.11 Up, Charm, Top

In Table 2, the masses of up, charm, and top quarks are calculated. The shell of quark is steady state fermion particle on 4D 5D 6D, and the inside of quark is steady state boson particle on 10D 11D 12D. If the shapes of Fig. 2 and Fig. 12 are understood, the calculation of Table 2 will be easy.

5.12 Down, Strange, Bottom

In Table 3, the masses of down, strange, and bottom quarks are calculated. The shell of quark is steady state fermion particle on 4D 5D 6D, and the inside of quark is combined state boson particle on 10D 11D 12D. When quark decays, the combined state boson is changed to kinetic state boson, and it goes to 5D along the log-parabola in Fig. 11.

5.13 Cosmological constant problem

The present universe is the mixture of 37.144% kinetic state and 62.856% steady state. The mass of the neutrino in the combined state is calculated in Fig. 8(a). The value of $v_{0} / v_{3}=1 \mathrm{E}-121.5326$. The cosmological constant problem is 1E-121.5394.

5.14 Planck length l_{P}

Planck length is $1.61626 \mathrm{E}-35 \mathrm{~m}$. This is considered the steady state length. The kinetic state Planck length would be $1.64827 \mathrm{E}-35=1.61626 \mathrm{E}-35 \times(0.87506 \mathrm{fm} / 0.84140$ $\mathrm{fm})^{\wedge} 1 / 2$. Therefore, the Planck length of the mixture with 37.144% and 62.856% is $l_{P}=1.62815 \mathrm{E}-35$. This value needs to be verified.

Table 3 Mass calculation of Down, Strange, Bottom

Term	Reference	Kinetic State			Steady State			Unit	Symbol		
FERMION	Dimension	4D	5D	6.001 D	4D	5D	6.001 D				
Oscillating	Fig. 6(e)	3.8617	6.1900	7.1878	3.8464	6.1874	7.1906	\log	α_{N}^{456}	β_{N}^{56}	γ_{N}^{6}
Shell	(1)	5.7465	6.6889	7.1878	5.7415	6.6890	7.1906	\log	$\alpha \beta \gamma_{N}^{456}$	$\beta \gamma_{N}^{56}$	γ_{N}^{6}
		557.80k	4.8852M	15.408M	551.41k	4.8869M	15.511M	eV	$m_{\text {d }}^{s}$	m_{s}^{s}	m_{b}^{5}
BOSON	Dimension	10.001D	11.001D	12.002D	10.001D	11.001D	12.002D				
n	Fig. 8(b)	292.0k	452.2k	1.588M	289.2k	448.6k	1.583M	eV	$m_{n 4}^{10}$	$m_{n 4}^{11}$	$m_{n 4}^{12}$
ns	(2)	28.66k	35.67k	66.86k	28.53k	35.53k	66.73k	eV	$m_{n s 4}^{10}$	$m_{n s 4}^{11}$	$m_{n s 4}^{12}$
		4.4573	4.5523	4.8251	4.4553	4.5506	4.8243	log	$\alpha_{n s 4}^{10}$	$\beta_{n s 4}^{11}$	$\gamma_{n s 4}^{12}$
g	Fig. 9(d)	$1.995 \mathrm{E}-09$	510E-08	.059E-06	2.107E-9	$1.586 \mathrm{E}-8$	5.244E-6	eV	$m_{g 6}^{10}$	$m_{g 6}^{11}$	$m_{g 6}^{12}$
gt	(2)	$2.369 \mathrm{E}-036$	6.517E-03	193E-01	$2.435 \mathrm{E}-3$	6.681E-3	$1.215 \mathrm{E}-1$	eV	$m_{g t 6}^{10}$	$m_{g t 6}^{11}$	$m_{g t 6}^{12}$
		-2.6254	-2.1859	-0.9233	-2.6136	-2.1752	-0.9155	log	$\alpha_{\text {gt6 }}^{10}$	$\beta_{g t 6}^{11}$	$\gamma_{g t 6}^{12}$
Inside	(ns+gt)/2	0.9160	1.1832	1.9509	0.9209	1.1877	1.9544	log	$\alpha_{\text {ngst }}^{10}$	$\beta_{\text {ngst }}^{11}$	$\gamma_{n g s t}^{12}$
DARK	Fig. 15(a)	0.0065	0.0395	0.3841	0.0065	0.0395	0.3841	\log	ξ_{6}	ξ_{5}	ξ_{4}
	(3)	0.0129	0.0919	0.4761	0.0129	0.0919	0.4761	\log	ξ_{10}	ξ_{11}	ξ_{12}
Force	Boson+Dark	0.9289	1.2751	2.4270	0.9338	1.2796	2.4305	log	f_{10}	f_{11}	f_{12}
		w8.490	z18.84	h267.3	w8.586	z19.04	h269.5	eV	$m_{\text {d }}^{w}$	m_{s}^{z}	m_{b}^{h}
QUARK	Sum	Down	Strange	Bottom	Down	Strange	Bottom				
	Shell+Force	6.67537	7.96400	9.61475	6.6752	7.9687	9.6211	log	q_{d}	q_{s}	q_{b}
		4.7356 M	92.046M	4.1186G	4.7342M	93.043M	4.1796G	eV	m_{d}	m_{s}	m_{b}

(1) $\alpha \beta \gamma_{N}^{456}=\left(\alpha_{N}^{456}+\beta_{N}^{56}+\gamma_{N}^{6}\right) / 3$
$\beta \gamma_{N}^{56}=\left(\beta_{N}^{56}+\gamma_{N}^{6}\right) / 2$
$\gamma_{N}^{6}=\gamma_{N}^{6} / 1$
(2) $m_{n s}=(1+2 \pi)^{2} \cdot\left(m_{n}\right)^{1 / 2}$
$m_{g t}=(1+2 \pi)^{2} \cdot\left(m_{g}\right)^{1 / 2}$
(3) $\xi_{10}=\xi_{6} \cdot 2$
$\xi_{11}=\xi_{6} \cdot 2+\xi_{5} \cdot 2$

$$
\xi_{12}=\xi_{6} \cdot 2+\xi_{5} \cdot 2+\xi_{4} \cdot 1
$$

5.15 Cosmological constant Λ

The $l_{P}^{2} \cdot \Lambda$ is $1 \mathrm{E}-121.5326$. Therefore, the Λ is calculated as $1.10675 \mathrm{E}-52$. The value of $1 / \mathrm{c} \sqrt{ } \Lambda$ is $10.048 \mathrm{BY}=1 /$ ($2.9979 \mathrm{E} 8 \cdot 60 \cdot 60 \cdot 24 \cdot 365.24 \cdot \sqrt{ } \Lambda)$.

5.16 Current Time

$10.048 \mathrm{BY} / 72.916 \%$ is 13.780 BY . If the Planck length is $1.61626 \mathrm{E}-35 \mathrm{~m}$, the current time is calculated as 13.679 BY .

5.17 Hubble constant \boldsymbol{H}

$977.813 / 13.780$ is $70.96 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$.

5.18 Calculation flow

Figs. 12.1 and 2 of the previous study [1] were calculated with muon neutrino 170.00 keV and tau 17768.6 GeV as input conditions. In this paper, two conditions were added: B/H 2.0030 and Hu 133.23 GeV in Fig. 10 are the same as E and Bu in Fig. 13. The new calculation results are shown in Fig. 20. The blue values are 6 independent variables, and the red values are 6 input conditions.

6. Dimension 6.00107

6.1 Dimension 6.00000D

If the calculation is performed again with 6 D , the tau mass is calculated as 1771.71 MeV . This has an error of 0.29% from the measured value of $1776.86 \pm 0.12 \mathrm{MeV}$.

6.2 Calculation according to dimension change

However, why 4D, 5D, 6.00107D? It may be 4.00XXXD, $5 \mathrm{D}, 6 \mathrm{D}$, or $4.00 \mathrm{XXX}, 5.00 \mathrm{XXX}, 6 \mathrm{D}$, and so on. That is, combinations of various dimensions occur. In Table 4, the result values according to the change of dimension are presented. There are various combinations, but about 5 representatives are presented. $\Delta \mathrm{D}$ is the calculated offset dimension value. p left means the midpoint of the left ellipse, and p right means the midpoint of the right ellipse. 4D to 12D are the input values of dimensional combination.

6.3 Correct answer 6.00107D

In Table 4, the minimum error is Case 2) of 4D, 5D, and 6.00107 D . This is determined at the cosmological constant (Hubble constant, current time).

$$
\begin{aligned}
& \begin{array}{|c|c|c|}
\hline \text { Down } & \text { Strange } & \text { Bottom } \\
\text { 4.7342M } & 93.043 \mathrm{M} & 4.1796 \mathrm{G} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { [36us] קo.0』 uosog yueno : Ll }
\end{aligned}
$$

$+$

Radius of Big Bang 2D	$3.35(2 \pi)$ sec

 OW L'Eq'L'z

 \begin{tabular}{l|l|}
Constant of Everything $\mathrm{V} / \mathrm{m}^{2}$ \& $2.6552 \mathrm{E}-64$

\hline Cycle period of universe \& 1.889 E 111 Y

\hline

\hline Age of Universe 13.787 \& 13.780 E 9 Y

\hline

\hline Hubble constant \& 67.66

\hline \& 70.961

\hline

\hline IP $^{2} \cdot \wedge$ Problem -121.5394 \& -121.5326

\hline Po \&

\hline
\end{tabular}

 \begin{tabular}{c}
< Combined State >

Kinetic Neutrino	Steady Neutrino
$1 / 2.6922=37.144 \%$	62.856%

\hline
\end{tabular} No

$20100 \cdot 9$	$000000^{\prime} \mathrm{g}$	$000000^{\circ} \mathrm{t}$
Q9	Os	$0 t$

< əleis Kpeəis >

$\begin{gathered} 988^{9.9 \angle L L} \\ \text { ne } \perp \end{gathered}$	$\begin{array}{c\|} \hline \text { W8s9'sol } \\ \text { uonnw } \end{array}$	
N] uołdə 7		

Table 4 Calculation according to the change of dimension

Case	Unit	Physics	1)	2)	3)	4)	5)
$\Delta \mathrm{D}$			-0.00044	0.00107	0.00243	-0.00134	0.00046
4D			4.00000	4.00000	4.00000	3.99866	4.00046
5D			5.00000	5.00000	5.00243	5.00000	5.00046
6D			6.00000	6.00107	6.00243	6.00000	6.00046
p left			5.99956	6.00107	6.00243	6.00000	6.00000
p right			6.00044	6.00107	6.00243	6.00000	6.00000
10D			10.00000	10.00107	10.00243	9.99866	10.00046
11D			11.00000	11.00107	11.00487	11.00000	11.00046
12D			12.00000	12.00215	12.00487	12.00000	12.00000
Kinetic n4	eV	0.12(0.15)	0.14311	0.15244	0.13606	0.13608	0.14456
Kinetic n5	keV	<170	162.90	169.06	167.07	161.85	164.30
Kinetic n6	MeV	<15.5	14.838	15.408	15.406	14.871	14.958
Kinetic g4	eV	0	$2.648 \mathrm{E}-10$	$2.506 \mathrm{E}-10$	$2.756 \mathrm{E}-10$	$2.772 \mathrm{E}-10$	$2.622 \mathrm{E}-10$
Kinetic g5	eV	0	0.16895	0.16090	0.16738	0.17129	0.16752
Kinetic g6	eV	0	119.26	115.32	114.25	118.71	118.30
Steady n4	eV	-	0.13425	0.13872	0.13677	0.13456	0.13466
Steady n 5	keV	-	168.01	166.03	167.94	168.63	167.64
Steady n6	MeV	-	15.780	15.511	15.486	15.757	15.719
Steady g4	eV	-	$2.823 \mathrm{E}-10$	$2.754 \mathrm{E}-10$	$2.742 \mathrm{E}-10$	$2.803 \mathrm{E}-10$	$2.814 \mathrm{E}-10$
Steady g5	eV	-	0.16381	0.16383	0.16651	0.16440	0.16418
Steady g6	eV	-	112.14	114.55	113.66	112.04	112.57
Tau	MeV	1776.86さ0.12	1769.59	1776.82	1760.17	1765.35	1769.52
Weak Force	-	About 1E-06	$1.0085 \mathrm{E}-6$	1.0109E-6	$9.8632 \mathrm{E}-7$	$9.9396 \mathrm{E}-7$	$1.0093 \mathrm{E}-6$
Proton Radius	fm	0.8751 ± 0.0061	0.8730	0.8751	0.8538	0.8604	0.8737
Quark Radius	am	<0.43	0.4390	0.4401,0.425	0.4294	0.4327	0.4394
Dark Energy	\%	68.89, 72.8	69.41, 73.00	69.33, 72.92	69.45, 73.05	69.41, 73.00	69.41, 73.00
W	GeV	80.379 ± 0.012	80.401	80.376	80.397	80.390	80.403
H	GeV	125.10さ0.14	124.92	125.06	124.84	124.91	124.91
Cos. C. Problem	-	-121.539	-121.940	-121.533	-121.739	-121.844	-121.923
Cosmo. C.	/m2	$1.1056 \mathrm{E}-52$	4.3372E-53	$1.1068 \mathrm{E}-52$	$6.9465 \mathrm{E}-53$	$5.4414 \mathrm{E}-53$	4.5031E-53
Hubble C.	km/s/Mpc	67.66, ≈ 74	44.472	70.961	56.317	49.817	45.317
Current Time	B.Y.	13.787	21.987	13.780	17.363	19.628	21.577
Up	MeV	$2.2{ }_{-0.4}^{+0.5}$	2.2249	2.2572	2.2375	2.2277	2.2264
Charm	MeV	$1275{ }_{-35}^{+25}$	1284.0	1278.4	1279.0	1286.1	1282.1
Top	GeV	172.76 ± 0.3	175.02	172.74	171.74	174.76	174.31
Down	MeV	$4.7{ }_{-0.3}^{+0.5}$	4.816	4.734	4.773	4.829	4.801
Strange	MeV	$95_{-3}^{+9}, 93, \approx 102$	95.54	93.04	94.42	95.73	95.23
Bottom	GeV	$4.188_{-0.03}^{+0.04}$	4.301	4.180	4.239	4.305	4.284
Antiproton	GeV	5.6, 6.2	5.895	5.895	5.895	5.895	5.895
Kaon	MeV	493.67, 497.65	491.91	495.93	493.17	491.69	492.20
Pion	MeV	134.97, 139.57	137.10	138.04	137.57	137.06	137.19

(a)

(b) $0 Q+6 L$
(c) $1 Q+5 L$
(d) $2 Q+4 L$
(e) $3 Q+3 L$
(f) $4 \mathrm{Q}+2 \mathrm{~L}$
(g) $5 Q+1 L$
(h) $6 Q+0 L$

Fig. 21 Change of six dimensional universe

6.4 What does 6.00107D mean?

From 6.00107D, the shape of universe can be inferred. Six-dimensional space exists, and a strange phenomenon occurred in 6 D as much as 0.00107 D . Since this value is not a special number, it changes according to time flow. However, since 6D space changes are nearly infinitely slower than our 3D space, it can be treated as a constant.

6.5 Our universe

As shown in Fig. 21(e), the space of our universe consists of three quantum spaces and three linear spaces. Our universe (e) changes from (d) to (f). This is the reason of the law of increasing entropy.

6.6 Dimensional multi-universe

Fig. 21 is dimensional multi-universe. (b) is one. (c) are born a few. (d) are born a lot. (e) are born very much. Therefore, (h) can be said to be an almost infinite number. The universe of (f) is spread out in the supermassive black hole at the center of galaxy.

6.7 Origin universe

Our universe (e) begins at (d) and ends at (f). However, in whole Fig. 21, since this rotates, there is no beginning and no ending. Here, (b) is the maximum universe and (h) is the minimum universe. The Planck unit system is the universe (h). Our universe is (e). The cosmological constant problem is the difference between (e) and (h). The beginning of the origin universe does not exist, but it can be called (b).

6.8 Super origin universe

The origin universe (b) is not 6D but 6.00107D. This means that something outside of (b) is affecting as much as 0.00107 D . (a) is a super origin universe. To the beginning and ending of that do not exist, it must be a sphere such as (a). One of hexagons in (a) is (b). Let's assume that a super origin universe occurred. Universes of unknown dimensions compete for power with each other. As time passes, all become six-dimensional universe that is fair to all. If everything turned into perfect 6D universes, then everything will no longer change. However, if (a) is a sphere, a five-dimensional universe must exist. It forever changes the super
origin universe. Therefore, it can be understood that the universe of exactly 6 D cannot exist.

6.9 Origin of particles

The outer shell of sphere (a) is fermion, and the inner particle is boson. They are unique brane in (b). 6D particles are born in (c), 5D particles are born in (d), and 4D particles are born in (e). This is the origin of particles. After infinite time passes, the outside and the inside are turned into inside and outside. This is represented by thin color arrows.

7. Change according to time flow

7.1 Five absolute constants

Five absolute constants are required to perform calculations according to time flow. The cosmological constant determines the time of Fig. 18(b). Since the value of 10.048 BY cannot change, it must be absolute constant. However, for convenience of calculation and understanding, let the 169.06 keV and 15.408 MeV in Fig. 4(a) and 0.16090 eV and 115.32 eV in Fig. 5(a) be absolute constants. From the interpretation of Fig. 21, in our cosmic time, 6.00107D is also judged to be an absolute constant.

7.2 Time flow and dark force

From the above assumption, in Fig. 15(a), the relative log mass -6.4254 of weak force particle and -1.7067 of electromagnetic force particle become constants. In Fig. 18, the dark force is 10.048 / (13.780-10.048). Therefore, the dark force according to time flow is 10.048 / (time - 10.048). Since the start of calculation is 10.048 BY , the above is an absolute value. The above formulas are shown in Fig. 22(a).

7.3 Change of force according to time flow

The changes of weak force and electromagnetic forces are shown in (a), and the change of gravitational force are shown in (b). In the figure, when time is -10.048 , the forces deviate from each other towards $\pm \infty$. Is this possible?

7.4 Negative absolute temperature

Absolute temperature is 0 K . It has been experimentally proven that there is negative absolute temperature, which is

Fig. 22 The change of forces according to time flow

Fig. 23 Constraint condition of Four Forces
expressed as T/K: $+0 \rightarrow+\infty \rightarrow-\infty \rightarrow-0$. However, it is judged that there is a certain limit rather than infinity. This phenomenon is considered to occur at 10.048 BY in Fig. 22.

7.5 Constraint condition of forces

The magnitude of forces according to time flow is shown in Fig. 23. The 0 BB line is the relationship of forces at Big Bang. According to time flow, the forces turn into a lower parabola. Here, it is judged that the parabola cannot change to $-\infty$ because there will be a limit that quantum space can endure. The limit is judged to be 9.054 BY line. At that time, universe space is turned over with the green line. However, the green line is judged to be impossible. The red line is considered reasonable, and the time is calculated as 11.041 BY . Currently it is 13.780 BY line.

7.6 Birth of life

10.048 BY is 3.73 billion years ago. First fossils of life on Earth were proven 3.5 billion years ago, and fossils of life have been discovered 3.7 billion years ago. 9.054 BY is when paper starts to fold, 10.048 BY is when it is half folded, and 11.041 BY is when it is perfectly folded. 11.041 BY is 2.74 billion years ago. If Fig. 22 is true, evidence will be found that life was completed 2.74 billion years ago.

7.7 Verification of calculations

The calculation of Fig. 22 was performed under the assumption that Fig. 4(a) and Fig. 5(a) are constants. Fig.6(a) and Fig.7(a) may be constants. It is necessary to verify all the values in Fig. 20 according to time flow.

8. Conclusions

The language of physics should be drawing. After the drawing for phenomenon is shown correctly, mathematical formulas suitable for the drawing must be derived. The representative drawing example is standard model. The combination of quantum masses is multiplication, not addition. There is no quantum mechanics theory that can calculate the elementary school arithmetic.

References

[1] D. Kim, 2021, Theory of Everything and Logarithmic Elliptic Equation, https://vixra.org/pdf/2110.0023v1.pdf
[2] D. Kim, 2022, Suggestion of New Standard Model, https://vixra.org/abs/2111.0136
[3] D. Kim, https://vixra.org/author/deokjin kim

