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Abstract

According to our current understanding of quantum mechanics, a ‘measurement’
violates unitarity. In other words as the act of measurement ‘resets’ the probabilities
described by the Schrödinger equation, in the very ‘moment’ of the collapse of the
wavefunction, conservation of probability does not hold. To make progress in our un-
derstanding of the measurement problem it is thus expected that one must encompass
in a single equation both otherwise mutually-exclusive processes of measurement and
unitary evolution. In this light, turning to the continuity equation, we realize the pos-
sibility that if we allow for existence of sources and sinks in the ‘fluid of probability’ we
get closer to such a theory by arriving at nonlinear generalizations of Schrödinger and
Klein-Gordon equations. The generalized equations derived are then shown to satisfy
all conditions that are expected from a proper generalization: simplification to their
linear counterparts by a well-defined dynamical condition, and Galilean and Lorentz
invariance.
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1 Introduction

1.1 A brief history

In the foundations of modern physics there is nothing more controversial than the measure-
ment problem of quantum mechanics[1]: How should one reconcile the fact that on one hand,
the wave function evolves deterministically according to the Schrödinger equation as a linear
superposition of different states, while on the other hand, the outcome of measurements are
always a single definite state?
This problem is a mere reappearance of the old issue of wave-particle duality, for as long
as the wavefunction evolves one is dealing with a wave, while as soon as a measurement is
performed one observes a single particle, a single dot on the screen for example. The recon-
ciliation of the wave and particle pictures therefore is a crucial problem whose resolution is
necessary for making any progress regarding the measurement problem. The pursuit of such
reconciliation is at least as old as the quantum theory itself1. It began with Mie’s ideas[2]
and was pursued seriously by Einstein after his successful explanation of the photoelectric
effect[3]. Although in a letter to Besso[4] Einstein admitted that ‘[...] All the fifty years of
conscious ruminations have not gotten me closer to an anwser for the question: “What are
light quanta?” These days any rascal may believe that he knows, but he deludes himself.’,
his idea of particles being concentrations (lumps) of continuous fields [3, 5] is still the best
concrete idea we have for our attempts along such lines. This idea was a persistent theme
of Einstein’s attempts and was pursued through his grand programme of Unified Field The-
ory [5].
In fact Schrödinger himself initially thought in terms of wavepackets : a particle was assumed
to be a ‘parcel’ of matterwaves (an envelope) that moved together as a whole by a group
velocity equal to the velocity of the particle meanwhile the inner waves (in the parcel) oscil-
lated by a frequency equal to the phase velocity of de Broglie’s matterwaves. But this view
soon faced a serious problem[6]: wavepackets which were supposed to be particles did not
maintain their integrity due to linearity and dispersion2. This objection and the consequent
‘victory’ of the idealist founders like Bohr was serious enough to discourage even de Broglie

1We use ‘quantum theory ’ to include also the so-called old quantum theory.
2Nonlinearity and dispersion however solves this problem by allowing the existence of soliton solutions.

This is one of our achievements in this paper.
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for some twenty years [7]. de Broglie’s interest in the problem was revitalised by Bohm’s
theory[8]; the theory that is now called de Broglie-Bohm or Pilot wave theory, according
to which the particle and wave pictures are both maintained simultaneously and the wave
‘guides’ the particle[9] by the guiding equation

p = ∇S

where S is the phase of the wavefunction (classically Hamilton’s principal function)[10].
de Broglie himself however considered pilot wave theory a ‘degenerate’ form of his early
attempts[7]; such attempts evolved to what de Broglie in his late years dubbed as the theory
of the double solution, according to which, particles were to be described by a nonlinear
equation which has the Schrödinger equation as its approximation, hence the return of the
Einsteinian theme. But neither Einstein nor de Broglie were able to derive any such equation
satisfactorily. In this paper we derive an equation that

❼ Is a generalization of Schrödinger equation: it simplifies to Schrödinger equation by a
certain mathematical condition, hence fulfilling Einstein-de Broglie’s maxim.

❼ Unlike the so-called Nonlinear Schrödinger equation[11] and the Ghirardi-Rimini-Weber
(GRW) theory[12], it contains no new arbitrary parameters.

❼ Is nonlinear and dispersive, hence allows for soliton solutions[13].

❼ Satisfies Weinberg’s homogeneity property[14] according to which if ψ is a solution then
so must be Zψ for arbitrary complex number Z; in other words pure states must be
represented by rays in the Hilbert space, not vectors.

Our focus in this paper is on the physical and conceptual aspects and we do not attempt
at solving the proposed equation, neither do we enter techincal discussions regarding the
existence and uniqueness of solutions. As the purpose of this paper is to scrutinise and
revise the very foundations of quantum theory we hope that the mathematically-inclined
reader indulges us patiently whenever a heuristic approach is pursued in lieu of abiding by
the established formalism.

1.2 Motivation

According to the current understanding, Schrödinger equation governs the evolution of the
wavefunction between measurements and measurements ‘reset’ the probabilities. If we com-
pare this statement with the issue of wave-particle duality, we realise that observation of
particles violates unitarity and conservation of probability

∂|ψ|2

∂t
+∇ ·

(

|ψ|2
∇S

m

)

= 0, (1)

in other words we maintain that it is the conservation of probability that obstructs the appli-
cation of Schrödinger equation to the collapse process. Hence any reconciliation of wave and
particle pictures must go beyond the law of conservation of probability. It now temporarily
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serves us to recall Penrose’s description of quantum mechanics[1] in terms of U-process3 and
R-process4. According to Penrose the complete evolution of the quantum state must look
like5

Figure 1: ‘The way that the quantum-theoretic world appears to behave, with stretches of
deterministic U-evolution, punctuated by moments of probabilistic R-action, each of which
restores some element of classicality’ [1].

If we recall the fluid picture of Madelung[15] and hence think of the above graph as the
motion of a quantum fluid of probability (hereafter Madelung fluid), we can presume that the
R-processes act as the sinks or sources of the Madelung fluid. But the current (orthodox)
quantum mechanics crucially misses this point because the fluid that it describes is one
without sources and sinks[16, 17]. This condition in non-relativistic quantum mechanics is
mathematically expressed by

∇ · v = ∇ · p = ∇ · k = 0. (2)

The conclusion is that a complete picture of reality in which a serious attempt is made for
resolution of the wave-particle duality problem must allow for the possibility of a ‘fluid’ of
probability in which sources and sinks do exist. It is an interesting fact that to the best of
our knowledge relaxation of this significant restriction has not yet been considered.
Methodologically we know it is difficult to begin with the condition (2) and arrive at a non-
linear equation. We must instead reverse the process and by starting from a firm physical
motivation, find a nonlinear equation which simplifies to the Schrödinger equation by im-
posing (2).
Notwithstanding a key observation can be made immediately from (2), that the current
scheme of quantum mechanics cannot handle condition (2) and in fact yields a contradic-
tion: as

p̂(ψ) = −i~∇ψ

condition (2) for a test wavefunction ψ reads

∇ · p̂(ψ) = −i~∇2ψ = 0 (3)

which is an absurdity since the derivation of (1) assumes ∇2ψ 6= 0 beforehand.

3Unitary evolution.
4Reduction (collapse of the wavefunction).
5The graph has a mere explanatory role and we do not consider it to accurately describe reality, for in

our view there is not any such discontinuous R-process.
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2 Harmonisation

It is the received wisdom that Planck-Einstein-de Broglie law6 pν = ~kν belongs to the era
of ‘old quantum mechanics’ and that in the realm of quantum mechanics the right (and
more fundamental) perspective is to solve the Schrödinger equation for any case at hand.
Although from an instrumentalist point of view this perspective has been quite successful, in
this paper we advocate another perspective which will prove to be more fruitful with regard
to the foundational questions of quantum mechanics. Our perspective is that quantum
mechanics is basically ‘all’ about pν = ~kν . To adopt such perspective we need to first
scrutinise our understanding of its essential ingredient kν . By any rigorous mathematical
definition7 it is required that a wave be defined as a field8 on spacetime which satisfies a
certain equation, without any explicit reference to its four-wavevector. On the other hand,
according to our perspective pν = ~kν is a fundamental law of nature and appearance of kν in
such a law suggests that we must enforce all waves to acquire a mathematically well-defined
four-wavevector. Therefore we must find a definition for the four-wavevector of a wave ψ in
terms of the ψ itself ; we shall call this technique harmonisation. Considering the simplest
case of a (complex) scalar harmonic wave9,10,

ψ = Ae−ikµxµ

,

if we apply the gradient operator to both sides we have,

∂µψ = −ikµψ = −iψkµ (4)

we realise that there are three possibilites for harmonisation:

1. Linear-operatorial approach, in which k̂µ ∈ End
(

L2(R)
)

11 i.e. four-wavevector is a
linear operator (endomorphism) on the space of square-integrable functions, such that

ψ
k̂µ
7−→ i∂µψ

6The metric signature (+,−,−,−) is used everywhere in this paper. Greek indices run over 0 to 3 (four
dimensions).

7For example, an entity φ which satisfies the wave equation

∂2φ

∂t2
= v2∇2φ,

where v is the speed of propagation of the wave. Or, an entity φ which satisfies the Schrödinger equation.
8We only consider scalar fields in this paper. Sufficient conditions of smoothness are also assumed im-

plicitly.
9Notice that in these definitions only forward-in-time waves are considered. It is not clear whether this

preference of time direction affects the theory in a decisive manner. Woit has elaborated on this issue in the
context of QFT; see Appendix A to [18].

10Technically plane waves are not physically legitimate as they are not normalisable (square-integrable),
but this issue can be rigorously avoided; see[19]. We do not involve in such technical details hereafter in this
paper.

11Again, technically quantum-mechanical operators are not defined on the entire L2(R) but only on a
dense subspace. As we have already said, we do not involve in such technical details in this paper.
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i.e.
k̂µ
(

ψ
)

:= i∂µψ

plus the eigenvalue hypothesis

k̂µ(ψ) = kµψ = ψkµ.

An immediate elaboration is needed here. Equation (4) is all that we have to begin
with. It is valid only as it stands, and as it stands kµ is a vector, not an operator on
the L2 space of wavefunctions. It is not impermissible to promote kµ to an operator
but to be logically consistent we cannot change the fundamental equation (4) that we
have started with. Therefore if we choose to promote kµ to an operator –as we do in
this approach– we must keep (4) as it stands, and that is why we need the additional
eigenvalue hypothesis. What we just stated is not anything controversial; it is one of
the axioms[19] of quantum mechanics, only in light of a different perspective.

2. Nonlinear-operatorial12 approach, in which ǩµ : L2(R)\{0} → L2(R) such that

ψ
ǩµ
7−→ i

∂µψ

ψ

i.e.

ǩµ(ψ) := i
∂µψ

ψ
6=

(

kµψ = ψkµ
)

without the need to add the eigenvalue hypothesis; because with the eigenvalue hy-
pothesis in this case we would have

i
∂µψ

ψ
= kµψ

⇒ ∂µψ = −kµψ
2

which is incompatible with (4).

3. Neoclassical nonlinear approach, in which ψ ∈ L2(R)\{0} and kµ : R4 → C such that

xν
kµ
7−→ i

∂µψ(x
ν)

ψ(xν)

or

kµ(x
ν) := i

∂µψ(x
ν)

ψ(xν)
6=

(

kµψ = ψkµ
)

again without the need to add the eigenvalue hypothesis, for the same reason stated
above. As we shall see later the eigenvalue hypothesis is automatically included as a
special case in this neoclassical approach in the sense that it leads to a generalization
of Schrödinger and Klein-Gordon eigenvalue problems (equations). The assumption
ψ ∈ L2(R)\{0} is made only to make connection with the Born Principle, as our

12We do not restrict our notion of ‘operator’ here to one which has the same domain and codomain.
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starting motivation requires. But after this (neoclassical) theory is developed it will
become conceivable that the structure (Hilbert Space) that comes with this assumption
might not be necessary in the neoclassical appraoch; especially the necessity of the inner
product structure is hard to see given that in this approach –among other things– we
do not need to define the notion of self-adjointness (which requires an inner product
to be defined).

The second and third approach might seem identical but there are crucial differences. No-
tably in the nonlinear-operatorial approach –like linear-operatorial– ψ and ∂µψ are not con-
sidered ‘independent’; once ψ is given one just puts it into the input of ǩµ to get momentum.
This is basically the reason that in the derivation of Schrödinger equation from the varia-
tional principle[20], one varies with respect to ψ (and ψ∗) but not ∂µψ. In the neoclassical
approach however, ψ and ∂µψ are considered ‘independent’. Indeed this is the reason for
calling it neoclassical because it reminds one of the way position and momentum are treated
in Hamiltonian mechanics.
The linear-operatorial approach is familiar and well-studied, being the foundation for or-
thodox quantum mechanics. The nonlinear-operatorial approach can handle the condition
(2), but in its current form is too special to yield a wave equation as it is now defined for
a scalar field only. Hence the nonlinear-operatorial approach requires further consideration
and a generalization of the definition to be applicable to a vector field; we postpone full
investigation of the nonlinear-operatorial approach however to another paper and in this
paper focus on the neoclassical approach as it can both handle the condition (2) and yield a
straightforward generalization of Schrödinger and Klein-Gordon equations without the need
to generalise the harmonisation technique to vector fields.
To the best of our knowledge our approach13 is new: it is the first time that

pµ = i~
∂µψ

ψ
(5)

is proposed as the definition of quantum-mechanical momentum. Although de Broglie-Bohm
theory comes quite close to our approach, it misses the point by dispensing with the imaginary
part of the momentum in order to make the same predictions as the Schrödinger picture. To
be precise, if we write the wavefunction in polar form

ψ(x, t) = R(x, t)eiS(x,t)/~

where R, S : R3 × R → R, we see that according to our proposed definition of quantum-
mechanical momentum (5) we have

v =
∇S

m
−
i~

m

∇R

R
, (6)

while in de Broglie-Bohm theory only the first term is considered[8, 9, 21]; in our view there
is no a priori theoretical reason why one should do so, on the contrary we will soon argue

13When we use ‘our approach’ we mean both the neoclassical and nonlinear-operatorial approaches. When
a result or discussion is limited to the neoclassical approach and not true for the nonlinear-operatorial
approach we specify it.
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that neglecting the second term comes from a metaphysical14 position. By neglecting this
second term one is losing some of the ‘information’ encoded in the wavefunction. This can
be better seen if we think of S as the Hamilton’s principal function in classical mechanics
(Hamilton-Jacobi theory[10]). We know that quantum mechanics must tell us more about
reality than what classical mechanics does, however by leaving something unchanged (the
guiding equation) that already exists in classical mechanics we cannot hope to fully achieve
this expectation. Inclusion of the imaginary part is an important point of departure for our
theory compared to de Broglie-Bohm theory, whose guiding equation is a special case of our
definition when the second term

i~

m

∇R

R

is neglected. Orthodox quantum mechanics is not different with regard to this limitation
because by its conservation of probability (1) it implicitly assumes v = ∇S/m. The basic
reason that de Broglie-Bohm and orthodox quantum theory neglect the second term is that
being bound by the eigenvalue hypothesis, they think of eigenvalues as what is actually
observed in measurements, hence they require the eigenvalues to be real numbers, which
is mathematically expressed by self-adjointness. We think that this is the last remnant of
‘classical thinking’ in quantum mechanics that presupposes only real numbers ‘exist’. It is
true that in measurements one only observes real numbers but that can well be a limitation
of our understanding: that we cannot observe imaginary numbers is not a reason they cannot
exist. This is why we stated earlier that the neglection of the imaginary part of the guiding
equation stems from a metaphysical position15. By relaxing this restriction, our approach
yields novel insights which are obscured by narrowing physical entities to linear self-adjoint
operators.
Even if we ignore this important point, on the conceptual side de Broglie-Bohm theory
never promotes (5) to the definition of momentum in quantum mechanics as the theory only
augments Schrödinger’s theory with the so-claimed additional guiding equation.
Two aspects of imperfection of mathematics of quantum theory as it stands currently are
therefore shown here. These imperfections provide a reason to think that definition (5)
by utilising all the information encoded in the wavefunction, and by successfully handling
condition (2) as we shall see, is the ‘right’ definition16 for quantum-mechanical momentum
by virtue of its generality.

14By metaphysics we mean beyond physics.
15In fact our proposal of including the second term in (6) is quite aligned with the work of Renou et al.[22]

who are discussing the possibility of empirically testing the ‘reality’ of complex numbers.
16Logically there is no right-wrong (true-false) binary system for definitions: a definition is only as good

and general as the theory that is built upon it. Therefore a ‘right definition’ must be defined to be one which
is more theoretically beneficial.
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3 Neoclassical Nonlinear theory

3.1 Generalization of Schrödinger equation

We apply the Planck-Einstein-de Broglie law pµ = ~kµ to our proposed definition (5) to get

p = −i~
∇ψ

ψ
and E =

i~

ψ

∂ψ

∂t
. (7)

Similar to the familiar derivation of the Schrödinger equation from the law of conservation
of energy, we expect to get the nonlinear equation for evolution of ψ by substituting (7) in
the law of conservation of energy

E =
p2

2m
+ V ;

we must be cautious however, because just as in the case with derivation of Schrödinger
equation, the square in the law of conservation of energy can be the source of a subtle
confusion: if we think of quantum-mechanical p as a complex vector in C

3,

p2ψ
?
= 〈p,p〉ψ = (p · p∗)ψ = ~

2∇2ψ

where dot is the Euclidean inner product17, we fail to achieve the result we want (p2ψ =
−~

2∇2ψ) hence the Schrödinger equation. Therefore this is not the right way to think about
quantum-mechanical p, as we can get the intended minus only if we define

p2ψ := 〈p,p〉ψ := (p · p)ψ = −~
2∇2ψ.

As the latter definition is the correct definition by yielding Schrödinger equation, any gen-
eralization must conform to it. Consequently for our definition (7) we have

p2 = 〈p,p〉 = p · p = −
~
2

ψ2
∇ψ · ∇ψ =: −

~
2

ψ2
‖∇ψ‖2.

Substitution in the law of conservation of energy now yields

i~
∂ψ

∂t
= −

~
2

2m

‖∇ψ‖2

ψ
+ V ψ (8)

which can also be written as

i~

2

∂ψ2

∂t
= −

~
2

2m
‖∇ψ‖2 + V ψ2. (9)

Our equation (8) differs from the Schrödinger equation only by the term

‖∇ψ‖2

ψ
,

17There is a third possibility that

p2ψ
?
= 〈p,pψ〉 = p · (pψ)∗ = ~

2∇2ψ∗

which is of little interest.
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which we now show only in the special case that k is a solenoidal field, is equal to the
corresponding term in Schrödinger equation. Consider condition (2)

∇ · k = 0, (10)

which, by our definition (5) is

∇ · (
∇ψ

ψ
) =

ψ∇2ψ − ‖∇ψ‖2

ψ2
= 0,

therefore for a quantum fluid with sources or sinks one has

‖∇ψ‖2

ψ
= ∇2ψ. (11)

In other words, Schrödinger equation is a special case of the nonlinear equation derived
in this paper. Condition (11) reveals an important but hidden assumption of the current
theory of quantum mechanics about wavefunctions; yet it is not unexpected at all, for it
is equivalent –if we use the right definition of momentum– to the condition (2) which was
already a well-known fact. What obscured this equation so far to be explicitly stated is the
incomplete definition of momentum in orthodox quantum mechanics, which, as we remarked
in the introduction, cannot handle condition satisfactorily.
We can now explicitly see how linearity of Schrödinger equation arises from nonlinearity
of (8), and how an eigenvalue problem which is a marker of quantum discreteness and
‘quantum jumps’ is only a special case to a nonlinear but continuous reality. In this light the
superposition ‘principle’ is but a special-case feature of nature and has a limited domain of
applicability.
The observation in which an eigenvalue problem arises from a more general nonlinear
equation is quite a generic one and worthy of emphasis. As a simple example consider how
Helmholtz equation

∇2φ = −k2φ

can be an approximation to the following nonlinear equation

∇ · (
∇φ

φ
) = −k2,

for φ 6= 0, since

∇ · (
∇φ

φ
) =

1

φ
∇2φ−

|∇φ|2

φ2
= −k2

Multiplying both sides by φ yields

∇2φ−
|∇φ|2

φ
= −k2φ

If we apply the approximation
|∇φ|2

φ
≈ 0

we are led to the original Helmholtz equation.
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3.1.1 Galilean invariance

Equation (8) is Galilean-invariant in the same sense that Schrödinger equation itself is[20]:
Assuming the gauge dependence of the wavefunction

ψ′(x′, t′) = e−i(mv·x−mv2t/2)/~ψ(x, t),

and the Galilean transformation of gradient and time derivatives

∇ = ∇′

∂

∂t
=

∂

∂t′
− v · ∇′

As
∂ψ′

∂t′
=
∂ψ′

∂t
+ v · ∇′ψ′ =

i

2~
mv2ψ′ + e−i(mv·x−mv2t/2)/~∂ψ

∂t
+ v · ∇ψ′

=
i

2~
mv2ψ′ + e−i(mv·x−mv2t/2)/~∂ψ

∂t
+ v ·

(

−
im

~
vψ′ + e−i(mv·x−mv2t/2)/~ · ∇ψ

)

= e−i(mv·x−mv2t/2)/~

(

−
i

2~
mv2ψ +

∂ψ

∂t
+ v · ∇ψ

)

,

under this transformation the left-hand-side of our equation is

i~
∂ψ′

∂t′
= e−i(mv·x−mv2t/2)/~

(

i~
∂ψ

∂t
+

1

2
mv2ψ + i~v · ∇ψ

)

.

Since

∇′ψ′ = ∇ψ′ = e−i(mv·x−mv2t/2)/~

(

−
im

~
vψ +∇ψ

)

‖∇′ψ′‖2 = e−2i(mv·x−mv2t/2)/~

(

−
m2

~2
v2ψ2 − 2

im

~
ψv · ∇ψ + ‖∇ψ‖2

)

,

the right-hand-side is

−
~
2

2m

‖∇′ψ′‖2

ψ′
+ V ψ′ = e−i(mv·x−mv2t/2)/~

(

−
~
2

2m

‖∇ψ‖2

ψ
+ V ψ +

1

2
mv2ψ + i~v · ∇ψ

)

therefore

i~
∂ψ′

∂t′
= −

~
2

2m

‖∇′ψ′‖2

ψ′
+ V ψ′.

3.2 Generalization of Klein-Gordon equation

Our definition of momentum (5) can be readily substituted in E2 = p2c2 +m2c4 to yield

1

c2
(
∂ψ

∂t
)2 − ‖∇ψ‖2 + (

mc

~
)2ψ2 = 0 (12)
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which can also be written as

−
〈∂µψ, ∂

µψ〉

ψ2
= (

mc

~
)2 (13)

Similar to the case for the non-relativistic equation (3), this equation is simplified to the
Klein-Gordon equation as well via the special-relativistic generalization of condition (2)

∂µp
µ = ∂µk

µ = 0 (14)

which is
ψ�ψ − 〈∂µψ, ∂

µψ〉

ψ2
= 0

⇒
〈∂µψ, ∂

µψ〉

ψ2
=

�ψ

ψ

Substitution in the alternative form (13), we have

�ψ

ψ
= −(

mc

~
)2

multiplication of both sides by ψ yields

(

�+ (
mc

~
)2
)

ψ = 0

i.e. the Klein-Gordon equation.

3.2.1 Lorentz invariance

Equation (12) is Lorentz-invariant for the same reason that Klein-Gordon equation itself is.
As our generalization reads

〈∂µψ, ∂
µψ〉 = −ψ2(

mc

~
)2,

the right-hand-side being a scalar remains invariant under a Lorentz transformation; the
left-hand-side is the inner product of Minkowski space which is also invariant under Lorentz
transformations.

3.3 Comparison with other relevant nonlinear theories

There are two existing main branches of research that involve nonlinearity in relation to
quantum mechanics:

1. Particular Nonlinear Schrödinger equations; which are neither considered nor pursued
as serious proposals for fundamental modifications of quantum mechanics.

2. General frameworks, like de Broglie’s[7], GRW theory[12] and Weinberg’s[23, 14]; which
pursue nonlinearity on a fundamental level, but involve arbitrariness.
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Our proposal not only incorporates all the strengths of these two branches but also addresses
their weaknesses: it is a general framework enjoying an explicit generalization of Schrödinger
and Klein-Gordon equations without any arbitrariness whatsoever.
The first category (particulars) includes the Nonlinear Schrödinger equation[11]

i
∂ψ

∂t
= −

1

2m
∇2ψ + k|ψ|2ψ,

Logarithmic Schrödinger equation[24]

i
∂ψ

∂t
= −

1

2m
∇2ψ + bψ log |ψ|2,

and other similar equations like Gross-Pitaevskii[25]18. On the mathematical side, our pro-
posed equation is totally different from such equations in that it is a first-order PDE. On the
physical side, all such equations are based on various approximations[26, 27] and with no sim-
ple derivation. Being approximations and not generalizations they all owe their physical role
to a more fundamental (as opposed to emergent) equation. In case of the Gross-Pitaevskii
equation for example, the nonlinearity is an emergent one19 due to interactions between
particles.
Our approach on the contrary is based on no approximation nor additional assumption or
new parameters: it is based on the most general form of the de Broglie hypothesis that
is possible to express in terms of the wavefunction itself using differential calculus. What
totally distinguishes our proposed equation is that it is based on a firm physical foundation
and simplifies to Schrödinger and Klein-Gordons equations without letting equal to zero any
arbitrary parameter, but by imposition of a well-defined dynamical condition that we already
knew is assumed in quantum mechanics. For the reasons stated, the particular equations
have not the potential of being extended to relativistic quantum mechanics while Special
Relativity is easily applied to our proposed neoclassical definition of momentum (5) to yield
the elegant generalization of Klein-Gordon equation (12).
Along the lines of the second category that similar to our approach follow nonlinearity as
having a fundamental role in quantum physics, the term �ψ/ψ in (13) resembles �f/f in
de Broglie’s theory of double solutions[7]. Basically de Broglie considers two waves; usual ψ
and the u-wave. de Broglie thought of this new u-wave as representing a ‘mobile singularity’
intended to represent the particle aspect. The f function is the amplitude of the u-wave.
Although de Broglie himself –like the theory that bears his name– also missed the point by
neglecting the new (second) term in (6), he did correctly realise the significance of �f/f
by stating that ‘The departure from the older mechanics is always bound up with the pres-
ence of the term �f/f .’[7]. Apart from this remark, our theory is completely different from
de Broglie’s theory and does not appeal to the redundant notion of u-wave. More recent
approaches include GRW theory[12], Weinberg’s attempts[23, 14] and Doebner-Goldin’s[28].
As we mentioned earlier, GRW theory introduces two new parameters (collapse rate and

18Weinberg[23] has a thorough review of such attempts and their status from the perspective of nonlinearity
as a fundamental guiding principle.

19Involving scattering length as which is not a fundamental constant of physics, the nonlinear term is due
to interaction of particles and not a fundamental term present for single particles.
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localization distance) which are considered to be new fundamental constants of nature[29].
This is nothing but arbitrariness: new fundamental constants of nature can only be intro-
duced out of absolute necessity; on the verge of desperation (Planck), otherwise we would
have as many new ‘fundamental’ constants as there are trends of theoretical physics. By
Occam’s razor there is no need for new constants when we already have at hand a nonlin-
ear fundamental theory without any arbitrariness. Same can be said about Doebner-Goldin
equation[28]

i~
∂ψ

∂t
= −

~
2

2m
∇2ψ + V ψ + iD~

(

|∇ψ|2

|ψ|2
ψ +∇2ψ

)

due to the presence of arbitrary parameter D. Regarding Weinberg’s theory, we maintain
that its most important physical aspect is the homogeneity property according to which if ψ
is a solution then so is Zψ for arbitrary complex constant Z. This condition is so crucial
for Weinberg that his proposed equation for evolution of wavefunction is motivated so as to
satisfy it. Indeed our equation does satisfy this condition: as our equation for Zψ reads

i~Z2

2

∂ψ2

∂t
= −

~
2

2m
∇(Zψ) · ∇(Zψ) + V Z2ψ2 = −

~
2

2m
Z2‖∇ψ‖2 + V Z2ψ2,

it satisfies the condition for arbitrary20Z.

4 Implications and Conclusion

It must have become clear by now that our proposal is neither an alternative nor an inter-
pretation of any existing quantum theory. It is a generalization and as such it has novel
physical consequences.

4.1 Generation of Probabilities

Although our physical motivation was based on probabilities and measurements, after the
development of our proposal we now face difficulties in maintaining such concepts. Our
proposal cannot say anything about the Born Principle as its very statement that ‘|ψ|2 is
the probability distribution of a superposed quantum state switching to a single definite
eigenvalue by performance of a measurement’ is blurred by our proposal: according to our
view there are neither superpositions nor eigenvalues in general; both are too special cases to
deserve reference of a fundamental principle of nature. Possible redundancy of concepts like
superposition and eigenvalues in turn makes the meaning of ‘measurement’ and ‘probability
of outcome of a measurement’ unclear. In this light therefore, it is expected that we must look
for a new meaning for ψ. In this paper however we follow Newton’s maxim of hypotheses
non fingo and leave the question open to further meticulous investigations. Accordingly
we temporarily assume that |ψ|2 is some sort of probability in order to demonstrate the
following consequence. If we leave (almost) intact the assumption of ρ = |ψ|2 representing

20Note that in the system that we are confined to (neoclassical approach), zero complex numbers are
already excluded right from the beginning, so ‘arbitrary’ implicitly means non-zero arbitrary.
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probabilities, comparison of (1) and (6) implies that the rate of generation of probabilities
denoted by π, is given by

π =

∣

∣

∣

∣

i~

m
∇ ·

(

|ψ|2
∇R

R

)∣

∣

∣

∣

(15)

Naturally π = 0 is the situation in which probability is not generated i.e. conserved.

4.2 Nonlinearity and Possibility of Solitons

Notice that equation (8) is dispersive: Consider for example the case for a free particle

i
1

ψ

∂ψ

∂t
= −

1

2

‖∇ψ‖2

ψ2

in which we have set ~ = m = 1 for simplicity. By our definition (5) the above equation
yields the dispersion relation

ω = −
1

2
|k|2,

which is in fact identical with the dispersion relation that Schrödinger equation yields for
a free particle. Unlike Schrödinger equation however, our equation is nonlinear. As we
mentioned in the introduction it is known that dispersion and nonlinearity together allow
for the possibility of existence of solitons[13]. It is therefore possible to revive the old notion
of wavepackets as particles should such solutions actually occur.

Now that it is assured that our proposal cannot have any disagreement with the orthodox
theory, it is a legitimate question that what new information this theory is giving us for the
important experiments of quantum mechanics like the double-slit experiment? A proper
answer of this question depends on solving equation (8) which the author has not yet been
able to solve analytically. In absence of an analytical solution the next best action is to
analyse the equation numerically which will be done in a consequent paper.
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